
Asymptotic Analysis of Data Deduplication with a
Constant Number of Substitutions

Hao Lou, Farzad Farnoud (Hassanzadeh)
Electrical and Computer Engineering, University of Virginia, VA, USA. Email: {haolou,farzad}@virginia.edu

Abstract—Data deduplication has gained attention in large-
scale storage systems due to the explosive growth in digital
data. Recently, the information-theoretic aspects of conventional
deduplication algorithms have been studied and novel algorithms
with better performance have been proposed. In this paper,
we study the performances of variable-length deduplication and
multi-chunk deduplication algorithms from the point of view of
information theory. We consider a source model in which source
strings are composed of repeated blocks with each data block
containing a constant number of substitution edits. We show
that over the proposed source model, the variable-length dedu-
plication algorithm can achieve asymptotically arbitrarily large
compression ratio and the multi-chunk deduplication algorithm
is order optimal under mild conditions.

I. INTRODUCTION

The task of reducing data storage costs is gaining increasing
attention due to the explosive growth of the amount of digital
data, especially redundant data [1]–[3]. Data deduplication
was proposed to detect and remove repeats in the input
data streams or files to save storage space. Compared with
traditional data compression approaches, data deduplication
is computationally more efficient, especially when dealing
with large-scale data. It has been widely used in mass data
storage systems, e.g., LBFS [4] and Venti [5]. A typical data
deduplication system uses a chunking scheme to parse data
streams into multiple data “chunks”. Each chunk is put into
the dictionary at the first occurrence, and the duplicates are
replaced by pointers to the dictionary. In this paper, we aim to
study the performance of two data deduplication algorithms
from an information-theoretic point of view when repeated
data segments are not necessarily exact copies.

The two data deduplication algorithms studied in this paper,
variable-length deduplication (VLD) and multi-chunk dedupli-
cation (MCD), were proposed in [6]. The detailed descriptions
of VLD and MCD are given in Section IV. Both algorithms
use content-defined chunking (CDC) schemes. CDC uses a
sliding-window technique on the content of data streams
and determines a chunk breakpoint every time this sliding
window meets some predefined conditions. The chunk lengths
of CDC are therefore not fixed, and may, for example, have an
exponential distribution [7]. CDC is widely used in practical
deduplication systems, e.g., [3], [4], [8]–[15].

In CDC, a substantial fraction of the chunks can be of ex-
tremely small or large sizes. With large chunk sizes, duplicates
in data tend to remain undetected, which leads to ineffective
deduplication. On the other hand, chunks of small sizes
introduce excessive metadata since the amount of metadata is
proportional to the number of chunks. MCD can be regarded

as a modification of VLD to address the problem caused by
small chunk sizes.

Niesen presented an information-theoretic analysis of VLD
and MCD in [6]. The performances of VLD and MCD were
studied over a source model which produces data streams that
are composed of blocks with each block being an exact copy of
one of the source symbols, where the source symbols are pre-
selected strings. It is often the case, however, that the copies of
a block of data that is repeated many times are approximate,
rather than exact. This may occur, for example, due to edits
to the data, or in the case of genomic data1, due to mutations.
Thus, in this paper, we consider the problem of deduplication
when the repeats are approximate. In particular, we allow
blocks to be altered by random substitution edits. We study the
expected length of the compressed strings produced by VLD
and MCD for the source model that contains substitution edits.
We show that if the blocks in data streams are mostly distinct
after being altered by random substitution edits, then the
expected length of the compressed strings produced by VLD is
of greater order than the entropy. Meanwhile, compared with
the length of the uncompressed strings, VLD can still achieve
asymptotically arbitrarily large compression ratio. Further,
under mild conditions, MCD is shown to be order optimal.

Data deduplication has been well studied from a practical
perspective; see [17] for a comprehensive survey. However,
its theoretical analysis from an information-theoretic point
of view is limited, despite the suitability of such an ap-
proach. The first such analysis was presented by Niesen [6],
as described above. The authors of the current paper stud-
ied VLD, as well as algorithms with fixed-length chunking
schemes,2 over a probabilistic source model in which edits
are modeled as random substitution, where each bit may be
flipped independently of others with a given probability [18].
While [18] extended the information-theoretic analysis of data
deduplication to approximate repeats, the studied model has
entropy linear in the length of the uncompressed string and the
gain in compression is at best a constant factor. This makes
compression less challenging and the distinction between the
performance of compression methods less clear. In this paper,
we assume each source block only contains a constant number
of substitutions (randomly distributed) instead of iid bit flips,
leading to the entropy being of smaller order than the length

1Repeats are common in genomic data. For example, a majority of the
human genome consists of interspersed and tandem repeated sequences [16].

2Compared with CDC, fixed-length chunking partitions data stream into
chunks of the same length, which can be chosen by taking the statistical
properties of the source into account.

of the uncompressed string and thus high compression ratio
can be achieved. Importantly, the current work also studies
the MCD algorithm proposed by [6], which has not studied
before in models with edits. The paper [19] also analyzed
deduplication from an information-theoretic point of view but
with a different source model and algorithm. The problem of
deduplication under edits was considered also in [20], which
focused on performing deduplication on two files. Many works
are devoted to dealing with the problems arising from chunks
that are too small or too large [13], [21], [22], but they did
not provide information-theoretic analysis. In particular, [22]
used a similar scheme as that in MCD that jointly encoding
small chunks to avoid metadata overhead.

The rest of the paper is organized as follows. Notation and
preliminaries are given in the next section. In Section III, we
describe the studied information source model and bound its
entropy. In Section IV, we formally describe the deduplication
algorithms VLD and MCD that are analyzed in the rest of the
paper. Bounds on the performance of algorithms are derived
in Section V. Due to space limitation, some of the proofs are
omitted or sketched.

II. PRELIMINARY

In this paper, all logarithms are to base 2. We consider the
binary alphabet {0, 1}, denoted ⌃. For a positive integer m,
⌃m denotes the set of all strings of length m over ⌃. For
strings u,v, the concatenation of u and v is denoted uv. The
length of u is denoted |u|. A j-(sub)string is a (sub)string of
length j. The cardinality of a set S is also denoted |S|. For
an event E , we define the indicator variable E to be 1 if E is
true, and 0 otherwise. A string is k-runlength-limited (RLL)
if it does not contain k consecutive 0s, i.e., runs of 0s are all
of lengths less than k.

III. SOURCE MODEL

The source model studied in this paper extends the one
proposed in [6] by allowing random substitution edits. Let the
source alphabet be denoted X , with |X | = A. The source
alphabet X contains A strings over ⌃, denoted X1, . . . ,XA.
Fix a probability distribution Pl over positive integers with
mean L. The A source symbols X1, . . . ,XA are generated
iid as follows. For each 1  a  A, Xa is chosen from
⌃La uniformly at random, where La is a positive integer
drawn independently of other quantities from the distribution
Pl. To simplify some of the derivations, we adopt the same
assumption as in [6] that Pl is concentrated around its mean,
specifically, Pl(L/2  l  2L) = 1. Note that here X is a
multiset since source symbols might have duplicates.

After generating the source alphabet X , we generate the
source string s in the following way. Sample B times from
X uniformly at random with replacement. Let the results be
XJ1 ,XJ2 , . . . ,XJB in order. For every XJb , we then flip t (t 
L/2) symbols uniformly at random as a way to simulate edits
and other changes to the data in a simple manner. The number
of flipped symbols t will be referred to as the substitution
number. The flipped version of XJb is denoted Yb and referred

to as a source block. The source string s is then constructed to
be the concatenation of source blocks, i.e., s = Y1Y2 . . . YB .
The entropy of this source is denoted H(s). Note that given
s, the boundary between Yb and Yb+1 is not known to us.

We bound H(s) in the next lemma. The proof is omitted
due to space limitation.

Lemma 1. The entropy of the above source model H(s)
satisfies

B log

✓
L/2

t

◆
 H(s)  B log

✓
A

✓
2L

t

◆◆
+ (2L+ 1)A.

In this paper, we study the asymptotic regime in which
B,L,A ! 1 while substitution number t remains a constant.
Unlike the case in which t is linear in BL [18], the entropy
for constant t is sub-linear in the length of the uncompressed
string. We are particularly interested in the regime where the
source string uncertainty mainly results from substitution edits,
i.e., the entropy H(s) is dominated by the term B log

�L
t

�
.

Therefore, we assume that asymptotically logA = O(logL)
and AL = O(B logL).

IV. DEDUPLICATION ALGORITHMS

The variable-length and multi-chunk deduplication algo-
rithms were both studied in [6] and restated below.

In the variable-length deduplication algorithm, we fix an
all-zero string of length M , 0M , to be the marker. The source
string s is then split into chunks by this marker. Specifically,
the source string s is parsed as s = Z1 · · ·ZC , where each Zc

(except for perhaps the last one) contains a single appearance
of 0M at the end. The encoding starts with representing the
length of s by a prefix-free code. The chunks {Zc}

C
c=1 are

then processed sequentially. Starting with c = 1, if chunk Zc

appears for the first time, i.e., Zc 6= Zi for all i < c, then it
is encoded as the bit 1 followed by Zc itself and is entered
into the dictionary. Otherwise, when there already exists an
entry in the dictionary storing the same string as Zc, it will
be encoded as the bit 0 followed by a pointer to that entry of
the dictionary. The pointer is an index of the dictionary entries
and thus can be encoded by log

��T c�1
V L

��+ 1 bits, where T c�1
V L

is the dictionary right after Zc�1 is processed. The number of
bits for variable-length deduplication to encode s is denoted
LV L(s).

In the multi-chunk deduplication algorithm, the source string
s is again split into chunks by the marker 0M , but with an
additional requirement that chunk lengths are at least 2M�1.
We call the chunking process multi-chunking. With an abuse
of notation, we still denote the chunks by Z1, . . . , ZC . The
encoding starts with a prefix-free code representing the length
of s. Chunks are encoded sequentially with a growing dictio-
nary. Consider the chunk Zc. We assume first that Zc is new,
i.e., it is different from any previously appeared chunk. Let Vc

be the largest integer such that chunks Zc, Zc+1, . . . , Zc+Vc�1

are also new. These new chunks are bundled up and encoded
as the bit 1, followed by an encoding of Vc using a prefix-
free code for the positive integers, followed by the binary
string ZcZc+1 · · ·Zc+Vc�1. Moreover, Zc, . . . , Zc+Vc�1 are

entered into the dictionary in order. Note that each of them
is identifiable because they end with the marker 0M . On the
other hand, assume Zc is not new. Let c̃ < c be the smallest
integer satisfying Zc̃ = Zc. Consider the dictionary entry
containing Zc̃ and the list of subsequent entries. Let Wc be
the largest integer such that the first Wc entries in this list are
equal to Zc, Zc+1, . . . , Zc+Wc�1. Then the chunks Zc through
Zc+Wc�1 are bundled up and encoded together as the bit 0,
followed by an encoding of Wc using a prefix-free code for
the positive integers, followed by a pointer into the dictionary
entry containing chunk Zc̃. The expected number of bits for
multi-chunk deduplication to encode s is denoted LMC(s).

V. PERFORMANCE ANALYSIS

In the following, we study the performance of variable-
length and multi-chunk deduplication algorithms over the
proposed source model.

A. Variable-length deduplication
We start with a lower bound on the expected length of the

compressed strings produced by variable-length deduplication.

Theorem 2. If B  A
�L/2

t

�
, then the average length of the

compressed strings produced by variable-length deduplication
with optimal marker length M satisfies

E[LV L(s)] � ⌦

BL

1
t+1

logL

!
.

Proof: In this proof, we lower bound LV L(s) by the total
length of the distinct chunks, denoted W , plus the number of
chunks C since each chunk needs one bit indicating if it has
appeared before. Clearly, C is greater than the number of non-
overlapping marker strings in s. Since each source block is a
Bernoulli(1/2) process by itself, the expected number of non-
overlapping marker strings in s is at least BL

M2M . Hence,

E[LV L(s)] � E[W] +
BL

M2M
. (1)

We bound E[W] in the following.
For each source symbol Xa, we use na to denote the number

of its descendants among the source blocks. Let M contain the
information about {na}

A
a=1, the positions of substitutions in

all source blocks, and the lengths of source symbols {La}
A
a=1.

We first bound the expected value of LV L(s) conditioned
on M. Let ` = min

�
2M�5, L/4

�
. Partition each Xa into

segments of length `, i.e., for each Xa, we write Xa =
xa,1xa,2 · · ·xa,caxa,ca+1, where |xa,1| = · · · = |xa,ca | =
`, ca+1 = dLa/`e. We consider the substrings of the descen-
dants of Xa that correspond to xa,j , denoted h1

a,j , . . . ,h
na
a,j

(see Figure 1). Each of h1
a,j , . . . ,h

na
a,j results from xa,j

through at most t substitutions. For each 1  j  ca,
we assume without loss of generality that h1

a,j , . . . ,h
ma,j

a,j
are distinct, where ma,j denotes the total number of distinct
strings among h1

a,j , . . . ,h
na
a,j . Note that ma,j is known given

M.
Consider the event E1 that any two `/2-substrings of the

source alphabet are of Hamming distance at least 2t+1 from

Xa

1

na

...
...

xa,1 · · · xa,j · · · xa,ca xa,ca+1

h1
a,1 · · · h1

a,j · · · h1
a,ca

hna
a,1 · · · hna

a,j · · · hna
a,ca

` = min
�
2M�5, L/4

�

Figure 1. A partition of Xa and its na descendants into segments of length
`.

each other. It can be shown by considering every pair of `/2-
substrings and applying the union bound that

Pr(E1) � 1� (2AL)2
(`/2)2t

2`/2
�

3

4
,

when t/3 
`/2

12 log(`/2) and log(AL)  `/8� 2.
Assume E1 holds. Then different source alphabet `/2-

substrings have different descendants. For instance, the only
substrings that are possible to be the same as h1

a,j are
h2
a,j , . . . ,h

na
a,j . Note that if we have defined E1 to be the

event that any two `-substrings of the source alphabet are of
Hamming distance at least 2t+1 from each other, then when E1

holds, h1
a,j is still possible to be the same as some `-substring

that sits across boundaries of source blocks. Therefore, we can
assume without loss of generality that h1

a,j , . . . ,h
ma,j

a,j are the
first time such strings appear. For any hn

a,j , 1  n  ma,j ,
if hn

a,j is M -RLL, then it is fully contained in some chunk,
denoted Z. So Z must have not appeared before (since its
substring hn

a,j has not appeared before) and takes |Z| bits to
encode. Now that consider the set of distinct descendants of
all `-segments in the source alphabet, i.e.,

H = {hn
a,j : 1  a  A, 1  j  ca, 1  n  ma,j}.

Every M -RLL string in H is contained in a chunk that has
not appeared before. To enter these chunks into the dictionary,
it takes ` bits for each M -RLL string in H since strings in H

do not overlap.
Since the source symbol Xa is a Ber(1/2) process, each hn

a,j

is M -RLL with probability at least 1�2M�5
·2�M = 1�2�5.

By Markov’s inequality, with probability at least 3/4, over 7/8
of the strings in H are M -RLL.

Combining the two arguments, with probability at least
1/2, there are 7|H|/8 distinct M -RLL substrings in H, which
contribute

7

8
|H|` =

7

8
`

AX

a=1

caX

j=1

ma,j

bits to the total length of distinct chunks W . It follows that
when ` � 8(2 + log(AL)),

E[W |M] �
7

16
`

AX

a=1

caX

j=1

ma,j ,

and further,

E[W] = E[E[W |M]] �
7

16
`

AX

a=1

caX

j=1

E[ma,j]. (2)

Next, we compute the expected value of ma,j . Note that
ma,j is independent of the source alphabet. The probability
of k substitutions occurring at a fixed set of positions in xa,j

is
�La�`

t�k

�
/
�La

t

�
. Hence,

E[ma,j] =
tX

k=0

✓
`

k

◆
·

0

@1�

1�

�La�`
t�k

�

A
�La

t

�
!B
1

A

�
1

2

tX

k=0

✓
`

k

◆
·min

1,

B
�La�`

t�k

�

A
�La

t

�
!

�
1

2

 ✓
`

0

◆
·min

1,

B
�La�`

t�0

�

A
�La

t

�
!

+

✓
`

t

◆
·min

1,

B
�La�`

t�t

�

A
�La

t

�
!!

=
1

2

1 +

B
�`
t

�

A
�La

t

�
!

�
1

2

1 +

B
�`
t

�

A
�2L

t

�
!
, (3)

where the second equality follows from

B
�La�`

t

�

A
�La

t

� �
B

A

�L/4
t

�
�2L

t

� =
B

A

✓
1

8

◆t

(1 + o(1)) � 1.

Combining (3), (2) and (1), E[LV L(s)] can be shown to be
lower bounded by

7

64

AL+BL

✓
`

2L

◆t

(1 + o(1))

!

`�8(2+log(AL)) +
BL

M2M
.

(4)
The desired result follows from minimizing (4) over M .

By the preceding theorem, if ⌦
⇣

AL
logL

⌘
 B  A

⇣�L/2
t

�⌘
,

then E[LV L(s)] is greater than H(s) by at least an order of
L

1
t+1

log2 L .
In the following, we derive an upper bound on the perfor-

mance of the variable-length deduplication algorithm.

Theorem 3. The average length of the compressed strings pro-
duced by variable-length deduplication with optimal marker
length M satisfies

E[LV L(s)]  2AL+⇥
⇣
BL

1
2 log

1
2 (BL)

⌘
.

Proof: The variable-length deduplication partitions the
source string s as a random number C of chunks, denoted
Z1, . . . , ZC . The length of s can be encoded in at most
2 log|s|+1 bits by Elias gamma coding [23]. Let T c

V L denote
the dictionary right after chunk Zc is processed (T 0

V L denotes
the initial empty dictionary). We first write

LV L(s) 
CX

c=1

⇣
Zc2T c�1

V L

�
1 + log

��T c�1
V L

��+ 1
�

+ Zc /2T c�1
V L

(1 + |Zc|)
⌘
+ 2 log|s|+ 1. (5)

We next consider a partition of s into a random number of
“edit blocks”. We first break s at all the boundaries of source
blocks. Each source block Yb is further split in the following
way. For all 1  a  A, we let the first descendant of Xa

be Yg(a), i.e., g(a) is the smallest index such that Jg(a) = a
(we define g(a) only for source symbols that have at least one
descendant). For any other descendant Yb of Xa, we consider
the mismatches between Yb and Yg(a). Suppose Yb differs from
Yg(a) in positions c1, c2, . . . , cm, 0  cm  2t. We break Yb

into cm + 1 segments at these positions. Specifically, for all
1  j  m, we split between the (cj � 1)-th symbol and the
cj-th symbol. The first segment is set to be empty if c1 = 1.
These segments are referred to as edit blocks. As an example,
if c1 = 2, c2 = 5 and Yb = 01000101, then the edit blocks are
0, 100, 0101.

Thus, conditioned on the differences between each Yb

and its corresponding “first descendant” source block Yg(Jb),
we can partition the source string s = Y1Y2 · · ·YB into a
random number K of edit blocks, denoted D1, . . . , DK (the
boundaries of source blocks are also breakpoints). Note that
each Yg(a) has no mismatch with itself, so they are partitioned
as edit blocks by themselves, i.e., there exist k1, . . . , kA such
that Dk1 = Yg(1), . . . , DkA = Yg(a).

We define a similar notion of interior chunks and boundary
chunks as in [6, Theorem 3] but with respect to edit blocks.
Consider chunks whose first symbols are in edit block Dk.
Some of them are invariant of the neighboring source blocks
and the first bit of Dk. In other words, by replacing Dk�1,
Dk+1 or the first bit of Dk by any other strings, the existence
or content of these chunks do not change. They are referred to
as “interior” chunks. We denote the set of indexes of interior
chunks in Dk by C

�
k . The chunks that are not interior chunks

are referred to as “boundary” chunks. Their content depend
on neighboring edit blocks Dk�1, Dk+1 and the first bit of
Dk, which corresponds to a mismatch between the source
block containing Dk and its corresponding “first descendant”
source block. We denote the set of indexes of all boundary
chunks that start in Dk by @Ck. We give examples in the
following of boundary chunks (indicated by underbrackets)
and interior chunks (indicated by overbrackets) when marker
length M = 3. Vertical bars indicate the boundaries of edit
blocks. Different rows are independent examples.

· · ·000 10110|00 0101000 010 · · ·

· · · 101100|0 000 00101000 010 · · ·

· · ·000 10|11000 0101000 010 · · ·

· · ·000 1011000 | 0101000 010 · · ·

We consider interior chunks and boundary chunks sepa-

rately. By (5),

E[LV L(s)]  E

2

6664

KX

k=1

0

BBB@
X

c2C�
k

Zc /2T c�1
V L

|Zc|+
X

c2@Ck

Zc /2T c�1
V L

|Zc|

1

CCCA

+
X

Zc2T c�1
V L

�
1 + log

��T c�1
V L

���+ C

3

5. (6)

Consider the interior chunks that appear for the first time.
Consider the edit block Dk and the source block Yb that
contains Dk. If Yb is not the first descendant of XJb , then Dk

equals to the substring of Yg(Jb) at the same location with the
first bit flipped. It follows from the definition of interior chunks
that any interior chunk of Dk must have already appeared as a
chunk in that substring of Yg(Jb). Thus, any interior chunk in
s that has not appeared in the dictionary is a substring of one
of Yg(1), . . . , Yg(a). The total length of these chunks is hence
less than the sum of lengths of Yg(1), . . . , Yg(a). Hence,

E

2

6664

KX

k=1

X

c2C�
k

Zc /2T c�1
V L

|Zc|

3

7775
 2AL. (7)

Secondly, we upper bound the lengths of boundary chunks.
We adopt a similar approach as [6]. We call an occurrence
of 10M internal to an edit block D if it starts in D but after
its first (mismatch) bit. For edit block D, we use head(D)
to denote the prefix of D which ends at the last zero of the
first internal 10M in D. We use tail(D) to denote the suffix
of D which starts at the first zero of the rightmost 0M in
D. “Head” and “tail” are defined to be D itself if D does
not contain corresponding patterns. It can be shown that the
total length of boundary chunks is upper bounded by the total
length of head(D1), . . . , head(DK), tail(D1), . . . , tail(DK).
Moreover, every Dk by itself is a Bernoulli(1/2) process. The
expected number of bits forwards until the end of the first
internal 10M is 2M+1 + 1 and the expected number of bits
backwards until the beginning of the rightmost 0M is 2M+1

�

2 [24, Chapter 8]. It follows by noting K  (2t+ 1)B that

E

2

6664

KX

k=1

X

c2@Ck

Zc /2T c�1
V L

|Zc|

3

7775
 E

"
KX

k=1

�
2M+1 + 1 + 2M+1

� 2
�
#

 (2t+ 1)B
�
2M+2

� 1
�
. (8)

Finally, we upper bound the remaining terms in (6). The
number of chunks C is less than the number of occurrences
of marker 0M plus 1 (the last chunk may not contain any
marker). The expected number of occurrences of 0M inside
source blocks is BL

2M . It follows that E[C]  BL
2M +1+B� 1,

where B � 1 accounts for possible occurrences of 0M across
the boundaries of source blocks. Therefore,

E

2

4
X

Zc2T c�1
V L

�
1 + log

��T c�1
V L

���+ C

3

5

 E[C(1 + logC) + C]

 B

✓
1 +

L

2M

◆
(3 + log(BL)), (9)

where the second inequality follows from C  2BL.
Plugging (7), (8) and (9) in (6), it can be shown with some

algebra that E[LV L(s)] is upper bounded by

2AL+B

✓
(2t+ 1)2M+2 +

(3 + log(BL))L

2M

◆

+⇥(B log(BL)).

The desired upper bound follows from choosing

M =

⇠
1

2
log

✓
3 + log(BL)L

4(2t+ 1)

◆⇡
.

Note that the expected length of the source string is BL.
When logB = o(L), BL

1
2 log

1
2 (BL) = o(BL). Therefore,

under this condition, the variable-length deduplication can
achieve asymptotically arbitrarily large compression ratio.

By Theorem 2 and 3, the variable-length deduplication can
achieve arbitrarily large compression ratio but may also spend
number of bits larger than entropy by an arbitrarily large factor
over the proposed source model.

B. Multi-chunk deduplication
In the following, we present an upper bound on the expected

length of compressed strings produced by the multi-chunk
algorithm.

Theorem 4. The average length of the compressed strings
by multi-chunk deduplication with optimal marker length M
satisfies

E[LMC(s)]  ⇥(AL) +O(B log(ABL)).

The preceding theorem can be proved in a similar fashion
as Theorem 3, by partitioning source string into edit blocks
and considering boundary and interior chunks but with respect
to multi-chunking. The complete proof is omitted here due to
space limitation.

By Theorem 4, when logB = O(logL),

E[LMC(s)]

H(s)
 O(1).

Therefore, with the existence of substitutions, the multi-chunk
algorithm can achieve a constant factor of optimal with respect
to the entropy.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020:
Big data, bigger digital shadows, and biggest growth
in the far east”, IDC iView: IDC Analyze the future,
vol. 2007, no. 2012, pp. 1–16, 2012.

[2] D. T. Meyer and W. J. Bolosky, “A study of practical
deduplication”, ACM Transactions on Storage, vol. 7,
no. 4, p. 14, 2012.

[3] A. El-Shimi, R. Kalach, A. Kumar, A. Ottean, J. Li, and
S. Sengupta, “Primary data deduplicationâlarge scale
study and system design”, in Presented as part of
the 2012 USENIX Annual Technical Conference, 2012,
pp. 285–296.

[4] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system”, in ACM SIGOPS Op-
erating Systems Review, ACM, vol. 35, 2001, pp. 174–
187.

[5] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage”, in FAST, vol. 2, 2002, pp. 89–101.

[6] U. Niesen, “An information-theoretic analysis of dedu-
plication”, IEEE Transactions on Information Theory,
vol. 65, no. 9, pp. 5688–5704, Sep. 2019.

[7] W. Xia, H. Jiang, D. Feng, L. Tian, M. Fu, and Y.
Zhou, “Ddelta: A deduplication-inspired fast delta com-
pression approach”, Performance Evaluation, vol. 79,
pp. 258–272, 2014.

[8] D. Bobbarjung, C. Dubnicki, and S. Jagannathan, “Fin-
gerdiff: Improved duplicate elimination in storage sys-
tems”, Proceedings of Mass Storage Systems and Tech-
nologies (MSST06), pp. 1–5, 2006.

[9] D. Teodosiu, N. Bjorner, Y. Gurevich, M. Manasse,
and J. Porkka, “Optimizing file replication over limited-
bandwidth networks using remote differential compres-
sion”, 2006.

[10] B. Agarwal, A. Akella, A. Anand, A. Balachandran,
P. Chitnis, C. Muthukrishnan, R. Ramjee, and G. Vargh-
ese, “Endre: An end-system redundancy elimination
service for enterprises”, in NSDI, 2010, pp. 419–432.

[11] Y. Zhang, H. Jiang, D. Feng, W. Xia, M. Fu, F. Huang,
and Y. Zhou, “Ae: An asymmetric extremum content
defined chunking algorithm for fast and bandwidth-
efficient data deduplication”, in 2015 IEEE Conference
on Computer Communications (INFOCOM), IEEE,
2015, pp. 1337–1345.

[12] C. Yu, C. Zhang, Y. Mao, and F. Li, “Leap-based
content defined chunkingâtheory and implementation”,
in 2015 31st Symposium on Mass Storage Systems and
Technologies (MSST), IEEE, 2015, pp. 1–12.

[13] E. Kruus, C. Ungureanu, and C. Dubnicki, “Bimodal
content defined chunking for backup streams”, in Fast,
2010, pp. 239–252.

[14] G. Lu, Y. Jin, and D. H. Du, “Frequency based chunking
for data de-duplication”, in 2010 IEEE International
Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems, IEEE, 2010,
pp. 287–296.

[15] B. Zhou and J. Wen, “Hysteresis re-chunking based
metadata harnessing deduplication of disk images”, in
2013 42nd International Conference on Parallel Pro-
cessing, IEEE, 2013, pp. 389–398.

[16] E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum,
M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle,
W. FitzHugh, et al., “Initial sequencing and analysis
of the human genome”, Nature, vol. 409, no. 6822,
pp. 860–921, 2001.

[17] W. Xia, H. Jiang, D. Feng, F. Douglis, P. Shilane, Y.
Hua, M. Fu, Y. Zhang, and Y. Zhou, “A comprehensive
study of the past, present, and future of data dedu-
plication”, Proceedings of the IEEE, vol. 104, no. 9,
pp. 1681–1710, 2016.

[18] H. Lou and F. Farnoud, “Data deduplication with ran-
dom substitutions”, in 2020 IEEE International Sym-
posium on Information Theory (ISIT), IEEE, 2020,
pp. 2377–2382.

[19] R. Vestergaard, Q. Zhang, and D. E. Lucani, “General-
ized deduplication: Bounds, convergence, and asymp-
totic properties”, arXiv preprint arXiv:1901.02720,
2019.

[20] L. Conde-Canencia, T. Condie, and L. Dolecek, “Data
deduplication with edit errors”, in 2018 IEEE Global
Communications Conference (GLOBECOM), IEEE,
2018, pp. 1–6.

[21] K. Eshghi and H. K. Tang, “A framework for analyz-
ing and improving content-based chunking algorithms”,
Hewlett-Packard Labs Technical Report TR, vol. 30,
no. 2005, 2005.

[22] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki,
“Improving duplicate elimination in storage systems”,
ACM Transactions on Storage (TOS), vol. 2, no. 4,
pp. 424–448, 2006.

[23] P. Elias, “Universal codeword sets and representations
of the integers”, IEEE transactions on information
theory, vol. 21, no. 2, pp. 194–203, 1975.

[24] R. Sedgewick and P. Flajolet, An introduction to the
analysis of algorithms. Pearson Education India, 2013.

