IEEE TRANSACTIONS ON COMPUTERS

zPerf: A Statistical Gray-box Approach to
Performance Modeling and Extrapolation for
Scientific Lossy Compression

Jinzhen Wang, Qi Chen, Tong Liu, Qing Liu*, Xubin He, Senior Member, IEEE

Abstract—As simulation-based scientific discovery is being further scaled up on high-performance computing systems, the disparity
between compute and I/O has continued to widen. As such, domain scientists are forced to save only a small portion of their simulation
data to persistent storage, and as a consequence, important physics may be discarded for data analysis. Error-bounded lossy
compression has made tremendous progress recently in bridging the gap between compute and 1/O, and played an increasingly
important role in science productions. Nevertheless, a key hurdle to the wide adoption of lossy compression is the lack of
understanding of compression performance, which is the result of the complex interaction between data, error bound, and compression
algorithm. In this work, we present zPerf, a statistical gray-box performance modeling approach for scientific lossy compression. Our
contributions are threefold: 1) We develop zPerf to estimate the performance of prediction-based and transform-based lossy
compression techniques, based on in-depth understanding and statistical modeling for data features and core compression metrics; 2)
We demonstrate the in-detailed implementation of zPerf using two case studies, where we derive the performance modeling for SZ and
ZFP, two leading lossy compressors; 3) We evaluate the effectiveness of zPerf on real-world datasets across various domains. Based

on the evaluation, we demonstrate the efficacy of zPerf performance model; 4) We further discuss three case studies where zPerf is
applied to extrapolate the compression ratio of SZ and ZFP with alternative encoding schemes as well as ZFP with an alternative
transform scheme. Through the case studies, we demonstrate the potential of zPerf for exploring the design space of lossy

compression, which has hardly been studied in the literature.

Index Terms—Lossy compression, modeling, performance

1 INTRODUCTION

S simulation-based scientific discovery further scales
A up the model fidelity and resolution as enabled by the
next-generation high-performance computing (HPC) sys-
tems, the disparity between compute and I/O has continued
to widen, to the extent that only a disproportionately small
amount of data from the simulation can be saved for post-
processing. A consequence is that, despite the improved
fidelity on the simulation side, important physics in the data
can still be discarded for the subsequent data analysis. To
date, there has been a multitude of efforts to reduce the
I/0 overhead for large-scale simulations, including in situ
processing [1], [2], [3], [4], storage layer optimization (e.g.,
burst buffer) [5], [6], [7], [8], and data reduction [9], [10], [11],
[12]. In particular, lossy compression by trading accuracy
for performance has shown great promise to fundamentally
solve the I/O challenge, when used in conjunction with
other methods across the software/hardware stack. Never-
theless, a major roadblock to the wide adoption of lossy

o J. Wang, Q. Liu are with the Department of Electrical and Computer
Engineering, New Jersey Institute of Technology, Newark, NJ, 07102.
E-mail: {jw447, ging.liu}@njit.edu

o Q. Chen is with the Software College of Northeastern University, China.
E-mail: {20195791}@stu.neu.edu.cn

o T Liu and X. He are with the Department of Computer and Information
Sciences at Temple University.
E-mail: {tongliu, xubin.he}@temple.edu

o ¥ Corresponding author

compression is the lack of understanding of compression
performance, which are the results of complex interaction
between between data, error bound, and compression algo-
rithm. A question that domain scientists are often faced with
is whether a substantial compression ratio (e.g., > 10x) can
be achieved for a given dataset under a realistic error bound.
If not, domain scientists may forgo compressing their data
so that at least they can fully preserve the data and avoid
paying the precious compute time for compression. Unfor-
tunately, in practice, such a question is mostly answered
through trial-and-error, which is cumbersome and costly for
large simulations.

A straightforward yet effective method to estimate the
compression performance (ratio and throughput) is through
sampling, which was recently explored [13]. Namely, one
can generate a small sample of data and use the compression
performance of the sampled data to approximate that of the
full data. The key advantages of this approach are: 1) The
sampled data share the similar characteristics with the full
data; 2) This method treats compressors as black-box, which
is easy to implement; Nevertheless, the sampling based
approach does not easily allow for exploring the design
space of compression without in-depth code changes in a
compressor. For example, to assess how much the performance
will improve if a component in a compressor is replaced by a
list of candidate solutions, all candidate solutions must be
integrated into the compressor, before one can understand
the performance outcome.

This paper aims to estimate the compression perfor-

IEEE TRANSACTIONS ON COMPUTERS

mance based upon the inner design of a compressor as much
as possible so that we can more conveniently explore the
design space of lossy compression. In particular, this paper
makes the following contributions:

o We develop zPerf, a statistical gray-box approach for
lossy compression performance modeling. In contrast
to the sampling based approach, our work models
the compression performance leveraging the statisti-
cal distribution of data features and core compression
metrics. Detailed analytical models are developed for
prediction-based and transform-based lossy compres-
sors that represent different compression philosophies.

o We demonstrate two case studies, where in-detailed im-
plementations of zPerf is derived for SZ [10], [14], [15]
and ZFP [11], two state-of-the-art lossy compressors.

o We evaluate the effectiveness of zPerf across real-world
datasets from various domains and verify that zPerf can
achieve reasonable accuracy.

o We further use zPerf for design space explorations
where we extrapolate the compression ratio of SZ and
ZFP with alternative encoding schemes, as well as ZFP
with an alternative transform scheme. Our results show
that the performance extrapolation is accurate and the
alternative encoding and transform schemes outper-
form the original ones in some application scenarios.

The rest of this paper is organized as follows. We first
discuss the related work and motivation in Section 2 and
Section 3 respectively. Then in Section 4, we present the
general methodologies of zPerf as well as the implemen-
tation for two state-of-the-art lossy compression techniques,
SZ and ZFP. In Section 5, we present the evaluation results
of zPerf for SZ and ZFP over real-world scientific datasets
along with error analysis. In Section 6, we discuss the
application of zPerf for design space exploration of lossy
compression, along with conclusions in Section 7.

2 RELATED WORK

In this section, we present the background and related work
on lossy compression and performance modeling.

2.1 Error-bounded lossy compression

Error-bounded lossy compression techniques have been
proven to be effective in reducing data volume while satis-
fying the accuracy based on user requirements. Motivated
by the reduction potential of spline functions [16], [17],
ISABELA [18] is designed to compress spatial-temporal
scientific data through pre-sorting and B-spline prediction,
which makes the random input data more compressible.
However, the sorting operation loses locality information,
and therefore an extra index needs to be stored which hurts
the performance of reduction. ZFP [11] adopts a block-
wise non-orthogonal transform and a customized embed-
ded encoding scheme for compression. The non-orthogonal
transform removes the data redundancy within each data
block while variable-length embedded encoding compress
transform coefficients one bit plane at a time. Due to the
block-wise compression design, it offers random access to
compressed data blocks. Di et al. present SZ [10], [14],
[15], a curve-fitting based lossy compression algorithm. It

2

adopts multiple curve-fitting schemes to remove the data
redundancy. Then the curve-fit data points go through lin-
ear quantization and Huffman encoding, while the curve-
missed data points are stored with binary representation.
Among numerous lossy compression techniques, SZ and
ZFP are demonstrated to be the two best error-bounded
lossy compressors [13]. MGARD [12], [20] is a recently
developed lossy compressor that specializes in multi-level
recomposition and progressive retrieval. During compres-
sion, it decomposes original data into orthogonal coefficient
levels and encodes coefficient levels using bit plane encod-
ing. During decompression, bit planes from coefficient levels
are selected based on error bounds via greedy search to
achieve minimal data retrieval.

2.2 Compression performance modeling

While lossy compression can achieve higher performance
than their lossless counterparts, they are often hard to
choose from and configure. As a result, the performance
understanding and modeling are becoming increasingly
important for choosing the right compression technique and
suitable configurations. Lu et al. [13] propose a sampling-
based estimation approach for the compression ratio of SZ.
The estimation is based on the similarities between the
distribution of quantization levels for the full and sampled
datasets. Underwood [21] proposes to search for the error
bound configuration towards a target compression ratio
for lossy compressors. It adopts an iterative auto-tuning
approach that treats lossy compressors as black-box. While
it is capable of capturing the compression ratio of lossy
compressors, the black-box iterative approach may result
in significant overhead in both time and memory footprint.
It also lacks the ability to explore the design space of lossy
compression. Tao et al. [22] aim to estimate rate-distortion
for SZ and ZFP using sampled datasets. It incorporates
the inner mechanism of SZ and ZFP into the design of
online selection model. While it is capable of capturing the
bit-rate and PSNR for SZ and ZFP, it does not take the
compression time performance into account. Zhao et al. [23]
present a compression-principle-based method to estimate
the compression quality of SZ across different parameter
settings. Such a method takes the compression design, for
example, how the data is predicted and quantized, into
account. Jin et al. [24] proposes a general-purpose analytical
model to capture the ratio-quality for prediction-based lossy
compression. It incorporates the modeling of quantized
prediction error and the modeling of Huffman encoding
efficiency to achieve the estimation of compression ratio.
Another previous work by Jin et al. [25] aims to estimate the
impact of lossy compression on post-analysis of cosmology
simulation. It provides an optimization guideline to select
the best-fit error-bound for each partition of the cosmology
data to achieve the maximum compression efficiency. Qin
et al. [26] propose to use deep neural networks (DNN) to
capture the compressibility of a dataset for a given lossy
compressor. The proposed DNN model classifies a dataset
as compressible or incompressible based on a set of general
features as well as compression-dependent features. The
model can also capture the compression ratio based on error
tolerance, however the estimation is black-box due to the
nature of DNN model.

IEEE TRANSACTIONS ON COMPUTERS

3 MOTIVATION

In the past, the compression ratio modeling has been at-
tempted mostly using a black-box approach [13], [21], [22],
[27]. Overall, the idea was to extract the salient properties
of data and use the compression performance under an
inexpensive setting to extrapolate that under a target setting.
In particular, this can be achieved by properly sampling
the dataset, measuring the compression performance of the
sampled dataset, and further estimating the performance of
the original dataset. Unless the sampling ratio is too small, it
is anticipated that the original data and sampled data share
similar characteristics, and therefore the compression per-
formance of the sampled data can be used to approximate
that of the full data. However, the prior approach suffers
from the following weaknesses:

Motivation 1: The sampling based estimation does not allow
us to explore the large design space of compression easily. Sci-
entific lossy compression techniques undergo modifications
frequently to improve the general performance or suit the
requirements of different applications. For example, SZ re-
cently incorporated second-order Lorenzo and regression
predictors to improve the compression performance [23].
Given the large design space of compression algorithms, the
compressor developers may wish to understand whether
replacing a component in a compressor, e.g., the entropy
encoder for quantized data, with a list of candidate solutions
would lead to a substantial performance improvement.

Such design space explorations are useful to identify
possible research and development opportunities for lossy
compression before more labor-intensive software develop-
ment is underway. However, the sampling based approach
does require all candidate solutions to be fully integrated
into the compressor prior to the assessment of performance
outcomes, which is costly and error prone.

Motivation 2: For offline compression where data needs to
be first retrieved from persistent storage, the 1/O overhead of
the sampling based estimation is high for extreme-scale datasets.
While one could choose a low sampling ratio (e.g., < 0.1%) to
somewhat reduce the I/O overhead, the resulting accuracy of es-
timation decreases rapidly with the sampling ratio. Fig. 1 shows
the estimation error of compression ratio across a range of
sample ratios for SZ. It is shown that once the sampling
ratio is lower than 1E-4, the estimation error exceeds 80%,
and therefore a low sampling ratio is not desirable.

Motivated by the weaknesses of the sampling based
approach, this work aims to develop a gray-box approach
where key components within a compressor are modeled to
allow for performance estimation and extrapolation.

4 GRAY-BOX COMPRESSION MODELING

In this section, we first discuss the general methodologies of
zPerf gray-box performance modeling for prediction-based
and transform-based lossy compression techniques. We then
use SZ and ZFP as two case studies to show the detailed
implementation. For the convenience of discussion, we list
the notations in TABLE 1.

4.1 zPerf for prediction-based and transform-based
compression

Modern error-bounded lossy compression techniques can
be generally divided into two categories: prediction-based

100

80

60

40

error (%)

20
—— BROWN
—A— SCALE

CESM_ATM
—&— NYX

Relative estimation

1E1 1E2 1E3 1E-4 1E5 1E6 1E-7
Sampling ratio

Fig. 1: Estimation error of compression ratio vs. sampling ratio
for SZ. The random sampling is used in this experiment. The
estimation error is averaged across relative error bounds of 1E-
6, 1E-5, 1E-4, and 1E-3.

and transform-based, depending on how they remove re-
dundancies within the dataset.

In general, prediction-based lossy compression tries to
represent data points with a prediction model. Then those
data points that can be predicted by the model are converted
to discrete quantization codes, followed by an entropy en-
coding. SZ [10], [14], [15], FPZIP [30], and ISABELA [18] are
three typical examples of the prediction-based lossy com-
pression techniques. The output of prediction-based lossy
compression mainly consists of the encoded quantization
codes, as well as those data points cannot be predicted by
predictor. The size of encoded data generally depends on
the entropy encoding efficiency (i.e., bit rate) while the un-
predictable data size essentially depends on the prediction
efficiency (the percentage of predicted data points).

On the other hand, transform-based lossy compression
performs orthogonal transforms that map the original data
to de-correlated coefficients. In general, more coefficients
will be close to zero if the transform is more efficient.
Then the transform coefficients are further encoded while
insignificant information is discarded, either by data val-
ues or by bitplanes. Typical examples of transform-based
lossy compression techniques include ZFP [11] and MGARD
[12]. The output of transform-based lossy compression is
essentially the encoded transform coefficients, whose size
depends on the encoding efficiency as well as the amount of
information (e.g., number of bit planes) to be stored accord-
ing to error bounds. Take ZFP for an example, the number
of bit planes to encode depends on the user prescribed
error bounds and the encoding efficiency is reflected by the
number of bits to encode a bit-plane, whose distribution
can be characterized by Laplacian distribution. The detailed
discussion is included in Section 4.3. On the other hand, the
number of bits to encode a bit plane in MGARD depends
on the dimensionality of multi-level coefficients as well as
the performance of ZSTD that compresses the bit planes
after decomposition, and the number of bit planes to be
encoded is determined (32 bits for single-precision floating-
point data) as MGARD does not truncate bit planes during
compression. Due to the limited scope, the implementation
of zPerf for MGARD is not detailed in this work.

In what follows, we introduce the general procedures
of zPerf for prediction-based and transform-based lossy
compression, as shown in Fig. 2.

Stage 1: We feed the highly condensed data features into our
model to capture the data characteristics. Generally speak-
ing, the performance of lossy compression is the outcome
of complex interactions between a compressor, error bound,
and a dataset, and thus data features are important to the
model. As a matter of fact, we comment that such condensed

IEEE TRANSACTIONS ON COMPUTERS

TABLE 1: Notations.

(a) General metrics.

(b) SZ compression metrics.

(c) ZFP compression metrics.

Symbol Description Symbol Description Symbol Description
U Input dataset size (bytes). P Number of quantization levels for encoding. € Maximum exponent value in each data block.
G Compression ratio n Curve-fitting efficiency. m Number of bit planes to encode for each data block.
P . . n Number of Huffman tree nodes. b Number of encoding bits for each bit plane.
F Compression throughplrt (bytes/sec). 7 Huffman tree structure size (bytes). P Exponent values size (bytes).
N Number of elements of input data. K Huffman encoding size (bytes). Q Embedded encoding size (bytes).
B Number of data blocks. M Curve-missed data encoding size (bytes). v Exponent values calculation time (secs).
R Value range of input data. P Curve-fitting and quantization time (secs). X Mantissas values conversion time (secs).
g Lossy error bound. M Curve-missed data encoding time (secs). T Non-orthogonaf transform t1me (SQ_CS)-
C Huffman tree constructlon time (secs). 5 Irar}:si:)‘:rr:‘coefflrcll‘entsf‘reorfderm\g time (secs).

Statistical features
@ extraction. (Stage 1)

Execution time for @ ‘|
low-level routines 1

compression components

Estimated time for Estimated compression

Statistical modeling.
@
throughput

(Stage 2)

N

Compressor-dependent

Input
dataset

Estimated low-level
compression metrics

a2 —

Estimated sizes for output

€] modeling. (Stage 3)
Compressor-dependent and

Estimated compression
ratio

N

components

(@ hardware-aware calculation.
(Stage 3)

Fig. 2: The overall gray-box methodology for lossy compression modeling. The metrics circled in oval, i.e. data features and

execution time for low-level routines, are input to zPerf.

features can be
systems, such a
set of data attriby

ndatamanagement
tmgefﬁclency 7]

SR
mc% 2

when data is ith the go#lcaefauslmplifying the
post—processmg, such as query anq filtering, | [Rufinan
Stage 2: To capture the inner complessitnmechanismsthat a
compressor employs, a set of low-level compression metrics

need to be identified to derive the performance of lossy

DlSI

t f
level metrics fo

prediction efficiency Fod
for transform—baw
include the enco ncy at 2% [f
Stage 3: We then model the high-level compressiorme

that are directly associated with the compression perfor—
mance, including the sizes of compression output compo-
nents and time of compression routines. Such modeling is
enabled by the low-level compression metrics obtained in
stage 2. For prediction-based lossy compression, the output
components may include the output of encoded quanti-
zation codes and the representation of unpredictable data
points. The compression routines may include the time to
perform data prediction and entropy encoding. Similarly, for
transform-based lossy compression, the output is mostly the
encoded transform coefficients, while the time of compres-
sion routines mainly include the time to perform orthogonal
transform and the time to encode transform coefficients.

4.2 Modeling of SZ - a case study of prediction-based
lossy compression

SZ compresses input data by first predicting with Lorenzo
or regression predictor, then encoding the quantization
codes with Huffman encoding. As shown in Fig. 3, the
size of the compressed data includes the sizes of Huffman
tree structure J, Huffman encoding K, and curve-missed
data points M. And the compression time consists of those
spent on data prediction (curve-fitting) and quantization for
curve-hit data points P, Huffman tree construction C, Huff-
man encoding H, as well as curve-missed data processing M.
These performance metrics are influenced by two low-level
compression metrics: curve-fitting efficiency n and number
of Huffman tree nodes n, which depends on data features.

Data features. To capture the impact of data characteristics
on compression, we feed the distribution and variance of

BROW ESM_ATM LE
30 ROWN 300 CESM_A HACC 150 SCAl
o
g 2 200
[
% 10 100 50
(2]
G od b b d AR Y dod & G odod b d
ERERE guuay CRE o ERERE

™
U
—
Error bound (relative error)

B Huffman tree structure size 7 EEE Huffman encoding size &

(a) Compression output.

3 Curve-missed size M

3 BROWN 30, CESMATM HACC . SCALE

m

§2 20 8

2 200

g1 10 4

=

0w ™ - 00 = m 0o = m 00w m ~
w oW oW owow w W ow oW ow w w ow ow ow w oW oW owow
LuyyLy Uouyyy 4Ly yy Yuyny

Error bound (relative error)
EE Curve-fitting and quantization time 2 [Huffman tree construction time €

[Curve-missed data processing time i/ I Huffman encoding time #/
(b) Compression time.

Fig. 3: SZ compression performance breakdown.

Distribution of
Absolute Change

Gaussian modeling

Calculation

Curve-fitting efficiency #] |

Node

Populated quantization [Calculation|

levels " |count n
Variance of .
Calculat
Absolute Change v gonaror .
Popoulated Huffman |Calculation| Huffman
coding bit length * |encoding size KC

Fig. 4: Key steps in SZ modeling. The calculations for high-level
metrics such as J and M are not shown.

the difference between adjacent values into our model, as
shown in Fig. 4. Overall, these features characterize the data
smoothness and directly affect the outcome of SZ curve-
fitting and Huffman encoding.

Low-level compression metrics. Curve-fitting efficiency 7
is the proportion of data points that can be represented by
curve-fitting. Consider a dataset D with A elements and
the 1D Lorenzo predictor for curve-fitting, the prediction
for the i-th (i > 3) data point D;, is simply the quantized
value of the previous data point ﬁi_l. In particular, D; is
deemed to be curve-hit if the prediction error |D; — D;_4|
falls into a prediction range 7, which can be derived from a
user-prescribed error bound. In particular, v is the product
of quantization interval and the number of quantization
levels p. For the relative error bound, the length of a
quantization interval can be calculated as &R, where &
is the relative error bound and R is the data range. As
such, v = p€R and n = N Z 1 1(|D; —Di_1| < pER),

IEEE TRANSACTIONS ON COMPUTERS

where [is a unit vector. The outcome of 7 ultimately
depends on the absolute difference between adjacent values
|AD;| = |D; — D;_1], assuming D;_, ~ Di_1. Specifi-
cally, we bin AD by the prediction range associated with
each error bound. For a set of k relative error bounds
{&1,&,...,&} (assuming & > & > ... > &), the cor-
responding prediction range is {p&1R, p&2R, ..., pELR}. If
|AD;| falls into the range of [p€;11R, pE;R), then D; will
be curve-hit at error bounds no greater than £;. We use
h,, € {h1,ha,...,h;} to denote the number of data points
where AD, falls into the range of (—p&nR, —pEm+1R].
Correspondingly, we define b, € {hgi1, hito, ..., hor} to
denote the number of data points where AD; falls into
the range of [p€m 1R, pE,mR). Therefore, n at &; can be
calculated as 1; = (Zﬁ@:j hy, + foi,i;f ht)/N.

For 2D Lorenzo predictor, the prediction for i-th data
point is expanded to use its three immediate neighbors
that has been predicted, where the curve-fitting prediction
error is |D;; — DAi_l,j — ﬁi,j_l + 75@—1,;‘—1\- Therefore, the
curve-fitting efficiency can also be characterized by the
distribution of the difference between adjacent values.

The number of Huffman tree nodes n is another metric
that impacts the performance of SZ. For those data points
that can be curve-fitted, the prediction error is quantized
into at most p quantization levels, which is then encoded
by a Huffman tree. Herein, n can be obtained during the
estimation of Huffman encoding size K (detailed next).
High-level compression metrics. The Huffman encoding
size K is the sum of Huffman code length for each quantized
data point, which can be calculated as K = [% Zﬁl xlw
where z; is the code length (in bits) for the quantization level
associated with D;. The code length z; for each quantization
level is determined by its frequency of occurrence — the
more frequently a quantization level occurs, the shorter its
code length is. As far as we know, there has been little
theoretical work in the literature to model z;. However, it
was shown that the quantization level follows the Gaussian
distribution [13]. Through studying the implementation of
SZ, it is found that the mean of Gaussian model is located
at £ and the variance is Var(AD)/(£R)? where Var(AD)
denotes the variance of AD, given that a quantization level
is calculated as AD/(ER). Hence, we can obtain n and a set
of z;, and in turn K by performing Huffman encoding on a
small set of populated quantization levels.

The Huffman tree size J is the number of bytes for
storing the Huffman tree. Through studying the source code
of SZ, we find that four attributes are stored for each tree
node: the offsets of the left and right sub-trees, the value of
the node, and a flag indicating whether the current node is
a leaf node. Therefore, the size of the Huffman tree can be
easily calculated once n is determined.

Curve-missed size M is the size of the curve-missed
data points. These data points are first subtracted by the
median of the data values and then truncated to discard
the insignificant mantissa bits subject to the error bound.
Based upon SZ’s implementation, the number of remaining
significant mantissa bits ¢; at relative error bound &; can
be calculated as ¢; = Exp(R/2) — Exp(€;R), where Exp(-)
denotes the exponent part of a floating-point value. In par-
ticular, Exp(R/2) is the exponent value of the data radius

5

and Exp(&;R) is the exponent value of a quantization level
under &;. The rationale behind this formula is that the mini-
mal g; bits are required to reconstruct the normalized values
of curve-missed data. Therefore, for each curve-missed data
point, we need | % | bytes to store the significant mantissa
value, and additional (¢; mod 8) bits if ¢; is not multiple
of 8. Given a dataset with N elements and curve-fitting
efficiency n; under relative error bound &;, we have the
size of byte array My = [N(1—1n;)|% || and the size of
the bit array My = [fN(1 — 1;)(g; mod 8)]. SZ further
reduces the storage cost of M, by performing a byte-level
XOR operation between consecutive mantissa values. The
number of leading zero in the result of XOR indicates the
number of leading bytes between consecutive values that
have the same value. As an empirical design, SZ designates
2 bits for each mantissa value to store the number of leading
zero bytes. Therefore, maximally three leading zero bytes
can be captured and we have the size of the leading zero
byte array Mz = [L2N(1—n;)] = [TN(1 —n;)]. We
approximate that each mantissa value has an average of
1.5 leading zero bytes for any scientific datasets. Therefore,
My =[NA—n;)(|%] - 1.5)] and M = My + My + Ms.

Meanwhile, the compression time is system-dependent
and the idea of modeling the compression time is to focus
on analyzing the complexity of compression routines and
use the measurement of low-level routines to extrapolate the
compression time on a particular system. The curve-fitting
and quantization time P is the time to perform curve-fitting
and quantization on curve-hit points. In particular, SZ first
maps them into p quantization levels and then adjusts the
data prediction due to the quantization. Since SZ performs
the same operation for each curve-hit data point, the time
complexity of P is O(N7n). The Huffman tree construction
time C is the time to construct the Huffman tree from
quantization levels. It involves calculating the frequency of
each quantization level C;, node insertion Cy and Huffman
code building Cs. The time for frequency calculation is
essentially linear to the number of data points. Therefore
the time complexity of C; is O(N). The node insertion
involves the following two steps. First, each quantization
level is formed as a tree node and inserted into a tree, with
each tree having one node. Then two trees with the lowest
frequencies will be merged, and this step will be repeated
until all trees are merged into one tree. Thus, the complexity
of node insertion is O(n). Huffman code building involves
traversing the tree and assign Os or 1s to the tree leaves. It
requires a tree traversal and the time complexity is clearly
O(n). The Huffman encoding time H is the time to encode
the quantized data. Essentially SZ goes over the entire
dataset, looks up the Huffman coding of the quantization
data, and writes the code to a buffer. The time complexity
is O(N'n). Meanwhile, the curve-missed processing time M
is the time to perform the aforementioned operations for
curve-missed data points. Clearly, the time complexity of M
is O(N(1—n)) as each curve-missed data point is processed
with the same operations.

To fully model the compression time for a given system,
we next obtain the timings of the hardware-dependent low-
level compression routines. They include the timings of the
processing of a single curve-hit point 1, the processing of a
single curve-missed point ry, the calculation of quantization

IEEE TRANSACTIONS ON COMPUTERS 6
200 BROWN 300 CESM_ATM HACC SCALE Laplacian

_ 4e3 150 Distribution of Mantissa mean | modeling| Populated transform
nza 200 100 block-wise mean values o coefficients
~100 2e3 :
£ 100 50 Calculation Calculatlon*
[%2]

ol bl bl bl) oS MMM oo N EE WM Distribution of |Calculation| Number of bit Encoding bits b

W oW W oW W oW Wowou oo exponent values "] planes to encode m
N o~ A A - - o A A L e B e I | N = A ~)
Error bound (relative error) Calculation Encoding size Q
Il Exponentsize? M Encoding size Q
(a) Compression output. Fig. 6: Key steps in ZFP modeling.
BROWN CESM_ATM HACC SCALE BROWN SCALE CESM_ATM NYX
2 9 = 75 4 2e8 2e8 4e8 4e8

v g
@ 6 50]
~1 2 t le8 1le8 2e8 2e8
ll) 3
£ 3 25 3
£ j%
"o 0 0 0 ° o ol oLl ol

Q K0 oMo Q@ KW Mo Q w0 i Q@ w0 Mmo 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

=== ER= = A A A == Remaining bit plane value

o
w
~
Error bound (relative error)

B Coefficients reordering time ®
[Embedded encoding time £

EEl Exponent extraction time v
EEl Mantissa conversion time X
[Non-orthogonal transform time 7

(b) Compression time.
Fig. 5: ZFP compression performance breakdown.

level for a data point 73, the node insertion to Huffman tree
4, the traversal of a tree r5, and the retrieval and storage of
Huffman coding for a data point 7.

SZ compression performance. Given the performance
metrics we discussed above and the measurements of
low-level routines, we have G.. = w77 and Fo. =
N TN =) +.Z/<{/r3 e o Y for compression ratio
and compression throughput, respectively. We note that
for the convenience of implementation, curve-missed data
points are marked as a special quantization level 0 in SZ,
and therefore r3 and 74 are scaled by a factor of AV, instead

of N(1 —n).

4.3 Modeling of ZFP - a case study of transform-based
lossy compression

ZFP compresses input data by first performing block-based
orthogonal transform to remove redundancies, then encod-
ing the transform coefficients one bit plane at a time to
control the output bit rate. As shown in Fig. 5a, the output
size of ZFP includes the sizes of exponents values P and
embedded encoding Q. Meanwhile, the compression time
consists of exponent extraction time V, mantissa conversion
time X, non-orthogonal transform time T, transform coeffi-
cients reordering time R, and embedded encoding time E, as
demonstrated in Fig. 5b. Fundamentally, there are two low-
level compression metrics that affect the high-level metrics:
the number of bit planes m to encode for each block and the
number of encoding bits b for each bit plane. Fig. 6 shows
the key steps in ZFP modeling, which are detailed next.
Data features. The compression performance of ZFP is
highly affected by the properties of input data. In particular,
m is impacted by the exponents of input data for each
block, while b depends on the non-orthogonal transform
coefficients. Therefore, to capture the interaction between
data and the compressor, we feed the distribution of block-
wise mean into zPerf, based upon which the distributions of
exponent and mantissa mean can be derived.

Low-level compression metrics. Let m; denote the num-
ber of bit planes to encode for the i-th block under a
user-prescribed error bound &, which can be calculated as
m; = €; —logy E+2(dim+1) [31], where ¢; is the maximum
base-2 exponent of the block and dim is the number of

Fig. 7: The histogram of remaining values of bit planes after
encoding the significant bits under the relative error of 1E-6. It
is clear that the remaining values of the majority of bit planes
are zero, which requires one bit to encode.

BROWN SCALE CESMATM NYX

4

Bits

2

i B
ey el ey
[AERARANEEE]

3 J 0 ’!‘y’!‘y!‘v!‘v!ﬁbyﬁ\’/j\’y‘u! \\’y\{"\[\\ 0

0 20 40 60 0O 20 40 60 O 20 40 60 O 20 40 60
Bit plane index

—— Encoding bits b -—-Significant bits S

Fig. 8: A comparison between the number of significant bits S
and encoding bits b under the relative error of 1E-6.

6
4 4
2
0

dimensions. We note that the additional 2(dim + 1) bit
planes are needed due to the range expansion incurred by
the inverse transform during decompression. Given the dis-
tribution of block-wise mean of input data, we can populate
a small set of mean values, and ¢; can be estimated by
taking the logarithm over the populated data, based upon
the fact that data values within a block are often smooth and
therefore ¢; is close to the exponent of the mean. As such,
m; can be obtained.

The value of b is another vital metric to the ZFP com-
pression. Let b;; denote the number of bits required to
encode the j-th bit plane for the i-th block. The embedded
encoding of each bit plane in a block includes the following
two steps: First, S;; significant bits are encoded verbatim,
where S;; is the smallest number that allows qdim _ G,
highest bits in all previous j — 1 bit planes to be all zeros.
Second, the remaining qdim _ S;; bits are encoded using
a variable-length representation. Due to the reordering of
transform coefficients, we find that the remaining qdim _ Sij
bits of each bit plane are largely zero, as shown in Fig. 7.
Note that since an extra zero bit is saved for a bit plane
whose remaining bits are all zeros, b;; can be estimated as
Si; + 1, as demonstrated in Fig. 8. Hence in this work, we
use S;; to estimate b;;. Further, it is clear that S;; depends
heavily on the transform coefficients, which are the product
of the non-orthogonal transform in ZFP. In order to capture
the bit plane values and in turn S;;, we next discuss the
distribution of transform coefficients.

It was shown in previous work [32] that the non-
orthogonal transform coefficients can be modeled by Lapla-
cian distribution with the mean of zero and the scaling factor
of A\, where \ can be estimated as the block-wise mean
of coefficients via the maximum likelihood estimation [33].
Consider a 1D block of input data [z, y, 2z, w] with the cor-
responding mantissa [#,¥, 2, w] and transform coefficients
[#',y/,2',w']. For a block of data that is typically smooth

|EEE TRANSACTIONS ON COMPIITERS

Bit plane index
- d dtleeees e el f £l gogtlees

N

2 1 -

=

o

L -
i‘éyrm.. o o -EHEEHE L H
g

foloofont oiood
S

éw’m.. 00 |- 0o --10 0 | * |
L] ——

H 1to Sq

= = = B =
S4+1t0Se Ses1t0Sf Sg1toSg Sgi1to Sy,
= = =3 =4

Fig. 9: A schematic of 1D embedded encoding in ZFP. The
symbol * indicates that the associated bit can be either 0 or 1.
A dotted box indicates that the bit is discarded according to the
error tolerance. The most significant 1 bit in the corresponding
coefficient is highlighted in red. The value of S; for a bit plane
is determined by the location of the red box.

(due to the continuity in the physical quantities captured
from a scientific simulation), the high-frequency compo-
nents of the transform coefficients, namely ¢/, 2z’ and w’, will
be close to zero [34]. Therefore, the mean of transform coef-
ficients can be approximated as %’, where 2/, known as the
DC (zero-frequency) component, can be further calculated
as the mean of input mantissa values ' = § (& + ¢ + % + @)
[35]. It is clear that the estimation of transform coefficients
distribution ultimately comes down to the mean of mantissa
of input data, which can be obtained from the populated
values during the estimation of m;. As such, the modeling
of ZFP transform coefficients is complete.

Next, based upon the estimated Laplacian distribution

of transform coefficients, we populate a set of coefficients
and then compute the S;; values. In Fig. 9, we provide an
example of encoding a 1D floating-point block of transform
coefficients. In this example, given the populated trans-
form coefficients [¢/, v/, 2/, w’], the indices of significant bits,
marked by red boxes, can be calculated as [d,e, f,g] =
[32 — |logaz’|,32 — [logay’ |, 32 — |logaz’|,32 — |logaw']].
Then S;; for each bit plane can be easily calculated. As such,
b;; can be estimated.
High-level compression metrics. Encoding size Q is the
total size of the embedded encoding, which is the sum
of b across all bit planes and all data blocks, ie., @ =
[% B i b”} where B is the number of data blocks.
Exponent size P is the byte size to store e for all data
blocks. According to the IEEE-754 format, € takes 11 bits for
double precision floating point data and therefore P can be
calculated as P = (%B]. Similarly, € takes 8 bits for single
precision floating point data and P = [B].

On the other hand, V, X, T, and R are the total time
to extract €, convert input floating-point values into man-
tissa values, perform non-orthogonal transform, and reorder
the transform coefficients, respectively for all data blocks.
Clearly the complexity of V, X, T, and R is O(B). E is the
total time to perform embedded encoding on all transform
coefficients. It is affected by both the number of bit planes
across all data blocks and the number of encoding bits for
each bit plane, given that the more bits a bit plane has, the
longer the encoding time is. Therefore, we need to measure
the encoding time for bit planes with different numbers
of encoding bits. To determine each of these metrics, we
directly measure the timing of the following low-level com-
pression routines: the calculation of the common exponent
on a single block 1, the calculation of mantissa values on
a single block 73, the non-orthogonal transform on a single

7
TABLE 2: Dataset description.
Dataset [[Size | Description
1D experiments
BROWN 257 MB | Synthetic, generated to specified regularity
CESM_ATM 643 MB | Climate simulation
HACC 4GB Cosmology: particle simulation
SCALE 539 MB | Climate simulation
2D experiments
NSTX_GPI 361 MB | NSTX Gas Puff Image (GPI) data
NYX 513 MB Cosmology: Adaptive mesh hydrodynamics
+ N-body cosmological simulation
S3D 11 GB Combustion simulation
XGC 324 MB | Fusion simulation

block of mantissa values r3, the reordering of a single block
of transform coefficients 4, and the embedded encoding of
a bit plane 5. For 75, we calculate the average time to store
a bit plane with encoding bits of 1, 2, 3 and 4, respectively.

ZFP performance. Given the compression metrics and the
measurements of the low-level compression routines, we

have G, ¢, = % for the compression ratio, and F.f, =
u .
BorTratra)T for the compression throughput.

5 EVALUATION

In this section, we evaluate zPerf across eight scientific
datasets (described in TABLE 2) from the Scientific Dataset
Reduction Benchmark [36]. Specifically, we show the results
of four datasets with 1D compression experiments and
four with 2D compression experiments. We conduct the
compression experiments using SZ (Version 2.1.7) and ZFP
(Version 0.5.5) on two leading HPC systems, Cori [37] at
National Energy Research Scientific Computing Center, and
Summit [38] at Oak Ridge National Laboratory, to test the
compression throughput estimation accuracy of our model.
We test the modeling performance of zPerf under the rela-
tive error bounds [1E-6, 1E-5, 1E-4, 1E-3] as moderate error
bounds generally play a more important role in production
as compared to extreme ones. Specifically, since the ZFP
APIs do not support the relative error bound, we set the
absolute error bound of ZFP to the product of the data range
and relative error bound, so that different error magnitudes
can be covered in our experiments. In what follows, we
show the modeling results of the low-level and high-level
compression metrics. We then compare zPerf against the
sampling approach in terms of the estimation accuracy.

5.1 Low-level compression metrics

For SZ, the estimated curve-fitting efficiency 1 and the
average Huffman coding bit length are shown in Fig. 10. For
7, it can be estimated accurately mainly because adjacent
data points are observed to be smooth, i.e., '[)Z-,l ~ D;_q.
Therefore, the histogram of AD versus error tolerance can
well capture the number of curve-fit points. On the other
hand, the average Huffman coding bit length, which directly
impacts the outcome of /C, is obtained through performing
Huffman encoding on the quantization levels, which are
populated based on the Gaussian distribution. It is noted
that the average Huffman coding bit length is accurate for
most cases, due to the similarity between the distributions
of original and populated quantization levels. In particular,
we observe that datasets like NYX and SCALE demonstrates
lower data smoothness, such that the number of quantiza-
tion levels needed for Huffman encoding is hard to capture.

IEEE TRANSACTIONS ON COMPUTERS

1.0
O.Smﬂﬂﬂﬂm |
0.0

: Nt cC e, P Wk 30 4eC
EEl Real [Estimated

Bits

12
8
4
0

orO g K och Gy S 20 46
E Real
(a) Curve-fitting efficiency 7. (b) Huffman coding bit length.

Fig. 10: SZ low-level metrics estimation. Results are averaged
across relative error bounds.

[Estimated

25
20
15
10

5

Bits

o B N W A

0
Ol KM pCCeeny o Wit 30 46C
Mo !
I Real

Ny ME 6P ik €30 yGC
RO S

[Estimated I Real

(a) Num of bitplanes for a block. (b) Num of bits for a bitplane.

Fig. 11: ZFP low-level metrics estimation. Results are averaged
across relative error bounds.

3 Estimated

TABLE 3: Execution time of low-level routines. All measure-
ments were conducted using the SCALE dataset under the
relative error bound of 1E-6. Each execution time is averaged
across 10 runs.

(a) SZ on Cori (b) SZ on Summit

Routine || Avg. time (ns) Routine || Avg. time (ns)
71 32.63 1 62.63
T2 384.91) 452.91
3 4.46 r3 7.46
T4 4.91 T4 5.71
5 5.76 s 7.36
re 4.58 re 5.32

(c) ZFP on Cori (d) ZFP on Summit

Routine || Avg. time (ns) Routine || Avg. time (ns)
1 11.8 71 20.8
) 8.19) 16.19
r3 2.39 r3 4.39
T4 17.19 T4 26.19
5 2.72 5 3.72

Therefore, the estimated Huffman coding bit lengths based
upon the populated quantization levels deviate from origi-
nal values.

For ZFP, we demonstrate the modeling results of the
number of bit planes m to encode for each data block and
the number of encoding bits b for each bit plane in Fig. 11.
The value of m can be well captured for most datasets due to
the fact that € is observed to be close to the exponent of the
input data mean. For b, the estimation error is caused by the
inadequacy of our model to capture the difference between
the DC component (z') and high-frequency components
(3, 2’ and w’) of transform coefficients. Therefore, when
we populate transform coefficients based on the estimated
Laplacian distribution, the difference between z’ and ¥/ is
underestimated (assuming =’ > y' > 2’ > w’), causing the
number of bit planes between the d-th and e-th bit plane to
be underestimated, as shown in Fig. 9. On the other hand,
our model does not handle the cases of b > 4. Such cases
are counted towards b = 4 automatically, which leads to
the overestimation for the number of bit planes with b = 4.
However, the bit planes with b > 4 make up a small portion
of the total number of bit planes. Therefore, the error is
observed to be insignificant.

5.2 High-level compression metrics

We further evaluate the estimation of high-level metrics for
SZ and ZFP. Specifically, for SZ, we show the estimated
results of 7, K and M under in Fig. 12. Note that the over-
all height of each bar indicates the final compressed size.
The deviation of n as a result of the discrepancy between
the original and the quantization levels produced by the
Gaussian distribution is further propagated to J due to the
linear relationship between n and J. Overall, the accuracy
of J can be well maintained for the compressed size, while
the average estimation error of K is less than 45%, except
for NYX and SCALE. We note that the estimation error of K
mainly comes from the estimation error of Huffman coding
bit length, which is discussed in Section 5.1.

As aforementioned, to estimate the system-dependent
compression time, we need to measure the timings of the
low-level compression routines 7;. TABLE 3a and TABLE 3b
show the execution time of low-level routines of SZ on
Cori and Summit respectively, which were measured using
the SCALE dataset under the relative error bound of 1E-6.
Each measured execution time is averaged across 10 runs.
In particular, r; is measured by the total curve-fitting and
quantization time divided by the number of curve-hit data
points, ro is measured by the curve-missed data processing
time divided by the number of curve-missed data points,
and r3 is measured by the time to retrieve quantization
levels divided by the total number of data points. The esti-
mation for compression time components for SZ is shown in
Fig. 13, where the compression time for Cori is shown in Fig.
13a, Fig. 13b and the compression time for Summit is shown
in Fig. 13c, Fig. 13d. Since P is linear to 7, its estimation is
fairly accurate. The Huffman tree construction time C can be
calculated as N'rs+n(rs+7;5). Overall, since C is dominated
by Nrs (M > n) and r3 is deterministic, its accuracy is
good and the estimation error mostly comes from n. For the
Huffman encoding time H, it can be accurately estimated
since the amount of time to encode one quantization level is
fairly constant for a particular system.

For ZFP, we demonstrate the estimation results of P
and Q in Fig. 14a and Fig. 14b respectively for 1D and 2D
compression. In particular, P can be well estimated since
it is linearly related to the number of blocks B. For Q, it
is the sum of b of all bit planes across all data blocks. The
estimation error of Q essentially comes from b, which has
been discussed in Section 5.1. TABLE 3c and TABLE 3d list
the measured execution time of low-level routines in ZFP
on Cori and Summit respectively. Specifically for r5, we
manually set the bit planes values so that the corresponding
encoding bits for each bit plane is 1, 2, 3 and 4. For bit
planes with different number of encoding bits, we calculate
the average encoding time over 1,000,000 blocks with 64 bit
planes, and the average time to store a bit plane is 2.72 ns
on Cori and 3.72 ns on Summit. We show the estimation
results for V, X, T, R, and E in Fig. 15. As we mentioned
earlier, V, X, T and R are linear to B. The estimation error
for these timings mainly comes from the approximation of
using low-level routines time measured on SCALE, while
the estimation error of E mainly comes from the estimation
of encoding bits for each bit plane.

Overall, zPerf is effective in capturing the trend of com-

IEEE TRANSACTIONS ON COMPUTERS 9
BROWN CESM ATM HACC SCALE BROWN CESM_ATM HACC SCALE
10 = 2e3 150
_ 120 € w 10 100
o [6)
E 5 80 Le3 100 ﬁ 4
e
& 40 50 g > 30 2
@ =
ot s m et s o g m Con g oy omo et g me ety e 0Tt g,
w w
- - Ll Ll - - - ~ Ll ~— - - - ~ - - - — - — — — — — — - — - — — —

Error bound (relative erro

4

)
B Real Huffman tree structure size J Ml Estimated Huffman encoding size K
B Estimated Huffman tree structure size 7 [0 Real Curve-missed size M

EEl Real Huffman encoding size K Estimated Curve-missed size M

(a) Compression output components (1D compression).

150 NSTX GP! NYX 750 S3D 75 XGC
= 150
500 50
=100 100
()
50 250 25
3 50
G Ol W dodod
- ~ ~ - Ll - ~ ~ ~ - - —~ —~ ~ ~ -

Error bound (relative erro

2

)
Il Estimated Huffman encoding size K
3 Real Curve-missed size M

EZZ1 Estimated Curve-missed size M

EEl Real Huffman tree structure size J
BB Estimated Huffman tree structure size J
Il Real Huffman encoding size K

(b) Compression output components (2D compression).
Fig. 12: SZ compression size estimation.

pression performance, despite the statistical approximation
(e.g., the Gaussian modeling for SZ and Laplace modeling
for ZFP) in estimating the compression metrics. Generally,
zPerf achieves better estimation results for ZFP than for
SZ. The reason is that the low-level compression metrics
of ZFP, m and b, can be well modeled. On the one hand, m
is directly calculable based on £ and €. On the other hand,
b does not demonstrate drastic changes across all datasets
used in our work. Based on our observation, the values of b
typically range from 1 to 6.

5.3 zPerf vs. sampling based approach

We next compare zPerf with the sampling approach [13]
regarding the estimation accuracy. We assess the estimation
accuracy using the mean relative error (MRE), which is de-
fined as the average ratio between the absolute estimation
error and the original compression performance. Overall,
the estimation accuracy of the sampling approach is im-
pacted by the sampling ratio, while the size of populated
metrics affects the performance of zPerf as well. As a result,
the sampling ratio and the population ratio (defined as the
ratio between the size of the populated values and the size
of the original data) are key parameters in our evaluation.
On the other hand, as the prior work [13] pointed out
that for the estimation of compression ratios, the sampling
approach offers a biased estimation for compressors without
bounded locality, such as SZ, and an unbiased estimation for
compressors with bounded locality, such as ZFP. Therefore,
we anticipate that the sampling approach works well for
ZFP, but not SZ.

In this section, we vary both the population and sam-
pling ratios from 1E-1 to 1E-7 and compare the MRE of
zPerf and sampling approach. In Fig. 16 and Fig. 17, we
measure the MRE of estimation for SZ and ZFP, respectively.
In each figure, we display the MRE for estimating compres-
sion ratio (1D and 2D scenarios) as well as compression
throughput (on Cori and Summit). Due to the limited space,
we only display compression throughput estimation for
the 1D scenario. It is observed that the accuracy of the
sampling approach generally degrades (MRE increasing)
when the sampling ratio decreases. Note that due to the

Error bound (relative error)
I Real curve-fitting and quantization time [Real Huffman tree construction time €
I Estimated curve-fitting and quantization time P [ZZ1 Estimated Huffman tree construction time €
3 Real curve-missed data processing time i/ B Real Huffman encoding time #
PZZA Estimated curve-missed data processing time 1/ EEE Estimated Huffman encoding time ##

(a) Compression time components on Cori (1D Compression).

20 NSTX_GP! 12 NYX s3D 6 XGC

w 75

b 8 4

210 50

(]

£ 4 25 2

=
W oW WowoWow W oW WowoWow
- — —~ ~ —~ ~ - —~ - — —~ ~ —~ —~ - —

Error bound (relative error)
EE Real curve-fitting and quantization time 7 [Real Huffman tree construction time ¢
I Estimated curve-fitting and quantization time # [ZZ1 Estimated Huffman tree construction time ¢
3 Real curve-missed data processing time i¢ I Real Huffman encoding time #
EZZ Estimated curve-missed data processing time ¢ B Estimated Huffman encoding time #/

(b) Compression time components on Cori (2D Compression).

BROWN

CESM_ATM HACC SCALE

15 180 9
10 120 6

5 60 3

0 0 0

[=
Error bound (relative error)

I Real curve-fitting and quantization time [Real Huffman tree construction time C

I Estimated curve-fitting and quantization time P [ZZ1 Estimated Huffman tree construction time C

3 Real curve-missed data processing time i/ I Real Huffman encoding time #

Estimated curve-missed data processing time 1/ ~ EEE Estimated Huffman encoding time #

E-6
E-5
E-4

1E-6
1E-5
1E-4
1E-3
1E-3
1E-6
1E-5
1E-4
1E-3

(c) Compression time components on Summit (1D Compression).

NSTX_GPI NYX S3D XGC
30 = 15 9

w 90

b 10 6

215 60

[}

£ > 30 3

E
W oW wowoWow W owow wow oW
— — — — — — — — — — — — — — — —

Error bound (relative error)
Il Real curve-fitting and quantization time P [Real Huffman tree construction time ¢
Il Estimated curve-fitting and quantization time P [ZZ1 Estimated Huffman tree construction time ¢
3 Real curve-missed data processing time i/ B Real Huffman encoding time #
EZA Estimated curve-missed data processing time 1/ HEB Estimated Huffman encoding time #/

(d) Compression time components on Summit (2D Compression).
Fig. 13: SZ compression time estimation.

bounded locality of ZFP, the sampling approach yields a low
error for compression ratio (Fig. 17a and Fig. 17b). For SZ,
zPerf generally outperforms the sampling approach in the
estimation of compression ratio. It is because the estimation
of Huffman tree structure deteriorates rapidly when the
sampling ratio decreases, while it can be better maintained
by zPerf through the Laplacian modeling. On the other
hand, the MRE of the compression throughput using zPerf
is observed to be insensitive to the population ratio. This
suggests that if the compression throughput is a metric
of interest (e.g., for online compression), zPerf provides a
good estimation even with a small set of populated values.
We find that this is because the two largest components of
compression time, P and H, have the complexity of O(N),
which are not directly affected by the population ratio.

For ZFP, the MRE of the compression throughput using
the sampling approach increases with the decreasing of the
sampling ratio. While the MRE of the sampling approach
is generally lower than the MRE of zPerf, we find that
they achieve similar performance at low sampling ratios.

IEEE TRANSACTIONS ON COMPUTERS

10

BROWN CESM_ATM SCALE BROWN CESM_ATM SCALE
120 = 3e3 90 2 6 = 3
= 90 3
= 2e3 60 0 2
b 60 —1 3
]
g 30 le3 30 £ 1
0 0 0 .
© w g © oy Tn © e s mT Oty 0T s
ERERE S d gL g Gom o & gL g
Error bound (relative error) Error bound (relative error)
i [i i C
— Reél exponent size P X Ree_" encoding SIZ‘e Q . Il Real exponent extraction time v 7772 Estimated non-orthogonal transform time 7
BBl Estimated exponent size P B Estimated encoding size Q Il Estimated exponent extraction time I Real coefficients reordering time R
C . t t ¢ 1D . I Real mantissa conversion time X B Estimated coefficients reordering time 7
(a) ompressmn ou pu componen S (compressmn). EEE Estimated mantissa conversion time X [] Real embedded encoding time £
[Real non-orthogonal transform time T Estimated embedded encoding time £

S3D XGC

75
50

25
0

Size

NYX
2e3
le3
0

)

NSTX_GPI
w
—

300
o
= 200
100
0
Error bound (relative error)

HEl Real exponent size P I Real encoding size Q
Bl Estimated exponent size 7 BB Estimated encoding size O

240
120
0 ©

w
—

"
w
—

1E-6
1E-5
1E-4
1E-3
1E-6
1E-5
1E-4

(b) Compression output components (2D compression).
Fig. 14: ZFP compression size estimation.

Generally speaking, both models are anticipated to work
well at high sampling and population ratios (e.g., 1E-1
and 1E-2). However, the MRE of the sampling approach
deteriorates rapidly as the sampling ratio becomes small-
a key disadvantage when estimating the performance of
extreme-scale datasets that require a small sampling ratio.

We further compare the running time overhead of both
zPerf and sampling approach, as shown in Fig. 18. It can
be shown that for SZ (Fig. 18a), zPerf yields a lower over-
head than sampling approach after sampling ratio drops
below 1E-4, which further demonstrates the advantage of
zPerf when estimating compression performance at low
sampling ratios. For ZFP, zPerf requires longer running
time as compared to sampling approach. However, it is still
beneficial given that zPerf can provide better estimation at
low population ratios.

5.4 zPerf vs. state-of-the-art

We next quantitatively compare zPerf with state-of-the-art
in compression performance modeling.

Tao et al. [22] employ a rate-distortion estimation method
for bit-rate estimation. As compared to zPerf, this work
neither explored the design space of lossy compression
nor attempted the modeling the compression throughput.
Rather, it uses a sampling-based approach for performance
estimation by compressing the sampled data directly. As
such, it is anticipated that it can outperform zPerf, albeit
unable to predict the performance for a potentially new de-
sign for a compressor. For the compression ratio modeling,
it measured the performance under high sampling ratios
(no lower than 1%) and did not attempt lower sampling
ratios (e.g., 0.1% and 0.01%) that are important for the
modeling of compression for large data in a cost-effective
way. By allowing for low sampling ratios, zPerf incurs
substantially less memory footprint, e.g., 100X less memory
at a sampling ratio of 0.01% as compared to that of 1%, with
an insignificant degradation of modeling accuracy (e.g., by
10% to 15%). For CESM_ATM at a sampling ratio of 1%,
this previous work achieves an average estimation error of
7.5% for SZ and 5.7% for ZFP, while zPerf achieves 19.1%
for SZ and 20.68% for ZFP (again, with the added capability
of exploring new algorithms in a compressors).

(a) Compression time components on Cori (1D Compression).

4 NSTX_GPI . NYX 45 S3D 15 XGC
g
\3’1 5 4 30 1.0
[
£ 2 15 0.5
=
0 © n < m 0 o n < m 0 © n < m 0 o n < m
woouwouwou Woouwouou wowouwouw Woouwouwou
~ — - ~ - ~ — - — - ~ — —~ — - —~
Error bound (relative error)

Il Real exponent extraction time v/ 7772 Estimated non-orthogonal transform time 7
Ml Estimated exponent extraction time I Real coefficients reordering time R

I Real mantissa conversion time B Estimated coefficients reordering time 7
EE Estimated mantissa conversion time X [Real embedded encoding time £

[Real non-orthogonal transform time T Estimated embedded encoding time £

(b) Compression time components on Cori (2D Compression).

BROWN CESM_ATM HACC SCALE

2 6 75 3
m
bt 50 2
~1 3
g 25 1
=
R e
wowowow W W oW w W oW owow wowowow
Ea = =] e = T R o A A B I =]
Error bound (relative error)
Il Real exponent extraction time 772 Estimated non-orthogonal transform time 7
Ml Estimated exponent extraction time v I Real coefficients reordering time &
Il Real mantissa conversion time X B Estimated coefficients reordering time 7
EEE Estimated mantissa conversion time X [Z=] Real embedded encoding time
[Real non-orthogonal transform time 7 EZZ1 Estimated embedded encoding time £

(c) Compression time components on Summit (1D Compression).

NSTX_GPI NYX S3D XGC
= 60 3
—_ 7.5
4
@ 5.0 40 2
o 3
€ 2.5 20 1
E
0o TmT 00T T e Tt 0oty TmT 06T e,
wowowow W W oW w W oW owow wowowow
—~ ~ ~ —~ L] —~ ~ L] ~ L]] ~ —~ - ~ —~
Error bound (relative error)
Il Real exponent extraction time v ZZ2 Estimated non-orthogonal transform time 7
I Estimated exponent extraction time v I Real coefficients reordering time %
Il Real mantissa conversion time B Estimated coefficients reordering time 7
B Estimated mantissa conversion time [Real embedded encoding time &
[Real non-orthogonal transform time 7 EZZ Estimated embedded encoding time £

(d) Compression time components on Summit (2D Compression).
Fig. 15: ZFP compression time estimation.

Zhao et al. [23] achieved an average estimation error of
5% in most cases when the sampling ratio is 8%. In contrast,
zPerf achieves an average error of 10.54% under a sampling
ratio of 10% for SZ. However, they did not present quan-
titative results across datasets and the work focused only
on SZ. Jin et al. [24] adopted a modularized approach for
the compression ratio and quality estimation for prediction-
based lossy compression. While the modular estimation is
similar to zPerf, it only focuses on prediction-based lossy
compression and does not study other types of techniques.
As reported in the paper, their approach achieves an average
estimation error of 9.66%, 8.08%, 3.83%, and 6.46% for
CESM_ATM, Nyx, HACC, and Brown, respectively, under
a sampling ratio of 1%. However, the error configuration
was not disclosed and we could not further compare it
to zPerf. Meanwhile, the average estimation error of zPerf
under a sampling ratio of 1% for corresponding datasets are

IEEE TRANSACTIONS ON COMPUTERS

11

BROWN ESM_ATM HA ALE
o 100 (o) 100 CESM 100 CC 100 SC. » 100 BROWN 100 CESM_ATM 150 HACC 100 SCALE
2380 80 2380 80 100
3= 60 60 /@/‘“ 3 = 60 60
= O - O
S840 40 c £40 / 40 50 o
g 20 20/« /]| —— 20[—s—e—5 =
o PN S —8—e— o
= or—\»—'r—w—-r—lr—-r—l Or—lr—-r—lr—-r—lr—-»—l Or—lr—l»—'r—\»—-r—w—- 0»—'r—\r—'r—lr—-r—lr—- = 0‘)\)\)\)\)‘)\) O\)‘)‘)\;\)‘)\) 0\;\) \)T:
MmmmMmMmm mmmmmMmEm mmmmmmm mmmmmmm TemthnT Thththht Thhhhh
FNWAOOY FNWhOOY FNWROOY HFNWhAOOY PROL RO PR RO D PRW RO R
Sampling ratio Sampling ratio
—e— Sampling-based approach —a— zPerf —— Sampling-based approach —s— zPerf
(a) Compression ratio estimation (1D Compression). (a) Compression ratio estimation (1D Compression).
o 100 NSTX_GPI 100 NYX 100 S3D 100 XGC » 100 NSTX_GPI 100 NYX 100 S3D 100 XGC
2580 80 80 2380 80 80 80
[© —
< = 60 60 60 < = 60 60 60 60
o = - o5
- O =
158 PEaiul k-7 S00e I 11 Resess | SSESSO - -sses
Al -
s 5 o T =1 %, s 5 a2l olizsseet o
mmmmmmm mhmmmmm mmmmmmm TeThhhh whhhhhw whhhhhh whwhww
B WAO e BOWAGSY N NV RV N PRY RO D PRW RO PRWROe D PRW RO
Sampling ratio Sampling ratio
—— Sampling-based approach —s— zPerf —+— Sampling-based approach —s— zPerf
(b) Compression ratio estimation (2D Compression). (b) Compression ratio estimation (2D Compression).
BROWN CESM_ATM HACC SCALE BROWN CESM_ATM HACC SCALE
= 100 100
v 100 100 o
£R80 80 £
o5 60 60 o §
c £ 40 40 <5
g 20 20 g
= o et =
TRRTTe whthhe
PRLEREOOD PRLEY

&
Sampling ratio

—+— Sampling-based approach —a— zPerf

(c) Compression throughput estimation on Cori (1D compression).

BROWN CESM_ATM HACC SCALE

@ 100 00

£R80 80 80 80

T 5 60 60 60 60

c £40 40 40 40

€20 | 20 20 20

= 0 - 0 3a—s—e—g =8 0 NP
TRTRTET TeTete whoethht
Yoweovo = Yoweovo =2 yYRweovo 2

Sampling ratio

—+— Sampling-based approach —=— zPerf

(d) Compression throughput estimation on Summit (1D compression).
Fig. 16: zPerf estimation error compared to the sampling ap-
proach for SZ under sampling ratios from 1E-1 to 1E-7. The
estimation error is averaged across error bounds.

19.1%, 18.2%, 18.8%, and 9.8%, respectively. Jin et al. [25] also
achieved the modeling of compression ratio for Nyx. Their
approach is based on the empirical analysis that the bit-rate
to error bound ratio for a compression method on a dataset
is similar across error bounds. The model only targets the
case where the compression ratio is larger than 16, given
the goal is to improve the quality of visualization after
compression. There is no quantitative evaluation presented
for the modeling accuracy.

6 PERFORMANCE EXTRAPOLATION

Identifying new opportunities for lossy compression has be-
come increasingly difficult, given the large algorithmic and
software-hardware co-design space to explore. For devel-
opers of lossy compression, a question often arises: would a
new component in the compressor improve the overall performance
for some application scenarios? To answer this question, de-
velopers must implement a new version of the compressor
first, followed by labor-intensive testing and maintenance.
In this section, we demonstrate the application of using
zPerf to explore the design space of lossy compression. We
discuss three case studies where we estimate the impact of
alternative entropy encoding schemes on SZ and ZFP, as
well as alternative transform scheme on ZFP. Specifically, for
entropy encoding study, we replace the Huffman encoding

Sampling ratio

—+— Sampling-based approach —a— zPerf

(c) Compression throughput estimation on Cori (1D compression).

BROWN CESM_ATM HACC SCALE

Mean relative
error (%)

v
Sampling ratio
—+— Sampling-based approach

—&— zPerf

(d) Compression throughput estimation on Summit (1D compression).
Fig. 17: zPerf estimation error compared to the sampling ap-
proach for ZFP under sampling ratios from 1E-1 to 1E-7. The
estimation error is averaged across error bounds.

102, BROWN 10 SCALE o CESM_ATM 107 NYX
9 100 10! 1
a 10! 10
g 10° 100 100 10°
T 10m —=—tl10-1 —— 107 =—=l107
TRThhh o whteRw whhhhh whhwhhw
YR e oo Yo w e oo Yo w e oo ¥R e oo
Sampling ratio
—+— Sampling-based approach —a— zPerf
(a) SZ compression performance estimation overhead.
,___BROWN SCALE CESM_ATM NYX
_ 10 10? 02 102
g 100 10° 100 100
2 1072 1072 102 1072
=104 1074 1074 1074
TRThhh o ThTttt whhhhh whwhvhw
YR e oo Yo w e oo Yo w e oo YR oo

Sampling ratio

—+— Sampling-based approach —s— zPerf
(b) ZFP compression performance estimation overhead.

Fig. 18: Running time overhead of zPerf compared to the
sampling approach under sampling ratios from 1E-1 to 1E-6.

in SZ with the ZFP lossless compression and the embedded
encoding in ZFP with Huffman encoding. For transform
scheme study, we replace the customized non-orthogonal
transform in ZFP with discrete cosine transform (DCT).

Case study 1: exploring ZFP lossless encoding for SZ.
SZ currently employs Huffman encoding to compress the
quantization levels based upon the observation that the

IEEE TRANSACTIONS ON COMPUTERS 12
BROWN ALE ESM_ATM NYX B SCALE CESM_ATM NYX
4E4 o 2E4 SC 266 SESML 3E4 1le8 own 6e7 - 3.5e8
83ea] e 1le8
e 2E4 S se7 1e8
2 2E4 1E4 1E6 £ 5e7 567
S1E4 1E4 g 2e7 5e7
~~~ ~ e m e e M e Mm
SRR I
8

ST aMm®OmMmN o
LN oONN®©
I N N N N
NN NN NN
mmmmmmnm

32763
32768
32773
32777
32781
32750
32754
32759
32768
32773
32777
32781

Quantlzanon levels
Fig. 19: Distribution of SZ quantization levels.

BROWN SCALE CESM_ATM

30
60 30

) 40 20 20
20 10 10
0 0 0

0 © v 3 0
uy wowowoow
=1 ==

Compression
ratio ¢

1E-6
1E-5
1E-4
1E-5
1E-4
1E-3
1E-6
1E-5
1E-4
1E-3

Error bound (relatlve error)
E SZ Huffman B Real SZ ZFPL M Estimated SZ_ZFPL

Fig. 20: Compression ratio of SZ_Huffman, SZ_ZFPL.

distribution of quantization levels is Gaussian [13]. As
such, they can be efficiently compressed with Huffman
encoding. In this case study, we consider the possibility of
encoding the SZ quantization levels with the ZFP lossless
mode, which adopts a modified decorrelating transform
to map the input floating point data to transformation
coefficients. Then during the variable-length encoding, bit-
planes are no longer truncated to achieve lossless encoding.
The intuition of adopting the ZFP lossless encoding for
compressing quantization levels is that the variable-length
encoding scheme by ZFP leverages the similarity among the
transformation coefficients. That is, the smoother the input
data is, the more efficient the decorrelating transform will
be; thus, a lower bit-rate can be achieved in encoding. Given
that the SZ quantization levels are generally highly similar,
as shown in Fig. 19, it is reasonable to use ZFP lossless mode
as the backend for compression.

As discussed in Section 4.3, the output of ZFP com-
pression consists the exponent value size P and encod-
ing size Q. While P mainly depends on the number of
data blocks, Q can be calculated by the number of data
blocks B, as well as the bits to encode each bit-plane b;;:
Q= [8 ¥E, Sk b W Specifically in the lossless com-
pression mode, all the bit planes are encoded. Therefore,
the output of ZFP lossless compression depends solely on
the number of bits to encode a bit-plane. As previously
discussed, the modeling of b;; comes down to capturing
the significant bits in transform coefficients, which depends
on the input data. Therefore, following the approach we
developed in Section 4.3, we model the transform coeffi-
cients with Laplacian distribution and calculate the number
of significant bits for each block. In Fig. 20, we show the
measured and estimated compression ratio of SZ using
the ZFP lossless encoding, denoted as SZ_ZFPL, versus
SZ_Huffman. It is worth noting that SZ_ZFPL achieves much
lower compression ratios than SZ_Huffman on Brown. The
reason is that while the ZFP lossless mode can encode
the transform coefficients of quantization levels efficiently,
the Brown dataset is of double-precision, thus ZFP lossless
mode needs to store many additional bit-planes. For other
datasets, it is shown that SZ_ZFPL typically outperforms
SZ_Huffman when the error bound is tight. The reason
is that, when the error bound is tight, more quantization
levels are used to encode the curve-fitting error, resulting a
Huffman tree with more branches and longer codes. When

Bit plane values

Fig. 21: Distribution of ZFP transform coefficient bit plane.

Brown SCALE CESM_ATM 1 NYX
S
o
§o10 8
55
€2 5 4
o
O
\D m <? m LD Lﬂ V m \D Ln <t‘ M 0 e} wn < m
LIJ LLI LI.I LLI LLI LI.I LLI LLI LI.I LLI LLI Lu w LII.I w w
~ — — - - — — — — — — ~ — — ~ —

Error bound (relative error)
BN ZFP_Embedded B Original ZFP_Huffman @ Estimated ZFP_Huffman

Fig. 22: Compression ratio of ZFP_Embedded, ZFP_Huffman.

B ALE ESM_ATM NYX

o2 rown 15 SC. 15 CES

e

£ B\S‘\S\’J 1.0 1.0

ol B\s\s\e

g 0.5 0.5

$

Z 0g n < = 005 n < = 005 n < )
woow oW W woow oW i u'_| woow
— — — — — — — — — \—( — — — —

Error bound (relative error)
—8— ZFP_Embedded —e— ZFP_Huffman

Fig. 23: Bit-rate achieved by ZFP_Embedded and ZFP_Huffman.

error bound is loose, less quantization levels are used and
thus shorter codes. However, SZ_ZFPL still needs to encode
all bit-planes of the transformation coefficients, resulting
lower compression ratios.

Case study 2: exploring Huffman encoding for ZFP. ZFP
currently employs a customized embedded encoding to
compress the transform coefficient bit planes within each
block. The design of block-wise compression is primarily to
support random access to the compressed data. However,
block-wise encoding does not exploit the potential similarity
between bit planes across blocks. In this work, we consider
exploring such similarity using Huffman encoding. The
rationale behind using Huffman encoding is that bit plane
values usually consist of a small set of distinct values, as
shown in Fig. 21, which is due to the fact that each bit plane
consists of a limited number of bits. For example, the value
of a 1D bit plane with 4 bits can only range from 0 to 31,
while the value of a 2D bit plane with 16 bits can range
from 0 to 65,535. Therefore, the bit plane can be suitable for
Huffman encoding.

As discussed in Section 4.2, the estimation of Huffman
encoding output, i.e.,, J and K, essentially comes down
to the distribution of Huffman coding bit length. As such,
we can acquire such a distribution by performing Huffman
encoding on a small set of transform coefficients popu-
lated based on the Laplacian model. Therefore, the com-
pression ratio of Huffman encoding based ZFP, denoted
as ZFP_Huffman, can be calculated as Gzrp_Huffman =
7. In Fig. 22, we demonstrate the measured and
estimated compression ratios of ZFP_Huffman, compared
with the compression ratio of the original embedded en-
coding based ZFP, denoted as ZFP_Embedded. It is shown
that our model can accurately capture the compression
ratio of ZFP_Huffman to reflect the performance difference
between two encoding schemes. Generally, ZFP_Huffman
achieves higher compression ratios than ZFP_Embedded.
Such a performance outcome demonstrates the efficiency of
compressing non-orthogonal transform coefficients bit plane



IEEE TRANSACTIONS ON COMPUTERS

Brown SCALE CESM_ATM NYX
c 12 w 20 12 - 12
S
a9 8 15 8 8
8% 10
EC 4 4 4
o 5
o
07 i & m 0o i T m 07 s m 07 in & m
woWouwoW W oW wowowow woWouwoW
— — — - — — - — — — — — - — — -

Error bound (relative error)
BB ZFP Custom M Real ZFP_DCT HEE Estimated ZFP_DCT

Fig. 24: Compression ratio of ZFP_Custom and ZFP_DCT.

Brown SCALE CESM_ATM NYX

2 1.5 1.5 2

e

3 1.0 1.0

ol 1

g 0.5 0.5

g

< OkD n < = 0.0 n < ) O'OLD n < ) 0 n < )
woow oW W woow oW W woow oW W woow oW W
— — — — — — — — — — — — — — — —

Error bound (relative error)
—&— ZFP_Custom —e— ZFP_DCT

Fig. 25: Bit-rate achieved by ZFP_Custom and ZFP_DCT.

values using Huffman encoding. Fig. 23 demonstrates the
average bit rate achieved by ZFP_Embedded and estimated
ZFP_Huffman. It is shown that both ZFP_Embedded and
ZFP_Huffman demonstrate relatively steady bit rates that
changes linearly over relative error bounds.

Case study 3: exploring discrete cosine transform for ZFP.
ZFP originally adopts a customized non-orthogonal trans-
form to decorrelate the values of each block. The advantage
of the customized approach is the computational efficiency
achieved by lift implementation and bit operations. How-
ever the decorrelation efficiency might not be optimal as it
also depends on the input data. In this work, we consider
using DCT to replace the customized non-orthogonal trans-
form scheme. In Fig. 24, we demonstrate the measured and
estimated compression ratio of DCT-based ZFP, denoted as
ZFP_DCT, compared with the compression ratio of original
ZFP, denoted as ZFP_Custom. We also show the average
bit rate achieved by DCT-based ZFP and original ZFP in
Fig. 25. It is shown that DCT-based ZFP outperforms the
original ZFP on Brown, SCALE, and NYX. Such performance
demonstrates both the efficiency of correlating scientific
data using DCT and the motivation of exploring transform
schemes in ZFP compression.

Observation: Overall, the results illustrate the effectiveness
and potential benefit of zPerf in exploring the design space. In
particular, the alternative SZ_RLE achieves higher compression
ratios at loose error bounds, while ZFP_Huffman consistently
outperforms the original encoding in ZFP. As such, the compressor
developers can understand the performance benefits before labor-
intensive development are underway, and make more informed
decisions for future opportunities.

7 CONCLUSIONS

In this paper, we present zPerf, a gray-box approach for
lossy compression performance modeling and estimation.
Based on the understanding of the inner compression
mechanism, we discuss the modeling and estimation of
compression ratio and throughput for two state-of-the-art
lossy compressors, SZ and ZFP. We thoroughly evaluate the
accuracy of zPerf on eight scientific datasets and compare
the performance of zPerf against the sampling-based ap-
proach. The evaluation results demonstrate the effectiveness
of zPerf. We also illustrate the benefit of zPerf for design
space exploration of lossy compression. In the future, we

13

would like to extend our work by: 1) Investigating the
error propagation from low-level compression metrics, like
the average bit-length, and the number of bit planes to
encode, to high-level compression performance; 2) Quanti-
fying the data smoothness to improve the modeling of low-
level metrics that are highly data dependent; 3) Comparing
zPerf with more advanced sampling techniques, like block-
wise and histogram-based sampling; 4) Incorporating more
compression techniques, like SZ3 and MGARD, for which
we could not discuss in full details due to the space limit.

REFERENCES

[1] J.C.Bennett, H. Abbasi, P-T. Bremer, R. Grout, A. Gyulassy, T. Jin,
S. Klasky, H. Kolla, M. Parashar, V. Pascucci et al., “Combining
in-situ and in-transit processing to enable extreme-scale scien-
tific analysis,” in SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis.
IEEE, 2012, pp. 1-9.

[2] E Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu, S. Klasky,
M. Parashar, N. Podhorszki, K. Schwan, and M. Wolf, “PreDatA—
preparatory data analytics on peta-scale machines,” in Parallel &
Distributed Processing (IPDPS), 2010 IEEE International Symposium
on. IEEE, 2010, pp. 1-12.

[3] E Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, and
H. Abbasi, “Enabling in-situ execution of coupled scientific work-
flow on multi-core platform,” in Parallel & Distributed Processing
Symposium (IPDPS), 2012 IEEE 26th International. 1EEE, 2012, pp.
1352-1363.

[4] M. Gamell, I. Rodero, M. Parashar, J. C. Bennett, H. Kolla, J. Chen,
P-T. Bremer, A. G. Landge, A. Gyulassy, P. McCormick et al., “Ex-
ploring power behaviors and trade-offs of in-situ data analytics,”
in High Performance Computing, Networking, Storage and Analysis
(5C), 2013 International Conference for. IEEE, 2013, pp. 1-12.

[5] W.-k. Liao, A. Ching, K. Coloma, A. Nisar, A. Choudhary, J. Chen,
R. Sankaran, and S. Klasky, “Using MPI file caching to improve
parallel write performance for large-scale scientific applications,”
in Proceedings of the 2007 ACM/IEEE conference on Supercomputing,
2007, pp. 1-11.

[6] W.-k. Liao and A. Choudhary, “Dynamically adapting file domain
partitioning methods for collective I/O based on underlying par-
allel file system locking protocols,” in SC'08: Proceedings of the 2008
ACMY/IEEE Conference on Supercomputing. 1EEE, 2008, pp. 1-12.

[71 Q. Liu, J. Logan, Y. Tian, H. Abbasi, N. Podhorszki, J. Y. Choi,
S. Klasky, R. Tchoua, J. Lofstead, R. Oldfield et al., “Hello adios:
the challenges and lessons of developing leadership class i/o
frameworks,” Concurrency and Computation: Practice and Experience,
vol. 26, no. 7, pp. 14531473, 2014.

[8] T.Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral
burst-buffer file system for scientific applications,” in SC'16, 2016.

[9] M. Burtscher and P. Ratanaworabhan, “FPC: A high-speed com-
pressor for double-precision floating-point data,” IEEE Transac-
tions on Computers, vol. 58, no. 1, pp. 18-31, 2009.

[10] S. Di and E. Cappello, “Fast error-bounded lossy hpc data com-
pression with SZ,” in Parallel and Distributed Processing Symposium,
2016 IEEE International. 1EEE, 2016, pp. 730-739.

[11] P.Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
transactions on visualization and computer graphics, vol. 20, no. 12,
PP 2674-2683, 2014.

[12] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel
techniques for compression and reduction of scientific data—the
multivariate case,” SIAM Journal on Scientific Computing, vol. 41,
no. 2, pp. A1278-A1303, 2019.

[13] T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and
modeling lossy compression schemes on hpc scientific data,” in
IEEE International Parallel and Distributed Processing Symposium
(IPDPS 18), 2018, pp. 1-10.

[14] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and E. Cap-
pello, “Error-controlled lossy compression optimized for high
compression ratios of scientific datasets,” in 2018 IEEE International
Conference on Big Data (Big Data). 1EEE, 2018, pp. 438—447.



IEEE TRANSACTIONS ON COMPUTERS

[15]

[16]

[17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving
lossy compression for scientific data sets based on multidimen-
sional prediction and error-controlled quantization,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 1129-1139.

S. Wold, “Spline functions in data analysis,” Technometrics, vol. 16,
no. 1, pp. 1-11, 1974.

X. He and P. Shi, “Monotone b-spline smoothing,” Journal of the
American statistical Association, vol. 93, no. 442, pp. 643650, 1998.
S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham,
R. Ross, and N. Samatova, “Compressing the incompressible with
isabela: In-situ reduction of spatio-temporal data,” Euro-Par 2011
Parallel Processing, pp. 366-379, 2011.

W. Austin, G. Ballard, and T. G. Kolda, “Parallel tensor com-
pression for large-scale scientific data,” in 2016 IEEE international
parallel and distributed processing symposium (IPDPS). 1EEE, 2016,
pp. 912-922.

X. Liang, Q. Gong, J. Chen, B. Whitney, L. Wan, Q. Liu, D. Pugmire,
R. Archibald, N. Podhorszki, and S. Klasky, “Error-controlled, pro-
gressive, and adaptable retrieval of scientific data with multilevel
decomposition,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1-13.

R. Underwood, S. Di, J. C. Calhoun, and F. Cappello, “Fraz: a
generic high-fidelity fixed-ratio lossy compression framework for
scientific floating-point data,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS).  1EEE, 2020, pp.
567-577.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing
lossy compression rate-distortion from automatic online selection
between SZ and ZFP,” IEEE Transactions on Parallel and Distributed
Systems, 2019.

K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and E. Cappello,
“Significantly improving lossy compression for hpc datasets with
second-order prediction and parameter optimization.” Associa-
tion for Computing Machinery, Inc, 6 2020, pp. 89-100.

S. Jin, S. Di, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality
modeling,” arXiv preprint arXiv:2111.09815, 2021.

S.Jin, J. Pulido, P. Grosset, ]. Tian, D. Tao, and J. Ahrens, “Adaptive
configuration of in situ lossy compression for cosmology simu-
lations via fine-grained rate-quality modeling,” in Proceedings of
the 30th International Symposium on High-Performance Parallel and
Distributed Computing, 2021, pp. 45-56.

Z. Qin, J. Wang, Q. Liu, J. Chen, D. Pugmire, N. Podhorszki, and
S. Klasky, “Estimating lossy compressibility of scientific data using
deep neural networks,” IEEE Letters of the Computer Society, vol. 3,
no. 1, pp. 5-8, 2020.

J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compres-
sion ratio modeling and estimation across error bounds for lossy
compression,” IEEE Transactions on Parallel and Distributed Systems,
vol. 31, no. 7, pp. 1621-1635, 2020.

L. Noordsij, S. van der Vlugt, M. A. Bamakhrama, Z. Al-Ars,
and P. Lindstrom, “Parallelization of variable rate decompression
through metadata,” in 2020 28th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP). IEEE,
2020, pp. 245-252.

X.-C. Wu, S. Dj, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using
data compression,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2019,
pp- 1-24.

P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 12, no. 5, pp. 1245-1250, Sept 2006.

P.  Lindstrom. (2021) =zfp 05.5 documentation. [On-
line].  Available: https://zfp.readthedocs.io/en/release0.5.5/
modes.html#fixed-accuracy-mode/

E. Y. Lam and J. W. Goodman, “A mathematical analysis of the
dct coefficient distributions for images,” IEEE transactions on image
processing, vol. 9, no. 10, pp. 1661-1666, 2000.

T. Eltoft, T. Kim, and T.-W. Lee, “On the multivariate laplace
distribution,” IEEE Signal Processing Letters, vol. 13, no. 5, pp. 300-
303, 2006.

J. Diffenderfer, A. L. Fox, J. A. Hittinger, G. Sanders, and P. G.
Lindstrom, “Error analysis of ZFP compression for floating-point

[35]

[36]

[37]

(38]

14

data,” SIAM Journal on Scientific Computing, vol. 41, pp. A1867-
A1898, 2019.

K. Jack, “Chapter 5 - digital video processing,” in Digital
Video and DSP, ser. Instant Access, K. Jack, Ed. Burlington:
Newnes, 2008, pp. 125-150. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B9780750689755000054

C. Franck, A. Mark, B. Julie, B. Martin, C. Jong Youl,
C. Emil Mihai, D. Sheng, G. Hanqi, L. Peter, and T. Ozan.
(2021) Scientific data reduction benchmarks. [Online]. Available:
https:/ /sdrbench.github.io/

(2021) Cori. [Online]. Available: https://www.nersc.gov/
systems/cori/
(2021) Summit - oak ridge leadership computing facility. [Online].

Available: https:/ /www.olcf.ornl.gov/summit/

Jinzhen Wang is currently a PhD student in
the Department of Electrical and Computer En-
gineering at NJIT. He received his B.S. from
Shandong University, China, in 2015 and his
M.S. in Electrical Engineering from NJIT in 2017.
His research interests include high performance
computing and scientific data management.

Qi Chen is currently an undergradute student in
the College of Software at Northeastern Univer-
sity in China. His research interests include high
performance computing and software engineer-

ing.

Tong Liu received the B.S. degrees in com-
puter science from Huazhong University of Sci-
ence and Technology, China, in 2015. He ob-
tained his PhD degree at Temple University in
2021. His research interests include computer
systems, data storage, cloud computing, high
performance computing, and data reliability.

Qing Liu is an Assistant Professor in the Depart-
ment of Electrical and Computer Engineering at
NJIT and Joint Faculty with Oak Ridge National
Laboratory. Prior to that, he was a staff scien-
tist at Computer Science and Mathematics Divi-
sion, Oak Ridge National Laboratory for 7 years.
He received his Ph.D. in Computer Engineering
from the University of New Mexico in 2008, M.S.
and B.S., from Nanjing University of Posts and
Telecom, China, in 2004 and 2001, respectively.

Xubin He received the BS and MS degrees in
computer science from Huazhong University of
Science and Technology, China, in 1995 and
1997, respectively, and the PhD degree in elec-
trical engineering from University of Rhode Is-
land, Kingston, RI, in 2002. He is currently a
professor in the Department of Computer and In-
formation Sciences, Temple University, Philadel-
phia, PA. His research interests include com-
puter architecture, data storage systems, virtu-
alization, and high availability computing. Dr. He

received the Ralph E. Powe Junior Faculty Enhancement Award in 2004

and the Sigma Xi Research Award (TTU Chapter) in 2005 and 2010.

He is a senior member of the IEEE, a member of the IEEE Computer
Society and USENIX.


https://zfp.readthedocs.io/en/release0.5.5/modes.html#fixed-accuracy-mode/
https://zfp.readthedocs.io/en/release0.5.5/modes.html#fixed-accuracy-mode/
https://www.sciencedirect.com/science/article/pii/B9780750689755000054
https://www.sciencedirect.com/science/article/pii/B9780750689755000054
https://sdrbench.github.io/
https://www.nersc.gov/systems/cori/
https://www.nersc.gov/systems/cori/
https://www.olcf.ornl.gov/summit/

	Introduction
	related work
	Error-bounded lossy compression
	Compression performance modeling

	Motivation
	Gray-box Compression Modeling
	zPerf for prediction-based and transform-based compression
	Modeling of SZ - a case study of prediction-based lossy compression
	Modeling of ZFP - a case study of transform-based lossy compression

	Evaluation
	Low-level compression metrics
	High-level compression metrics
	zPerf vs. sampling based approach
	zPerf vs. state-of-the-art

	Performance Extrapolation
	conclusions
	References
	Biographies
	Jinzhen Wang
	Qi Chen
	Tong Liu
	Qing Liu
	Xubin He


