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Recently, a Dirac exceptional point (EP) was reported in a non-Hermitian system. Unlike a Dirac point in
Hermitian systems, this Dirac EP has coalesced eigenstates in addition to the degenerate energy. Also different
from a typical EP, the two energy levels connected at this Dirac EP remain real in its vicinity and display a linear
instead of square root dispersion, forming a tilted Dirac cone in the hybrid space consisting of a momentum
dimension and a synthetic dimension for the strength of non-Hermiticity. In this paper, we first present simple
three-band and two-band matrix models with a Dirac EP, where the linear dispersion of the tilted Dirac cone can
be expressed analytically. Importantly, our analysis also reveals that there exist Hermitian and non-Hermitian
systems that have the same (real-valued) energy spectrum in their entire parameter space, with the exception that
one or more degeneracies in the former are replaced by Dirac EPs in the latter. Finally, we show the existence of
an imaginary Dirac cone with an EP at its center.
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I. INTRODUCTION

Dirac points, the degeneracies at the center of Dirac cones,
give graphene [1,2] and other Dirac matters [3] their unusual
electronic properties. Their signature, i.e., the linear disper-
sion around a Dirac point in momentum space, signals a
massless fermion that differs significantly from a classical
object with the quadratic kinetic energy relation. Similar to
all other degeneracies in Hermitian systems, a Dirac point
corresponds to two different quantum eigenstates at the same
energy level and hence is an example of a diabolic point [4].

An exceptional point (EP) [5,6], on the other hand, fea-
tures coalesced eigenstates at a degenerate energy level. Its
existence is a unique feature of non-Hermitian systems, which
arise when a physical system is represented by a Hamiltonian
with partial degrees of freedom or by another operator that
describes the exchange of energy or particles with the envi-
ronment (such as the scattering matrix [7–11]). This approach
has been adopted in studies ranging from nuclear decay [12]
to photon lifetime in optical microcavities [13], yielding in-
sightful results as well as providing new directions of research
[13–16]. For example, the motion of eigenfrequencies or res-
onances in the complex plane can be quite unusual in the
vicinity of an EP, which results in intriguing behaviors such as
gain-suppressed lasing [17–20] and loss-induced lasing [21].

While a degeneracy in a Hermitian system cannot be an
exceptional point, a degeneracy in a non-Hermitian system is
not necessarily an EP. Such a non-EP degeneracy can occur
accidentally or by symmetry, similar to the mechanisms in a
Hermitian system. Some examples include the zero modes in
a non-Hermitian flat band [22] and Dirac points constructed
in non-Hermitian lattices [23,24]. For the degeneracies that
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are indeed EPs, traditionally one associates their perturbative
dependence on a system parameter with a fractional exponent
[e.g., a square root for an EP of order 2 (EP2)], which implies
a stronger response and hence potentially enhanced sensitivity
[25–27]. Furthermore, if an EP has its roots in a non-
Hermitian symmetry, such as parity-time (PT ) [16,28–30],
anti-PT [31–35], or particle-hole [36–39] symmetries, the
non-Hermitian system experiences a corresponding sponta-
neous symmetry breaking or restoration across the EP. This
phenomenon is usually accompanied by dramatic changes in
the energy spectrum: It may transition from real to complex
or even imaginary and vice versa, which is used as one exper-
imental signature of the EP itself [32,40–42].

Therefore, the recent, accidental finding of a Dirac EP
[43] in a one-dimensional periodic PT -symmetric system
came as a surprise: Two energy bands connected by this
Dirac EP display a linear and conical “dispersion” in a two-
dimensional hybrid space, as a function of both momentum
and the non-Hermitian parameter given by the optical gain and
loss strength. In addition, the two energy bands remain real in
the vicinity of the Dirac EP, without undergoing a spontaneous
symmetry breaking. While a three-band matrix model was
introduced in Ref. [43] to capture the latter, the linear and
conical dispersion at this Dirac EP remains to be elucidated.
The differences between Dirac points, Dirac EPs, and conven-
tional EPs are summarized in Table I. In the last row, state flip
is marked “possible” instead of “yes” when a conventional
EP2 is encircled, due to the nonadiabatic transition from the
low-gain/high-loss state to the high-gain/low-loss state [6].
Such nonadiabatic behaviors caused by the different modal
gain (or loss) are absent in the vicinity of a Dirac EP owing to
its real spectrum.

In this paper, we first introduce a revised three-band model
and show explicitly the linear dispersion of the (tilted) Dirac
cone centered at the Dirac EP, via a perturbative treatment.
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TABLE I. Comparison of three types of degeneracies.

Dirac Dirac Conventional
points EPs EP2s

Algebraic multiplicity 2 2 2
Geometric multiplicity 2 1 1
Coalescence of wave functions No Yes Yes
Locally real spectrum Yes Yes No
Branch cuts at degeneracy No No Yes
Node type in energy (real part) Point Point Line or surface
Energy dispersion Conical Conical Square roots
State flip when encircled No No Possible

Our approach is different from the standard procedure of
using the alternating Puiseux series for a conventional EP
[44,45], which is inapplicable at a Dirac EP as we will show.
Because the Dirac EP connects two bands instead of three,
we further reduce this three-band model to a two-band non-
Hermitian Hamiltonian where the Dirac EP can be found.
Using a slightly different approach, we find, interestingly, that
while the same linear and conical dispersion is produced in
the hybrid dimensions, the Dirac point becomes a diabolic
point instead, with two distinct eigenstates. We show that this
dilemma can be resolved by revisiting the three-band model.
More importantly, this comparison has a far-reaching impli-
cation: There exist Hermitian and non-Hermitian systems that
have the same (real-valued) energy spectrum in their entire
parameter space, with the exception that one or more degen-
eracies in the former are replaced by Dirac EPs in the later.
Finally, we show the existence of an imaginary Dirac cone
with an EP at its center.

II. THREE-BAND MODEL

The systems exhibiting a Dirac EP we study originate from
the following Schrödinger equation,

i
d

dt
ψ (x, t ) = [−∂2

x +V (x)
]
ψ (x, t ), (1)

where time, position, and potential are in their dimension-
less forms and h̄ = 1. V (x) = V0(cos x + iτ sin x) (τ � 0) is
a complex potential with the spatial period a = 2π . It is PT
symmetric and satisfiesV (x) = V ∗(−x) [13]. The asterisk de-
notes complex conjugation and represents time reversal, and
the imaginary part of the potential represents optical gain and
loss with strength τ [13].

The Dirac EP in this system is found at the point contact
between the second and third bands in the first Brillouin zone,
where τ = 1 and k = 0. To gain analytical understanding of
this Dirac EP, Ref. [43] first expanded the Bloch wave func-
tion in the plane-wave basis, i.e.,

ψnk (x, t ) = eikx−iωt
∑
m∈Z

ame
imx, (2)

and derived the Bloch Hamiltonian

Hk =
∑
m∈Z

(m + k)2|m〉〈m| + t−|m〉〈m + 1| + t+|m〉〈m − 1|

(3)

that satisfies

Hk�nk (m) = ωnk�nk (m). (4)

Here, n = 1, 2, . . . is the band index, ωnk is energy
of the nth band when the momentum is k, �nk (m) =
[. . . , a−1, a0, a1, . . .]T is the wave function in the plane-
wave basis, and t± = V0(1 ± τ )/2 ∈ R. Then by truncatingHk

given by Eq. (3) and keeping only them = −1, 0, and 1 block,
Ref. [43] showed analytically that indeed the second and third
bands remain real valued when we increase τ across 1, i.e.,
the system does not experience a spontaneous PT breaking
by going through the Dirac EP. While this analysis was only
performed for k = 0 and the truncation turns out to be a crude
approximation, it shone light on how a Dirac EP could be
constructed.

Below we first use the insight from this truncation to in-
troduce a revised three-band model, where a Dirac EP exists
and where the linear dispersion of its (tilted) Dirac cone can
be expressed analytically. In this model, we allow k to be a
(small) free parameter in addition to the gain and loss strength
τ , and the three-band non-Hermitian Hamiltonian is given by

H (3) =
⎛
⎝1 − 2k t− 0

t+ 0 t−
0 t+ 1 + 2k

⎞
⎠, (5)

with the asymmetric couplings t± introduced in Eq. (3). The
eigenvalues ωi of H (3) are the solutions of the characteristic
polynomial

ωi(1 − ωi )
2 + 2t2(1 − ωi ) − 4k2ωi = 0, (6)

where t2 ≡ t−t+ = V 2
0 (1 − τ 2)/4. This cubic equation can be

solved analytically, but the resulting expressions for ωi’s are
rather complicated (e.g., with a square root inside a cubic root)
and do not help us understand the properties of the Dirac EP.
We could perform a Taylor expansion of these expressions for
ωi’s, but a much simpler approach is to expand Eq. (6) directly,
which gives the same results. We do note that being a cubic
equation with real coefficients, Eq. (6) indicates that the three
energy bands are either all real or one real plus a complex
conjugate pair. Therefore, it does not exclude the possibility
of a spontaneous PT breaking, which nevertheless does not
take place at the Dirac EP.

It is straightforward to verify that this EP has energy ω =
1 ≡ ω0 (again h̄ = 1) and exists at τ = 1, k = 0. Its coalesced
eigenstate is given by [a−1, a0, a1]T = [0, 0, 1]T ≡ �0. This
EP is the point contact of the second and third bands that form
a tilted Dirac cone (see Fig. 1), similar to the original Hamil-
tonian Hk shown in Ref. [43]. To derive the dispersion relation
near this Dirac EP, we write ωi ≡ ω0 + �ωi (|�ωi| � ω0)
and study how �ωi depends on the two small parameters
�τ ≡ τ − 1 and k.

Here, we take the advantage of knowing that the dispersion
is linear and conical, which implies that �ωi is of the same
order as k and �τ . Consequently, Eq. (6) becomes

�ω2
i − 2t2�ωi − 4k2 = 0, (7)

to the leading order of �ωi (i.e., �ω2
i ), where t2 ≈

−(V 2
0 /2)�τ is also of the same order as �τ (with V0 chosen
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FIG. 1. Tilted Dirac cone of H (3) centered at a Dirac EP. k is
momentum and �τ is the change of the non-Hermitian strength from
its value (i.e., 1) at the Dirac EP. V0 = 1 is used in the couplings t±.
The intersection of the Dirac cone and two parallel planes given by
ω = 1 − s�τ ± d are also shown, where ω0 = 1 is the energy at the
Dirac EP, s = √

2 − 1, and d = 1/40. The arrow shows the diagonal
direction used in Fig. 2(b).

to be of order unity). We then find

�ωi = t2 ±
√
t4 + 4k2 (8)

or

�ωi ≈ (−α ±
√
4 + α2)k (9)

in any arbitrary direction �τ = (2α/V 2
0 )k (α ∈ R) from the

origin of the �τ − k plane.
The square root in Eq. (9) directly captures the linear and

conical dispersion of the Dirac cone shown in Fig. 1, with
the linear term in front of it explaining the tilt of this Dirac
cone. We also note that this expression is exact when �τ = 0
(i.e., along the k direction from the Dirac EP), which can be
checked easily by setting the second term in Eq. (6) to be zero.
In Fig. 2, we show the comparison of Eq. (9) and the actual
band energies along two other directions, i.e., the �τ axis
and the one with α = 2.5 (diagonal direction in Fig. 1). We
observe that the band closer to ω = 1 is better approximated
by Eq. (9), which will be explained using the equivalent two-
band model below where the analysis becomes easier.

We also note that our approach is different from the per-
turbative expansion used at a conventional EP, which utilizes
alternating Puiseux series [45] with fractional powers of a
small parameter. In fact, this standard treatment is inapplica-
ble at a Dirac EP as we show below. This approach calculates
the perturbative corrections to the eigenstates and their ener-
gies when the Hamiltonian changes from H0 to H = H0 +
εH1 (ε � 1), and when an EP is the result of two coalesc-
ing eigenstates (i.e., of multiplicity 2) [44], the alternating
Puiseux series assume integer and half-integer powers of ε,
i.e.,

ω± = ω0 ± ε1/2ω1 + εω2 ± ε3/2ω3 + · · · (10)

�± = �0 ± ε1/2�1 + ε�2 ± ε3/2�3 + · · · . (11)

Here, ω± are the energies of the two eigenstates �± that
become coalesced at the EP, with energy ω0 and wave function
�0. Even if we ignore the ε1/2 term, Eq. (10) indicates clearly
that ω± have the same linear dependence on ε. In other words,

-0.1 -0.05 0 0.05 0.1
0.9
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1.1

-0.02 -0.01 0 0.01 0.02
k
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(b)

FIG. 2. Linear dispersion of the tilted Dirac cone along (a) �τ

and (b) the diagonal direction given by �τ = 5k in Fig. 1. Solid and
dashed lines show the actual and approximated band energies, which
cannot be distinguished by eye for the band closer to ω = 1.

they stay the same to the linear order and hence cannot form
a Dirac cone in this perturbative expansion.

III. TWO-BAND MODEL

Since the Dirac EP only connects two bands of H (3) [i.e.,
the second and third bands, represented by the two signs in
Eq. (8)], it should be possible to reduce H (3) to a two-band
Hamiltonian, which not only simplifies the understanding of
the Dirac EP but also provides another instance where it
exists. To this end, we first write down the time-dependent
Schrödinger equation corresponding to H (3):

i
d

dt
a−1 = (1 − 2k)a−1 + t−a0, (12)

i
d

dt
a0 = t+a−1 + t−a1, (13)

i
d

dt
a1 = (1 + 2k)a1 + t+a0. (14)

Using a0 ∝ e−iωit in an eigenstate with energy ωi, we obtain

a0 = (t+a−1 + t−a1)/ωi (15)

from Eq. (13) and use this expression to eliminate a0 in
Eqs. (12) and (14). The result is a two-band Hamiltonian

Ha = (1 + t2/ωi )1 +
( −2k t2−/ωi

t2+/ωi 2k

)
, (16)

where 1 is the identity matrix. Because no approximations
have been used in derivingHa, it has the same eigenvalues ωi’s
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as H (3). Furthermore, we note that the eigenvalue ωi appears
in the Hamiltonian Ha itself, and hence this problem can be
treated as a nonlinear eigenvalue problem [46]. Nevertheless,
if we replace ωi by ω0 = 1 in Ha itself near the expected EP,
i.e.,

Ha → H ′
a = (1 + t2)1 +

(−2k t2−
t2+ 2k

)
, (17)

we immediately find that H ′
a takes the Jordan normal form

when k = 0 and �τ = 0, at which t− vanishes as well that
leads to an EP with energy ω0 = 1. It is easy to check that the
two eigenvalues of H ′

a are the same as those given by Eq. (8),
and hence it gives the same linear and conical dispersion
relation (9).

If we have not replaced ωi by ω0 = 1 in Eq. (16), we
can also express the nonlinear eigenvalues of Ha in a self-
consistent way, i.e.,

ωi = (1 + t2/ωi ) ±
√
4k2 + t4/ω2

i , (18)

which is equivalent to Eq. (6). It is then clear that the errors
introduced by taking ωi ≈ ω0 in Eq. (17) only originate from
the t2, t4 terms in Eq. (18). They are partially canceled (in-
creased) in the solution with the “−” (“+”) sign in Eq. (18),
which is also closer to (further from) the energy at the Dirac
EP. This is exactly what we have observed in Fig. 2.

IV. ISOSPECTRAL HERMITIAN
AND NON-HERMITIAN SYSTEMS

As mentioned in the Introduction, there is more than one
way to reduce H (3) to a two-band Hamiltonian. Because the
amplitudes a±1 are coupled indirectly through a0 in H (3), one
may seek eigenstates in the forms of symmetric and antisym-
metric superpositions of a±1, weighted by the couplings t∓:

a± = t+a−1 ± t−a1. (19)

Similar to the first approach above, we also eliminate a0 and
express it in terms of a±. The resulting two-band Hamiltonian
for a± is then found by multiplying Eqs. (12) and (14) by
t+, t−, respectively, and taking the summation and difference
of the results:

Hb =
(
1 + 2t2/ωi −2k

−2k 1

)
. (20)

Again, by approximating ωi in Hb by ω0 = 1 at the Dirac EP,
i.e.,

Hb → H ′
b =

(
1 + 2t2 −2k
−2k 1

)
, (21)

it is straightforward to show that the two eigenvalues of H ′
b

are given by Eq. (8), and we recover the linear and conical
dispersion relation (9). However, H ′

b (and Hb) becomes an
identity matrix at where we expect to find the Dirac EP, i.e.,
k = �τ = 0, and hence the degeneracy ω0 = 1 is a diabolic
point instead of an EP, with two distinct eigenstates [0, 1]T

and [1, 0]T . This should not be surprising, however, because
H ′
b is a real symmetric matrix, and hence it is Hermitian and

cannot have an EP.

This apparent contradiction can be easily resolved by real-
izing that one step leading to Hb [i.e., multiplying Eq. (14)
by t−] fails when t− = 0 (or, equivalently, �τ = 1) where
the degeneracy exists. Therefore, Hb is not equivalent to Ha

at �τ = 1 and it is allowed to differ from Ha, i.e., having a
diabolic point instead of an EP.

More importantly, this comparison reveals a far-reaching
implication: There exist Hermitian and non-Hermitian sys-
tems that have the same (real) energy spectrum in their entire
parameter space, with the exception that one or more de-
generacies in the former are replaced by Dirac EPs in the
latter.

This observation holds for the pair of linear Hamiltonians
H ′
a,H

′
b in the entire τ -k parameter space. Here H ′

b should
be treated as given, and hence the illegitimacy mentioned
above from H (3) to Hb at the Dirac EP is irrelevant. Although
there is only one degeneracy (a diabolic point) replaced by
one EP in our examples here, cases with more or even all
degeneracies replaced by EPs can be trivially constructed. For
example, one can generate a series of two-band Hamiltonians
similar to H ′

a but with different energy shifts (i.e., replacing
ω0 = 1 in its diagonal elements by an increasing series �m’s)
and then stack them to form a block diagonal non-Hermitian
Hamiltonian H ′

A. By following the same process but using
H ′
b instead, we end up with another block diagonal Hamil-

tonian H ′
B which is Hermitian. It is easy to see that they

have the same energy eigenvalues throughout the parameter
space τ -k, with �m’s being diabolic points in H ′

B but EPs
in H ′

A.
We note that the isospectral property between a Hermitian

and a non-Hermitian system we report here is stronger than
that found in Ref. [43], where this equivalence was only
established in the PT -symmetric regime of a linear non-
Hermitian system and away from its EP. The more general
claim here is made possible partly by the elimination of the
conventional EPs of the system studied in Ref. [43], which
occur at the edge of the Brillouin zone when τ = 1. Near
these conventional EPs, the band energies become complex
along the �τ direction and hence lose the equivalence to their
Hermitian counterparts. If we restrict our discussion to the
one-dimensional parameter space along k with τ fixed at 1,
one may attempt to claim that this system also have the more
general isospectral property reported here: Its entire band
structure is real valued in the first Brillouin zone and identical
to that of a Hermitian system with V (x) = 0; its EPs, both the
conventional ones at the band edge and the unconventional
ones at the center of the Brillouin zone (including the Dirac
EP), are replaced by degeneracies in the Hermitian system.
However, one quickly realizes that with V (x) = 0, this “crys-
tal” is just free space with a single dispersion relation ω = k2.
Therefore, its degeneracies in the band analysis are artifacts of
applying the periodic boundary condition to a “unit cell” of an
arbitrary length, resulting in the folding of this single energy
relation into the first Brillouin zone.

V. LINEAR AND CONICAL DISPERSION

While both our three-band model H (3) and linearized
two-band model H ′

a host a Dirac EP, there is a noticeable dif-
ference between them: The small changes in the former, i.e.,
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FIG. 3. Energy surfaces of H ′′
a intersecting at a Dirac exceptional

line instead of a Dirac EP. The parameters are the same as in Fig. 1.

H (3) = H0 + �H , where

H0 =
⎛
⎝ 1 0 0
V0 0 0
0 V0 1

⎞
⎠, �H =

⎛
⎝−2k −g 0

g 0 −g
0 g 2k

⎞
⎠, (22)

and g ≡ V0�τ/2, are of the same order and linear in terms of
k and �τ ; there are, however, higher-order terms proportional
to �τ 2 in the two-band model H ′

a = H0 + �H + �H ′, where

H0 =
(
1 0
V 2
0 1

)
, �H = −V 2

0

2
�τ1 +

( −2k 0
V 2
0 �τ 2k

)
,

and

�H ′ = V 2
0

4
�τ 2

(−1 1
1 −1

)
.

Without these higher-order terms, especially the upper right
element in �H ′, ω0 = 1 is still an EP of the resulting Hamil-
tonian H ′′

a ≡ H0 + �H , and the dispersion at this EP is still
linear:

�ωi = −V 2
0

2
�τ ± 2k. (23)

However, these two energy surfaces intersect at an EP line
instead of a Dirac EP (see Fig. 3). One may refer to this line
as a Dirac exceptional line (node) following the terminology
of a Dirac line node in condensed matter systems [47,48].

In fact, a two-band model cannot host a Dirac EP in a two-
dimensional parameter space, when the perturbation is just
first order. We note that such two-band models are widely used
to generate Dirac cones in Hermitian systems [49], and hence
this finding highlights another difference between Hermitian
and non-Hermitian systems in terms of their Dirac points. To
show this difference, we note that all two-band models with
an EP can be put into the Jordan normal form after a similar
transformation. Therefore, we can take

H0 =
(
0 1
0 0

)
(24)

without loss of generality. We then express the perturbation as

�H = �+σ+ + �−σ− + �3σ3, (25)

where we have neglected perturbations proportional to the
identity matrix because they merely cause a shift of the whole
spectrum. Here, σ± = (σ1 ± iσ2)/2 and σi (i = 1, 2, 3) are the

-0.2
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0.2 g-0.2 0 0.2k

-0.3

0
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Im
[
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min

band 3
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band 3
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(a) (b)
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FIG. 4. Imaginary Dirac cone with an EP at its center. (a) and
(b) show the real and imaginary parts of the three energies of the
Hamiltonian given in Eq. (29).

three Pauli matrices. �±,�3 ∈ C are three complex perturba-
tion amplitudes of the same order. The two energy eigenvalues
are then given by

ω± = ±
√
4�−(1 + �+) + �2

3. (26)

Clearly, due to the leading-order term 4�− in the randicand,
the dispersion of this system cannot be conical; Only when
�− is second order (i.e., �− = δ2− ∼ �2

3) do we recover a
conic dispersion to the leading order:

ω± ≈ ±
√
4δ2− + �2

3 (δ−,�3 ∈ R). (27)

In comparison, H0 in a two-band Hermitian model with a
Dirac point would simply vanish, and we have

ω± = ±
√
4�−�+ + �2

3 (28)

instead. A Dirac cone is then found, e.g., by letting �3 ∈ R
together with either �− = �+ ∈ R or �− = −�+ ∈ iR.

VI. IMAGINARY DIRAC CONE

If we multiply a non-Hermitian Hamiltonian with a Dirac
EP by i, it is clear that the Dirac cone now exists in the imag-
inary part of the energy, which is uniquely non-Hermitian.
Moreover, the general analysis in the last section, particular
Eq. (27), indicates that it is unnecessary to change the unper-
turbed Hamiltonian H0 to construct an imaginary Dirac cone
with an EP at its center; we just need to change δ−,�3 from
real to imaginary in this two-band model.

In a three-band model, we find that the following Hamilto-
nian hosts an imaginary Dirac cone:

H =
⎛
⎝ik g 1
g 1 g
0 g −ik

⎞
⎠ (k, g ∈ R). (29)

The unperturbed Hamiltonian still has real eigenvalues 0 (EP)
and 1. The real and imaginary parts of the three energy eigen-
values are shown in Fig. 4, where the real parts of the two
coalesced eigenvalues at the EP stay the same in the two-
dimensional parameter space. In other words, these two bands
are complex conjugates, with the other band being real. These
observations are consistent with the characteristic equation

ω3 − ω2 + (k2 − 2g2)ω − (k2 + g2) = 0, (30)

which again has real coefficients. When expanding near the
EP, we can drop the higher-order cubic term and solve the
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remaining quadratic equation. The result is

ω± = ±i
√
k2 + g2 (31)

to the leading order, showing the explicit conical and linear
dispersion.

VII. CONCLUSION AND DISCUSSIONS

In summary, we studied a different type of non-Hermitian
degeneracies around which the energy spectrum remains real,
while they manifest eigenvector coalescence in accordance
with the definition of EPs. These Dirac EPs are characterized
by a conical dispersion around them, for which the standard
perturbative description using the alternating Puiseux series
fails. We also identified its imaginary counterpart, where a
Dirac cone is formed in the imaginary parts of the energies
with an EP at its center.

The Dirac EPs we presented emerge in a non-Hermitian
three-band model, which can can be reduced to two-band
models in several ways. This reduction may result in either
Hermitian or non-Hermitian models which are isospectral,
and both host degeneracy points. This observation led to a
startling discovery: There are Hermitian and non-Hermitian
systems that have the same real-valued energy spectrum in
their entire two-dimensional parameter space, and their de-
generacy points consist of diabolic points in the former, and
Dirac EPs in the latter. While isospectral non-Hermitian and
Hermitian systems have been reported before (see, for ex-
ample, Ref. [43]), one with EPs and existing in an entire
two-dimensional parameter space has not. As mentioned, we
were able to achieve this isospectral property owing to the
elimination of conventional EPs, whose branch cuts would
make the non-Hermitian spectrum complex in that region of
the two-dimensional parameter space.

Finally, we showed that for two-band models, it is im-
possible to generate Dirac EPs with linear dispersion along
all directions in a two-dimensional parameter space, if only
first-order perturbations are introduced to an underlying

non-Hermitian Hamiltonian at the EP; second-order terms are
necessary to produce Dirac EPs with a conical dispersion. We
note that this result holds for higher-dimensional systems as
well, as our derivation based on Eq. (25) is independent of
the physical dimensions. This property is in stark contrast
to Hermitian systems, where the conical dispersion around
a Dirac point is produced with first-order perturbations. This
observation represents another intriguing difference between
Dirac points in Hermitian and non-Hermitian systems.

The results in this paper broaden our understanding of non-
Hermitian degeneracies. We break the traditional link between
eigenvector coalescence and the characteristic integer root
dispersion of the eigenvalue spectrum around the exceptional
point in a two-dimensional parameter space. While a similar
finding was known in the mathematical literature [50], it was
based on a single (complex) parameter turning, where the
real and imaginary parts of the perturbed Hamiltonian are
collinear. When two independent perturbations are allowed
instead as we do here (e.g., either using �τ, k or α, k), this
result was found to break down in general and no traces of
a Dirac EP were found [51]: The dispersion near the EP is
no longer linear except for one particular direction [52], con-
sistent with previous findings [50]. Furthermore, although the
enhanced sensitivity stemming from the nonlinear dispersion
of an EP is useful for applications in sensing, it simultaneously
imposes a challenge for tuning and observing exceptional
points. This fact, combined with the complex character of
the non-Hermitian spectrum, often obscure the physics of
eigenvector coalescence at the EP. Our work provides a more
tolerant platform towards studying eigenstates coalescence in
a two-dimensional parameter space, which may be general-
ized to higher dimensions as well.
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