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Abstract
1. Modern methods of ancestral state estimation (ASE) incorporate branch length 

information, and it has been demonstrated that ASEs are more accurate when 
conducted on the branch lengths most correlated with a character's evolution; 
however, a reliable method for choosing between alternate branch length sets 
for discrete characters has not yet been proposed.

2. In this study, we simulate paired chronograms and phylograms, and generate bi-
nary characters that evolve in correlation with one of these. We then investigate 
(a) the effect of alternate branch lengths on ASE error and (b) whether phyloge-
netic signal statistics and/or model- fit statistic can be used to select the branch 
lengths most correlated with a binary character.

3. In agreement with previous studies, we find that ASEs are more accurate 
when conducted on the branch lengths most correlated with the charac-
ter. Phylogenetic signal statistics show limited utility for selecting the correct 
branch lengths, but model- fit statistics are found to be more accurate, with the 
correct branch lengths generally returning greater model- fit (lower AICc and 
BIC values). Using this method to choose between alternate branch length sets 
is more accurate when tree and character properties are more favourable for 
model optimization, and when shape differences between alternate phylogenies 
are greater.

4. Our results indicate that researchers conducting ASEs on discrete characters 
should carefully consider which branch lengths are appropriate, and, in the ab-
sence of other evidence, we suggest estimating model- fit values over alternate 
branch length sets and evolutionary models and choosing the branch length/
model combination that returns better model- fit.
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1  |  INTRODUC TION

Ancestral state estimation (ASE), or ancestral state reconstruction, is 
the process of estimating the evolutionary history of a character on 
a phylogeny (Cunningham et al., 1998; Donoghue, 1989; Swofford & 
Maddison, 1987). This process has been used to reveal the evolution 
of key innovations across the tree of life, such as the evolution of the 
orb web in spiders (Kallal et al., 2020) and of reproductive mode in 
squamates (Pyron & Burbrink, 2014), and to explore the early history 
of major clades such as flowering plants (Sauquet et al., 2017) and 
eukaryotes (Skejo et al., 2021). In fact, much of what we know about 
the history and evolutionary dynamics of morphology, ecology and 
biogeography across deep time- scales rely on ASE algorithms.

The earliest ASE methods used Maximum Parsimony, recon-
structing ancestral states by minimizing state changes over the tree 
without taking branch lengths into consideration (Maddison, 1991; 
Swofford & Maddison, 1987). Newer methods based on Maximum 
Likelihood or Bayesian Inference use models of evolution that incor-
porate branch lengths, and can account for rate heterogeneity, spe-
ciation and extinction rates, and phylogenetic uncertainty (Beaulieu 
et al., 2013; Huelsenbeck & Bollback, 2001; Maddison et al., 2007; 
Pagel, 1999b; Pagel et al., 2004).

A remaining issue that has received little attention is how to 
choose between alternate branch- length sets when conducting ASE 
using model- based methods. For instance, whether to use a phy-
logram— a phylogeny on which branch lengths represent amount 
of evolutionary change, or a chronogram— a phylogeny on which 
branch lengths represent time (Cascini et al., 2019; Cusimano & 
Renner, 2014; Litsios & Salamin, 2012). Chronograms are usually 
used for ASE, perhaps because of an a priori expectation that the 
probability of change in a given character (e.g. a morphological trait) 
would depend on the amount of time elapsed. However, studies 
have shown that rates of morphological change can also strongly 
correlate with rates of molecular change (Seligmann, 2010), and ex-
amples now exist of characters for which, via comparison with sec-
ondary evidence, we know that ASE performed on a phylogram is 
more accurate (e.g. Cascini et al., 2019). Choice of branch lengths for 
ASE, therefore, remains a broadly relevant problem.

Only a handful of studies have explored this issue. Litsios and 
Salamin (2012) first demonstrated the sensitivity of ASEs to branch 
length choice using simulations. They simulated paired chronograms 
and phylograms, evolved continuous characters on one of them, and 
looked at the accuracy of ASEs conducted on each branch length 
set. They found that ASEs were indeed more accurate when per-
formed on the branch length set underlying a character's evolution. 
They also found a positive correlation between phylogenetic signal, 
estimated using Blomberg's K (Blomberg et al., 2003) or Pagel's λ 
(Pagel, 1999a), and reconstruction accuracy, and therefore proposed 
that researchers should use the branch length set that returns the 
highest phylogenetic signal for ASE.

Cusimano and Renner (2014) then explored the effect of using 
alternate branch length sets for ASE on discrete characters, using 
plant chromosome number datasets. They also found that the choice 

of branch lengths could strongly influence the results of ASE but 
did not find evidence that the phylogenetic signal statistic λ (which 
can also be applied to discrete characters although this remains con-
troversial; see Harmon, 2018) had any utility for choosing between 
alternative branch lengths on discrete characters. Although their 
findings were based on few datasets, they highlighted the need for 
further investigation into choice of branch lengths for ASE on dis-
crete characters.

In this study, we address this issue by conducting a simulation 
study to (a) explore the effect of branch length choice on the accu-
racy of ASEs on discrete, binary characters and (b) assess in detail the 
utility of several potential test statistics for identifying the branch 
lengths underlying a discrete character's evolution. We test the 
utility of three phylogenetic signal statistics: Pagel's λ, Fritz' D (Fritz 
& Purvis, 2010) and Borges' δ (Borges et al., 2019); the latter two 
of which have not been investigated previously in this context. We 
also explore an alternative: using model- fit statistics to choose the 
branch length set for ASE. These statistics are already used in com-
parative phylogenetics to compare macroevolutionary models incor-
porating branch length transformations (Pagel, 1999a), although in 
this case models incorporating these transformations incur the pen-
alty of an added parameter during model- fitting. Although this pen-
alty cannot be incurred when comparing alternative branch length 
sets, we hypothesized that model- fit statistics may none- the- less 
indicate the branch lengths that are more closely correlated with 
a character's evolution, because these branch lengths would result 
in higher model- fit values. The model- fit statistics we explore are 
AICc (Akaike, 1974; Hurvich & Tsai, 1989) and BIC (Schwarz, 1978). 
Because these model- fit statistics show utility for choosing the cor-
rect branch lengths, we further investigate their relationship with 
ASE error, and identify tree-  and character- based properties that 
affect their utility for choosing the underlying branch lengths of a 
character.

2  |  MATERIAL S AND METHODS

We conducted this study using the R statistical language (R Core 
Team, 2019), in RStudio (RStudio Team, 2019). We made extensive 
use of the tidyverse (Wickham et al., 2019), and phylogenetics pack-
ages ape (Paradis & Schliep, 2019; Paradis et al., 2004), castor (Louca & 
Doebeli, 2018), geiger (Harmon et al., 2008), FossilSim (Barido- Sottani 
et al., 2019), phangorn (Schliep, 2011) and phytools (Revell, 2012). We 
also used gridExtra (Auguie, 2017) to construct figures. Additional 
packages are listed at the beginning of each section.

2.1  |  Simulation of chronograms and phylograms

Additional packages: TreeSimGM (Hagen & Stadler, 2018).
We generated 5,000 ultrametric trees, representing the ‘chro-

nograms’ for each replicate. Speciation and extinction rates were 
modelled as age- dependent processes using a Weibull distribution 
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with a shape parameter of 0.4 to produce trees with a shape distri-
bution close to that of empirical datasets (Hagen et al., 2015, 2018). 
Tree size was randomly chosen from a uniform distribution between 
10 and 1,000 taxa. After generation, all chronograms were rescaled 
to a random depth between 1 and 100 to remove the association 
between tree size and age that resulted from larger trees taking 
more ‘evolutionary time’ for the models to generate, and so that the 
subsequently generated characters (see below) evolved at a range 
of evolutionary rates relative to the phylogeny. It should be noted 
that while fossil taxa generally improve estimates of ancestral states 
(Puttick, 2016; Slater et al., 2012), our methodology and results re-
late exclusively to the study of extant species.

To generate corresponding phylograms, we then randomly per-
formed one of two transformations on each chronogram (Figure 1). 
Transformation 1 involved multiplying the length of each branch and 
all its descendant branches by a value drawn from a normal distri-
bution (μ = 1, σ = 0.2), mimicking a rate change at that branch that 
could either represent an acceleration (if the value was >1) or a de-
celeration (if the value was <1). This was applied to all branches in 
the tree, and because the length of a particular branch was affected 
not only by its own rate change, but also by changes to the ances-
tral branches leading to it (i.e. by previous evolutionary history) this 
transformation mimicked phylogenetically autocorrelated rates (Tao 
et al., 2019) (Figure 1). Transformation 2 involved multiplying the 
length of each branch of the original chronogram (but not descen-
dent branches) by a value drawn from a truncated normal distribu-
tion (μ = 1, σ = 0.4, values cannot be ≤0), leading to each branch in 
the tree having a unique evolutionary rate that was not affected by 
evolutionary history (Figure 1).

2.2  |  Simulation of binary characters

We generated three binary characters for each replicate using either 
the chronogram or the phylogram, chosen at random, as the under-
lying branch length set (i.e. the ‘correct’ branch lengths). The three 

characters were each generated using a different macroevolutionary 
model, leading to character sets with different properties.

Characters of the ‘Markov’ set were generated using standard 
continuous- time Markov models with each transition rate drawn at 
random from a uniform distribution between 0.05 and 1. Because 
we also used standard Markov models to estimate ancestral states 
(see below), this set represented a ‘best case scenario’ with minimal 
model misspecification.

Characters of the ‘Hidden Rates’ set were generated using ‘hid-
den rates models’ (Beaulieu et al., 2013). In these models, each of a 
character's observable states has two underlying ‘hidden’ rate cat-
egories. Transition rates between observable states and between 
rate categories were randomly drawn from a uniform distribution 
between 0.05 and 1. Because the standard Markov models used in 
ASE cannot account for the hidden rate categories underlying the 
evolution of these characters, some model misspecification was 
present in the ASEs performed on this character set, allowing us 
to see what effect this has on ASE accuracy and on our ability to 
choose the correct underlying branch length set.

Characters of the ‘Amplified Hidden Rates’ set were also gener-
ated using hidden rates models, but in this case the transition rate of 
one of the two hidden rate categories for each state was multiplied 
by 100, leading to states with ‘slow’ and ‘fast’ hidden rate categories 
that differed by up to two orders of magnitude. This resulted in even 
greater levels of model misspecification in the subsequent ASE step.

For all characters, we ensured that both states were present in 
at least 5% of tips, or at least two tips for phylogenies with <40 taxa.

2.3  |  Ancestral state estimation and estimation of 
test statistics

Additional packages: caper (Orme et al., 2012), expm (Goulet 
et al., 2017).

We produced marginal ancestral state estimations (ASEs) for 
all characters, on both the chronogram and the phylogram, using 

F I G U R E  1  A representation of the transformations done to the ultrametric ‘chronograms’ to generate corresponding ‘phylograms’ for 
each replicate. One of the two transformations was applied at random: Transformation 1 mimics autocorrelated evolutionary rates because 
each branch is affected by its own ‘rate change’ as well as the rate changes applied to its ancestors. Transformation 2 mimics uncorrelated 
evolutionary rates because independent rate changes are applied to each branch
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Maximum Likelihood (Pagel, 1999b). On both branch length sets, we 
performed ASEs using two Markov models: one with equal transi-
tions rates (equal rates), and one with different transition rates in 
each direction (different rates). AICc and BIC were estimated for all 
ASEs, leading to four estimates of each statistic per character: one 
for each Markov model, on both branch length sets.

Next, we estimated the phylogenetic signal statistics Pagel's λ, 
Fritz's D and Borges' δ on both the chronogram and phylogram, for 
all characters. Estimation of λ and δ required the choice of an under-
lying model of evolution because λ is optimized using an underlying 
model, and δ is estimated based on ancestral state inferences gener-
ated using an underlying model. For consistency, we used a Markov 
model with different transition rates in each direction (i.e. the model 
used for character simulation) as the underlying model for all esti-
mates of these statistics.

2.4  |  Analysis of ASE accuracy and branch 
length choice

Additional packages: randomForest (Liaw & Wiener, 2002).
All analyses were performed separately on the Markov, Hidden 

Rates and Amplified Hidden Rates character sets, unless otherwise 
stated.

We first assessed whether ASEs done on the branch lengths 
that a character evolved on (the ‘correct’ branch lengths) were 
more accurate. For each replicate, we identified the Markov model 
(equal rates or different rates) with the lowest AICc value for both 
the chronogram and phylogram. For each of these, we calculated 
average node error of the resulting ASE by summing the probabil-
ities of the incorrect state over all nodes in the phylogeny and 
then dividing by the total number of nodes. Because questions 
involving ASE often hinge on large probability changes at a few 
key nodes, we also compared the average error specifically on the 
five nodes whose state probabilities changed the most between 
branch length sets, calculating swing node error. We then tested 
whether average node error and swing node error were lower on the 
correct branch lengths.

While these analyses explored the accuracy of ASEs across 
the entire tree, we further explored results obtained at the level 
of individual nodes, using the Markov character set only. First, we 
extracted the estimates of ancestral states for all nodes across all 
replicates, under the same conditions used to simulate the data (i.e. 
a different- rates Markov model and the correct underlying branch 
lengths). Ancestral state probabilities were compared through sub-
traction to (a) the known (i.e. true) ancestral states, to obtain a proxy 
for accuracy and (b) a scenario in which both states are equiprob-
able, as a proxy for precision. Then, the difference between the 
ancestral state probabilities of each node under alternative branch 
lengths (chronogram and phylogram) was used as a proxy for the 
sensitivity of ASE to branch length choice. Potential determinants 
of these three response variables (node- based ASE accuracy, pre-
cision and sensitivity) were explored using random forests, which 

are relatively robust to multicollinearity, lack of independence and 
deviations from normality. In all, 10 predictors were calculated for 
each node, including metrics of depth, number of descendants, rel-
ative lengths of the surrounding branches, and the degree to which 
these changed between the chronogram and phylogram. For brevity, 
these are defined in Table S1. Regression forests for each response 
variable were built using 1,000 trees, each of which used a random 
sample of 1% of total observations (i.e. nodes). The relative impor-
tance of each predictor was estimated as the decrease in residual 
sum of squares introduced by splitting based on that variable (i.e. the 
increase in node purity), averaged across all trees.

2.5  |  Analysis of test statistics for choosing 
between alternate branch length sets for ASE

Additional packages: adephylo (Jombart et al., 2010), mgsub 
(Ewing, 2020), PerformanceAnalytics (Peterson & Carl, 2020), psych 
(Revelle, 2020), reshape2 (Wickham, 2007).

Next, we tested whether values of λ, D, δ, AICc or BIC could be 
used to identify the branch lengths underlying a character's evo-
lution. For the phylogenetic signal statistics λ, D and δ, we tested 
whether the correct branch lengths led to higher estimates of phy-
logenetic signal (corresponding to lower values of D and higher val-
ues of λ and δ). For AICc and BIC, we compared the value of these 
statistics from all four ASEs performed on each character (i.e. from 
ASEs using both the chronogram and the phylogram, and both the 
equal- rates and different- rates Markov models) and tested whether 
the lowest value was estimated on the correct branch lengths. For all 
five test statistics, we then tested whether they correctly identified 
underlying chronograms and phylograms at the same level of accu-
racy, to identify any biases associated with statistics.

Because AICc and BIC showed the highest utility for selecting 
the correct branch lengths, and because these two statistics re-
turned almost identical results (see Section 3), we conducted sev-
eral exploratory analyses on AICc to investigate the behaviour of 
model- fit statistics more generally. First, we tested for a correla-
tion between change in AICc and change in average node error, to 
see whether larger reductions in AICc score corresponded to larger 
reductions in ASE error. Then, for the Markov character set only, 
we investigated the influence of several tree-  and character- based 
properties (denoted X1 through X7, see Table 1) on the utility of 
AICc for selecting the correct branch lengths, using regression mod-
els. We tested several predictors that were expected to affect the 
sensitivity and/or accuracy of model optimization during ASE (X1– 6), 
with the assumption that identifying the correct underlying branch 
lengths using model- fit statistics would be easier the more effec-
tively the model underlying ASE can be optimized. The final pre-
dictor (X7) measured the overall difference in tree shape between 
the chronogram and the phylogram, with the assumption that the 
correct branch lengths would be easier to determine when alternate 
branch length sets were more different. Several predictors (X2– 
4) were measured on the chronograms, as a proxy for comparison 
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across replicates— although the exact values of the corresponding 
phylograms may differ slightly, the overall pattern was expected to 
be the same. We first tested for correlation among these predictors 
and removed some to reduce multicollinearity. We then assessed 
their influence on the response variable using a stepwise multiple 
logistic regression analysis.

3  |  RESULTS

3.1  |  Analysis of ASE accuracy and branch length 
choice

For all character sets, ASEs conducted on the correct branch 
lengths had lower average node error and swing node error (Paired 
Wilcoxon: both p < 2.2e- 16). Average node error was lower on the 
correct branch lengths in 66%– 76% of replicates and swing node 

error in 63%– 71% (Figure 2). On average, average node error de-
creased on the correct branch lengths by 0.4%– 0.8%, and swing 
node error by 9%– 14% (Figure 2). Results were similar independent 
of whether evolutionary rates were assumed to be autocorrelated 
or uncorrelated (Figure 2).

Random forest models were able to explain a substantial frac-
tion of overall variability in both the precision and accuracy of ASEs 
at individual nodes (33.3% and 25.0%, respectively; Figure 3). Both 
response variables were highly positively correlated (Spearman's 
rank correlation: ρ = 0.84), showing that strong support for incorrect 
ASEs is rare in our simulations (e.g. only 3.1% of nodes showed prob-
abilities >0.75 for the incorrect state). In accordance, both variables 
showed similar patterns of dependence with the predictor set. The 
most important predictors were all estimates of the relative depth of 
nodes (including measures of the patristic distance of nodes to the 
root or the tips descending from it; Figure 3), with both the precision 
and accuracy of ASEs decreasing with node depth (Figure S1). On 

TA B L E  1  Predictor variables included in the regression analysis to assess their effect on the utility of AICc to correctly identify the 
underlying branch lengths of a character

Property Definition

X1: Tree size Number of tips in tree (10– 1,000)

X2: Tree depth (chronogram) Total depth of chronogram (1– 100)

X3: Average branch length (chronogram) Average branch length of chronogram after rescaling to a total depth of 1

X4: Branch length homogeneity (chronogram) Standard deviation in branch length of chronogram after rescaling to a 
total depth of 1

X5: Evolutionary rate asymmetry Calculated as: |rate 1/(rate 1 + rate 2) − rate 2/(rate 1 + rate 2)|

X6: Proportion of tips in rare state Number of tips in rare state/total number of tips

X7: Difference in tree shape (between chronogram and phylogram) Branch score distance (Kuhner & Felsentstein, 1994) between the 
phylogram and chronogram, after both have been rescaled to have 
a mean root- to- tip patristic distance of 1 so that this is a measure of 
the overall difference in branch length proportions (i.e. difference in 
tree shape)

F I G U R E  2  Box and whisker plots overlayed on scatter plots showing the change in average node error (left) and swing node error (right) 
when ASEs are conducted on the correct versus incorrect branch lengths. The three boxplots in each facet represent characters simulated 
using Markov (M), hidden rates (HR) and amplified hidden rates (AHR) models. Most values fall below zero, indicating a decrease in error 
when ASE is conducted on the branch lengths on which a character evolved. To improve interpretability, the y- axis for average node error was 
cut to ±0.06, although a minority of replicates (<1%) fall outside this
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the other hand, nodes experiencing high levels of sensitivity to the 
choice of branch length set were relatively rare. Only 0.17% of nodes 
experienced a change in state probabilities larger than 0.5 when per-
forming ASE in alternative branch length sets. Nonetheless, one in 
every four topologies contained at least one such highly sensitive 
node. Node- based ASE sensitivity was not as easy to predict, and 
our model explained only 14.5% of total variance. While node depth 
still played a role in determining the sensitivity of ASEs to the use of 
alternative branch length sets (with shallower nodes being slightly 
more sensitive to this choice; Figure S1), the most important predic-
tor measured how the minimum patristic distance between a node 
and its descendants changed between a phylogram and its corre-
sponding chronogram (Figure 3). A potential reason why sensitivity 
was harder to predict is that highly sensitive nodes seem to generally 
form clusters (see examples in Figures S2– S4). In these, several con-
secutive nodes flip their favoured state, in a kind of runaway effect, 
depending on whether the chronogram or phylogram is used. None 
of our predictors incorporated information relevant to capture this 
pattern of node interdependency.

3.2  |  Analysis of test statistics for choosing 
between alternate branch length sets for ASE

Of the statistics tested for their utility in identifying the branch 
lengths underlying a character's evolution, almost all returned 

a significant positive result (Table S2). However, the model- fit 
statistics AICc and BIC were the most accurate across all char-
acter sets, identifying the correct branch lengths about 80% of 
the time on both the Markov and Hidden Rates character sets 
(Figure 4). On the Amplified Hidden Rates character set, the ac-
curacy of both model- fit statistics dropped to about 63%, while 
still outperforming phylogenetic signal statistics. The two model- 
fit statistics returned almost identical results (Figure 4), selecting 
the same branch length set in >99% of replicates. Of the phylo-
genetic signal statistics, D performed the worst, identifying the 
correct branch lengths close to 50% of the time across character 
sets (Figure 4). The statistic δ was slightly more accurate at about 
60%. The statistic λ was unusual in returning the same value in a 
large proportion of replicates (almost 40% of replicates for the 
Markov and Hidden rates character sets, and almost 20% for the 
Amplified Hidden Rates character set), precluding choice between 
them. However, for those replicates in which a different value was 
returned for each branch length set, λ was about 65% accurate for 
the Markov and Hidden Rates character sets, and 56% accurate 
for the Amplified Hidden Rates set (Figure 4).

Almost all statistics showed slight differences or ‘biases’ in their 
ability to detect underlying chronograms and phylograms; however, 
the scale of this bias was vastly different (Table S3). The statistic λ 
was the least biased, only returning statistical significance on the 
Markov dataset, in which case it correctly identified underlying 
chronograms slightly more often (6% more) than phylograms. Bias 

F I G U R E  3  Factors determining the precision, accuracy and sensitivity of ASEs at individual nodes. Predictors are ordered according to 
their importance in explaining node- based precision, estimated as the average increase in node purity in the random forest. Predictors are 
defined in Table S1; C = chronogram, P = phylogram. The effects of some selected predictors are shown in Figure S1
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in the other two phylogenetic signal statistics was at a greater scale, 
and consistent across character sets: D correctly identified underly-
ing chronograms about 14%– 25% more often than phylograms, and 
δ identified underlying phylograms 30%– 45% more often than chro-
nograms (Table S3). Both model- fit statistics (AICc and BIC) identi-
fied underlying phylograms 2%– 4% more often on the Markov and 
Hidden Rates character sets, and underlying chronograms 2% more 
often on the Amplified Hidden Rates set, which was not found to be 
significant (Table S3).

The analysis investigating correlation between changes in 
AICc value and changes in error between ASEs conducted on al-
ternate branch lengths found a significant positive correlation 
on all character sets (Spearman's rank correlation: all p < 2.2e- 16, 
ρ = 0.29Markov, 0.28Hidden Rates, 0.34Amp. Hidden Rates), meaning that 

larger improvements in model- fit (i.e. reductions in AICc score) are 
correlated with larger reductions in ASE error, when comparing al-
ternate branch length sets (Figure S5).

In our analysis investigating the influence of tree-  and character- 
based properties on the utility of AICc for identifying the correct 
branch lengths, we identified significant and strong correlation be-
tween predictors X3: Average branch length and X4: Branch length 
homogeneity, and between X5: Evolutionary rate asymmetry and X6: 
Proportion of tips in rare state (Figure S6). Due to these strong cor-
relations, we removed X4 and X5 from the analysis in favour of X3 
and X6, to avoid excessive multicollinearity, and because these pre-
dictors are easier to interpret. Other correlations were identified 
but were not considered sufficiently strong to warrant the a priori 
removal of more predictors (Figure S6).

F I G U R E  4  Bar chart showing the accuracy of the five test statistics at identifying the correct underlying branch lengths of characters 
in each of the three sets; the Markov set (M), the hidden rates set (HR) and the amplified hidden rates set (AHR). Green represents correct 
identifications, red incorrect and grey represents replicates in which both branch length sets returned equal values, precluding a choice. 
The model- fit statistics (AICc and BIC) were more accurate than the phylogenetic signal statistics (λ, D and δ) across all three character sets, 
although accuracy of the model- fit statistics dropped markedly on the amplified hidden rates character set, for which model misspecification 
was the highest

F I G U R E  5  Effects of tree-  and character- based properties on the utility of AICc for choosing the correct branch lengths. Accuracy 
increases on larger phylogenies (X1) and when the relative branch lengths of alternative trees are more dissimilar (X7). Accuracy decreases 
as the total depth and/or the average branch length of the tree increases (X2 and X3, respectively)
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The stepwise procedure identified the model including X1: Tree 
size, X2: Tree depth, X3: Average branch length, and X7: Difference in 
tree shape as the one with the best fit. All main effects in this model 
were highly significant (p ≤ 0.00012; see Table S4), with X1 and 
X7 having positive effects and X2 and X3 having negative effects 
(Figure 5; Table S4). A variance inflation factor of 2.51 was returned 
for X1: Tree size (Table S4), indicating that an interaction/correlation 
exists between this predictor and others in the model (X3 and X7, as 
indicated by the correlation analysis: Figure S6); however, this level 
of interaction is generally considered tolerable. Overall, the results 
of this analysis indicate that the utility of model- fit statistics for iden-
tifying the branch lengths underlying a character improves with the 
number of terminals in the phylogeny and with greater differences 
in shape (relative branch proportions) between alternative branch 
length sets. However, its utility decreases as overall tree depth and/
or average branch length increase (relative to character transition 
rates, see discussion) (Figure 5).

4  |  DISCUSSION

The core finding of this study is that ancestral state estimations 
(ASEs) of discrete characters are more accurate when conducted 
on the branch length set most correlated with the character's 
evolution, reinforcing previous findings for continuous characters 
(Litsios & Salamin, 2012), and empirical datasets of discrete charac-
ters (Cusimano & Renner, 2014). The importance of branch length 
choice for ASE is, although slowly, gaining recognition in compara-
tive phylogenetics (e.g. see Cascini et al., 2019; Ramírez et al., 2021), 
although chronograms are still used in most cases. While a direct 
association between the amount of elapsed time and the probabil-
ity of change in a character is sensible, there are scenarios where 
this link might weaken. While some lineages show a pattern of mor-
phological stability spanning hundreds of millions of years (Cavin 
& Guinot, 2014; Herrera- Flores et al., 2017) others have experi-
enced burst of morphological change in relatively short timeframes 
(Hopkins & Smith, 2015; Ronco et al., 2021). Such high levels of rate 
heterogeneity across lineages can weaken the temporal depend-
ency of character evolution. The history of certain traits can also 
cause (or be the consequence of) differences in rates of molecular 
or morphological evolution through physiological, developmental or 
functional constraints (e.g. Brougham & Campione, 2020; Cascini 
et al., 2019; Davies & Savolainen, 2006; Smith & Donoghue, 2008), 
in which case a stronger link with genetic or phenotypic divergence 
is to be expected (Seligmann, 2010). In light of this, careful consid-
eration of alternative branch length sets, and some justification for 
why a particular set is chosen, seems warranted if overall accuracy 
is paramount in ASE.

At the level of individual nodes, we found that although cases 
where ASEs flip between alternate states depending on the choice of 
branch length set are relatively rare, they still affected about a quar-
ter of our simulated topologies. Among these, sensitive nodes often 
formed clusters, defining entire regions of the topology for which 

results are highly dependent on the assumptions made (Figures S2– 
S4). These regions are more common at shallow depths (as ASEs of 
deeper nodes tend to have low precision and therefore be relatively 
insensitive to the assumptions made; Figure S1), but more impor-
tantly, these nodes are characterized by having highly asymmetrical 
branch lengths leading to their descendants, with some descendants 
experiencing less evolutionary change, and therefore having rela-
tively shorter branches on the phylogram (Figure 3). When employ-
ing the phylogram for ASE, the short node- to- tip distances that lead 
to slow- evolving descendants mean that the states observed for 
them will have a strong effect on ASEs; however when the chrono-
gram is used for ASE, their influence is reduced as distances leading 
to all descendants even out. Empirical cases involving heterogenous 
evolutionary rates (especially at relatively shallow time scales) are 
likely to require a more careful consideration of the assumptions 
made in the process of estimating ancestral states (although see 
Reyes et al., 2018), and are likely to benefit more from the use of 
objective criteria for selecting among competing branch length sets, 
such as the model- fit statistics proposed here.

Our results suggest that in the case of discrete characters, using 
statistics like AICc and BIC to choose the branch length set that leads 
to the highest model- fit is a promising method for objective branch 
length choice. Before this study, only phylogenetic signal statis-
tics had been proposed for this, based on the results of Litsios and 
Salamin (2012)), whose investigation focused on continuous charac-
ters. In our analysis, these statistics performed poorly, and in the case 
of D and δ, showed a strong bias in their ability to detect underly-
ing chronograms or phylograms, respectively. In contrast, model- fit 
statistics identified the correct branch lengths with higher accuracy 
(almost 20% more often on the Markov and Hidden Rates character 
sets) and showed only slight biases in their ability to detect either 
branch length set (<5% in all cases). Our results indicate that although 
phylogenetic signal statistics measure the strength of the relationship 
between a phylogeny and a character state distribution (Münkemüller 
et al., 2012), this is not always a good indicator of whether branch 
lengths are ‘realistic’, in terms of their likelihood of having produced 
the data. In contrast, model- fit statistics like AICc are directly re-
lated to the likelihood of a particular model (which incorporates 
branch lengths) generating the observed state distribution (Posada & 
Buckley, 2004), and it is therefore intuitive that model- fit should be 
better on the branch length set that is most realistic.

We found that model misspecification negatively affected the 
utility of model- fit statistics for identifying the correct underlying 
branch lengths of a character, with their accuracy lowest on the 
Amplified Hidden Rates character set. For ASE in this study, we 
used only simple Markov models that assume constant transition 
rates across the phylogeny. In empirical datasets, this assumption 
is expected to be violated to some extent, especially as larger phy-
logenies are employed that represent greater time- scales and vari-
ability in life history (Beaulieu et al., 2013; King & Lee, 2015). On 
sufficiently large phylogenies, the issue of model misspecification 
could be reduced by comparing AICc values over not only stan-
dard Markov models, but also more complex models such as hidden 
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rates (Beaulieu et al., 2013; Boyko & Beaulieu, 2021) or rate shift 
(Grundler & Rabosky, 2020) models that allow for rate heterogene-
ity. However, on smaller phylogenies that preclude the use of these 
complex models, researchers need to be aware of the limitations 
caused by excessive model misspecification to branch length choice.

The utility of model- fit statistics for correctly identifying the un-
derlying branch lengths of a character is affected by several proper-
ties that influence the model- fit procedure during ASE, namely tree 
size (number of taxa), tree depth and average branch length. The 
positive correlation with tree size was expected because more taxa 
(i.e. more data) improves model optimization, and should therefore 
improve estimations of model- fit statistics like AICc. The negative 
correlation between AICc utility and both tree depth and average 
branch length may be due to the relationship of these properties 
with evolutionary rate in our simulation approach. When simulat-
ing characters, we assigned character transition rates randomly, and 
independently of the phylogeny. This meant that deeper trees, and 
trees with longer average branch lengths, would experience more 
state changes per branch, on average. This probably led to higher 
levels of ‘saturation’ on these trees, weakening the information con-
tent of the observed states, reducing overall model accuracy and 
consequently reducing the utility of model- fit statistics like AICc. 
The usefulness of AICc for electing branch lengths was also posi-
tively correlated with the difference in shape between the chrono-
gram and phylogram. This is also intuitive because as differences 
between the alternate branch length sets increase, the likelihood 
that the incorrect branch length set could fit the data better by 
chance decreases.

5  |  CONCLUSIONS

This study reiterates the importance of branch length choice when 
conducting ASE and provides, for the first time, a method for elect-
ing the branch lengths underlying the evolution of a discrete char-
acter. This study was conducted on binary characters, but we see 
no reason why the utility of the method proposed here would not 
extend to multi- state characters, with the caveat that larger phylog-
enies would be required for accurate model optimization due to the 
extra parameters. The weight of evidence indicates that careful con-
sideration and justification of branch- length choice will improve the 
accuracy of ancestral state estimation. When no other lines of evi-
dence can be used to choose between alternate branch lengths for 
ASE of a discrete character, choosing the branch lengths that lead 
to the highest overall model- fit (i.e. the lowest values of statistics 
like AICc or BIC) is the most appropriate method currently available.
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