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Abstract

Chromosome conformation capture (3C) is a method of measuring chromosome
topology in terms of loci interaction. The Hi-C method is a derivative of 3C that allows
for genome-wide quantification of chromosome interaction. From such interaction data,
it is possible to infer the three-dimensional (3D) structure of the underlying
chromosome. In this paper, we developed a novel method, HiC-GNN, for predicting
the 3D structures of chromosomes from Hi-C data. HIC-GNN is unique from other
methods for chromosome structure prediction in that the models learned by HiIC-GNN
can be generalized to data that is distinct from the training data. This aspect of HiC-
GNN allows models that were trained on one Hi-C contact map to be used for inference
on entirely different maps. To the authors’ knowledge, this generalizing capability is
not present in any existing methods. HIC-GNN uses a node embedding algorithm and
a graph neural network to predict the 3D coordinates of each genomic loci from the
corresponding Hi-C contact data. Unlike other methods, our algorithm allows for the
storage of pre-trained parameters, thus enabling prediction on data that is entirely
different from the training data. We show that our method can accurately generalize a
single model across Hi-C resolutions, multiple restriction enzymes, and multiple cell
populations while maintaining reconstruction accuracy across three Hi-C datasets. Our
algorithm outperforms the state-of-the-art methods in accuracy of prediction and
runtime and introduces a novel method for 3D structure prediction from Hi-C data. All
our source codes and data are available at https://github.com/OluwadareLab/HiC-GNN.
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Introduction

The structure of chromosomes is known to influence several genomic functions [1], [2],
[3]. Thus, discovering the three-dimensional (3D) structure of chromosomes is
important for understanding the functional and regulatory elements of genomes. For
this reason, chromosome conformation capturing techniques such as 3C [4], 4C [5], 5C
[6], and Hi-C [7], [8], [9] were developed to analyze the spatial organization of
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chromatins in a cell. In general, chromosome conformation capture relies on
quantification of contacts between genomic loci to give insight into the structural
organization of the genome. Hi-C is a chromosome conformation capture technology
that allows for all-to-all quantification of intra-genomic contacts, i.e., contacts are
measured between each pair of loci within the genome. This is accomplished via the
following steps [7-9]. First, chromatin between several chromosomes are cross linked
using a fixative solution. Then, the chromatin is isolated and digested by an enzyme.
This results in pairs of crosslinked DNA fragments that may differ linearly but are close
in phys ical space. These separate fragments are then re-ligated, and the crosslinks
are reversed, thus resulting in templates. These templates are then amplified and
interrogated, usually using polymerase chain reaction (PCR) and DNA sequencing. The
resulting data describes the frequency of ligation junctions between genomic loci.
These relative contact frequencies describe the proximity of the loci in 3D space. Due
to its all-to-all nature, the Hi-C method allows for global insight into the spatial
organization of entire genomes.

The high quantity of data that is produced with the Hi-C method has led to the
development of several computational methods that aim to make inference of the 3D
structure of chromosomes from their respective Hi-C data [10]. A strategy often
employed by these computational methods is the distance-restraint optimization
strategy [11], [12], [13], [14], [15], [16]. Usually, the distance-restraint method converts
the contacts of the input Hi-C map to distances using an inverse power law [9]. These
distances are typically referred to as wish distances. Following this conversion step, a
set of xyz coordinates is initialized; each xyz coordinate corresponds to a locus in the
chromosome. The model is then trained by optimizing these xyz coordinates so that the
pairwise Euclidean distances of the predicted structure accurately recreate the wish
distances of the input.

Motivation

There are several limitations associated with traditional distance-restraint methods.
Firstly, some distance-restraint methods assume that chromosomal contacts are
independent and identically distributed [11] This assumption is false since self-
attracting nature of polymers results in correlations between neighboring contact sites
[17]. Moreover, ignoring intra-contact correlations removes a potentially valuable
source of information for structure prediction. The second limitation associated with
distance-restraint methods is that, to the authors' knowledge, all current distance-
restraint methods are instance-based. That is, to predict the structure of a fixed
chromosome under a different contact map, such as one generated from a different
resolution, restriction enzyme, or cell population, one must retrain an entirely new
model. This leads to intense computational requirements when using these methods to
make predictions on large data sets, such as those with high resolution. Moreover, this
instance-based nature associated with traditional distance-restraint methods means that
these methods tend to fail when the input data is sparse as there are fewer features that
can be utilized in training.

In this paper, we present a novel distance-restraint method for 3D chromosome
reconstruction from cis-chromosomal Hi-C contacts that addresses each of these
limitations associated with traditional distance-restraint methods. Our method relies on
a graphical interpretation of Hi-C data. From this graphical interpretation, we use a
node embedding algorithm to generate features corresponding to each chromosomal
locus. These features are then utilized to train a graph convolutional neural network



(GCNN) to generate predictions of the xyz coordinates corresponding to each
chromosomal locus.

To the authors’ knowledge, HiC-GNN is the only chromosome structure
prediction algorithm that learns models that can be stored and used to make
predictions on unseen data while maintaining accuracy. This ability to store
parameters and make predictions on unseen data with accuracy is precisely our
definition of generalization. Specifically, we show that our models can generalize
across three data variations:

1. Generalization across resolutions: a model trained on the Hi-C map of a fixed
chromosome at one resolution can be used to accurately predict the structure of
the same fixed chromosome using a different Hi-C map resolution as the input.
This allows us to train a model on low resolution data and make predictions for
high-resolution data, thereby circumventing the computational expenditure
associated with training a new model on high-resolution data.

2. Generalization across restriction enzymes: a model trained on a Hi-C map of
a fixed chromosome utilizing some restriction enzyme in the Hi-C experiment
can be used to accurately predict the structure of the same fixed chromosome
using a Hi-C map obtained with a different restriction enzyme as an input.

3. Generalization across cell population: a model trained on a Hi-C map of a
fixed chromosome corresponding to some cell population can be used to
accurately predict the structure of the same fixed chromosome using Hi-C data
obtained from a different cell population. This allows us to train a model on
contact-sparse data (i.e., contact maps with fewer contact frequencies) and make
predictions on denser contact maps.

These generalizations allow for several benefits associated with HiC-GNN that are
absent in other methods. Generalization 1 has the practical benefit of being able to
train a model on low resolution data while still being able to make predictions on high
resolution data, thereby avoiding the additional computational requirements associated
with training a model on high resolution data. This is particularly important since the
computational requirements of some methods limit their use to low resolution data. We
show that this benefit decreases the runtime of HiIC-GNN and thus yields faster results
than other methods. Generalization 2 shows that our models are robust to biases
introduced by choices of restriction enzymes, i.e., we can ensure that the predicted
structure of a given chromosome is consistent irrespective of which restriction enzyme
was used in the training data. Generalization 3 shows that our models are robust to
contact sparsity in the data.

We validate the reconstructive performance and the generalization capabilities of our
method on three separate data sets from the GM 12878, GM06990, and K562 cell lines
and make comparisons with four other Hi-C chromosome reconstruction methods;
ShRec3D [18], ShNeigh2 [19], ChromSDE [16], and LorDG [11]. We also validate the
reconstructive performance of our method using orthogonal ChIA-PET data from the
GM12878 cell line.

Overview of Other Methods

There currently exist many methods for 3D chromosome reconstruction. MCMCS is a
method which uses a Markov Chain Monte Carlo (MCMC) for sampling spatial
coordinates from the posterior distribution generated by interaction frequency data
under a Gaussian prior [40]. BACH also uses MCMC to sample spatial coordinates,
except the authors assume a Poisson distributed prior [46]. PASTIS also assumes that



spatial coordinates are related to contact frequencies according to a Poisson
distribution; however, spatial coordinates are optimized via maximizing the likelihood
of the Poisson distribution [47]. Chromosome3D is a distance restraint method which
optimizes distances using distance geometry simulated annealing [15]. LorDG is a
distance restraint method that uses an objective function derived from the Lorenzian
function. The Lorenzian objective smooths inconsistencies in the Hi-C due to
heterogeneous cell populations by rewarding the satisfaction of consistent restraints
whose value is not affected by the violation of inconsistent restraints. Finally,
ChromSDE is a distance restraint method that relies on semi-definite programming to
optimize the predicted structures. Moreover, ChromSDE relies on a golden search
algorithm to infer the relationship between interaction frequency and distance. We
chose to compare our method to LorDG and ChromSDE due to their ability to
outperform several other distance and contact-based algorithms, that is use the contact
data directly for 3D structure reconstruction [10], [11], [16], [23]. Thus, we can consider
this methods top-performers, and representative methods for distance instance-based
method for chromosome 3D structure reconstruction.

We also compare our method to ShNeigh2 and ShRec3D. Both ShNeigh2 and ShRec3D
are methods that consider the neighborhood structure of contact sites in Hi-C data. Like
our method, these two methods rely on a graphical interpretation of Hi-C data. This is
the reason why we choose to include these two methods in our method evaluation.
ShRec3D considers the neighborhood structure of contact sites by utilizing a shortest
path algorithm on the Hi-C data to derive distances from contacts. The structure of the
chromosome is then inferred from these distances using multi-dimensional scaling. A
recently proposed method, ShNeigh [19], incorporates neighborhood dependence by
defining an affinity matrix associated with the input contact matrix defined from a
Gaussian distribution. The entries of this affinity matrix are then utilized as
regularization terms in the objective that is thence optimized. The authors of ShNeigh
present two versions of the algorithm, ShNeigh1 and ShNeigh2. The difference between
these versions is that ShNeighl assumes a constant relationship between interaction
frequency and distance, whereas ShNeigh2 optimizes this relationship dynamically.
Thus, ShNeigh?2 is slower than ShNeighl but usually produces better results. For this
reason, we compared our method with ShNeigh2.

Materials and Methods

The crux of our method is a graphical interpretation of the input Hi-C data. Recall that
a Hi-C map for a given chromosome is an NXN symmetric matrix whose ijt" entry
corresponds to the contact frequency between locus i and locus j. N refers to the total
amount of loci observed in the Hi-C map. Our method interprets this contact matrix to
be an adjacency matrix corresponding to an edge-weighted, un-directed graph
consisting of N nodes. In this formulation, the ij* entry of a given Hi-C map denotes
the edge weight between node i and node j, and zero entries imply that the nodes are
not connected. This graphical interpretation of the Hi-C data allows for the topology of
the graph to be considered during the reconstruction.

With this graphical interpretation, we may formulate the task of predicting the structure
of the chromosome as a node regression problem. Specifically, we are given a graph
with unlabeled nodes corresponding to intra-chromosomal loci and edge weights
corresponding to contact frequencies between these loci. Our task is to assign xyz
coordinates to each node such that the difference between the true chromosomal



structure and predicted chromosomal structure is minimized. Fig. 1 gives a high-level
overview of how we utilize the graphical interpretation of Hi-C data to accomplish this
task.

Our method takes a Hi-C map of cis-chromosomal contacts of a given chromosome as
an input. From this map, we generate feature vectors for each node using a node
embedding algorithm. We also generate ground truth, or wish distances, from the input
map according to a standard conversion formula typical in most distance-restraint
methods. We then normalize the input Hi-C map to the range [0,1] using Knight-Ruiz
(KR) matrix balancing [20] to promote numerical stability in the training process. This
normalization technique also mitigates biases in the Hi-C data [21]. We use this
normalized map along with the node embeddings as inputs to a GCNN. The output of
the GCNN is a set of xyz coordinates corresponding to each node of the input graph.
We then compute the pairwise distances between each of these coordinates and compare
to the wish distances corresponding to the input Hi-C map using mean squared error
(MSE). We find the optimal coordinates by minimizing MSE through backpropagation
of the GCNN. This optimization is performed using the Adam optimizer [22]. We use
a convergence threshold to determine when the network is sufficiently optimized, i.e.,
we train until MSE is below a certain value.

Conversion of contacts to wish distances

One challenge posed by 3D chromosome structural inference is the lack of ground truth
associated with the input data. We would like to optimize the output coordinates of our
model to match the true pairwise distances corresponding to the loci of the input
chromosome, but these true distances are generally unknown. It has been shown both
empirically and theoretically, however, that relationship between the distances and
contact frequencies between two loci is inversely exponential [9], [23], [24], [25].
Thus, we can estimate the true pairwise distance between locus 7 and locus j by using

where CFj;, is the interaction frequency between locus i and locus j. The parameter y

is known as the conversion factor. In general, the value for ¥ is unknown and varies
depending on the underlying chromosome. It has been shown, however, that y lies in
the range [.1,2] for most, common cell types [26]. In our experiments, we assume that
the optimal conversion belongs to the set {0.1, 0.2, ..., 2}. We train a model using
ground-truth data generated for each conversion factor in this set and select the structure
with the highest Spearman correlation coefficient (see the evaluation section) as the
representative model. This method of converting contact frequencies to distances and
generating an ensemble of structures based on multiple conversion factors is used in
several other distance-restraint algorithms and has been shown to be a valid means for
generating ground-truth distance data [10], [16], [27].

Node feature creation

Another challenge associated with our formulation of 3D structure reconstruction as a
node regression problem is the lack of features associated with the nodes we would like
to regress. Hi-C data only defines a graph structure through weighted edges between
featureless nodes. Thus, we must create node features to serve as inputs to the regression
problem. These node features ideally have two desirable properties. Firstly, we would
like these node features to be correlated to the underlying graph structure, i.e., node
embeddings within regions of high connectivity should be similar. Secondly, we would
like this similarity defined from the graph structure to translate to similarity of node



features in Euclidean space so that the 3D structure of the chromosome can be inferred
from these features. A natural way to accomplish these two goals is to create vectorized
representations of each node utilizing a node embedding algorithm and use these
representations as the input node features.

We create node features using the LINE node embedding algorithm [28] to be input
into our GCNN. LINE is a node embedding algorithm that is specifically adapted to
scalable use on large graphs. We used the LINE node embedding algorithm because it
has been used in previous Hi-C research and has shown success in predicting
chromosome compartmentalization from Hi-C data [29]. One advantage associated
with LINE in the context of this specific application is that LINE considers edge
weights when generating embeddings. LINE also accounts for both first and second
order proximities in the input graph. Thus, the embeddings from LINE account for
correlations between the contact values of the Hi-C map and preserve higher order
relationships between node neighborhoods. The general technique of LINE is as
follows. Firstly, a conditional node context distribution is defined. This distribution is
given by equation (1):

exp(uj-uj) (1)
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where v; are indexed nodes and u; are the corresponding n-dimensional, real-valued-
vector feature representations. The empirical distribution p, is then fit to p, by
minimizing the Kullback—Leibler (KL) divergence between these two distributions
using stochastic gradient descent. Intuitively, LINE maximizes the probability of
recreating the underlying graph from the computed node embeddings. The information
about how to access the LINE algorithm is provided in the ‘Availability of data and

materials’ section.

Hi-C map normalization

The inputs to the GCNN are a set of node features and the corresponding Hi-C contact
map. In this context, the contact map is interpreted as an adjacency matrix
corresponding to an edge-weighted graph whose weights correspond to the map’s
contact frequencies. The values of these contact frequencies are often in the hundreds
of thousands. Thus, to promote numerical stability of the GCNN, we normalize the
input map to the interval [0,1]. We perform this normalization using Knight-Ruiz (KR)
matrix balancing [20]. The result of KR balancing is a doubly stochastic matrix. This
technique has been used in several other applications of Hi-C data [21].

Graph convolutional neural network architecture

Following the generation of node feature vectors, the regression of node xyz
coordinates is performed using a GCNN. The advantage of utilizing a GCNN to
estimate 3D coordinates from the input features as opposed to just using a standard
neural network is two-fold. Firstly, GCNNs incorporate the graphical structure of the
Hi-C data features, whereas standard neural networks have no way of interpreting
graphical relationships from the data. Secondly, the shape of the input layer of the
network depends only on the shape of the node features and is independent of the
quantity of nodes in the input adjacency matrix. This independence is what allows us
to generalize models between input Hi-C maps of potentially different sizes.

Our method relies on a consolidate-update inspired by the GraphSAGE algorithm [43].
In general, the consolidate-update strategy involves a consolidation of the features of
nodes in the neighborhood of a target node followed by an update of the target node's



feature via some trainable function. Assume we are computing the 3D coordinates of
node i with corresponding feature vector x; of length n. We first consolidate features
of the nodes in the neighborhood of i using the equation (2)

1
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where V(i) is the neighborhood of i and e;; is the edge weight between node i and
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node j and X; is the feature vector of node j. We then compute the updated target node
feature vector x; using equation (3)

/

xp = Wix; + WC(x;) 3)

where W, and W, are n X n parameter matrices. Both W, and W, are updated utilizing
backpropagation. Note that, to ensure generalizability across input maps of various
node quantities, W, and W, are shared across all nodes. We refer to the composition of
equations (2) and (3) as the graph convolutional layer. We chose to include graph
convolutions in our algorithm because the convolutions allow for the predicted
coordinates of a locus to be influenced by neighboring loci via the weighted aggregation
of local features in equation (2). The weights of this aggregation are determined by the
contact values between neighboring loci so that neighbors with high interaction with
the target node have more influence on the corresponding predicted location of said
target node. This formulation is natural because neighboring loci with high contact
values have greater physical interaction with the target node.

Following the graph convolutional layer, the updated node features following a single
graph convolutional layer are then passed through a four-layer multilayer perceptron
(MLP) which outputs the xyz coordinates corresponding to the target node. The
parameters of the MLP are shared across all nodes. Each hidden layer of the GCNN is
followed by a ReLU activation. The output layer is not followed by any activation to
not restrict the domain of the predicted structure. We then compute the pairwise
distances between each of the output xyz coordinates and compare these output
distances to the wish distances using mean squared error (MSE). We then optimize the
parameters of the network utilizing backpropagation and the Adam optimizer [22] to
minimize the MSE between the distances corresponding to the output structure and the
wish distances. We use a convergence threshold to determine when the network is
sufficiently optimized, i.e., we train until MSE is below a certain value. The entire HiC-
GNN algorithm can be visualized in Fig. 2. The architecture of the GCNN can be
visualized in Fig. 3.

Embedding alignment for generalization

The process of generalizing the results of HIC-GNN involves training the GCNN on a
Hi-C map and its corresponding embeddings from one set of data and utilizing this
trained network to generate structures using the embeddings and maps of another set of
data. It is possible, however, that the embedding distributions vary significantly across
different data, thereby making generalization difficult. Thus, we assume that
embeddings are only approximately similar up to isometry, i.e., we assume that the
embeddings between two separate chromosomes are approximately equivalent up to
rotation, translation, and scaling irrespective of the restriction enzyme, cell population,
and resolution of the maps. To test this assumption, we employ an embedding
realignment procedure prior to testing a generalized model on new embeddings .

Assume we have two N X E embeddings matrices, A and B. Here, N refers to the
number of chromosomal loci and E refers to the embedding size. We would like to find



a linear transformation that minimizes the Euclidean distance between A and B.
Formally, we would like to compute (4).

T = arg ming || QA — B ||r 4)

|| - ||z denotes the Frobenius norm. This problem is known as the generalized
Procrustes problem (GPP) [30]. Computing the matrix T in the GPP is equivalent to

computing the singular value decomposition of the matrix {0 = BA” [31]. Thus, the
task of embedding realignment has a closed form solution and requires no additional
training. Note that, in our applications, it is not guaranteed that the embedding matrices
A and B have the same size due to differing numbers of chromosomal loci across
differing resolutions. For this reason, we employ a simple expansion procedure to
match the number of rows in the embedding matrices which we describe below:

Expansion procedure for feature alignment

The alignment procedure used in our model generalization assumes the existence of a
linear transformation between the embedding spaces of two distinct Hi-C maps. In the
case of generalizing across resolutions, however, we run into the issue of the
dimensions of these spaces differing. Specifically, if A denotes the embedding matrix
corresponding to the lower resolution data and B denotes the embedding matrix
corresponding to the higher resolution data, then QA — B is not well defined since the
number of rows in A4 is less than the number of rows in B. We fix this problem using
the following expansion procedure.

Assume we are performing a resolution generalization of a given chromosome. In our
experiments, A always corresponds to the map at Imb resolution and B either
corresponds to the map at 500kb or 250kb resolution. This implies that B either as twice
or four times the number of rows of A. See Table 1 for a visual representation of why
this is the case.

The row column represents the row of an arbitrary embedding matrix. The loci columns
depict which interaction sites the row of the embedding matrix corresponds to at a given
input resolution. These values are given in millions of base pairs. For example,
embedding of the first row of an embedding matrix generated from 1mb data
corresponds to the portion of the chromosome between base pair 0 and base pair
1,000,000. The same row corresponds to the portion of the chromosome between base
pair 0 and base pair 500,000 for an embedding matrix generated from 500kb data, and
base pair 0 and base pair 250,000 for an embedding matrix generated from 250kb data.
To force the embeddings matrices to have the same number of rows, we simply repeat
additional rows of the 1mb data such that the chromosomal region of the equivalent
rows in the higher resolution embeddings matrix is contained in the chromosomal
region of the given row in the Imb embeddings matrix. See Tables 2 and 3 for an
example of this expansion procedure applied to the 500kb case and the 250kb case. By
expanding the 1mb embeddings matrix in this way, we ensure that the dimensions of
matrix A and matrix B match in the alignment procedure. Moreover, we ensure that the
corresponding rows between these two matrices come from the same regions in the
chromosome.

Note that the alignment process for Hi-C data often yields regions with no contacts. For
sake of reducing the size of these data, many Hi-C maps simply do not include these
contacts. In order to circumvent this issue, we include zero contacts in this expansion
procedure so that it is guaranteed the number of loci for higher resolution is a scalar
multiple of the number of loci for the lower resolution.



Hyperparameter optimization

Prior to generating results on real Hi-C data, we tuned the hyperparameters of HiC-GNN by
performing a grid search on the simulated Hi-C data from Trussart et al [27]. The Trussart et
al. dataset consists of multiple Hi-C maps generated from the simulation of the Hi-C protocol
on multiple worm-like chain (WLC) chromosome models at varying levels of noise and
structural variability. The advantage of using simulated data for hyper-parameter tuning is that
unlike in the case of real Hi-C data, the structure of the chromosome is known, thereby allowing
us to make a direct comparison between the outputs of HiC-GNN and the true distances of the
chromosome. By optimizing the hyper-parameters of our model in a setting in which the outputs
can be compared with a known structure, we ensure that our model will perform well on data
where the true structure of the input chromosomes is unknown as well.

We performed our experiments on a simulated chromosome of minimal structural
variability with a corresponding simulated Hi-C map involving zero noise. Specifically,
we used the maps corresponding to group 0 of structural variability with o= 50 as the
noise parameter within the Trussart et al. study. We chose this chromosome-noise
configuration so that the optimal parameters selected by the grid search were not
influenced by randomness associated with high levels of structural variability or noise.
In our grid search, we aimed to optimize the node embedding size, the sizes of the
hidden layers of the GCNN, the learning rate, and the convergence threshold. The
results of this grid search can be found in Tables 4 and 5. The optimal parameters are
shown in bold. A spreadsheet containing all of the dSCC values for the different
configurations for hyperparameter tuning can be found in the Additional file 1.

Evaluation

To validate the reconstructive accuracy of our method, we use distance Spearman
Correlation Coefficient (dASCC). dSCC is a non-parametric measure of rank correlation.
general, dSCC values closer to 1 imply higher reconstructive accuracy. The formula for
dSCC is given by equation (5).
dSCC = Yip (Xi=X)Zien(Yi-Y)
Zien(Xi-%)’ Sien(v:~7)’

D' is the set of pairwise distances between all loci of the generated model, X; is the
rank of distance i in D’, D is the set of wish distances corresponding to the input contact

)

frequencies of the chromosome, and Y; is the rank of wish distance i in D. X, Y are the
mean of their corresponding ranked vectors in D' and D respectively.

Note that dSCC is a non-parametric measure of rank correlation. The advantage to
evaluating reconstructive performance using a ranked measure of similarity is that,
unlike mean-squared error, the measure is scale invariant. Intuitively, the model may
output a perfect match of the chromosome, but the xyz coordinates may be scaled by a
constant. This scaling would be accounted for in a non-ranked measure of correlation
and would likely decrease the correlation value. This decrease in correlation would
falsely imply that the generated model is inaccurate when the only dissimilarity
between it and the ground truth is the scale and location in space. Since the purpose of
modeling the chromosome in 3D space is solely for visualization, the scale of the
output should not matter. Thus, dSCC is an appropriate measure of structural similarity
in this context. Based on the work of Trussart et al. [27], the dSCC of the output
structure with the wish distances from the conversion in equation (0) serve as a good
proxy for structural similarity to the true, unknown structure of the chromosome. Thus,
in general, it is unnecessary to evaluate the dSCC using orthogonal data. Since dSCC
are dependent on the conversion used during model training, however, we also evaluate



our method using orthogonal ChIA-PET and FISH data in order to validate the use of
these metrics as a proxy for structural similarity to the true chromosome structure.

Data
Real Hi-C Data

To test the reconstructive performance of HiC-GNN, we utilized three data sets
consisting of real Hi-C data. The first data set corresponds to the human GM 12878 cell
line from Rao et al. [32]. This data set consists of the Hi-C maps of 23 chromosomes
generated from the Mbol restriction enzyme at 1mb, 500kb, and 250kb resolutions. This
data set was downloaded from the Genome Structure Database (GSDB) repository [33]
under the GSDB ID: O07429SF. We utilized this data set to test Generalization 1. The
second data set corresponds to the human GM06990 cell line from Lieberman et al. [9].
This data set consists of the Hi-C maps of 22 chromosomes generated from the Ncol
and HindIII restriction enzymes at Imb resolution. We utilized this data set to test
Generalization 2. The third data set corresponds to the human K562 cell line from Rao
et al. [32]. This data set consists of several Hi-C maps of 23 chromosomes generated
from the Mbol restriction enzyme at 1mb resolution. The genome-wide maps of this
data set vary in their total number of contacts, ranging from 53 million to 932 million.
This data set was downloaded from the Juicebox tool developed by Durand et al. [34].
We utilized this data set to test generalization 3.

ChIA-PET data

Chromatin immunoprecipitation (ChIP) is a technique to investigate protein specific
interactions in chromosomes. ChIP relies on antibodies to precipitate specific proteins,
histones, or transcription factors from cell populations. ChIP can also be combined with
sequencing technologies to quantify these interactions [35]. Chromosome Interaction
Analysis by Paired-End Sequencing (ChIA-PET) [36] is an example of such a
technology. The main difference between ChiA-PET and Hi-C data is that the ChiA-
PET technique measures interactions associated with a unique protein in the
chromosome, whereas the Hi-C technique measures interactions between any loci in
the chromosome.

To further validate our results on the real Hi-C data, we compare the outputs of our
method when using Hi-C data to the interaction frequencies of an orthogonal ChiA-
PET data set. We performed this validation using ChIA-PET data from the NCBI GEO
database (GEO accession: GSE72816) for the RNAPII ChIA-PET data from human
GM12878 cells [37]. This data measures interactions between the RNA polymerase 11
multicomplex; a protein complex that is responsible for gene transcription.

FISH data

Fluorescent in situ hybridization (FISH) is a technique in which specific DNA
fragments are colored using fluorescent dye and are then attached to a chromosome
using in situ hybridization. The presence of this flouresent dye allows for direct
observation and measurement of distances in the chromosomes using microscopes. We
further validated our method using the FISH data provided by Rao et al. [32]. This
particular FISH data measures the distance between three peaks called from the Hi-C
maps of chromosomes 11, 13, 14, and 17 of the GM 12878 cell line.



Results
GM12878 cell line dataset

Generalization 1: generalization across input resolution

To test the reconstructive performance of HiC-GNN on real data, we evaluated the
distance Spearman Correlation Coefficient (dASCC) of outputs when evaluated on Hi-C
maps from the GM 12878 cell line generated with Mbol restriction enzyme. To test for
the effects of variability in resolution, we generated models on three separate
resolutions: 1mb, 500kb, and 250kb. We compared the dSCC of our output models to
the dSCC of the output models of the four other methods using the optimal hyper-
parameters suggested by the authors of both methods.

We also utilized the GM 12878 cell line to test how well HIC-GNN can generalize across
input resolutions. To do this, we generated embeddings for one chromosome at Imb,
500kb, and 250kb resolutions. We then trained our GCNN using the contact maps and
corresponding embeddings of the 1mb data until convergence is met and stored the
optimal conversion factor. Following this training, we aligned the embeddings of the
500kb and 250kb data to those of the 1mb data. We then generated structures using
these aligned embeddings and their corresponding Hi-C contact maps as inputs to the
pre-trained GCNN. Finally, we calculated the dSCC between the pairwise distances of
the generated structures and the wish distances calculated from the input contact maps.
Note that, since dSCC does not depend on the conversion factor, we simply used a
conversion value of 1 for each calculation.

Fig. 4 shows a comparison between the output dSCC values of the generalized HiC-
GNN models and the output dSCC values of the non-generalized HiC-GNN models on
the 500kb and 250kb data. By generalized models, we mean models that were trained
on the 1mb data and tested on the higher resolutions data. By non-generalized models,
we mean models that were trained and tested on data of the same resolution. In these
figures, we also include the output dSCC of the generalized HiIC-GNN models using
un-aligned embeddings as inputs to show the effect of the alignment procedure on
reconstructive performance. From these figures, two things are clear. Firstly, the
embedding alignment procedure increases the reconstructive performance of HiC-
GNN. This suggests that the assumption of approximate similarity up to isometry of
node embeddings is valid. Secondly, although there is some decrease in dSCC
associated with the generalized models, most of the values are above 0.8 for the 500kb
generalization and above 0.7 for the 250kb generalization. This suggests that HIC-GNN
is indeed generalizing to these higher resolution data.

Fig. 5 and 6 show the dSCC and distance root mean squared error (dRMSD)
comparison of HiIC-GNN with the four other methods on 1mb, 500kb, and 250kb data.
The dRMSD is the root mean squared error between the pairwise distances of the
optimized structure and the wish distances of the contact map. To ensure a fair
comparison, we computed the dRMSD using the optimal conversion factor found by
each respective method. Moreover, since dRMSD is sensitive to the scale of the
structure, we re-scaled all structures by minimizing their Euclidean distance from the
HiC-GNN structures using Procrustes analysis.

Note that there are several missing data points for ChromSDE on the 500kb and 250kb
data due to computational restraints associated with running the algorithm on these



larger data sets. We also included the following baselines in this comparison. To test
whether the graph convolutions contribute to structural accuracy, we also generated
structures using the same embeddings for HIC-GNN but with a simple 4-layer MLP
with no graph convolutions.

To test whether the generalized models are indeed generalizing, we compared with a
linear interpolation of the 1mb structures. For each chromosome, the interpolated
structure for 500kb was found by adding a single coordinate on the line connecting each
coordinate in the 1mb HiC-GNN structure. The same procedure was used to generate
the interpolated structures at 250kb resolution by interpolating three points instead of
one. Note that this interpolation procedure results in structures with the same spatial
configuration of the 1mb outputs only with more points so that their dSCC and dRMSD
may be compared with the higher resolution maps.

From these figures, it is clear that the non-generalized HiC-GNN either outperforms or
is on par with the other methods for dSCC. Moreover, the generalized HiC-GNN
models either outperform or are on par with ShRec3D and ShNeigh at 500kb despite
being trained on half as many data instance. Also, although the interpolated structures
are competitive with the generalized structure on 500kb, the generalized structures
perform significantly better at 250kb. It is also worth noting that the dSCC values of
HiC-GNN have less variation than most of the other methods. One of the main causes
of variation in the dSCC values is high variance in the contact data. Fig. 7 shows the
variance in the contacts for each chromosome in this data set. Note that the dSCC values
of chromosomes with high contact variance are significantly reduced for most of the
other methods, particularly on chromosome 22. This shows that HiC-GNN is also more
robust to variance in the underlying contact data.

Fig. 8 and 9 show the output structures of HiIC-GNN corresponding to the generalized
models and the original models for chromosomes 3, 11, and 13 and 2, 3, and 14
respectively. One can see that the generalized structures are indeed qualitatively similar
to the non-generalized structures.

Validation on ChIA-PET data

Note that the results from Fig. 4, 5, and 6 imply a high correlation between the output
model and the input wish distances. Thus, we know our method can accurately estimate
3D coordinates from a set of wish distances. Trussart et al.[27] showed that the dSCC
between the distances corresponding to output models and the wish distances of the Hi-
C map is a good proxy for model accuracy. Before discussing additional results
involving dSCC, however, we further validate that our method does indeed produce
representative models by comparing the results generated on the GM12878 cell line
with orthogonal ChIA-PET data.

The ChIA-PET data provided by [37] consists of contact maps measuring interactions
between the RNAPII complex in all 23 chromosomes of the GM 12878 cell line. From
these contact maps, RNAPII loops were identified by considering contact regions that
have an interaction frequency greater than or equal to 5. To validate our method, we
split this ChIA-PET data into two sets: one containing looped regions and one
containing non-looped regions. We then calculated the distances of our output models
between the identified looped and non-looped regions separately for each chromosome.
If our models are representative of the true structure of the chromosome, then distances
corresponding to looped regions of our output models should typically be smaller than
distances corresponding to non-looped regions



Fig. 10 shows the box plots for the looped and non-looped regions for all chromosomes
combined for structures generated from both non-generalized and generalized HiC-
GNN models at Imb, 500kb, and 250kb resolution. We also included in these figures
the same distributions of distances for the other methods included in our comparison.
From these figures, it is clear that the distribution of distances corresponding to the
looped regions is centered around smaller values, thereby implying that the outputs of
our method are consistent with the true structure of the chromosomes. This is true for
both the generalized and non-generalized models.

Note that, although some methods have a smaller distribution of distances for the
looped regions and a larger distribution of distances for the non-looped regions, this
does not necessarily imply that the reconstructive accuracy of these methods is higher
than HiC-GNN. The metric that matters in this test is not necessarily the mean values
for these distributions, but rather that the mean values for the looped regions is smaller
than that of the non-looped regions. We found that each method, including HiC-GNN,
has a significantly smaller (p=0.001) mean for the looped regions.

A/B compartmentalization

It is known that human chromosomes tend to organize into two primary compartments
known as the A compartment and the B compartment. These compartments loci that
belong to the same compartment generally have lower pairwise distances than loci that
belong to different compartments. Thus, we should expect there to be a significant
difference between the means of inter and intra-compartmental distances for our output
structures. To validate this hypothesis, we first identified the A and B compartments for
each chromosome in GM12878. These compartments were identified by separating the
positive and negative entries of the principal eigenvector corresponding to the Pearson
correlation matrix of a normalized contact map per the procedure presented by
Lieberman et al. [9]. Loci corresponding to positive entries in this first principal
eigenvector belong to compartment A and loci corresponding to negative entries in the
first principal component belong to compartment B. We then measured the pairwise
distances of all loci that are intra-A, all loci that are intra-B, and all loci that are A-inter-
B (i.e., one belonging to A and the other belonging to B) for each output structure for
HiC-GNN.

Fig. 11 shows the distribution of distances for each of these three distance subsets for
each chromosome at all three resolutions. From this figure, it is clear that the average
intra-distance (left and middle boxes) is lower than the average inter-distance
(rightmost box), thereby validating that our structures organize into well-defined A-B
compartments. Moreover, this difference between the means is statistically significant
(p=0.001). Fig. 12 also shows the color-coded A/B compartments for 4 randomly
selected chromosomes at 1mb resolution for a qualitative validation of this
phenomenon.

Validation on FISH data

FISH data includes the true, measured distances between loci on a chromosome. Thus,
we may compare the FISH distances with the distances corresponding to our output
models to validate that our method is indeed producing results that are consistent with
the true structure of the chromosome. We used the FISH distance data from Rao et al.
[32], which measured two peaked regions, denoted by L1 and L2, for chromosomes
11, 13, 14, and 17. These looped peaked regions were identified by the authors of this
study using their HICCUPS loop detection algorithm. A third, non-peak region, L3, was
also included in the study as a control. For chromosomes 11, 13, 14, and 17, the FISH



distances between L1 and L2 was shorter than that between L2 and L3.

To further validate HIC-GNN, we identified these regions on chromosomes 11, 13, 14,
and 17 for our output structures at 250kb resolution. We then computed the L1-L2 and
L2-L3 distances for our output structures in order to check that the same pattern persists
as in the FISH data. We choose models at 250kb resolution because models at 1mb and
500kb resolution do not have enough fidelity to pinpoint the L-regions to the same
degree of accuracy in the FISH study. Table 6 shows the L-region distances for each
chromosome along with the corresponding contact probabilities from the respective Hi-
C maps. Clearly, the L1-L2 distances are smaller than the L2-L3 distances as desired.
Moreover, the distances inversely match the trend between the contact probabilities as
one would expect from the inverse relationship between contact probability and
distance.

Runtime comparison

To show the practical benefit of generalization 1, we measured the runtime of HiC-
GNN for models generalized across resolution. We compare these runtimes to those of
LorDG in this experiment since LorDG is the fastest of all other methods considered
in this paper. Thus, for visual simplicity, our figures only show the runtimes of LorDG
and HiC-GNN. For this experiment, we selected 11 Hi-C maps increasing in the number
of loci from the GM 12878 data set. The maps containing less than 600 loci were all
Imb in resolution. The maps containing more than 600 loci were either 500kb or 250kb
in resolution. We measured the runtime of LorDG along with the training and inference
time of HiIC-GNN. For the maps containing more than 600 loci, we also measured the
training time for the same map at 1mb resolution. Note that we included the grid-search
for the conversion factor in our measurements of the runtime. for HiC-GNN

Fig. 13 shows the results of this comparison. Even the HiIC-GNN models that were
trained on the full resolution have a faster runtime than LorDG. This difference is even
greater, however, for the models that were trained on the lower resolution. In fact, the
results generated on 1,200 loci map had a runtime of less than a fifth of that of LorDG.
It is important to note that even though we trained HiC-GNN on 1mb resolution maps,
the inference was run on the corresponding higher resolution map (either 500kb or
250kb depending on the number of contacts on the x-axis). Thus, the resulting structures
produced by HiC-GNN are of the same resolution of LorDG, but they were generated
in a fraction of the time. This is precisely the practical benefit of generalization 1- low
resolution training times with high resolution outputs.

GMO06990 cell line dataset

Generalization 2: generalization across restriction enzyme

To further test our method, we validated on the GM06990 cell line as well. This data
consists of 22 Hi-C maps generated from the HindIII and Mbol restriction enzymes at
Imb resolution. We also tested how well HIC-GNN can generalize across input
restriction enzymes. The choice of restriction enzyme in the Hi-C experiment leads to
variability in the resulting Hi-C data [48-50]. Thus, accurate generalizability across
restriction enzymes would show that our method is robust to this variation. We tested
this generalization by training a model on one restriction enzyme and testing on another,
following the same alignment protocol as in the test for generalization across input
resolution. The results of these tests along with comparisons with the other methods
can be found in Fig. 14 and 15.



From these figures, it is clear that the non-generalized HiC-GNN is either on par with
or outperforms the other four methods. Moreover, the generalized HiC-GNN models
outperform ShNeigh2, ShRec3D, and LorDG on most of the chromosomes despite
being trained on data generated using an entirely different restriction enzyme. Since our
method accurately generalizes across restriction enzymes, the models learned by HiC-
GNN are robust to the variation in data caused by different choices of restriction
enzymes in the Hi-C experiment. This generalization is likely possible because the
distributions of contacts between maps corresponding to different restriction enzymes
are similar enough for the neural network to generalize despite the variation in the input
data.

Fig. 16 and 17 show the log variance for the contacts within these data sets. Once again,

the performance of the other methods is severely affected by high variance in the input
contact maps, particularly in chromosomes 9, 7, and 1 in the Ncol data and
chromosomes 18, 9, and 1 in the HindIIl data. Fig. 18 and 19 provide a visual
comparison between structures generated from a generalized HiC-GNN model and a
non-generalized HiC-GNN model for three randomly selected chromosomes.

K562 cell line dataset

Generalization 3: generalization across cell populations

Finally, we tested how well HiC-GNN could generalize across different cell
populations, i.e., how well can HiC-GNN perform when trained and tested across the
Hi-C maps of chromosomes generated from separate Hi-C experiments. For this test,
we utilized the K562 cell line from [32]. This data set consists of several sets of Hi-C
maps generated from separate Hi-C experiments, each of which containing 23
chromosomes at 1mb resolution. We will refer to each of these orthogonal sets as
replicates. Each replicate was generated using a separate population of cells. Due to
variability in the size of the cell populations, each replicate has a varying quantity of
total contacts across the entire genome. The smallest number of total contacts in the
replicate sets is 53 million, and the largest number is 310 million. In most applications
of Hi-C data analysis, it is typical to analyze the combination of all replicate maps
corresponding to multiple Hi-C experiments.

In this test, we consider maps of two levels of total contacts: full coverage and half
coverage. The full coverage maps are derived by taking the element-wise sum of each
replicate map within the data set for each distinct chromosome. The half coverage maps
are derived by taking the same element-wise sum except using only three of the six
replicate maps within the data set. The three maps used for the half coverage maps along
with the total contacts (across all chromosomes) for each map are shown in Table 7.

In this experiment, we trained HiC-GNN on the half coverage maps and generalized
the resulting model to the full coverage maps to test how well HIC-GNN generalizes
from contact-sparse data—which we called the Half to Full Coverage generalization. We
also trained HiC-GNN on the full coverage maps and generalized the resulting model
to the half coverage maps to test how well HIC-GNN generalizes to contact-sparse
data— which we called the Full to Half Coverage generalization). The results of these
comparisons are seen in Fig. 20 and 21 The contact variances for the full and half
coverage maps can be found in Fig, 22 and 23 respectively.

From these figures, one can tell that HIC-GNN can indeed generalize from maps
containing higher degrees of contact sparsity. Although there is some drop in the
reconstructive performance of HiC-GNN associated with generalizing on data
containing fewer contacts, it is important to note that the generalized models were either



trained or tested on data containing less than half of the contacts as the non-generalized
models. Fig. 24 gives a visual comparison of the structures generated with generalized
HiC-GNN models and structures generated using non-generalized HiC-GNN models.

Conclusions

In this paper, we presented a novel technique for predicting the 3D structure of
chromosomes from Hi-C data using a node embedding algorithm and graph
convolutional neural networks. Unlike other typical methods for chromosome structural
inference, our method has the capability of generalizing across resolutions, restriction
enzymes, and cell populations. We also showed that the performance of our method is
superior when compared with other methods across multiple data sets. To our
knowledge, the generalizations provided by our method are not present in any current
methods for chromosome structure prediction.

Our method can generalize for three reasons. Firstly, since we generate static node
features corresponding to each locus prior to training, we can store the trained
parameters of the neural network to be used for inference on unseen data. To our
knowledge, all other methods for chromosome structure prediction from Hi-C data treat
the coordinates of each locus as the trainable parameters, thereby making it impossible
to utilize the trained parameters for inference on new data. Secondly, the node features
that we create are similar enough across datasets for the outputs of the neural network
to be consistent. Specifically, the increase in reconstructive accuracy following this
embedding alignment procedure suggests that the node embeddings corresponding Hi-
C maps are approximately isometric. This isometry allows the pre-trained parameters
of the neural network to be well-adapted to the distribution of the loci representations
of unseen data. Finally, although there exists variation between the training and testing
Hi-C maps in general, the distribution of contacts is similar enough for this variation to
be smoothed by the neural network. When generalizing across resolution, the variation
is caused by difference in the granularity of observed contacts. When generalizing
across restriction enzymes, the variation is caused by biases from the Hi-C experiment.
When generalizing across cell populations, this variation is caused by sparsity of the
data. Although these variations are present, the neural network is still able to generalize.
This generalizability is one of the great successes of deep learning, which is why its use
in our algorithm is particularly valuable.

Beyond generalizability, there are also several possible advantages to using GCNNs for
the task of chromosome structure prediction that were not explored in this paper. For
example, batching procedures could be used to improve the training process and more
sophisticated embedding alignment could improve the reconstructive performance of
generalized models. The batching and parallelization capabilities of graph neural
networks could potentially be useful for structural prediction on very high (<10kb)
resolution data. Moreover, the generalizability of our method could also reduce the
computational requirements of generating structures on high resolution data via pre-
training on low resolution data. We consider these rich directions of our method for
future work.

Data Availability

All our source codes and data are available at https://github.com/Oluwadarel.ab/HiC-
GNN , and is made available as a containerized application that can be run on any
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platform. We utilized a TensorFlow implementation of LINE available at
https://github.com/shenweichen/GraphEmbedding .
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Figure 1 — HiC-GNN 3D chromosomal structure prediction pipeline.

A high-level overview of how HiC-GNN accomplishes the task of 3D chromosomal
structure prediction from Hi-C data. The input Hi-C contact map is interpreted as an
adjacency matrix corresponding to an edge-weighted graph. Each node within the graph
corresponds to a locus in the chromosome. Given a target node, we perform graph
convolutions on its one-hop neighborhood and output a predicted coordinate
corresponding to the locus’ spatial position.
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Figure 2 — General pipeline for HiC-GNN.

The pipeline for the entire HiC-GNN algorithm. From the raw input Hi-C map, we
calculate wish distances using equation (1), we generate node embeddings using the
LINE algorithm, and we compute a normalized map using KR normalization. The node
feature vectors and the normalized Hi-C map are then used as inputs to the graph neural
network. The graph neural network is optimized by minimizing the MSE of the pairwise
distances of the output structure to the wish distances. Here, N refers to the number of
loci and E refers to the size of the embeddings.
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Figure 3 — Architecture of the GCNN.

This figure details the architecture of the GCNN. The node features of the target node’s
neighborhood are consolidated using equation 2. The representation of the target node
is then updated using equation 3. These two equations define the graph convolutional
layer. Finally, the coordinates of the target node are predicted using a 4-layer MLP.
Here, we are predicting the xyz coordinate of x,, where x; and x, are the neighbors of
xo with edge weights of e, 5 and e, ( respectively.
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Figure 4 — dSCC comparison: generalized and non-generalized models
at 500kb (A) and 250kb (B) resolution.

The figure shows the dSCC values for generalized and non-generalized HiC-GNN
models at 500kb and 250kb resolution both with and without aligned node embeddings.
The generalized models were trained on 1mb data. The difference in dSCC values
between the aligned and non-aligned embeddings implies that the alignment procedure
has a positive effect on reconstructive performance. The high dSCC values of the
generalized models also imply that the HIC-GNN models can generalize to higher
resolution data.
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Figure 5 — dSCC comparison: 1mb (A), 500kb (B), 250kb (C)
resolution.

The figure shows a comparison of HiIC-GNN with the other methods on the 1mb (A),
500kb (B), and 250kb (C) GM 12878 data using dSCC. HiC-GNN is either on-par or
outperforms the other methods on the majority of the chromosomes.



dRMSD Distribution: GM12878

A
0.40
DDSG
2 i I
= 1mb
UD‘ZS
HIiC-GNN MLP ShNeigh2 ShRec3D ChromSDE LorDG
B
fa)
o -
= o4 * 500kb
S [ I
0.2 J ‘
Interpolated Generalized HIC-GNN ShNeigh2 ShRec3D ChromSDE LorDG
C
5
[m)]
ga
= 250kb
©
1
’ Interpolated  Generalized HiC-GNN ShNeigh2 ShRec3D LorDG
Figure 6 — dRMSD comparison: 1mb (A), S00kb (B), 250kb (C)
resolution.

The figure shows a comparison of HiC-GNN with the other methods on the Imb (A),
500kb (B), and 250kb (C) GM 12878 data using dARMSD.
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Figure 7 — Contact variances: GM12878 data.

The figure shows the distribution of log-variances of contacts for each chromosome.
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Figure 8 — Visual comparison of structures generated from HiC-GNN
generalized across resolution at S00kb.

The first column lists the chromosomes for which the 3D structure prediction was done,
the second column shows the structures generated from a model trained and tested on
a 500kb map and the third column shows structures generated from a model trained on
a lmb map and tested on a 500kb map.
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Figure 9 — Visual comparison of structures generated from HiC-GNN
generalized across resolution at 250kb.

The first column lists the chromosomes for which the 3D structure prediction was done,

the second column shows the structures generated from a model trained and tested on

a 500kb map and the third column shows structures generated from a model trained on
a lmb map and tested on a 500kb map.
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Figure 10 — Comparison of distances for looped and non-looped
regions on GM12878 across all chromosomes at 1mb (A), S00kb
(B), and 250kb (C) resolutions.

The figure shows the box plots for the looped and non-looped regions for all

chromosomes combined in the GM 12878 cell line for generalized and non-generalized

HiC-GNN models at Imb (A), 500kb (B), and 250kb (C) resolutions along with all

other methods.
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Figure 11 - Comparison of distances for intra and inter-
compartmental regions on GM12878 across all chromosomes at
1mb (A), 500kb (B), and 250kb (C) resolutions.

The figure shows the box plots for the intra-A, intra-B, and A-inter-B regions for all
chromosomes combined in the GM 12878 cell line for HIC-GNN models at 1mb (A),
500kb (B), and 250kb (C) resolutions.

2 8
10 14
Figure 12 - Qualitative comparison of structures with A/B

compartments for GM12878 at 1mb resolutions.

The figure shows the output structures with the A (red) and B (green) compartments
color-coded for chromosomes 2, 8, 10, and 14 at 1mb resolution. Clearly, there is a
divide between the two compartments in the output structures.
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Figure 13 — Runtime comparison of HiC-GNN to LorDG.

The figure compares the runtime of each method for contact maps of increasing number
of loci. For contact maps with greater than 600 loci, we trained HiC-GNN on the
corresponding Imb resolution map. All inference was run on the original resolution.
The orange dots can be interpreted as the runtime of generalized HIC-GNN models for
generalization 1.
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Figure 14 — dSCC comparison: generalized and non-generalized
models for HindIII (A) and Ncol (B) restriction enzymes.

The figure shows the dSCC values for generalized and non-generalized HiC-GNN
models for the HindII (A) and Ncol (B) restriction enzymes both with and without
aligned node embeddings.
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Figure 15 — dSCC comparison: HindIII (A) and Ncol (B) restriction
enzymes.

The figure shows a comparison of HiIC-GNN with the other methods on the HindII (A)
and Ncol (B) GM06990 data.
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Figure 16 — Contact variances: GM06990 Ncol data.

The figure shows the log-variances of the contacts for each chromosome.
Chromosomes with higher contact variances lead to lower dSCC values for the other
methods, whereas HiC-GNN is relatively robust to high contact variance. This is
particularly notable on chromosomes 1, 7, 9, and 21.
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Figure 17 — Contact variances: GM06990 HindIII data.

The figure shows the log-variances of the contacts for each chromosome.
Chromosomes with higher contact variances lead to lower dSCC values for the other
methods, whereas HiC-GNN is relatively robust to high contact variance. This is
particularly notable on chromosomes 1, 9 and 18.
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Figure 18 — Visual comparison of structures generated from HiC-GNN
generalized across restriction enzymes.

The first column lists the chromosomes for which the 3D structure prediction was done.

The second column shows structures generated from a model trained and tested on the

Ncol maps. The third column shows structures generated from a model trained on the

HindIIT maps and tested on the Ncol maps.
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Figure 19 — Visual comparison of structures generated from HiC-GNN
generalized across restriction enzymes.

The first column lists the chromosomes for which the 3D structure prediction was done.

The second column shows structures generated from a model trained and tested on the

HindIIl maps. The third column shows structures generated from a model trained on

the Ncol maps and tested on the HindIII maps.
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Figure 20 — dSCC comparison: generalized and non-generalized
models for full (A) and half (B) coverage.
The figure shows the dSCC values for generalized and non-generalized HiC-GNN

models at full (A) and half (B) coverage both with and without aligned node
embeddings.
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Figure 21 — dSCC comparison: half to full (A) and full to half (B)

coverage.

The figure A shows the results of training HiC-GNN on maps with half coverage and
testing on the full coverage map. The figure B shows the results of training HiIC-GNN
on maps with full coverage and testing on the half coverage map.
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Figure 22 — Contact variances: K562 full coverage.

The figure shows the log-variances of the contacts for each chromosome.
Chromosomes with higher contact variances lead to lower dSCC values for the other
methods, whereas HiC-GNN is relatively robust to high contact variance.
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Figure 23 — Contact variances: K562 half coverage.

The figure shows the log-variances of the contacts for each chromosome.
Chromosomes with higher contact variances lead to lower dSCC values for the other
methods, whereas HiC-GNN is relatively robust to high contact variance.
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Figure 24 — Visual comparison of structures generated from HiC-GNN
generalized across cell populations.

The first column lists the chromosomes for which the 3D structure prediction was done,

the second column shows the structures generated from a model trained and tested on

a full coverage map, and the third column shows structures generated from a model
trained on a full coverage map and tested on a half coverage map.



Tables

Table 1 — Table showing which rows of the embedding matrices
correspond to which interaction sites.

Row Imb Loci 500kb Loci 250kb Loci

0 0-1 0-0.5 0-0.25

1 1-2 0.5-1 0.25-0.5

2 2-3 1-1.5 0.5-0.75
3-4 1.5-2 0.75-1

Table 2 — Table showing how we expand the 1mb embeddings matrix
to match the shape of the S00kb embeddings matrix.

Row Expanded Imb Loci 500kb Loci
0 0-1 0-0.5
1 0-1 0.5-1
2 1-2 1-1.5
3 1-2 1.5-2

Table 3 — Table showing how we expand the 1mb embeddings matrix
to match the shape of the 250kb embeddings matrix.

Row Expanded Imb Loci 250kb Loci
0 0-1 0-0.25

1 0-1 0.25-0.5
2 0-1 0.5-0.75
3 0-1 0.75-1

Table 4 — Optimal layer sizes as determined by the grid search on the

simulated data.

Note that the MLP must have an output of size 3 to correspond to the xyz coordinates
of the chromosomal loci. The selected network settings based on the grid search are in

bold on the table.
Embeddings Size 1024 512 256
GC Layer 1024 512 256
MLP Layer 1 512 256 128
MLP Layer 2 256 128 64
MLP Layer 3 128 64 32
MLP Output 3 - -




Table 5 — Optimal learning rate and convergence threshold as
determined by the grid search on the simulated data.

We explored different learning rate and convergence thresholds; the selected network
settings based on the grid search are in bold on the table.

Learning Rate 0.1 0.01 0.001 | 0.0001
Convergence 1072 | 10™* |10=> | 10712
Threshold

Table 6 — FISH data validation result on GM12878 chromosomes 11,
14, 13, and 17 at 250kb resolution.

The table shows the L1-L2 distance and L2-L3 distance for chromosomes 11, 14, 13,
and 17 at 250kb resolution. The table also shows the contact probabilities for these
regions. The FISH data provided by Rao et al. [32] shows that the L1-L2 distance
should be less than the L.2-L3 distance. The table shows that this is indeed the case.

Chromosome | L1-L2 L1-L2 L2-L3 L2-L3
Distance Probability Distance Probability

11 3.3 1.49x104 3.7 1.35x10+

14 6.1 6.97x10-° 11 3.51x10-

13 1.9 2.72 x104 3.3 1.12x10+

17 1.8 2.72x104 9 1.13 x104

Table 7 — Comparison of total contact frequencies across the entire
genome for the half and full coverage maps.
The half coverage map corresponds to the element-wise sums of HiC02, HiC074, and

HiC069. The full coverage map corresponds to the element-wise sums of each map
within the dataset.

Map Name Number of Contacts (Millions)
HiC072 53

HiC074 65

HiC069 310

Half Coverage 428

Full Coverage 932
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