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Abstract  
Chromosome conformation capture (3C) is a method of measuring chromosome 
topology in terms of loci interaction. The Hi-C method is a derivative of 3C that allows 
for genome-wide quantification of chromosome interaction. From such interaction data, 
it is possible to infer the three-dimensional (3D) structure of the underlying 
chromosome. In this paper, we developed a novel method, HiC-GNN, for predicting 
the 3D structures of chromosomes from Hi-C data. HiC-GNN is unique from other 
methods for chromosome structure prediction in that the models learned by HiC-GNN 
can be generalized to data that is distinct from the training data. This aspect of HiC-
GNN allows models that were trained on one Hi-C contact map to be used for inference 
on entirely different maps. To the authors’ knowledge, this generalizing capability is 
not present in any existing methods. HiC-GNN uses a node embedding algorithm and 
a graph neural network to predict the 3D coordinates of each genomic loci from the 
corresponding Hi-C contact data. Unlike other methods, our algorithm allows for the 
storage of pre-trained parameters, thus enabling prediction on data that is entirely 
different from the training data. We show that our method can accurately generalize a 
single model across Hi-C resolutions, multiple restriction enzymes, and multiple cell 
populations while maintaining reconstruction accuracy across three Hi-C datasets. Our 
algorithm outperforms the state-of-the-art methods in accuracy of prediction and 
runtime and introduces a novel method for 3D structure prediction from Hi-C data. All 
our source codes and data are available at https://github.com/OluwadareLab/HiC-GNN. 
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Introduction 
The structure of chromosomes is known to influence several genomic functions [1], [2], 
[3]. Thus, discovering the three-dimensional (3D) structure of chromosomes is 
important for understanding the functional and regulatory elements of genomes.  For 
this reason, chromosome conformation capturing techniques such as 3C [4], 4C [5], 5C 
[6], and Hi-C [7], [8], [9] were developed to analyze the spatial organization of 
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chromatins in a cell. In general, chromosome conformation capture relies on 
quantification of contacts between genomic loci to give insight into the structural 
organization of the genome. Hi-C is a chromosome conformation capture technology 
that allows for all-to-all quantification of intra-genomic contacts, i.e., contacts are 
measured between each pair of loci within the genome. This is accomplished via the 
following steps [7-9]. First, chromatin between several chromosomes are cross linked 
using a fixative solution. Then, the chromatin is isolated and digested by an enzyme. 
This results in pairs of crosslinked DNA fragments that may differ linearly but are close 
in phys         ical space. These separate fragments are then re-ligated, and the crosslinks 
are reversed, thus resulting in templates. These templates are then amplified and 
interrogated, usually using polymerase chain reaction (PCR) and DNA sequencing. The 
resulting data describes the frequency of ligation junctions between genomic loci. 
These relative contact frequencies describe the proximity of the loci in 3D space. Due 
to its all-to-all nature, the Hi-C method allows for global insight into the spatial 
organization of entire genomes.  

The high quantity of data that is produced with the Hi-C method has led to the 
development of several computational methods that aim to make inference of the 3D 
structure of chromosomes from their respective Hi-C data [10]. A strategy often 
employed by these computational methods is the distance-restraint optimization 
strategy [11], [12], [13], [14], [15], [16]. Usually, the distance-restraint method converts 
the contacts of the input Hi-C map to distances using an inverse power law [9]. These 
distances are typically referred to as wish distances. Following this conversion step, a 
set of xyz coordinates is initialized; each xyz coordinate corresponds to a locus in the 
chromosome. The model is then trained by optimizing these xyz coordinates so that the 
pairwise Euclidean distances of the predicted structure accurately recreate the wish 
distances of the input. 

Motivation 
There are several limitations associated with traditional distance-restraint methods. 
Firstly, some distance-restraint methods assume that chromosomal contacts are 
independent and identically distributed [11] This assumption is false since self-
attracting nature of polymers results in correlations between neighboring contact sites 
[17]. Moreover, ignoring intra-contact correlations removes a potentially valuable 
source of information for structure prediction. The second limitation associated with 
distance-restraint methods is that, to the authors' knowledge, all current distance-
restraint methods are instance-based. That is, to predict the structure of a fixed 
chromosome under a different contact map, such as one generated from a different 
resolution, restriction enzyme, or cell population, one must retrain an entirely new 
model. This leads to intense computational requirements when using these methods to 
make predictions on large data sets, such as those with high resolution. Moreover, this 
instance-based nature associated with traditional distance-restraint methods means that 
these methods tend to fail when the input data is sparse as there are fewer features that 
can be utilized in training.  

In this paper, we present a novel distance-restraint method for 3D chromosome 
reconstruction from cis-chromosomal Hi-C contacts that addresses each of these 
limitations associated with traditional distance-restraint methods. Our method relies on 
a graphical interpretation of Hi-C data. From this graphical interpretation, we use a 
node embedding algorithm to generate features corresponding to each chromosomal 
locus. These features are then utilized to train a graph convolutional neural network 



 

(GCNN) to generate predictions of the xyz coordinates corresponding to each 
chromosomal locus. 

To the authors’ knowledge, HiC-GNN is the only chromosome structure 
prediction algorithm that learns models that can be stored and used to make 
predictions on unseen data while maintaining accuracy. This ability to store 
parameters and make predictions on unseen data with accuracy is precisely our 
definition of generalization.  Specifically, we show that our models can generalize 
across three data variations: 

1. Generalization across resolutions: a model trained on the Hi-C map of a fixed 
chromosome at one resolution can be used to accurately predict the structure of 
the same fixed chromosome using a different Hi-C map resolution as the input. 
This allows us to train a model on low resolution data and make predictions for 
high-resolution data, thereby circumventing the computational expenditure 
associated with training a new model on high-resolution data.  

2. Generalization across restriction enzymes: a model trained on a Hi-C map of 
a fixed chromosome utilizing some restriction enzyme in the Hi-C experiment 
can be used to accurately predict the structure of the same fixed chromosome 
using a Hi-C map obtained with a different restriction enzyme as an input.  

3. Generalization across cell population: a model trained on a Hi-C map of a 
fixed chromosome corresponding to some cell population can be used to 
accurately predict the structure of the same fixed chromosome using Hi-C data 
obtained from a different cell population. This allows us to train a model on 
contact-sparse data (i.e., contact maps with fewer contact frequencies) and make 
predictions on denser contact maps.  

These generalizations allow for several benefits associated with HiC-GNN that are 
absent in other methods. Generalization 1 has the practical benefit of being able to 
train a model on low resolution data while still being able to make predictions on high 
resolution data, thereby avoiding the additional computational requirements associated 
with training a model on high resolution data. This is particularly important since the 
computational requirements of some methods limit their use to low resolution data. We 
show that this benefit decreases the runtime of HiC-GNN and thus yields faster results 
than other methods. Generalization 2 shows that our models are robust to biases 
introduced by choices of restriction enzymes, i.e., we can ensure that the predicted 
structure of a given chromosome is consistent irrespective of which restriction enzyme 
was used in the training data. Generalization 3 shows that our models are robust to 
contact sparsity in the data.  

We validate the reconstructive performance and the generalization capabilities of our 
method on three separate data sets from the GM12878, GM06990, and K562 cell lines 
and make comparisons with four other Hi-C chromosome reconstruction methods; 
ShRec3D [18], ShNeigh2 [19], ChromSDE [16], and LorDG [11]. We also validate the 
reconstructive performance of our method using orthogonal ChIA-PET data from the 
GM12878 cell line. 

Overview of Other Methods 
There currently exist many methods for 3D chromosome reconstruction. MCMC5 is a 
method which uses a Markov Chain Monte Carlo (MCMC) for sampling spatial 
coordinates from the posterior distribution generated by interaction frequency data 
under a Gaussian prior [40]. BACH also uses MCMC to sample spatial coordinates, 
except the authors assume a Poisson distributed prior [46]. PASTIS also assumes that 



 

spatial coordinates are related to contact frequencies according to a Poisson 
distribution; however, spatial coordinates are optimized via maximizing the likelihood 
of the Poisson distribution [47]. Chromosome3D is a distance restraint method which 
optimizes distances using distance geometry simulated annealing [15]. LorDG is a 
distance restraint method that uses an objective function derived from the Lorenzian 
function. The Lorenzian objective smooths inconsistencies in the Hi-C due to 
heterogeneous cell populations by rewarding the satisfaction of consistent restraints 
whose value is not affected by the violation of inconsistent restraints. Finally, 
ChromSDE is a distance restraint method that relies on semi-definite programming to 
optimize the predicted structures. Moreover, ChromSDE relies on a golden search 
algorithm to infer the relationship between interaction frequency and distance. We 
chose to compare our method to LorDG and ChromSDE due to their ability to 
outperform several other distance and contact-based algorithms, that is use the contact 
data directly for 3D structure reconstruction [10], [11], [16], [23]. Thus, we can consider 
this methods top-performers, and representative methods for distance instance-based 
method for chromosome 3D structure reconstruction. 

We also compare our method to ShNeigh2 and ShRec3D. Both ShNeigh2 and ShRec3D 
are methods that consider the neighborhood structure of contact sites in Hi-C data. Like 
our method, these two methods rely on a graphical interpretation of Hi-C data. This is 
the reason why we choose to include these two methods in our method evaluation. 
ShRec3D considers the neighborhood structure of contact sites by utilizing a shortest 
path algorithm on the Hi-C data to derive distances from contacts. The structure of the 
chromosome is then inferred from these distances using multi-dimensional scaling. A 
recently proposed method, ShNeigh [19], incorporates neighborhood dependence by 
defining an affinity matrix associated with the input contact matrix defined from a 
Gaussian distribution. The entries of this affinity matrix are then utilized as 
regularization terms in the objective that is thence optimized. The authors of ShNeigh 
present two versions of the algorithm, ShNeigh1 and ShNeigh2. The difference between 
these versions is that ShNeigh1 assumes a constant relationship between interaction 
frequency and distance, whereas ShNeigh2 optimizes this relationship dynamically. 
Thus, ShNeigh2 is slower than ShNeigh1 but usually produces better results. For this 
reason, we compared our method with ShNeigh2. 

Materials and Methods 
The crux of our method is a graphical interpretation of the input Hi-C data. Recall that 
a Hi-C map for a given chromosome is an N×N symmetric matrix whose 𝑖𝑗𝑡ℎ  entry 
corresponds to the contact frequency between locus i and locus j. N refers to the total 
amount of loci observed in the Hi-C map. Our method interprets this contact matrix to 
be an adjacency matrix corresponding to an edge-weighted, un-directed graph 
consisting of N nodes. In this formulation, the 𝑖𝑗𝑡ℎ  entry of a given Hi-C map denotes 
the edge weight between node i and node j, and zero entries imply that the nodes are 
not connected. This graphical interpretation of the Hi-C data allows for the topology of 
the graph to be considered during the reconstruction.   

With this graphical interpretation, we may formulate the task of predicting the structure 
of the chromosome as a node regression problem. Specifically, we are given a graph 
with unlabeled nodes corresponding to intra-chromosomal loci and edge weights 
corresponding to contact frequencies between these loci. Our task is to assign xyz 
coordinates to each node such that the difference between the true chromosomal 



 

structure and predicted chromosomal structure is minimized. Fig. 1 gives a high-level 
overview of how we utilize the graphical interpretation of Hi-C data to accomplish this 
task. 

Our method takes a Hi-C map of cis-chromosomal contacts of a given chromosome as 
an input. From this map, we generate feature vectors for each node using a node 
embedding algorithm. We also generate ground truth, or wish distances, from the input 
map according to a standard conversion formula typical in most distance-restraint 
methods. We then normalize the input Hi-C map to the range [0,1] using Knight-Ruiz 
(KR) matrix balancing [20] to promote numerical stability in the training process. This 
normalization technique also mitigates biases in the Hi-C data [21]. We use this 
normalized map along with the node embeddings as inputs to a GCNN. The output of 
the GCNN is a set of xyz coordinates corresponding to each node of the input graph. 
We then compute the pairwise distances between each of these coordinates and compare 
to the wish distances corresponding to the input Hi-C map using mean squared error 
(MSE). We find the optimal coordinates by minimizing MSE through backpropagation 
of the GCNN. This optimization is performed using the Adam optimizer [22]. We use 
a convergence threshold to determine when the network is sufficiently optimized, i.e., 
we train until MSE is below a certain value. 

Conversion of contacts to wish distances 
One challenge posed by 3D chromosome structural inference is the lack of ground truth 
associated with the input data. We would like to optimize the output coordinates of our 
model to match the true pairwise distances corresponding to the loci of the input 
chromosome, but these true distances are generally unknown. It has been shown both 
empirically and theoretically, however, that relationship between the distances and 
contact frequencies between two loci is inversely exponential [9], [23], [24],  [25]. 
Thus, we can estimate the true pairwise distance between locus i and locus j by using  

                 d(i, j) = (
1

CFi,j
)

γ

             

where CFi,j,  is the interaction frequency between locus i and locus j. The parameter 𝛾 
is known as the conversion factor. In general, the value for 𝛾 is unknown and varies 
depending on the underlying chromosome. It has been shown, however, that γ lies in 
the range [.1,2] for most, common cell types  [26]. In our experiments, we assume that 
the optimal conversion belongs to the set {0.1, 0.2, . . ., 2}. We train a model using 
ground-truth data generated for each conversion factor in this set and select the structure 
with the highest Spearman correlation coefficient (see the evaluation section) as the 
representative model. This method of converting contact frequencies to distances and 
generating an ensemble of structures based on multiple conversion factors is used in 
several other distance-restraint algorithms and has been shown to be a valid means for 
generating ground-truth distance data [10], [16], [27]. 

Node feature creation 
Another challenge associated with our formulation of 3D structure reconstruction as a 
node regression problem is the lack of features associated with the nodes we would like 
to regress. Hi-C data only defines a graph structure through weighted edges between 
featureless nodes. Thus, we must create node features to serve as inputs to the regression 
problem. These node features ideally have two desirable properties. Firstly, we would 
like these node features to be correlated to the underlying graph structure, i.e., node 
embeddings within regions of high connectivity should be similar. Secondly, we would 
like this similarity defined from the graph structure to translate to similarity of node 



 

features in Euclidean space so that the 3D structure of the chromosome can be inferred 
from these features. A natural way to accomplish these two goals is to create vectorized 
representations of each node utilizing a node embedding algorithm and use these 
representations as the input node features.  

We create node features using the LINE node embedding algorithm [28] to be input 
into our GCNN. LINE is a node embedding algorithm that is specifically adapted to 
scalable use on large graphs. We used the LINE node embedding algorithm because it 
has been used in previous Hi-C research and has shown success in predicting 
chromosome compartmentalization from Hi-C data [29]. One advantage associated 
with LINE in the context of this specific application is that LINE considers edge 
weights when generating embeddings. LINE also accounts for both first and second 
order proximities in the input graph. Thus, the embeddings from LINE account for 
correlations between the contact values of the Hi-C map and preserve higher order 
relationships between node neighborhoods.  The general technique of LINE is as 
follows. Firstly, a conditional node context distribution is defined. This distribution is 
given by equation (1): 

p2(vj|vi) =
exp(uj⋅ui)

∑ exp(uk
′ ,ui)k∈𝒩(vi)

      (1) 

where 𝑣𝑗 are indexed nodes and 𝑢𝑖 are the corresponding n-dimensional, real-valued-
vector feature representations. The empirical distribution p2̂ is then fit to 𝑝2 by 
minimizing the Kullback–Leibler (KL) divergence between these two distributions 
using stochastic gradient descent. Intuitively, LINE maximizes the probability of 
recreating the underlying graph from the computed node embeddings.  The information 
about how to access the LINE algorithm is provided in the ‘Availability of data and 
materials’ section. 

Hi-C map normalization 
The inputs to the GCNN are a set of node features and the corresponding Hi-C contact 
map. In this context, the contact map is interpreted as an adjacency matrix 
corresponding to an edge-weighted graph whose weights correspond to the map’s 
contact frequencies. The values of these contact frequencies are often in the hundreds 
of thousands. Thus, to promote numerical stability of the GCNN, we normalize the 
input map to the interval [0,1]. We perform this normalization using Knight-Ruiz (KR) 
matrix balancing [20]. The result of KR balancing is a doubly stochastic matrix. This 
technique has been used in several other applications of Hi-C data [21]. 

Graph convolutional neural network architecture 
Following the generation of node feature vectors, the regression of node 𝑥𝑦𝑧 
coordinates is performed using a GCNN. The advantage of utilizing a GCNN to 
estimate 3D coordinates from the input features as opposed to just using a standard 
neural network is two-fold. Firstly, GCNNs incorporate the graphical structure of the 
Hi-C data features, whereas standard neural networks have no way of interpreting 
graphical relationships from the data. Secondly, the shape of the input layer of the 
network depends only on the shape of the node features and is independent of the 
quantity of nodes in the input adjacency matrix. This independence is what allows us 
to generalize models between input Hi-C maps of potentially different sizes.  
Our method relies on a consolidate-update inspired by the GraphSAGE algorithm [43]. 
In general, the consolidate-update strategy involves a consolidation of the features of 
nodes in the neighborhood of a target node followed by an update of the target node's 



 

feature via some trainable function. Assume we are computing the 3D coordinates of 
node 𝑖 with corresponding feature vector xi of length 𝑛. We first consolidate features 
of the nodes in the neighborhood of 𝑖 using the equation (2) 
𝐶(𝑥𝑖) =

1

∑ 𝑒𝑖,𝑗𝑗∈𝒩(𝑖)
∑ 𝑒𝑖,𝑗𝑥𝑗𝑗∈𝒩(𝑖)                   (2) 

where 𝒩(𝑖) is the neighborhood of 𝑖 and ei,j is the edge weight between node 𝑖 and 
node 𝑗 and 𝑥𝑗  is the feature vector of node 𝑗. We then compute the updated target node 
feature vector 𝑥𝑖

′ using equation (3) 
𝑥𝑖
′ = 𝑊1𝑥𝑖 + 𝑊2𝐶(𝑥𝑖)                    (3) 

where 𝑊1 and 𝑊2 are 𝑛 × 𝑛 parameter matrices. Both 𝑊1 and 𝑊2 are updated utilizing 
backpropagation. Note that, to ensure generalizability across input maps of various 
node quantities, 𝑊1 and 𝑊2 are shared across all nodes. We refer to the composition of 
equations (2) and (3) as the graph convolutional layer. We chose to include graph 
convolutions in our algorithm because the convolutions allow for the predicted 
coordinates of a locus to be influenced by neighboring loci via the weighted aggregation 
of local features in equation (2). The weights of this aggregation are determined by the 
contact values between neighboring loci so that neighbors with high interaction with 
the target node have more influence on the corresponding predicted location of said 
target node. This formulation is natural because neighboring loci with high contact 
values have greater physical interaction with the target node.  
 
Following the graph convolutional layer, the updated node features following a single 
graph convolutional layer are then passed through a four-layer multilayer perceptron 
(MLP) which outputs the 𝑥𝑦𝑧 coordinates corresponding to the target node. The 
parameters of the MLP are shared across all nodes. Each hidden layer of the GCNN is 
followed by a ReLU activation. The output layer is not followed by any activation to 
not restrict the domain of the predicted structure. We then compute the pairwise 
distances between each of the output 𝑥𝑦𝑧 coordinates and compare these output 
distances to the wish distances using mean squared error (MSE). We then optimize the 
parameters of the network utilizing backpropagation and the Adam optimizer [22] to 
minimize the MSE between the distances corresponding to the output structure and the 
wish distances. We use a convergence threshold to determine when the network is 
sufficiently optimized, i.e., we train until MSE is below a certain value. The entire HiC-
GNN algorithm can be visualized in Fig. 2. The architecture of the GCNN can be 
visualized in Fig. 3. 

Embedding alignment for generalization 
The process of generalizing the results of HiC-GNN involves training the GCNN on a 
Hi-C map and its corresponding embeddings from one set of data and utilizing this 
trained network to generate structures using the embeddings and maps of another set of 
data. It is possible, however, that the embedding distributions vary significantly across 
different data, thereby making generalization difficult. Thus, we assume that 
embeddings are only approximately similar up to isometry, i.e., we assume that the 
embeddings between two separate chromosomes are approximately equivalent up to 
rotation, translation, and scaling irrespective of the restriction enzyme, cell population, 
and resolution of the maps. To test this assumption, we employ an embedding 
realignment procedure prior to testing a generalized model on new embeddings . 
Assume we have two 𝑁 × 𝐸 embeddings matrices, 𝐴 and 𝐵. Here, 𝑁 refers to the 
number of chromosomal loci and 𝐸 refers to the embedding size. We would like to find 



 

a linear transformation that minimizes the Euclidean distance between 𝐴 and 𝐵. 
Formally, we would like to compute  (4). 
𝑇 =   𝑎𝑟𝑔  𝑚𝑖𝑛Ω  || Ω𝐴 −  𝐵 ||𝐹                (4) 
 || ∙ ||F denotes the Frobenius norm. This problem is known as the generalized 
Procrustes problem (GPP) [30]. Computing the matrix 𝑇 in the GPP is equivalent to 
computing the singular value decomposition of the matrix Ω = 𝐵𝐴𝑇  [31]. Thus, the 
task of embedding realignment has a closed form solution and requires no additional 
training.  Note that, in our applications, it is not guaranteed that the embedding matrices 
𝐴 and 𝐵 have the same size due to differing numbers of chromosomal loci across 
differing resolutions. For this reason, we employ a simple expansion procedure to 
match the number of rows in the embedding matrices which we describe below: 
 
Expansion procedure for feature alignment  
The alignment procedure used in our model generalization assumes the existence of a 
linear transformation between the embedding spaces of two distinct Hi-C maps. In the 
case of generalizing across resolutions, however, we run into the issue of the 
dimensions of these spaces differing. Specifically, if 𝐴 denotes the embedding matrix 
corresponding to the lower resolution data and 𝐵 denotes the embedding matrix 
corresponding to the higher resolution data, then Ω𝐴 − 𝐵  is not well defined since the 
number of rows in 𝐴 is less than the number of rows in 𝐵. We fix this problem using 
the following expansion procedure.  
Assume we are performing a resolution generalization of a given chromosome. In our 
experiments, 𝐴 always corresponds to the map at 1mb resolution and 𝐵 either 
corresponds to the map at 500kb or 250kb resolution. This implies that 𝐵 either as twice 
or four times the number of rows of 𝐴. See Table 1 for a visual representation of why 
this is the case. 
The row column represents the row of an arbitrary embedding matrix. The loci columns 
depict which interaction sites the row of the embedding matrix corresponds to at a given 
input resolution. These values are given in millions of base pairs. For example, 
embedding of the first row of an embedding matrix generated from 1mb data 
corresponds to the portion of the chromosome between base pair 0 and base pair 
1,000,000. The same row corresponds to the portion of the chromosome between base 
pair 0 and base pair 500,000 for an embedding matrix generated from 500kb data, and 
base pair 0 and base pair 250,000 for an embedding matrix generated from 250kb data. 
To force the embeddings matrices to have the same number of rows, we simply repeat 
additional rows of the 1mb data such that the chromosomal region of the equivalent 
rows in the higher resolution embeddings matrix is contained in the chromosomal 
region of the given row in the 1mb embeddings matrix. See Tables 2 and 3 for an 
example of this expansion procedure applied to the 500kb case and the 250kb case. By 
expanding the 1mb embeddings matrix in this way, we ensure that the dimensions of 
matrix 𝐴 and matrix 𝐵 match in the alignment procedure. Moreover, we ensure that the 
corresponding rows between these two matrices come from the same regions in the 
chromosome. 
Note that the alignment process for Hi-C data often yields regions with no contacts. For 
sake of reducing the size of these data, many Hi-C maps simply do not include these 
contacts. In order to circumvent this issue, we include zero contacts in this expansion 
procedure so that it is guaranteed the number of loci for higher resolution is a scalar 
multiple of the number of loci for the lower resolution. 



 

Hyperparameter optimization 
Prior to generating results on real Hi-C data, we tuned the hyperparameters of HiC-GNN by 
performing a grid search on the simulated Hi-C data from Trussart et al [27]. The Trussart et 
al. dataset consists of multiple Hi-C maps generated from the simulation of the Hi-C protocol 
on multiple worm-like chain (WLC) chromosome models at varying levels of noise and 
structural variability. The advantage of using simulated data for hyper-parameter tuning is that 
unlike in the case of real Hi-C data, the structure of the chromosome is known, thereby allowing 
us to make a direct comparison between the outputs of HiC-GNN and the true distances of the 
chromosome. By optimizing the hyper-parameters of our model in a setting in which the outputs 
can be compared with a known structure, we ensure that our model will perform well on data 
where the true structure of the input chromosomes is unknown as well. 
We performed our experiments on a simulated chromosome of minimal structural 
variability with a corresponding simulated Hi-C map involving zero noise. Specifically, 
we used the maps corresponding to group 0 of structural variability with ∝= 50 as the 
noise parameter within the Trussart et al. study. We chose this chromosome-noise 
configuration so that the optimal parameters selected by the grid search were not 
influenced by randomness associated with high levels of structural variability or noise. 
In our grid search, we aimed to optimize the node embedding size, the sizes of the 
hidden layers of the GCNN, the learning rate, and the convergence threshold. The 
results of this grid search can be found in Tables 4 and 5. The optimal parameters are 
shown in bold. A spreadsheet containing all of the dSCC values for the different 
configurations for hyperparameter tuning can be found in the Additional file 1. 

Evaluation 
To validate the reconstructive accuracy of our method, we use distance Spearman 
Correlation Coefficient (dSCC). dSCC is a non-parametric measure of rank correlation. 
general, dSCC values closer to 1 imply higher reconstructive accuracy. The formula for 
dSCC is given by equation (5). 

𝑑𝑆𝐶𝐶 =
∑ (𝑋𝑖−𝑋) ∑ (𝑌𝑖−𝑌)𝑖∈𝒟𝑖∈𝐷′

√∑ (𝑋𝑖−𝑋)
2

∑ (𝑌𝑖−𝑌)
2

𝑖∈𝒟𝑖∈𝒟

                 (5) 

𝒟′ is the set of pairwise distances between all loci of the generated model,  𝑋𝑖 is the 
rank of distance 𝑖 in 𝒟′, 𝒟 is the set of wish distances corresponding to the input contact 
frequencies of the chromosome, and 𝑌𝑖 is the rank of wish distance 𝑖 in 𝒟. 𝑋, 𝑌 are the 
mean of their corresponding ranked vectors in 𝒟′ and 𝒟 respectively.  
Note that dSCC is a non-parametric measure of rank correlation. The advantage to 
evaluating reconstructive performance using a ranked measure of similarity is that, 
unlike mean-squared error, the measure is scale invariant. Intuitively, the model may 
output a perfect match of the chromosome, but the 𝑥𝑦𝑧 coordinates may be scaled by a 
constant. This scaling would be accounted for in a non-ranked measure of correlation 
and would likely decrease the correlation value. This decrease in correlation would 
falsely imply that the generated model is inaccurate when the only dissimilarity 
between it and the ground truth is the scale and location in space. Since the purpose of 
modeling the chromosome in 3D space is solely for visualization, the scale  of the 
output should not matter. Thus, dSCC is an appropriate measure of structural similarity 
in this context. Based on the work of Trussart et al. [27], the dSCC of the output 
structure with the wish distances from the conversion in equation (0) serve as a good 
proxy for structural similarity to the true, unknown structure of the chromosome. Thus, 
in general, it is unnecessary to evaluate the dSCC using orthogonal data. Since dSCC 
are dependent on the conversion used during model training, however, we also evaluate 



 

our method using orthogonal ChIA-PET and FISH data in order to validate the use of 
these metrics as a proxy for structural similarity to the true chromosome structure.   

Data 
Real Hi-C Data 
To test the reconstructive performance of HiC-GNN, we utilized three data sets 
consisting of real Hi-C data. The first data set corresponds to the human GM12878 cell 
line from Rao et al. [32]. This data set consists of the Hi-C maps of 23 chromosomes 
generated from the Mbol restriction enzyme at 1mb, 500kb, and 250kb resolutions. This 
data set was downloaded from the Genome Structure Database (GSDB) repository [33] 
under the GSDB ID: OO7429SF. We utilized this data set to test Generalization 1. The 
second data set corresponds to the human GM06990 cell line from Lieberman et al. [9]. 
This data set consists of the Hi-C maps of 22 chromosomes generated from the Ncol 
and HindIII restriction enzymes at 1mb resolution. We utilized this data set to test 
Generalization 2. The third data set corresponds to the human K562 cell line from Rao 
et al. [32]. This data set consists of several Hi-C maps of 23 chromosomes generated 
from the Mbol restriction enzyme at 1mb resolution. The genome-wide maps of this 
data set vary in their total number of contacts, ranging from 53 million to 932 million. 
This data set was downloaded from the Juicebox tool developed by Durand et al. [34]. 
We utilized this data set to test generalization 3. 

ChIA-PET data  
Chromatin immunoprecipitation (ChIP) is a technique to investigate protein specific 
interactions in chromosomes. ChIP relies on antibodies to precipitate specific proteins, 
histones, or transcription factors from cell populations. ChIP can also be combined with 
sequencing technologies to quantify these interactions [35]. Chromosome Interaction 
Analysis by Paired-End Sequencing (ChIA-PET) [36] is an example of such a 
technology. The main difference between ChiA-PET and Hi-C data is that the ChiA-
PET technique measures interactions associated with a unique protein in the 
chromosome, whereas the Hi-C technique measures interactions between any loci in 
the chromosome. 

To further validate our results on the real Hi-C data, we compare the outputs of our 
method when using Hi-C data to the interaction frequencies of an orthogonal ChiA-
PET data set. We performed this validation using ChIA-PET data from the NCBI GEO 
database (GEO accession: GSE72816) for the RNAPII ChIA-PET data from human 
GM12878 cells [37]. This data measures interactions between the RNA polymerase II 
multicomplex; a protein complex that is responsible for gene transcription. 

FISH data  
Fluorescent in situ hybridization (FISH) is a technique in which specific DNA 
fragments are colored using fluorescent dye and are then attached to a chromosome 
using in situ hybridization. The presence of this flouresent dye allows for direct 
observation and measurement of distances in the chromosomes using microscopes. We 
further validated our method using the FISH data provided by Rao et al. [32]. This 
particular FISH data measures the distance between three peaks called from the Hi-C 
maps of chromosomes 11, 13, 14, and 17 of the GM12878 cell line. 

 

 



 

 

Results  
GM12878 cell line dataset 
Generalization 1: generalization across input resolution 
To test the reconstructive performance of HiC-GNN on real data, we evaluated the 
distance Spearman Correlation Coefficient (dSCC) of outputs when evaluated on Hi-C 
maps from the GM12878 cell line generated with Mbol restriction enzyme. To test for 
the effects of variability in resolution, we generated models on three separate 
resolutions: 1mb, 500kb, and 250kb. We compared the dSCC of our output models to 
the dSCC of the output models of the four other methods using the optimal hyper-
parameters suggested by the authors of both methods.   

We also utilized the GM12878 cell line to test how well HiC-GNN can generalize across 
input resolutions. To do this, we generated embeddings for one chromosome at 1mb, 
500kb, and 250kb resolutions. We then trained our GCNN using the contact maps and 
corresponding embeddings of the 1mb data until convergence is met and stored the 
optimal conversion factor. Following this training, we aligned the embeddings of the 
500kb and 250kb data to those of the 1mb data. We then generated structures using 
these aligned embeddings and their corresponding Hi-C contact maps as inputs to the 
pre-trained GCNN. Finally, we calculated the dSCC between the pairwise distances of 
the generated structures and the wish distances calculated from the input contact maps. 
Note that, since dSCC does not depend on the conversion factor, we simply used a 
conversion value of 1 for each calculation.  

Fig. 4  shows a comparison between the output dSCC values of the generalized HiC-
GNN models and the output dSCC values of the non-generalized HiC-GNN models on 
the 500kb and 250kb data. By generalized models, we mean models that were trained 
on the 1mb data and tested on the higher resolutions data. By non-generalized models, 
we mean models that were trained and tested on data of the same resolution. In these 
figures, we also include the output dSCC of the generalized HiC-GNN models using 
un-aligned embeddings as inputs to show the effect of the alignment procedure on 
reconstructive performance. From these figures, two things are clear. Firstly, the 
embedding alignment procedure increases the reconstructive performance of HiC-
GNN. This suggests that the assumption of approximate similarity up to isometry of 
node embeddings is valid. Secondly, although there is some decrease in dSCC 
associated with the generalized models, most of the values are above 0.8 for the 500kb 
generalization and above 0.7 for the 250kb generalization. This suggests that HiC-GNN 
is indeed generalizing to these higher resolution data. 

Fig.  5 and 6 show the dSCC and distance root mean squared error (dRMSD) 
comparison of HiC-GNN with the four other methods on 1mb, 500kb, and 250kb data. 
The dRMSD is the root mean squared error between the pairwise distances of the 
optimized structure and the wish distances of the contact map. To ensure a fair 
comparison, we computed the dRMSD using the optimal conversion factor found by 
each respective method. Moreover, since dRMSD is sensitive to the scale of the 
structure, we re-scaled all structures by minimizing their Euclidean distance from the 
HiC-GNN structures using Procrustes analysis. 

Note that there are several missing data points for ChromSDE on the 500kb and 250kb 
data due to computational restraints associated with running the algorithm on these 



 

larger data sets. We also included the following baselines in this comparison. To test 
whether the graph convolutions contribute to structural accuracy, we also generated 
structures using the same embeddings for HiC-GNN but with a simple 4-layer MLP 
with no graph convolutions.  

To test whether the generalized models are indeed generalizing, we compared with a 
linear interpolation of the 1mb structures. For each chromosome, the interpolated 
structure for 500kb was found by adding a single coordinate on the line connecting each 
coordinate in the 1mb HiC-GNN structure. The same procedure was used to generate 
the interpolated structures at 250kb resolution by interpolating three points instead of 
one. Note that this interpolation procedure results in structures with the same spatial 
configuration of the 1mb outputs only with more points so that their dSCC and dRMSD 
may be compared with the higher resolution maps.  

From these figures, it is clear that the non-generalized HiC-GNN either outperforms or 
is on par with the other methods for dSCC. Moreover, the generalized HiC-GNN 
models either outperform or are on par with ShRec3D and ShNeigh at 500kb despite 
being trained on half as many data instance. Also, although the interpolated structures 
are competitive with the generalized structure on 500kb, the generalized structures 
perform significantly better at 250kb. It is also worth noting that the dSCC values of 
HiC-GNN have less variation than most of the other methods. One of the main causes 
of variation in the dSCC values is high variance in the contact data. Fig. 7 shows the 
variance in the contacts for each chromosome in this data set. Note that the dSCC values 
of chromosomes with high contact variance are significantly reduced for most of the 
other methods, particularly on chromosome 22. This shows that HiC-GNN is also more 
robust to variance in the underlying contact data. 

Fig. 8 and 9 show the output structures of HiC-GNN corresponding to the generalized 
models and the original models for chromosomes 3, 11, and 13 and 2, 3, and 14 
respectively. One can see that the generalized structures are indeed qualitatively similar 
to the non-generalized structures. 

Validation on ChIA-PET data 
Note that the results from Fig. 4, 5, and 6 imply a high correlation between the output 
model and the input wish distances. Thus, we know our method can accurately estimate 
3D coordinates from a set of wish distances. Trussart et al.[27] showed that the dSCC 
between the distances corresponding to output models and the wish distances of the Hi-
C map is a good proxy for model accuracy. Before discussing additional results 
involving dSCC, however, we further validate that our method does indeed produce 
representative models by comparing the results generated on the GM12878 cell line 
with orthogonal ChIA-PET data.  
The ChIA-PET data provided by [37] consists of contact maps measuring interactions 
between the RNAPII complex in all 23 chromosomes of the GM12878 cell line. From 
these contact maps, RNAPII loops were identified by considering contact regions that 
have an interaction frequency greater than or equal to 5. To validate our method, we 
split this ChIA-PET data into two sets: one containing looped regions and one 
containing non-looped regions. We then calculated the distances of our output models 
between the identified looped and non-looped regions separately for each chromosome. 
If our models are representative of the true structure of the chromosome, then distances 
corresponding to looped regions of our output models should typically be smaller than 
distances corresponding to non-looped regions 
 



 

Fig. 10 shows the box plots for the looped and non-looped regions for all chromosomes 
combined for structures generated from both non-generalized and generalized HiC-
GNN models at 1mb, 500kb, and 250kb resolution. We also included in these figures 
the same distributions of distances for the other methods included in our comparison. 
From these figures, it is clear that the distribution of distances corresponding to the 
looped regions is centered around smaller values, thereby implying that the outputs of 
our method are consistent with the true structure of the chromosomes. This is true for 
both the generalized and non-generalized models. 
Note that, although some methods have a smaller distribution of distances for the 
looped regions and a larger distribution of distances for the non-looped regions, this 
does not necessarily imply that the reconstructive accuracy of these methods is higher 
than HiC-GNN. The metric that matters in this test is not necessarily the mean values 
for these distributions, but rather that the mean values for the looped regions is smaller 
than that of the non-looped regions. We found that each method, including HiC-GNN, 
has a significantly smaller (p=0.001) mean for the looped regions.  

A/B compartmentalization 
It is known that human chromosomes tend to organize into two primary compartments 
known as the A compartment and the B compartment. These compartments loci that 
belong to the same compartment generally have lower pairwise distances than loci that 
belong to different compartments. Thus, we should expect there to be a significant 
difference between the means of inter and intra-compartmental distances for our output 
structures. To validate this hypothesis, we first identified the A and B compartments for 
each chromosome in GM12878. These compartments were identified by separating the 
positive and negative entries of the principal eigenvector corresponding to the Pearson 
correlation matrix of a normalized contact map per the procedure presented by 
Lieberman et al. [9]. Loci corresponding to positive entries in this first principal 
eigenvector belong to compartment A and loci corresponding to negative entries in the 
first principal component belong to compartment B. We then measured the pairwise 
distances of all loci that are intra-A, all loci that are intra-B, and all loci that are A-inter-
B (i.e., one belonging to A and the other belonging to B) for each output structure for 
HiC-GNN. 

Fig. 11 shows the distribution of distances for each of these three distance subsets for 
each chromosome at all three resolutions. From this figure, it is clear that the average 
intra-distance (left and middle boxes) is lower than the average inter-distance 
(rightmost box), thereby validating that our structures organize into well-defined A-B 
compartments. Moreover, this difference between the means is statistically significant 
(p=0.001). Fig. 12 also shows the color-coded A/B compartments for 4 randomly 
selected chromosomes at 1mb resolution for a qualitative validation of this 
phenomenon. 

Validation on FISH data 
FISH data includes the true, measured distances between loci on a chromosome. Thus, 
we may compare the FISH distances with the distances corresponding to our output 
models to validate that our method is indeed producing results that are consistent with 
the true structure of the chromosome. We used the FISH distance data from Rao et al. 
[32], which measured two peaked regions, denoted by L1 and L2,  for chromosomes 
11, 13, 14, and 17. These looped peaked regions were identified by the authors of this 
study using their HiCCUPS loop detection algorithm. A third, non-peak region, L3, was 
also included in the study as a control. For chromosomes 11, 13, 14, and 17, the FISH 



 

distances between L1 and L2 was shorter than that between L2 and L3.  

To further validate HiC-GNN, we identified these regions on chromosomes 11, 13, 14, 
and 17 for our output structures at 250kb resolution. We then computed the L1-L2 and 
L2-L3 distances for our output structures in order to check that the same pattern persists 
as in the FISH data. We choose models at 250kb resolution because models at 1mb and 
500kb resolution do not have enough fidelity to pinpoint the L-regions to the same 
degree of accuracy in the FISH study. Table 6 shows the L-region distances for each 
chromosome along with the corresponding contact probabilities from the respective Hi-
C maps. Clearly, the L1-L2 distances are smaller than the L2-L3 distances as desired. 
Moreover, the distances inversely match the trend between the contact probabilities as 
one would expect from the inverse relationship between contact probability and 
distance.  

Runtime comparison 
To show the practical benefit of generalization 1, we measured the runtime of HiC-
GNN for models generalized across resolution. We compare these runtimes to those  of 
LorDG in this experiment since LorDG  is the fastest of all other methods considered 
in this paper. Thus, for visual simplicity, our figures only show the runtimes of LorDG 
and HiC-GNN. For this experiment, we selected 11 Hi-C maps increasing in the number 
of loci from the GM12878 data set. The maps containing less than 600 loci were all 
1mb in resolution. The maps containing more than 600 loci were either 500kb or 250kb 
in resolution. We measured the runtime of LorDG along with the training and inference 
time of HiC-GNN. For the maps containing more than 600 loci, we also measured the 
training time for the same map at 1mb resolution. Note that we included the grid-search 
for the conversion factor in our measurements of the runtime. for HiC-GNN  

Fig. 13 shows the results of this comparison. Even the HiC-GNN models that were 
trained on the full resolution have a faster runtime than LorDG. This difference is even 
greater, however, for the models that were trained on the lower resolution. In fact, the 
results generated on 1,200 loci map had a runtime of less than a fifth of that of LorDG. 
It is important to note that even though we trained HiC-GNN on 1mb resolution maps, 
the inference was run on the corresponding higher resolution map (either 500kb or 
250kb depending on the number of contacts on the x-axis). Thus, the resulting structures 
produced by HiC-GNN are of the same resolution of LorDG, but they were generated 
in a fraction of the time. This is precisely the practical benefit of generalization 1- low 
resolution training times with high resolution outputs.  

 

GM06990 cell line dataset 
Generalization 2: generalization across restriction enzyme 
To further test our method, we validated on the GM06990 cell line as well. This data 
consists of 22 Hi-C maps generated from the HindIII and Mbol restriction enzymes at 
1mb resolution. We also tested how well HiC-GNN can generalize across input 
restriction enzymes. The choice of restriction enzyme in the Hi-C experiment leads to 
variability in the resulting Hi-C data [48-50]. Thus, accurate generalizability across 
restriction enzymes would show that our method is robust to this variation. We tested 
this generalization by training a model on one restriction enzyme and testing on another, 
following the same alignment protocol as in the test for generalization across input 
resolution. The results of these tests along with comparisons with the other methods 
can be found in Fig. 14 and 15. 



 

From these figures, it is clear that the non-generalized HiC-GNN is either on par with 
or outperforms the other four methods. Moreover, the generalized HiC-GNN models 
outperform ShNeigh2, ShRec3D, and LorDG on most of the chromosomes despite 
being trained on data generated using an entirely different restriction enzyme. Since our 
method accurately generalizes across restriction enzymes, the models learned by HiC-
GNN are robust to the variation in data caused by different choices of restriction 
enzymes in the Hi-C experiment. This generalization is likely possible because the 
distributions of contacts between maps corresponding to different restriction enzymes 
are similar enough for the neural network to generalize despite the variation in the input 
data. 

 Fig. 16 and 17 show the log variance for the contacts within these data sets. Once again, 
the performance of the other methods is severely affected by high variance in the input 
contact maps, particularly in chromosomes 9, 7, and 1 in the Ncol data and 
chromosomes 18, 9, and 1 in the HindIII data. Fig. 18 and 19 provide a visual 
comparison between structures generated from a generalized HiC-GNN model and a 
non-generalized HiC-GNN model for three randomly selected chromosomes. 

K562 cell line dataset 
Generalization 3: generalization across cell populations 
Finally, we tested how well HiC-GNN could generalize across different cell 
populations, i.e., how well can HiC-GNN perform when trained and tested across the 
Hi-C maps of chromosomes generated from separate Hi-C experiments. For this test, 
we utilized the K562 cell line from [32]. This data set consists of several sets of Hi-C 
maps generated from separate Hi-C experiments, each of which containing 23 
chromosomes at 1mb resolution. We will refer to each of these orthogonal sets as 
replicates. Each replicate was generated using a separate population of cells. Due to 
variability in the size of the cell populations, each replicate has a varying quantity of 
total contacts across the entire genome. The smallest number of total contacts in the 
replicate sets is 53 million, and the largest number is 310 million. In most applications 
of Hi-C data analysis, it is typical to analyze the combination of all replicate maps 
corresponding to multiple Hi-C experiments.  

In this test, we consider maps of two levels of total contacts: full coverage and half 
coverage. The full coverage maps are derived by taking the element-wise sum of each 
replicate map within the data set for each distinct chromosome. The half coverage maps 
are derived by taking the same element-wise sum except using only three of the six 
replicate maps within the data set. The three maps used for the half coverage maps along 
with the total contacts (across all chromosomes) for each map are shown in Table 7.  

In this experiment, we trained HiC-GNN on the half coverage maps and generalized 
the resulting model to the full coverage maps to test how well HiC-GNN generalizes 
from contact-sparse data–which we called the Half to Full Coverage generalization. We 
also trained HiC-GNN on the full coverage maps and generalized the resulting model 
to the half coverage maps to test how well HiC-GNN generalizes to contact-sparse 
data– which we called the Full to Half Coverage generalization). The results of these 
comparisons are seen in Fig. 20 and 21 The contact variances for the full and half 
coverage maps can be found in Fig, 22 and 23 respectively. 

From these figures, one can tell that HiC-GNN can indeed generalize from maps 
containing higher degrees of contact sparsity. Although there is some drop in the 
reconstructive performance of HiC-GNN associated with generalizing on data 
containing fewer contacts, it is important to note that the generalized models were either 



 

trained or tested on data containing less than half of the contacts as the non-generalized 
models. Fig. 24 gives a visual comparison of the structures generated with generalized 
HiC-GNN models and structures generated using non-generalized HiC-GNN models. 

Conclusions  
In this paper, we presented a novel technique for predicting the 3D structure of 
chromosomes from Hi-C data using a node embedding algorithm and graph 
convolutional neural networks. Unlike other typical methods for chromosome structural 
inference, our method has the capability of generalizing across resolutions, restriction 
enzymes, and cell populations. We also showed that the performance of our method is 
superior when compared with other methods across multiple data sets. To our 
knowledge, the generalizations provided by our method are not present in any current 
methods for chromosome structure prediction. 

Our method can generalize for three reasons. Firstly, since we generate static node 
features corresponding to each locus prior to training, we can store the trained 
parameters of the neural network to be used for inference on unseen data. To our 
knowledge, all other methods for chromosome structure prediction from Hi-C data treat 
the coordinates of each locus as the trainable parameters, thereby making it impossible 
to utilize the trained parameters for inference on new data. Secondly, the node features 
that we create are similar enough across datasets for the outputs of the neural network 
to be consistent. Specifically, the increase in reconstructive accuracy following this 
embedding alignment procedure suggests that the node embeddings corresponding Hi-
C maps are approximately isometric. This isometry allows the pre-trained parameters 
of the neural network to be well-adapted to the distribution of the loci representations 
of unseen data. Finally, although there exists variation between the training and testing 
Hi-C maps in general, the distribution of contacts is similar enough for this variation to 
be smoothed by the neural network. When generalizing across resolution, the variation 
is caused by difference in the granularity of observed contacts. When generalizing 
across restriction enzymes, the variation is caused by biases from the Hi-C experiment. 
When generalizing across cell populations, this variation is caused by sparsity of the 
data. Although these variations are present, the neural network is still able to generalize. 
This generalizability is one of the great successes of deep learning, which is why its use 
in our algorithm is particularly valuable.  

Beyond generalizability, there are also several possible advantages to using GCNNs for 
the task of chromosome structure prediction that were not explored in this paper. For 
example, batching procedures could be used to improve the training process and more 
sophisticated embedding alignment could improve the reconstructive performance of 
generalized models. The batching and parallelization capabilities of graph neural 
networks could potentially be useful for structural prediction on very high (<10kb) 
resolution data. Moreover, the generalizability of our method could also reduce the 
computational requirements of generating structures on high resolution data via pre-
training on low resolution data. We consider these rich directions of our method for 
future work.  

Data Availability 
All our source codes and data are available at https://github.com/OluwadareLab/HiC-
GNN , and is made available as a containerized application that can be run on any 
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platform. We utilized a TensorFlow implementation of LINE available at 
https://github.com/shenweichen/GraphEmbedding . 
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Figures 

 
Figure 1 – HiC-GNN 3D chromosomal structure prediction pipeline. 
A high-level overview of how HiC-GNN accomplishes the task of 3D chromosomal 
structure prediction from Hi-C data. The input Hi-C contact map is interpreted as an 
adjacency matrix corresponding to an edge-weighted graph. Each node within the graph 
corresponds to a locus in the chromosome. Given a target node, we perform graph 
convolutions on its one-hop neighborhood and output a predicted coordinate 
corresponding to the locus’ spatial position. 
 



 

 
Figure 2 – General pipeline for HiC-GNN. 
The pipeline for the entire HiC-GNN algorithm. From the raw input Hi-C map, we 
calculate wish distances using equation (1), we generate node embeddings using the 
LINE algorithm, and we compute a normalized map using KR normalization. The node 
feature vectors and the normalized Hi-C map are then used as inputs to the graph neural 
network. The graph neural network is optimized by minimizing the MSE of the pairwise 
distances of the output structure to the wish distances. Here, N refers to the number of 
loci and E refers to the size of the embeddings. 
 



 

 
Figure 3 – Architecture of the GCNN. 
This figure details the architecture of the GCNN. The node features of the target node’s 
neighborhood are consolidated using equation 2. The representation of the target node 
is then updated using equation 3. These two equations define the graph convolutional 
layer. Finally, the coordinates of the target node are predicted using a 4-layer MLP. 
Here, we are predicting the 𝑥𝑦𝑧 coordinate of 𝒙𝟎, where 𝑥1 and 𝑥2 are the neighbors of  
𝒙𝟎 with edge weights of 𝑒1,0 and 𝑒2,0 respectively. 
 



 

 
Figure 4 – dSCC comparison: generalized and non-generalized models 

at 500kb (A) and 250kb (B) resolution. 
The figure shows the dSCC values for generalized and non-generalized HiC-GNN 
models at 500kb and 250kb resolution both with and without aligned node embeddings. 
The generalized models were trained on 1mb data. The difference in dSCC values 
between the aligned and non-aligned embeddings implies that the alignment procedure 
has a positive effect on reconstructive performance. The high dSCC values of the 
generalized models also imply that the HiC-GNN models can generalize to higher 
resolution data. 



 

 
Figure 5 – dSCC comparison: 1mb (A), 500kb (B), 250kb (C) 

resolution.  
The figure shows a comparison of HiC-GNN with the other methods on the 1mb (A), 
500kb (B), and 250kb (C) GM12878 data using dSCC. HiC-GNN is either on-par or 
outperforms the other methods on the majority of the chromosomes. 



 

 
Figure 6 – dRMSD comparison: 1mb (A), 500kb (B), 250kb (C) 

resolution.  
The figure shows a comparison of HiC-GNN with the other methods on the 1mb (A), 
500kb (B), and 250kb (C) GM12878 data using dRMSD. 



 

 
Figure 7 – Contact variances: GM12878 data.  
The figure shows the distribution of log-variances of contacts for each chromosome.  



 

 
Figure 8 – Visual comparison of structures generated from HiC-GNN 

generalized across resolution at 500kb.  
The first column lists the chromosomes for which the 3D structure prediction was done, 
the second column shows the structures generated from a model trained and tested on 
a 500kb map and the third column shows structures generated from a model trained on 
a 1mb map and tested on a 500kb map. 



 

 
Figure 9 – Visual comparison of structures generated from HiC-GNN 

generalized across resolution at 250kb.   
The first column lists the chromosomes for which the 3D structure prediction was done, 
the second column shows the structures generated from a model trained and tested on 
a 500kb map and the third column shows structures generated from a model trained on 
a 1mb map and tested on a 500kb map. 



 

 
Figure 10 – Comparison of distances for looped and non-looped 

regions on GM12878 across all chromosomes at 1mb (A), 500kb 
(B), and 250kb (C) resolutions.  

The figure shows the box plots for the looped and non-looped regions for all 
chromosomes combined in the GM12878 cell line for generalized and non-generalized 
HiC-GNN models at 1mb (A), 500kb (B), and 250kb (C) resolutions along with all 
other methods.  



 

 



 

Figure 11 – Comparison of distances for intra and inter-
compartmental regions on GM12878 across all chromosomes at 
1mb (A), 500kb (B), and 250kb (C) resolutions.  

The figure shows the box plots for the intra-A, intra-B, and A-inter-B regions for all 
chromosomes combined in the GM12878 cell line for HiC-GNN models at 1mb (A), 
500kb (B), and 250kb (C) resolutions.  

 

 
Figure 12 – Qualitative comparison of structures with A/B 

compartments for GM12878 at 1mb resolutions.  
The figure shows the output structures with the A (red) and B (green) compartments 
color-coded for chromosomes 2, 8, 10, and 14 at 1mb resolution. Clearly, there is a 
divide between the two compartments in the output structures. 

 



 

 
Figure 13 – Runtime comparison of HiC-GNN to LorDG. 
The figure compares the runtime of each method for contact maps of increasing number 
of loci. For contact maps with greater than 600 loci, we trained HiC-GNN on the 
corresponding 1mb resolution map. All inference was run on the original resolution. 
The orange dots can be interpreted as the runtime of generalized HiC-GNN models for 
generalization 1.  

 



 

 
Figure 14 – dSCC comparison: generalized and non-generalized 
models for HindIII (A) and Ncol (B) restriction enzymes. 

The figure shows the dSCC values for generalized and non-generalized HiC-GNN 
models for the HindII (A) and Ncol (B) restriction enzymes both with and without 
aligned node embeddings.  

 



 

 
Figure 15 – dSCC comparison: HindIII (A) and Ncol (B) restriction 

enzymes.  
The figure shows a comparison of HiC-GNN with the other methods on the HindII (A) 
and Ncol (B) GM06990 data. 
 



 

 
Figure 16 – Contact variances: GM06990 Ncol data. 
The figure shows the log-variances of the contacts for each chromosome. 
Chromosomes with higher contact variances lead to lower dSCC values for the other 
methods, whereas HiC-GNN is relatively robust to high contact variance. This is 
particularly notable on chromosomes 1, 7, 9, and 21. 

 

 
Figure 17 – Contact variances: GM06990 HindIII data. 
The figure shows the log-variances of the contacts for each chromosome. 
Chromosomes with higher contact variances lead to lower dSCC values for the other 
methods, whereas HiC-GNN is relatively robust to high contact variance. This is 
particularly notable on chromosomes 1, 9 and 18. 

 



 

 
Figure 18 – Visual comparison of structures generated from HiC-GNN 

generalized across restriction enzymes. 
The first column lists the chromosomes for which the 3D structure prediction was done. 
The second column shows structures generated from a model trained and tested on the 
Ncol maps. The third column shows structures generated from a model trained on the 
HindIII maps and tested on the Ncol maps. 

 



 

 
Figure 19 – Visual comparison of structures generated from HiC-GNN 

generalized across restriction enzymes.  
The first column lists the chromosomes for which the 3D structure prediction was done. 
The second column shows structures generated from a model trained and tested on the 
HindIII maps. The third column shows structures generated from a model trained on 
the Ncol maps and tested on the HindIII maps.   

 



 

 
Figure 20 – dSCC comparison: generalized and non-generalized 

models for full (A) and half (B) coverage.  
The figure shows the dSCC values for generalized and non-generalized HiC-GNN 
models at full (A) and half (B) coverage both with and without aligned node 
embeddings.  

 



 

 
Figure 21 – dSCC comparison: half to full (A) and full to half (B) 

coverage.  
The figure A shows the results of training HiC-GNN on maps with half coverage and 
testing on the full coverage map. The figure B shows the results of training HiC-GNN 
on maps with full coverage and testing on the half coverage map. 

 



 

 
Figure 22 – Contact variances: K562 full coverage. 
The figure shows the log-variances of the contacts for each chromosome. 
Chromosomes with higher contact variances lead to lower dSCC values for the other 
methods, whereas HiC-GNN is relatively robust to high contact variance.  

 

 
Figure 23 – Contact variances: K562 half coverage. 
The figure shows the log-variances of the contacts for each chromosome. 
Chromosomes with higher contact variances lead to lower dSCC values for the other 
methods, whereas HiC-GNN is relatively robust to high contact variance.  

 



 

 
Figure 24 – Visual comparison of structures generated from HiC-GNN 

generalized across cell populations.  
The first column lists the chromosomes for which the 3D structure prediction was done, 
the second column shows the structures generated from a model trained and tested on 
a full coverage map, and the third column shows structures generated from a model 
trained on a full coverage map and tested on a half coverage map. 

 

 

 

 



 

Tables 
Table 1 – Table showing which rows of the embedding matrices 

correspond to which interaction sites. 
Row 1mb Loci 500kb Loci 250kb Loci 
0 0 – 1  0 – 0.5 0 – 0.25 
1 1 – 2 0.5 – 1 0.25 – 0.5 
2 2 – 3 1 – 1.5 0.5 – 0.75 

3 3 – 4 1.5 – 2 0.75 – 1 
… … … … 

 

Table 2 – Table showing how we expand the 1mb embeddings matrix 
to match the shape of the 500kb embeddings matrix. 

Row  Expanded 1mb Loci 500kb Loci 
0 0 – 1 0 – 0.5 
1 0 – 1 0.5 – 1 
2 1 – 2  1 – 1.5 
3 1 – 2 1.5 – 2 
… … … 

 

Table 3 – Table showing how we expand the 1mb embeddings matrix 
to match the shape of the 250kb embeddings matrix. 

Row  Expanded 1mb Loci 250kb Loci 
0 0 – 1 0 – 0.25 
1 0 – 1 0.25 – 0.5 
2 0 – 1 0.5 – 0.75 
3 0 – 1 0.75 – 1 
… … … 

 

Table 4 – Optimal layer sizes as determined by the grid search on the 
simulated data.   

Note that the MLP must have an output of size 3 to correspond to the xyz coordinates 
of the chromosomal loci. The selected network settings based on the grid search are in 
bold on the table. 

Embeddings Size  1024 512 256 
GC Layer  1024 512 256 
MLP Layer 1 512 256 128 
MLP Layer 2  256 128 64 
MLP Layer 3 128 64 32 
MLP Output 3 - - 

 



 

Table 5 – Optimal learning rate and convergence threshold as 
determined by the grid search on the simulated data. 

We explored different learning rate and convergence thresholds; the selected network 
settings based on the grid search are in bold on the table. 

Learning Rate  0.1 0.01 0.001 0.0001 
Convergence 
Threshold 

10−2 10−4 𝟏𝟎−𝟓 10−12 

 

Table 6 – FISH data validation result on GM12878 chromosomes 11, 
14, 13, and 17 at 250kb resolution. 

The table shows the L1-L2 distance and L2-L3 distance for chromosomes 11, 14, 13, 
and 17 at 250kb resolution. The table also shows the contact probabilities for these 
regions. The FISH data provided by Rao et al. [32] shows that the L1-L2 distance 
should be less than the L2-L3 distance. The table shows that this is indeed the case.  

Chromosome L1-L2 
Distance  

L1-L2 
Probability 

L2-L3 
Distance 

L2-L3 
Probability 

11 3.3 1.49x10-4 3.7 1.35x10-4 

14 6.1 6.97x10-5 11 3.51x10-5 

13 1.9 2.72 x10-4 3.3 1.12x10-4 
17 1.8 2.72 x10-4 9 1.13 x10-4 

 

Table 7 – Comparison of total contact frequencies across the entire 
genome for the half and full coverage maps. 

The half coverage map corresponds to the element-wise sums of HiC02, HiC074, and 
HiC069. The full coverage map corresponds to the element-wise sums of each map 
within the dataset. 

 

Map Name Number of Contacts (Millions) 
HiC072 53 
HiC074 65 
HiC069 310 
Half Coverage  428 
Full Coverage 932 
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