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8 ABSTRACT

9 A large sample of active-region-targeted time-series images from the Solar Dynamics
Observatory / Atmospheric Imaging Assembly, the AIA Active Region Patch database u
(“AARPs”, Paper |: Dissauer et al. (2022c)) is used to investigate whether parameters 1
describing the coronal, transition region, and chromospheric emission can differentiate s a
region that will imminently produce a solar flare from one that will not. Parametriza- tions
based on moment analysis of direct and running-difference images provide for s physically-
interpretable results from nonparametric discriminant analysis. Across four 1 event
definitions including both 24 hr and 6 hr validity periods, 160 image-based pa-1s rameters
capture the general state of the atmosphere, rapid brightness changes, and s longer-term
intensity evolution. We find top Brier Skill Scores in the 0.07-0.33 range, 1 True Skill
Statistics in the 0.68 —0.82 range (both depending on event definition), and 2 Receiver
Operating Characteristic Skill Scores above 0.8. Total emission can perform 2 notably as
can steeply increasing or decreasing brightness, although mean brightness » measures do
not, demonstrating the well-known active-region-size/flare-productivity re- lation. Once
a region is flare productive, the active-region coronal plasma appears to stay hot. The
94 A filter data provides the most parameters with discriminating power, 2 with indications
that it benefits from sampling multiple physical regimes. In particular, classification success
using higher-order moments of running difference images indicate »s a propensity for flare-
imminent regions to display short-lived small-scale brightening 2 events. Parameters
describing the evolution of the corona can provide flare-imminent indicators, but at no
preference over “static” parameters. Finally, all parameters and s NPDA-derived

probabilities are available to the community for additional research.
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32 1. INTRODUCTION
33 In Dissauer et al. (2022c, hereafter Paper |) we briefly introduce the goal for this study: to quanti-ss

tatively characterize the brightness distributions, their temporal variations and implied kinematics, ss
and eventually a more complete physical state of the chromosphere and corona, for two populations ss of

solar active regions: those that are flare-productive on specified time-scales vs. those that are s not.
We are addressing this goal with a large sample of data from the Atmospheric Imaging Assem-ss bly
(AlA; Lemen et al. 2012) onboard the Solar Dynamics Observatory (SDO; Pesnell et al. 2012, see
Section 2). There has not yet been such a characterization in the context of flare productivity. « The

approach we invoke explicitly avoids focusing on “pre-flare”-specific phenomena, and instead a
examines more general behaviors.

a2 Recently, the dominant use of large-sample coronal image data in the context of solar energetic s
phenomena has been for machine learning tools to try and predict solar flares (Nishizuka et al. 2017; s
Jonas et al. 2018; Alipour et al. 2019, although see (Krista & Chih 2021)). Generally, these statistical s
tools have not yet provided “interpretable” results in terms of a physics-based outcome, although
they have demonstrated some added classification success when combining coronal data with, e.g., «
photospheric magnetic field data from the Helioseismic and Magnetic Imager (HMI; Scherrer et al. s
2012; Hoeksema et al. 2014; Bobra et al. 2014).

a9 Case-study analyses of the pre-event solar corona have found evidence of loop formation, en-s
ergization and increased dynamic behavior (“crinkles”; Sterling & Moore 2001a; Joshi et al. 2011; s
Sterling et al. 2011; Imada et al. 2014, and references therein), an increase in chromospheric s non-
thermal velocities and high blueshifts (Cho et al. 2016; Harra et al. 2013; Woods et al. 2017; s Seki

et al. 2017), very localized chromospheric heating (Li et al. 2005; Bamba et al. 2014), and coro-s nal
dimming (Imada et al. 2014; Zhang et al. 2017; Qiu & Cheng 2017) in the hours prior to energeticss  events.
56 The present study attempts to do for the solar corona and chromosphere what was done for the pho-s

tosphere in a previous series of papers (Leka & Barnes 2003a,b; Barnes & Leka 2006; Leka & Barnes ss
2007; Leka et al. 2018): test the ability to statistically differentiate between flare-quiet and flare-so
imminent active regions through analysis of photospheric magnetic field data. Here we begin to testes  the
same question but with a focus on the chromosphere, transition region, and corona. Guided by & the
previous series of papers, we use here active regions as defined by the HMI Active Region Patches e
(HARPs: Hoeksema et al. 2014) but now use time-series images of the upper solar atmosphere in the &
UV and EUV (Section 2.1; see also Paper |). We introduce human-constructed parametrizations (Sec-es
tion 3.1) designed to provide insights into the physical state of the upper atmosphere in a manner e
parallel to what the “SHARP parameters” (Bobra et al. 2014) and especially the extended parame-es ter
list examined in Leka & Barnes (2007); Leka et al. (2018) provide for the photosphere (see also ¢
Georgoulis et al. 2021, and references therein). Without focusing on forecasting per se, here we ex-es  tend
insights gained by prior case studies to a large sample, to statistically test (Section 3.2) whether e we can
differentiate the state of active region atmospheres that are flare-imminent from those that » are not.
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n Employing a large sample size provides a broad picture not only of the standard workings of the »
corona over all sizes and activity levels of active regions, but to what extent there is such a thing s as
standard workings. In other words, what is important for our understanding of the Sun is not # only

the mean of some characteristics, but the more nuanced nature of the distributions of those s
characteristics, their degree of overlap, etc. Here we quantify some characteristic behaviors between 7
defined groups, setting empirically-derived standards to which models may then need to speak.

77 2. THE DATA

78 The observational data used in this study are described in this section, both the AIA timeseries
79 data (Section 2.1) and the data used (Section 2.2) to construct the solar flare event lists for analysis
80 (Section 3.2.1).

81 2.1. The AIA Active Region Patches (AARPs)

82 The AIA Active Region Patches (AARPs) database is described in full in Dissauer et al. (Paper I;
83 2022c). Broadly speaking, they consists of curated UV- and EUV-image timeseries counterparts to s
the photospheric magnetic field time-series data deployed in Leka et al. (2018).

85 The primary data source used in constructing the AARPs is SDO/AIA, supplemented with meta-ss
data from the Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012; Hoeksema et al. 2014) &
hmi.Mharp 720s series. The latter provides the coordinates and bounding-box of the HMI Active ss
Region Patches (HARPs; Hoeksema et al. 2014), which are the basis for defining the areas extracted s
from the AIA full-disk images. Of note, however, the AARP boxes are larger by 20% than the «
HARP definitions in order to accommodate the larger projected extent of the 3-D coronal structures, «
especially when a region is located near a limb, and the bounding-box is extended further in the «
limb-direction to include the AR loops (see Paper | for details). There is no spatial binning applied s
to the images.

9 For each numbered HARP on any particular day, there is one corresponding AARP consisting of
% seven hourly samples each containing 13 min of data sampled at 72s (11 images), across each of eight
9% AlA bands. To match the database of HMI vector magnetic field extractions already in place at
97 NWRA, the seven hourly samples span 15:48 TA| — 21:48 TAIl. FITS files are produced for each of
s seven EUV filters (94, 131, 171, 193, 211, 304, and 335 A), and the UV 1600°A. This approach provides
99 information on both short-term and longer-term evolution of all magnetic patches at chromospheric,
100 transition region, and coronal heights and temperatures. The NWRA AARP database, which is
101 available at the Solar Data Analysis Center (Dissauer et al. 2022b), is summarized in Table 1; here
102 the number of samples is the total number of AARP datasets available over the full date range. The
103 AARPs provide the data for parametrization (Section 3.1), so the number of samples in Table 1
104 is the total sample size available for statistical analysis for the present study. There is no further
105 down-selecting for AR size, complexity, location, or activity level.

Table 1. Summary of AARP Data Set

Date Range AARP Range NOAA AR Range Number of “AARP-Day” Samples Archive Size
06/2010 — 12/2018 36 — 7331 11073 - 12731 32,067 = 9.5TB
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106 2.2. GOES Data and Source for Event Lists

107 The event lists are constructed following Leka et al. (2018), using events as recorded by NOAA
108 using the Geostationary Operational Environmental Satellite X-Ray Sensor (“GOES” /XRS Garcia 1o
1994). The dataset used is consistent with regards to flux calibration (Viereck & Machol 2017; 110
Machol 2022). Only those events associated with NOAA-assigned Active Regions are included. Flare i
lists based on GOES 1-8A peak’emission from the GOES/XRS sensors are available through eitheri.  the
National Center for Environmental Information (NCEI) or by way of the “edited event lists” 11 from
NOAA/Space Weather Prediction Center. In the present study we used the latter by which tos  construct
the event lists used (see Section 3.2.1).

115 3. ANALYSIS

116 The question posed here is, “for solar active regions, are flare-imminent epochs distinguishable
117 from flare-quiet epochs on the basis of chromospheric and coronal emission and kinematics?” Specif-1s
ically we ask this using UV and EUV intensity images and HMI-defined active regions, without the 1
added benefit of spectroscopy (Panos & Kleint 2020), but with the explicit use of time-series analysis 10
(Cinto et al. 2020) in order to enhance physical interpretation of the results. We answer the question iz
through statistical classification, multiple event definitions, and quantitative metrics to evaluate how 1
well the samples can differentiate the two populations.

123 3.1. Parametrization

124 Parametrization allows both spatial and temporal information to be summarized succinctly and in 125
a manner conducive to physical interpretation upon statistical analysis. Moment analysis through s the
fourth moment is used on the spatially-sampled target x: mean p(x)?!, standard deviation o(x), 1 skew
¢(x), and kurtosis k(x). The lower-order moments capture bulk differences whereas the higher-is order
moments are much more sensitive to subtle differences in distribution wings, but are also more 1
susceptible to errors when image sizes are small. The odd moments detect offsets or asymmetries as 1
related to a normal distribution, whereas the even moments are sensitive to deviations in width or i
peakedness. Previous research of magnetic field distributions (Leka & Barnes 2003b; Barnes & Leka 1
2006; Leka & Barnes 2007; Barnes et al. 2007; Leka et al. 2018) shows the power of 3rd and 4th-1:s  order
moments to capture subtle differences in distribution zails that can signal significant, but veryss  localized,
changes — such as from a small emerging flux region.

135 The moment-analysis parametrizations produce a selection of intensive variables that do not scale 1
directly with active region size (Welsch et al. 2009); these are complemented by extensive parameters s
(such as totals over the field of view), which do scale with region size. It is important to note that the 1
moment analysis is not intended to provide a basis for image decomposition (Raboonik et al. 2017) s and
as such, while the resulting parametrizations may not be unique, they readily allow interpretation 14 of the
image intensity behavior. The parametrization is applied to the images by themselves, whats:  we call the
“direct” images (“1”), as well as the running-difference images (“Al”). For this analysis, 4.2  the parameters
target the following (for each wavelength separately, indicated by “ *”):

143 e The total brightness of an image, 2(lg), and of the running-difference image Z(Alg).

1 To avoid confusion, we use here p(x) for mean(x) which breaks with our previous use of X; we also refer explicitly to
the cosine of the observing angle cos(8) without invoking 1 in that context.
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144 e The moments of the brightness distribution M(lz) which summarizes the mean p(lg), stan-
145 dard deviation o(lg), skew ¢(lg), and kurtosis k(lg).

146 e The moments of the running-difference image distributions M(Alg), which summarizes indi-
147 vidually the mean p(Alg), standard deviation o(Alg), skew ¢(Alg), and kurtosis k(Alg).

148 e The cosine of the central observing angle cos(6); this is essentially used as a control since flare
149 activity should not have preferred locations.

150 In all, 80 base parameters are defined plus the observing angle (the same for all wavelengths). A 15

parameter X is computed for each of 11 images (or each of 10 running-difference image) within the i

13-minute sample (see Figure 1). The average and standard deviation of these 11 (10) is assigned
153 to the mid-time (the “:48”) that matches the hmi.Mharp 720s data (see Figure 2, top panels), the
154 standard deviation being used as an estimate of the uncertainty of that parameter over the 13 min. s

This procedure is performed for each of the 7 hourly samples (see Figure 2, bottom panels).
156 A parameter X’s “static” state and its temporal behavior dX/dt are finally described using the s,
slope and intercept (at the last data sample’s central time (using T REC), 21:48 TAIl) of a linear fitover s the
7 hourly samples (Figure 2, bottom panels), following the magnetic field analysis in Leka et al. 1se (2018).
Of note, parameters that are by definition positive- or negative- definite are limited in the 0 “static”
parameter to the appropriate sign; if the inferred value by the intercept of the fit does implyis  a crossing in
sign, the returned parameter is set to 0.0. Data outages exist; at minimum, 2 data e points are
required, for which only the mean is returned as the static parameter, and the dX/dt i is returned
as a NaN. To fit the slope, we require a minimum of 3 data points. We have foundiss  that a linear fit is
sufficient to describe the general behavior without over-fitting for short-timescaless  fluctuations. We (de-
Jweight the fits by the uncertainties at each time, and one or a few outlier s  data points rarely corrupt

the linear fits, especially if they include large uncertainties. Flares occur 1 during the data acquisition
(Figure 3) but rarely do their influence persist more than 2—3hr, and s they are usually extremely
variable on short timescales (resulting in large uncertainties in the hourly means of the parameters).
As such, the linear fits generally all but ignore them. That being said, 170 there exist “perfect storm”

situations that will introduce outlier points. One example is 2016.01.20, 1» AARP#6281 where two B-
class flares occurred between 15:48-17:48 TAI, after which there was a1z  data outage, so that only three
points were available. The parameters for this AARP on this day i were severely influenced (e.g.
d(k(l131))/dt). This situation can influence both the static and dX/dt 1«  parameters, but the latter may be
more susceptible. That being said, we have examined the frequency 17 of such outliers and have found that
they typically occur no more than 0.1% of the time, which should 176 not influence the final metrics beyond
that level.

177 Thus, the final number is 160 image-based parameters plus the cos(6) variable, for 161 independent
178 parameters to be analyzed. These parametrizations are chosen to be physically interpretable. For 17
example, one can expect that the appearance of new bright loops will enhance overall brightness i
levels of, for example, 171A images (2(l171)) and the mean brightness levels (u(l171)), but also i
possibly produce a distinct positive skew in the associated running-difference images (¢(Al171)) asi2  the
new loops appear. The brightness of coronal structures can also change due to heating or cooling 1ss (viall
& Klimchuk 2012) especially for 171A. On the other hand, we could expect that increased s kinematic
activity such as enhanced loop motion without significant brightness enhancements or new iss structures
appearing will be signaled by broader distributions in running-difference images without 1ss an
accompanying increase in the total, mean, or skew.
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Figure 1. Demonstration of parametrizing AIA 171°A (top row) and AIA 304°A (second row) intensity
(left) and running-difference (right) timeseries, for AARP 746, NOAA AR 11260; direct images: 2011-07-
26T17:45:38Z, running-difference images are 2011-07-26T17:45:38Z - 2011-07-26T17:44:26Z. The running-
difference variations are similar between the two but there is more structure in the AIA 171°A data that
could provide additional information, or could be construed as noise by NCI. The procedure demonstration
continues in Figure 2.

187 We do not, here, consider parameters that use base-difference or base-ratio analysis. The event
188 definitions employed (Section 3.2.1) mean that the data sampling is agnostic as to the time of any s
event. Base-difference and similar approaches are most relevant when the base image refers to a 1%
known or specified state against which changes are measured (Plowman 2016). The running-difference 1
images used here focus instead on evaluating the degree of variability of the atmosphere, by way of1..2  the
intensity images, at the sampled times only.

193 3.2. The NWRA Classification Infrastructure

194 The NWRA Classification Infrastructure (NCI; Leka et al. 2018) is a well-established statistical
15 classifier system based on Nonparametric Discriminant Analysis (NPDA). There are four components 19
at work in this facility: the input parameters, the event definitions and event lists, the statistical 17
package, and the evaluation metrics. We described the input parameters that will be used here, 1
in Section 3.1, above. A general description of NCI is given in the referenced work, and below we 1%
describe the particulars as employed here.

200 3.2.1. Event Definitions and Event Lists

201 The “event definition” includes all relevant characteristics to what defines “an event”, such as details 202
on timing, event size, event characteristics, efc. In this context, an event is when at least one flare 2
above a specified threshold occurs during a specified validity period. A data point (e.g. a parameter
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Figure 2. Following from Figure 1, the standard deviation of the brightness images of 171 A is calculated for
the 13min (11 images) (“o(l171)”, left, top) centered at 2011.07.26 17:48 TAl, from which the mean and
standard deviation are shown (thick point with error bar); these become the data points for each of the 7
samples covering 6 hours inclusive (left, bottom), from which the linear slope and last-data (21:48 TAI)
intercept (thick asterisk) provide the final variables that are analyzed in NCI. Shown are the results for an
M1.0+/24 hr “yes-event” sequence sample on 2011.07.26 (red) and a “no event” sample time period on
2011.07.25 (blue). The same sequence is shown for the kurtosis of the running-difference images of
304°A(“k(Al304)”, right plots).

for one AARP) will be assigned to the flaring population in this case (Figure 3), and assigned to xos
the flare-quiet population if no such events occurred. The assignments of AARPs to populations
change according to the event definitions. We invoke NCI in its standard “prediction” mode which
describes the timing definitions (see Figure 3). Specifically, there is no explicit coordination between
the time of the events and the data acquisition time (as is the case for super-posed epoch analysis,
e.g. Mason & Hoeksema 2010; Bobra & Couvidat 2015; Jonas et al. 2018).

The solar flare specific event definitions used here are described by (1) lower- and upper- peak
intensity thresholds of peak GOES 1-8A flux (here upper-thresholds are set to infinity), (2) the
validity period during which an event is predicted to occur, (3) the latency period that defines the
interval between the end of the data and the beginning of the validity period. The event definitions
considered here are summarized in Table 2. Some reflect standard definitions used for flare-prediction 25

research, but some are more focused on shorter-term chromospheric and coronal behavior in the s
present context.

217

218

Of note, for M1.0+/24 hr and M1.0+/6 hr definitions, C-class and smaller flares are considered
“non-events”. Additionally, for all definitions, multiple qualifying flares within the validity window
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Figure 3. Schematic illustrating the relationship between the AARP data acquisition periods, the two
validity periods invoked, and a few flares (events). Time proceeds to the right. 24 hr days are marked out by
the blue arrows, with an implied start/stop time of 22:00 TAl. The data are acquired at the same time each
day (green). The validity periods, both 6hr (orange) and 24hr (red) are indicated, all starting at
22:00TAIl. The first event (yellow graphic) would be a “yes-event” for the 24 hr validity period based on the
data acquired by “A” but a “non-event” for the 6 hr period, whereas the data collected during “B” leads to
a classification of the second flare as an “event” entry for both validity periods. The third and fourth events
are classified according to the data collected in “C” even though it occurs during the “D” data collection, and
would be designated an “event” for both the 6 hr and 24 hr definitions, even though there are two qualifying
events for the latter within its validity period.

are considered together as a single positive event, so that the number of events may be smaller
than the total number of flares during the period. Finally, a data point assigned to the “non-event”
population may have previously or may subsequently flare — a “flare-quiet region” in the context of x
this analysis is a “flare-quiet epoch”, or a time of no events, regardless of past or future activity.

One difference from earlier work on magnetic field-based analysis (Leka et al. 2018) is the start
time for the validity periods. We matched the AARPs to the HMI-based database already in place
(see Paper 1). That database was constructed with anticipation to the delay in acquiring the near-
real-time vector data for a true forecasting system that would produce forecasts starting at 00:00 UT
(Leka et al. 2018). We have no such constraints here except the desire to match the HMI dataset.

Hence, the start time of the validity periods moved to 22:00 TAI for all event definitions. For the
“24 hr” definitions, the validity time then runs from 22:00 TAI the day of the data acquisition, to
21:59:59 TAI the next day; in the case of the “6 hr” definitions, it runs from 22:00 TAl the day of the
data acquisition to 03:59:59 TAI the next day. The “6 hr” definitions thus have significantly smaller
event sample sizes, but the analysis becomes closer to “precursor” parameter evaluation.

3.2.2. NonParametric Discriminant Analysis

Table 2. Event Definition Summary

Label GOES lower limit Validity Period Latency Period # Events,
107 W m~2 hr hr (Event Rate R)
C1.0+/24 hr 1.0 24 0.2 2752 (0.086)
M1.0+/24 hr 10.0 24 0.2 450 (0.014)
C1.0+/6 hr 1.0 6 0.2 1262 (0.039)
M1.0+/6 hr 10.0 6 0.2 155 (0.005)
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234 Discriminant Analysis (DA) in general classifies input as belonging to one of two (or more) popu-2ss
lations by dividing parameter space into two regions based on where the probability density of one 2
population (e.g. flare-imminent regions) exceeds the other (e.g. not flare-imminent regions) so as to 2
best separate the two samples. Discriminant Analysis does not simply look for correlations; a statis-zs
tical classifier such as DA or Random Forest (Breiman 2001) divides parameter-space from samples 23 of
known populations, in the same mathematical “spirit” as machine-learning algorithms.

240 In NonParametric Discriminant Analysis (NPDA), no assumptions are made about the functional 24
form of the distributions; instead, the probability density function is estimated directly from the 2.
data. Since it was described in Leka et al. (2018), we have added the capability of using adaptive 2
kernel density estimation to NCI. This technique, used here, starts with a pilot density estimate fromaua  the
Epanechnikov kernel and a fixed smoothing parameter determined by reference to a standard s
distribution (normal in this case; Silverman 1986; Leka & Barnes 2007), which works well for suffi-s
ciently large sample sizes, but tends to under-smooth the tails of a distribution and over-smooth the 2
peak. This pilot density estimate is then used to estimate local bandwidth factors which determine.s  the

local width of the Epanechnikov kernel in combination with an overall sensitivity parameter, 2 taken
here to be a = 0.5.
250 Although NCI with NPDA can be used for multi-variable analysis (multiple parameters simulta-z:

neously creating a higher-dimension parameter-space), we focus here on single-variable NPDA and a:
strive for statistically-significant sample sizes for each event definition (Section 3.2.1) and a first-look 2ss  set
of results that can be physically interpretable. Example density functions and NPDA boundaries 2s4 are
given for select parameters in Figure 4, and discussed in Section 4, below.

255 NCI generates probabilities that a datapoint will belong to one or the other population based on the
256 ratio of probability density function estimates from the samples plus the populations’ prior probabil-s
ities. Note that as described in Leka et al. (2018), NCI treats “null” data and “bad” data differently. s
Additionally, in cases where a parameter is positive- (negative-) definite, NCI automatically works 2se
with the natural logarithm of the variable (absolute value of the variable). This practice guarantees 2o
that the density estimate is zero for negative (positive) values of the parameter, as it should be. The 2
result is typically a slight improvement in the evaluation metrics.

262 NCI provides unbiased estimates of the table entries using cross-validation (Hills 1966;
263 Leka & Barnes 2003b; Leka et al. 2018); previously NCI relied upon “n-1” method but now performs
264 cross-validation based on active-region number. For the results here, the last digit of the AARP
265 number is used to define 10 groups, with which 10-fold cross-validation is performed. This approach s
is invoked in recognition that for any given AARP, some parameters may not evolve significantly over 2 a
day or longer. The goal then of AARP-based cross-validation is to avoid using samples of the same s
AARP to both construct the probability density functions and then use them to predict a sample o
from the same AARP.

270 3.2.3. Evaluation Metrics

m The classifications made by NCI are evaluated using standard quantitative metrics
2 (Jolliffe & Stephenson 2012), to answer the question, “how well did the classifier separate the samples 27
drawn from the two known populations?” NCI reports a large selection of metrics and graphical tools.s  for
interpretation; here we focus on a few that are most informative for the present study.

275 The native results from NCI are the probabilities for each data point of belonging to one or the
276 other population, hence evaluation metrics based on probabilities are most appropriate. The Brier
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Figure 4. NonParametric Probability Density Functions of six parameters for the C1.0+/24 hr event
definition: (Top, left-to-right): the natural log of the total of the 94A’emission (In 3(lg4)), the natural log of
the mean of the 94A “emission (Inu(les)), and the change with time of the skew of the 211A emission
(dg(l11)/dt). (Bottom, left-to-right): the natural log of the kurtosis of the running-difference of 304A images
(In k(Al304)), the natural log of the standard deviation of the 171A emission (In o(l171), c.f. Figure 2), and the
change with time of the total of the 94A running-difference images (dX(Algs)/dt). For all, event, non-
event non-parametric density estimates are shown, their means (- - -/- - -), and the discriminant
boundary(ies) which may not be present within the range shown (which itself always encompasses all but
the most extreme outliers, if any). See text for discussion.

skill score (B S S) quantifies the performance by normalizing the mean square error of the probability 275
that a point belongs to its true population by the mean square error for the probability based on the
“climatology”, or ratios of the two population sizes to the total sample size. It is normalized so that 2s0
“perfect” is 1.0, no skill against the reference is 0.0, and can be negative. BS S effectively summarizes 2
the Reliability Plot (“attributes diagram”) that is conditioned on the forecast (classification), and 2
by which sharpness and resolution can be judged; we report the BS S and present Reliability plots
in Section 4.

With the assignment of a Probability Threshold (Pyn.) above/below which the resulting probability 2ss

is deemed to belong to one or the other population, categorical metrics are available (see the dis-xs
cussions in Barnes et al. 2016; Leka et al. 2019a). For these, a classification table is first constructed 2
according to the assigned probability that a data point belongs to one or the other populations, :ss
given an assigned P,.). Four entries (for 2-option classification) then comprise the classification
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289 table: True Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN). As we
290 are not providing any kind of custom forecasts, we use Pinr = 0.5 by default, which maximizes the »:
number of correct classifications when the prior probabilities are set proportional to the sample sizes, 20
and is appropriate for physics-interpretable research.
203 The popular True Skill Statistic (TSS), also known as the Peirce Skill Score (PSS) or Hanssen &
294 Kuiper Skill Statistics (H&KSS) (see Bloomfield et al. 2012; Barnes et al. 2016; Leka et al. 20193,
295 for discussions) is the difference between the probability of detection (hit rate) and the probability of
296 false detection (false alarm rate). As with all skill scores, it is normalized such that for perfect differ-
297 entiation TSS= 1.0, while no power to discriminate the populations produces TSS= 0.0. Changing
298 the sample sizes does not impact TSS provided the samples have been drawn from the same pop-
299 ulations. “Optimal TSS” or “Maximum TSS” scores are often reported, and are generally earned
300 by setting Py, = the event rate R (Table2) where R = ntp + ngn/N and N is the sample size
301 (Bloomfield et al. 2012; Barnes et al. 2016; Kubo 2019). We report here Max(TSS) with Py = R.
302 Finally, by calculating the hit rate (POD) and false alarm rate (POFD), the two components of
303 the TSS, through the range of Py, one builds a Receiver (Relative) Operating Characteristic Curve
304 (ROC) plot (see examples and discussion in Leka et al. 2019a). The ROC plot illustrates the ability
305 of a forecast (or classification) to differentiate between events and non-events, and is observation-
306 conditioned. This plot is then summarized by the ROC Skill Score (RO CSS; or the Gini Coefficient)
307 that is related to the ROC area or popular Area Under the Curve (AUC) metric: G = 2RIAUC-1.0
308 where G = 1.0 denotes a perfect score and G < 0 indicates worse than zero-skill performance. We
309 report here G but also present ROC plots for a few examples.
310 We sort the parameters based on the BS S metric, the only metric for which we perform 100-draw su
bootstrap with replacement (Efron & Gong 1983; Jolliffe & Stephenson 2012; Leka et al. 2018), also s
based on the last digit of the AARP number, to provide an estimate of the uncertainty in the as
metric. That is, for each draw independently, the probability density estimates for each populationss  are
calculated (Figure 4) and used to generate a probability of an event occurring. This probability sis varies
(usually only slightly) between the different draws, leading to a range of values for the BS S, and s1s slightly
moving the location of the discriminant boundary, sometimes leading to different classification s tables.
The standard deviation of the BS S values is used as an estimate of the uncertainty. The s other
metrics are calculated directly from the probabilities for each data point, computed using cross-ss
validation but no bootstrap. The rank order of the different metrics does not follow identically, but s
is generally close (Tables 3-6). Our previous investigation on photospheric magnetic field parameters s
(Leka et al. 2018) found that, for a given event definition and parameter, the uncertainty across a sz
range of skill scores was relatively constant. Thus, the uncertainties quoted for the BS S are likely s to
be a reasonable representation of the uncertainty in the Max(TSS) and ROCSS.

324 3.3. Sample Size and Statistical Flukes

325 With the large number of parameters being considered, it is possible that a few parameters may sz
falsely appear to be successful at classifying the data solely by happenstance of this particular sample. s
The likelihood of this happening is diminished with large sample sizes, but for the M1.0+/24 hr and sz
especially the M1.0+/6 hr event definitions, it may become a concern.

329 In Barnes et al. (2014), a Monte Carlo experiment was described that draws two random samples sz
from the same population with sizes equal to the sample sizes in question (e.g. of the event and non-:
event samples). In the experiment, the same analysis is performed as on the actual parameters for
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332 fifty times as many parameters as were in the investigation, to more accurately capture the range of s
possible outcomes. The experiment was performed where the population was a normal distribution,
334 a Cauchy distribution, and a cosine distribution. The resulting distributions of skill scores for the
335 experiment, where no difference is expected, were then compared to the distribution found for the
336 real experiment, and the probability of finding outliers was estimated. In other words, this approach
337 determines the number of statistical outliers that may be expected were there no difference in the s
two underlying populations.
339 When this experiment was applied to the AARP-matched HARP-based magnetic field parameters
340 in a similar context as the present study and with a similar sample size (but indeed for a larger sa
number of parameters than is being tested here Leka et al. 2018), we estimated there would be s
<1% chance of a resulting BSS > 0.001/0.002/0.003 by chance alone for single variable NPDA for s
C1.0+/M1.0+/X1.0+ flares, respectively. Hence we are confident that the results shown here are not su
particularly susceptible to statistical flukes.
35 Additionally, the bootstrap provides an uncertainty for the BSS. As discussed in Section 4.2, for
346 the top performing results and indeed for most parameters across the C1.0+ and M1.0+/24 hr event s
lists, the reported BSS are at the 50, 100 or higher detection level. For M1.0+/6 hr which is the s
experiment with the smallest “yes-event” sample size and the smallest event rate, the BS S scores are s
smaller, barely above 0.0, although the bootstrap-derived uncertainties are only a factor of 2 largerssc  (see
Section 4.2). Even with almost a solar-cycle’s worth of data, the sample of larger events that ss: occur
within 6 hours of any given time of day is, statistically speaking, very small.

352 4. RESULTS
353 In these sections we highlight some examples and call out the best and the worst performing
354 parameters in order to give an overview of the results. All computed parameters, and resulting sss

probabilities are available (Leka et al. 2022), so readers can examine the distributions for other s
parameters of interest, and (for example) compute additional skill scores or apply other analysis ss
methods to the data.

358 4.1. NonParametric Density Estimates

359 We show in Figure 4 the nonparametric density estimates for a selection of parameters, all for the e
C1.0+/24 hr definition primarily because the distributions of both populations are clearly visible; s
the class imbalance between events and non-events for the other definitions (Table 2) simply make s
presentation more challenging.

363 There is quite a range of distribution shapes amongst the parameters. For one of the most intuitive e
parameters, 2(lq4) (Figure 4 top left), the density estimates are distinctly offset from each other,ss  and
there is a single discriminant boundary to the right of which the events have a higher probability ses than
the non-events. In the next two parameters u(lgs) and dg(l211)/dt (Figure 4 top middle and e right,
respectively) there is no discriminant boundary; for the former, even though the distributions ses are
distinctively offset from each other (the means are visibly different), the low event rate (large se class
imbalance) means that the event probability never exceeds the non-event probability whereas s in the
latter, there is almost no difference in the event vs. non-event distribution means or shapes. sn Despite
the lack of a discriminant boundary, p(le4) still has significant skill as measured by the BS S 37 (BSS=

0.084 + 0.006), while dg(l,11)/dt does not.
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Figure 5. Receiver Operating Characteristic (ROC) plots for (Top, Left/Right) C1.0+/24 hr, C1.0+/6 hr
(Bottom Left/Right) M1.0+/24 hr, M1.0+/6 hr, for the parameters as indicated. For all, the ‘climatology’
probability threshold is as listed in Table 2. The parameters shown are generally the top- and bottom-scoring
parameters by G, c.f. Tables 3-6.

373 The first two parameters in the bottom row of Figure 4 show similar behavior to the corresponding sz
parameters in the top row: k(Alsp4) provides a single clear discriminant boundary and very different sss
distributions, while the distributions for the o(li71) samples are reminiscent of the p(los) distribu-ss
tions, again the population distributions are distinguishable (the means are well separated), there is s
significant skill, but there is no discriminant boundary. Finally, the dX(Algs)/dt distributions are s
centered exactly the same, however, unlike d¢(l,11)/dt, there are two discriminant boundaries because s
the event population is wider than the non-event population.

380 4.2. Metrics Scores and Evaluation Plots for AARP-based Parameters

381 The results are sorted on BS S, and we present the top-10 and bottom-5 B S S-scoring parameters in
382 Tables 3 — 6; the full results are available in machine-readable format. For each of the parameters we ss:
also compute the “Max(TSS)” (with Pynr = R) and the ROCSS or G. The order of the parameters s
based on the latter scores does not exactly follow the ordering of the BSS, but does so loosely, s
especially considering the bootstrap-based uncertainties for the BSS.

386 While the BS S and G summarize the Reliability and ROC plots respectively, it is instructive to ss
see the behaviors explicitly by which to judge bias, ezc. ROC plots (Figure 5) and Reliability plots s
(Figure 6) are shown for one of the best and one of the worst-scoring parameters each (according to ss
BSS, as per Tables 3 — 6), for each event definition.

390 Overall, the classification results for select UV/EUV parameters show confidence at statistically
391 significant levels for the C1.0+/24 hr, C1.0+/6 hr, and M1.0+/24 hr event definitions. By this we
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Table 3. Results: C1.0+/24 hr

Top 10 Scoring Parameters: C1.0+/24 hr
Parameter Brier Skill Score Max(TSS) GorROCSS

K(Algs) 0332t 0.011  0.650 0.816
K(Al131) 0.315% 0.011  0.658 0.810
K(Al171) 0312+ 0.012  0.670 0.809
K(Al304) 0.310+ 0.010  0.668 0.812
5(l94) 0.302¢ 0.013  0.680* 0.830*
K(Al1o3) 0.301% 0.011  0.657 0.814
K(Aly11) 0.291% 0.011  0.651 0.794
5(Algg) 0.286+ 0.011  0.626 0.788
5(1335) 0.280+ 0.014  0.672 0.822
d5(Alag)/dt 0-273% 0.011  0.597 0.761

Bottom 5 Scoring Parameters: C1.0+/24 hr
Parameter Brier Skill Score  Max(TSS) GorROCSS

du(lie3)/dt  0.001+ 0.000  0.035 0.046
w(Al171) 0.001+ 0.001  0.052 0.047
do(l;71)/dt  0.000+ 0.000  0.023 0.015
dk(l131)/dt  —0.011# 0.009  0.203 0.283
di(l335)/dt _ -0.068 + 0.028  0.160 0.262

*: Top or Bottom score for Max(TSS) and for G. In this case the worst Max(TSS)=-0.038, and G=-0.034
both for d¢(l11)/dt which has BS S=0.001 + 0.001.

Note—Table 3 is published in its entirety in machine-readable format. A portion is shown here for
guidance regarding its form and content.

392 mean that the sample sizes are large enough that the bootstrap-derived uncertainties in the BS'S, 30
plus the AARP-focused cross validation, provide good estimates of the uncertainties and that the
394 B S S results indicate skill above climatology (B S S> 0.0). We did not perform a separate bootstrap ses
or sorting for the other metrics provided, but assume that the (un)certainty levels are similar. As s
has been found in other studies, there are numerous parameters that perform similarly within the 3o
error bars.
398 The uncertainties related to the BS'S results are overall small especially compared to the BS S 39
results for C1.0+/24 hr and C1.0+/6 hr. For M1.0+/6 hr, while the larger error bars reflect a smaller a0
sample of events, the BSS results barely indicate skill above the climatology. The reliability plots s
(Figure 6) for the better performing metrics do show a good correspondence between the predicted o
probabilities and the observed frequency of occurrence, the points generally falling within their 10 a0
error bars of the x = y line. In other words, even for the M1.0+/6 hr events and even with their
low BSS, the predictions are “reliable”. However, the vast majority of the predictions (especially forss  the
M1.0+/24 hr and M1.0+/6 hr events) are probabilities close to the event rates, and this lack of a0
sharpness is reflected in the low BSS.
407 However, the G results are quite high, generally, as are the Max(TSS). For rare events, as displayed
408 in the ROC plots (Figure 5), the metrics reward a high probability of detection at the expense of an
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Table 4. Results: M1.0+/24 hr

Top 10 Scoring Parameters: M1.0+/24 hr

Parameter Brier Skill Score Max(TSS) GorROCSS
K(Algg) 0.160+ 0.015 0.794* 0.909*
K(Aly131) 0.132 + 0.010 0.734 0.862
Z(Algg) 0.131+ 0.015 0.704 0.840
dk(Ales)/dt 0.125+ 0.018 0.680 0.837
S(Aly31) 0.118 + 0.021 0.640 0.786
K(Al211) 0.117 + 0.008 0.750 0.863
dc(Alga)/dt 0.116 + 0.009 0.640 0.802
K(Al304) 0.116 £+ 0.010 0.725 0.851
dc(Aly31)/dt  0.110+ 0.016 0.658 0.812
d5(Alia1)/dt  0-109% 0.017  0.626 0.764

Bottom 5 Scoring Parameters: M1.0+/24 hr
Parameter Brier Skill Score  Max(TSS) GorROCSS
do(l171)/dt 0.000 + 0.000 0.049 0.038
du(ly71)/dt 0.000 + 0.000 0.028 0.019
du(Aligo00)/dt 0.000 = 0.000 -0.031* -0.036*
m(Al1600) 0.000 + 0.000 -0.031 -0.024
dp(lyzq)/dt -0.002 + 0.004 0.157 0.197

*: Top or Bottom score for Max(TSS) and for G.

Note—Table 4 is published in its entirety in machine-readable format. A portion is shown here for
guidance regarding its form and content.

409 increased false alarm rate. Thus the predictions have good ability to distinguish between the event
410 and non-event populations, or good resolution.
a1 Overall, the class imbalance in all event definitions, but especially the M1.0+/24 hr and M1.0+/6 hr 41

as we define them here, is extreme. This can lead to impressive Max(TSS) scores. Simultaneously, .z the
B S S is negatively impacted by the class imbalance although it takes the climatology into account 4. since
the climatology provides the reference prediction.

a15 The best-performing parameters across the four event definitions are dominated by the kurtosis of
216 the running-difference images. The kurtosis detects deviation from a Gaussian distribution in terms 1
of central peak vs. wing relative strength. An enhanced kurtosis or leptokurtic distribution, which s is
associated with an increased probability of flaring, has an over-population of the wings relative s to
a normal distribution, although it can also indicate an under-population of the central peak (and o vice
versa for a low kurtosis or platykurtic distribution). In terms of moments, the remaining best-ia
performing parameters are typically either the skew or the total of the running-difference images.

422 There are fewer direct-image (vs. running-difference image) and evolution (“dX/dt”) parameters s
than expected in the top-10 across event definitions (fewer than 5 of 10); evolution-based parameters s
in fact tend to dominate the low-scoring BS S results. As mentioned in Section 3.2.3, the “dX/dt” as
parameters may be more susceptible to outliers, and looking beyond the top-10 their frequency as
becomes higher although running-difference images still dominate over direct images. The cos(8)
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Table 5. Results: C1.0+/6 hr

Top 10 Scoring Parameters: C1.0+/6 hr
Parameter Brier Skill Score Max(TSS) GorROCSS

K(Dlog) 0.247+ 0.010  0.703* 0.853*
K(Al131) 0.214+ 0.010  0.684 0.828
2(Algs) 0.207+ 0.012  0.675 0.816
K(Al211) 0.203+ 0.008  0.669 0.818
K(Al171) 0.199+ 0.008  0.685 0.828
K(Al304) 0.199+ 0.007  0.681 0.820
K(Al193) 0.199+ 0.008  0.676 0.829
d3(Algs)/dt 0.196% 0.014  0.622 0.775
<(Dloa) 0.192+ 0.012  0.567 0.717
dc(Alag)/dt 0-184% 0.012  0.577 0.735

Bottom 5 Scoring Parameters: C1.0+/6 hr
Parameter Brier Skill Score  Max(TSS) GorROCSS

du(l1e3)/dt  0.000+ 0.000  0.027 0.050
du(l171)/dt  0.000+ 0.000  0.014* 0.002*
do(l171)/dt  0.000% 0.000  0.021 0.027
dk(ly11)/dt  0.000% 0.004  0.217 0.269
di(l335)/dt__ -0.066 + 0.024  0.188 0.320

*: Top or Bottom score for Max(TSS) and for G.

Note—Table 5 is published in its entirety in machine-readable format. A portion is shown here for
guidance regarding its form and content.

427 location (observing angle) parameter shows minimal but not zero classification power. This result is s
due to the HARP selection criteria that includes numerous small plage regions at greater absolute 42
latitudes than spot-containing active regions. These plage regions generally belong to the “no-event”

430 population, providing a small discriminating advantage to the middle latitudes and the corresponding as:
cos(B) ranges.

432 4.2.1. Wavelength-compared Classification Performance
433 The different filters of AIA are sensitive to plasma at different temperatures, and often sensitive to
434 more than one temperature (Lemen et al. 2012). The behavior of the plasma in the corresponding sss

physical regimes may reflect different thermal or density responses to energy build up, or different as
kinematic responses to photospheric driving motions, for example. To address these questions, weas;  first

simply evaluate the parameters’ performance as grouped by wavelength; in Section 5.3 we discuss ass more
the physical implications of the results.
239 A cursory look at Tables 3—6 gives the impression that filters which detect hotter plasma more o

frequently appear in the “Top-10”, across event definitions. The C IV 1600A-based parameters are s
never in the “top-10”, the He Il 304A- and Fe IX 171A-based parameters do make the top tiers in
BSS but rarely. The top parameters are dominated by parameters built from the Fe XVII11 94A . filter
and the other filters sensitive to hotter plasma, for example the Fe XXlI-sensitive 131A filter.
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Table 6. Results: M1.0+/6 hr

Top 10 Scoring Parameters: M1.0+/6 hr
Parameter Brier Skill Score Max(TSS) GorROCSS

K(Blgs) 0.070% 0.014  0.821* 0.913*
o(lo4) 0.070% 0.018  0.707 0.860
dg(Aly31)/dt  0.067% 0.017  0.701 0.846
2(Aly31) 0.061+ 0.023  0.646 0.806
¢(Algs1) 0.058% 0.014  0.720 0.819
d3(Al131)/dt 0.056% 0.011  0.624 0.810
K(Al131) 0.056% 0.011  0.778 0.886
5(Algs) 0.055% 0.017  0.708 0.836
(Aly31) 0.054+ 0.019  0.575 0.757
(Aloa) 0.054% 0.019  0.661 0.774

Bottom 5 Scoring Parameters: M1.0+/6 hr
Parameter Brier Skill Score  Max(TSS) GorROCSS

do(l171)/dt  0.000% 0.000  0.042 0.036
w(l171) 0.001+ 0.002  0.268 0.340
H(Al1600) 0.001+ 0.001  0.060 0.046
(11600 -0.001+ 0.001 0.141 0.139
du(ls35)/dt  -0.003+ 0.006  0.150 0.259

*: Top score for Max(TSS) and for G. In this case the worst Max(TSS)= -0.104, G = -0.116 both for
du(ly171)/dt which has BS S=0.000 + 0.000.

Note—Table 6 is published in its entirety in machine-readable format. A portion is shown here for
guidance regarding its form and content.

a2 We note that the top-performing parameters for the C1.0+ event definitions include parameters
aas across all analyzed EUV filters, while for the M 1.0+ event definitions the top-ranked parameters are s
predominantly those derived from 94 and 131 A filters (Tables 3-6).

aa7 In Figures 7, 8, 9, 10 we group the BS S results by wavelength. What is striking in these plots with
a8 regards to the performance by different A1A filters is that the 94A parameters by and large perform as
consistently well (comparatively speaking), with all “radar sectors” filled in at least somewhat. In uso
contrast, the radar plots for 211A, for example, have definite gaps; for example, while the k(Aly11) 451
scores well, the dk(l,11)/dt parameter does not.

452 Overall, this presentation confirms the highlights of Tables 3—6: the performance is overall lower for ss3
the shorter-validity definitions, and uncertainties are larger for the event definitions that have smaller ss.
event-population sample sizes (higher class imbalance). There are more parameters that perform with auss
higher classification success for the 94 A filter than most of the others, but then the 304 A parameters as
also have a fairly high frequency of similar performance (albeit not “high performing” by this metrics:  per
se). The other AlA filters show a more mixed performance, with the 1600 A arguably the lowests:  overall.
Notably, for all wavelengths, the kurtosis- and skew- and total-based evaluation of running-sss difference
images are often the highest performing parameters of any particular wavelength.
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Figure 6. Reliability plots for (Left to Right) C1.0+/24 hr, M1.0+/24 hr, C1.0+/6 hr, M1.0+/6 hr for top-
performing parameters (Top) and low-performing parameters (Bottom), according to BSS, as indicated.
The x = vy line indicates perfect reliability, the histogram (blue) is the frequency of occurrence for each
prediction bin, the horizontal line (light-blue dashed) indicates the climatology (no resolution) and the “no
skill” line is also plotted (red dashes). The 1o error bars are shown, and reflect the sample size in each bin.
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indicating the uncertainty ranges. Shown: C1.0+/24 hr event definition results.
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Figure 8. Same as Figure 7 for the M1.0+/24 hr event definition results.
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Figure 9. Same as Figure 7 for the C1.0+/6 hr event definition results.
460 4.2.2. Performance Changes between Event Definitions
a61 Generally speaking, the BS S scores decrease while Max(TSS) and G stay the same or increase s

between C1.0+ and M1.0+ definitions, and between, for example, the 24 hr and 6 hr validity times. 4
This is fairly evident as a general rule from the discussion thus far and is not unexpected given the
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Figure 10. Same as Figure 7 for the M1.0+/6 hr event definition results.

464 sensitivity of BS S to event rates and relative insensitivity of Max(TSS) to the same (Bloomfield et al.
465 2012; Barnes et al. 2016).

466 However, there are some variations in this behavior. There are some parameters for which the
relative distributions (event- vs. non-event) vary noticeably with an expected increase in Max(TSS) e
between, for example, C1.0+ and M 1.0+ definitions - reflecting a shift to higher parameter values for«s  the
event population, for example (Figure 11, top), and a relatively smaller decrease in the BS S. For 4 other
parameters, the distributions vary in relative magnitude reflecting the different relative sample 42 sizes,
but the distribution means, for example, do not significantly change (Figure 11, bottom). In42  this case,
the Max(TSS) does not appreciably change because the change in magnitude is offset by.s  the change in
the value of R, and the value of the BS S decreases more substantially. We found no a7 obvious or
systematic behavior in this regard between parameter “classes” (those based on direct vs. s running-
difference images, or static vs. dX/dt parameters) except that similar parameters often (butss  not always)
behave the same across wavelengths.

a77 4.3. Performance Changes with Solar Cycle

a78 Solar-cycle-related variations may impact the ability of the parameters generated here to clas-s
sify flare-imminent active regions. The background UV- and EUV emission (Argiroffi et al. 2008; ss0
Schonfeld et al. 2017) may add a constant to the mean or summation-based parameters, and vary-s: ing
event rates can change the prior probabilities (McCloskey et al. 2018; Leka et al. 2019a). Even s
running-difference images may be subject to subtle changes in signal-to-noise ratios due to high back-ss
ground contamination, potentially impacting their ability to detect changes in active-region structure. ss

To examine the behavior of these parameters against cycle-related influences, we break the data ass
set into two subsets, first with years that were “active” parts of the cycle (2011-2015 inclusive, plus asss
2017) and “quiet” (the rest), based partly on the start of the high-activity time as defined by coronal
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C1.0+/6 hr 0.247 £+ 0.010 0.703 0.853
M1.0+/24 hr 0.160 £ 0.015 0.794 0.909

5(1304) C1.0+/24 hr 0.240 + 0.014 0.613 0.775
C1.0+/6 hr 0.167 + 0.008 0.589 0.747
M1.0+/24 hr 0.095+ 0.015 0.616 0.766

Figure 11. NonParametric Probability Density Functions of two parameters (top) k(Algs) and (bottom)
Y(l304) across three event definitions: C1.0+/24 hr, C1.0+/6 hr, M1.0+/24 hr. Presentation is the same as
Figure 4. Also shown are the relevant entries for the performance metrics. The distribution of the event and
non-event density estimations vary significantly for k(Algs) across event definitions, most easily seen by the
increase in the mean for the event population, and is reflected in changes in their relative BS S, but for 2(l304)
the distributions change primarily in amplitude, due to the different prior probabilities from the different event
rates, so the differences in performance in particular for Max(TSS) are much less.

a87 temperature (Schonfeld et al. 2017), and partly due to flaring rates. This partitioning provided total ass
sample size of 4898 AARPS (quiet) and 27169 AARPS (active). We run the full analysis, then look as
in detail for two very different but originally high-scoring parameters, Z(lg4) and k(Algs).

490 The resulting probability density functions for the quiet and active periods for the C1.0+/24 hr

291 event definition are shown in Figure 12, using equal prior probabilities for clarity. Overall, we find s

very little difference in the distributions between the subsets. There is a very small shift toward
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493 higher values for the 2(l94) parameter during the “active” years, but it shifts for both event- and
494 non-event distributions. There is almost no discernible difference in the distributions for k(Algs).

495 The event rates differ significantly between the active and quiet periods, as designed. The sample
496 sizes under this division are very small in most cases, leading to the situation that the adaptive-
297 kernal NPDA is no longer an appropriate model to use. The quiet period is most susceptible, with
498 the number of events for these years being: M1.0+/24 hr: 15; C1.0+/6 hr: 65; M1.0+/6 hr: 5. These
499 small numbers mean that for those event definitions, we cannot compare the results for active years
500 to those for quiet years with confidence; hence we concentrate on C1.0+/24 hr for the statistical
501 analysis.

502 In Figure 12 we show scatter plots of the BS S and Max(TSS) for C1.0+/24 hr for the quiet and so
active periods separately against those scores resulting from the full dataset. For the active subset,s.  the
difference against the full dataset is minimal for both metrics. For the quiet subset however, the sos BSS
shows a strong systematic decrease whereas the Max(TSS) shows scatter that is, within the sos expected
uncertainties, without significant trend. Recalling that BS S is sensitive to climatological so- event rates
whereas Max(TSS) is not (Jolliffe & Stephenson 2012), we demonstrate that the varying ses event rates
have a measureable impact on some evaluation metrics.

509 Combining this result with the minimal differences in the probability densities between quiet and
510 active parts of the solar cycle, we conclude that cycle-related event-rate variations have a much larger s
impact on the ability to classify our parametrizations, as measured by some metrics, than the impact s» of
variation in background emission.

513 5. INTERPRETATION
514 Because we construct the parametrizations ourselves, they enable physical interpretation to the
515 extent allowed by analysis of just the images themselves. The span of regimes sampled, in temper-sis

ature/density, height, and temporal dimensions, provides the opportunity to understand the causes s
and effects of upper-atmosphere behavior in this context.

s18 5.1. Temporal Variability

519 The parameterizations examine the variability of the corona on two different time scales. All of the s
Alg parameters look at the variation in intensity on 72s cadence which tracks both small-scale short-saz
lived brightening events and (dis)appearances and kinematics of structures including coronal loops. s2
The moments of the running-difference images M(Alg) further quantify the behavior: increased or s
decreased mean indicates a preferential brightening or dimming on these timescales, or the appearance s /
disappearance of structures. The standard deviation indicates the spatial (lack of) quietness. thess  skew
and kurtosis provide sensitivity to the far wings of the distributions indicating small-scalesss  dynamics
related to temperature changes or to kinematic variations.

527 The M(Alg) overwhelmingly dominate the top-10 performing parameters across all event defini-ss
tions, and in particular the higher-order moments ¢(Alg), k(Alg). The density estimates (see example s in
Figure 4) show enhanced kurtoses for the event populations relative to the non-event populations, s
indicating wing enhancements rather than degradation of the distribution peaks. Consistently high sa
kurtosis over the 13min indicates continual presence of rapidly-changing but large-amplitude bright-ss:
ness fluctuations (see Figure 1). In contrast, the pu(Alg), o(Alg) parameters that should be sensitive s to
more subtle variations such as expected from gradual loop motion, do not generally perform well s in
BSS although some have notable G. Non-activity-related intensity changes as due to gradual
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Figure 12. [Top]: Probability density functions for C1.0+/24 hr event- and non-event distributions
comparing the “quiet” part of the solar cycle (dashed) with the “active” part of the solar cycle (solid).
Equal prior probabilities are used to highlight differences in the shape of the PDEs, separate from the
changes due to the different event rates. (Left): Z(lg4), (Right): k(Alga). [Bottom]: Comparisons of BS S
(left) and Max(TSS) (right) for all parameters, showing results for the quiet- and active- parts of the cycle (as
indicated) vs. the metrics for the full data set. The table summarizes the subset characteristics and the
resulting differences for two metrics for the C1.0+/24 hr event definition.

loop motion or gradual loop heating / cooling generally proceed slower than the cadence here, and s
additionally involve preferentially larger (full-loop) structures (Viall & Klimchuk 2012). Hence, there s
is strong indication, from multiple parameter results, that enhanced variability in brightness or en-ss
hanced kinematic activity, on short timescales and small spatial scales, is a discriminating feature of s
flare-imminent active regions.

Longer-term evolution is reflected in the slope of the linear fit to the 7 hourly samples (Figure 2).
We find that, for example, for C1.0+/24 hr the d2(Alq4)/dt parameter performs well, and has dis-s.

criminant boundaries in the wings of the distribution (Figure 4). This means that impending activity s is
indicated by either a rapid increase or a rapid decrease in the level of rapid intensity fluctuations sa in
the 94A filter. "A similar scenario is found for M1.0+/24 hr for d¢(Algs 131)/dt, the temporal
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545 variation of the skew of the running-difference analysis from 94A and 131Afilter images (Table 4): s
on longer timescales, either increasing or decreasing levels of short-term brightness variability can s«
indicate upcoming activity (Table 4). In contrast, the d¢(l,11)/dt parameter for the C1.0+/24 hr

548 definition performs very poorly and in Figure 4 it is easy to see why: the event and non-event density
549 estimates are essentially identical, apart from the different prior probabilities.
550 Across the event definitions, parameters describing the evolution on hours-long timescales (the
551 dX/dt parameters) are not generally overall better- or worse- performing than the static parameters. ss
They do not appear as frequently as would be expected by even chance in the top-most tiers of ss:
performance, but have BSS that are within the uncertainties of many static parameters, and vice ss
versa. In other words, while in certain cases for certain parameters and certain event definitions sss
there may be a dX/dt parameter that shows promise for relating coronal evolution to imminent flare sss
activity, there will be at least a few other parameters that do notr track the evolution but which ss
perform as well. The results here show a small preference for static parameters, but we note thissss  may
be a result of outliers rather than a true property of the Sun.

559 5.2. The Totals, The Moments
560 The extensive XZ(lg) parameters scale with the size of the AARP, whereas the intensive param-se
eters (the moments M(lg)) do not. We see here that extensive parameters can perform at least se as

well as some of the intensive parameters. In addition to 2(l94) being a “top-10” discriminator ses for
C1.0+/24 hr (see also Figure 4), most 2 (1)) parameters for EUV wavelengths (meaning, all butsss  1600A)
have high ranking across the event definitions. The general ability of extensive AlA-based pa-sss  rameters to

differentiate between flare-imminent and flare-quiet groups is consistent with the results ses of numerous
prior studies, in particular those based on the photospheric magnetic flux (reflecting ses long-held
observers’ wisdom) that, simply put, “size matters” (see discussions in Sawyer et al. 1986; ses Leka &
Barnes 2003b, 2007). Larger active regions have more total emission in the corona and chro-se mosphere

(as heating functions are believed to scale with magnetic flux, (e.g. Warren et al. 2012)), s» and are also
the more flare-productive, so this is an example of “large active region bias”.

571 However, the u(lgz) parameters perform poorly across wavelengths and event definitions: see for s»
example p(lgs) for C1.0+/24 hr in Figure 4. The distributions are distinguishable (the means are s
separated), and the “event” distribution tends toward higher values, but there is no discriminant s
boundary within the bulk of the data. Pairing of these results (the XZ(lg) and p(lg) parameter s
performances), and looking in detail at the distributions, confirms that while in fact the u(lg) valuesss  are
higher for the event populations, it is by not enough so as to provide good predictive power due s» to the
class imbalance.

578 In other words, flare-imminent regions are inherently only slightly brighter (higher specific intensity)
579 than flare-quiet regions. This result is a bit surprising, as one might expect that the magnetic sz
complexity strongly related to flare productivity would produce strong corona-threading currents ss
available to heat and preferentially brighten flare-imminent regions significantly over similarly-sized ss
but flare-quiet sunspot groups (see, e.g. Asgari-Targhi et al. 2019). Such does not appear to be the s
case.

584 However, small structures that produce intense brightness variations are more likely to impact sss
distribution wings. This can explain the dominating performances of parameters based on the kurtosissss  of
the running-difference distributions (k(Alg); Tables 3-6 and Figures 7 — 10, see also Sections 4.2, ss 5.1).
The ability of the k(Alg) parameters to distinguish flare-imminent from flare-quiet targets
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588 indicates that flare-imminent regions display rapid variability in the E/UV images that is small in ss
spatial scale, as well. These results are consistent with an increased number of small-scale ongoing s«
reconnection events related to the increased magnetic complexity of these regions relative to AARPS sa
that are imminently flare-quiet.

592 The skew of the running-difference has discriminating power for many filters and more than one s

event definition. Noting that, for example, 171A filter images are often used to detect coronal loops, s

we examined the parameter distributions and in fact the data display both positive and negative sos

skew, but the positive-skew dominates and is slightly more pronounced for the event populations. In s

this context, the lack of performance for pu(Alg) implies that overall, the brightness changes on short s

timescales sum to zero. Hence, ¢(Alg) > 0 implies a small number of intense brightenings probably s

combined with a larger number of less intense dimmings to produce an imbalance in the wings of the ses

running-difference brightness distributions.

600 Because we do not (yet) analyze the AARP data specifically in the context of, for example, so:

nearby open magnetic flux, we cannot comment on whether we are detecting “crinkles” specifically &0

(Sterling & Moore 2001b) or more generic enhanced small-scale activity. However, we can conclude eos

that these results, based on moment analysis of time-series data, is likely only available because we s are

using full-resolution spatial sampling.

605 5.3. Wavelength, Temperature, and Physical Regimes

606 The AIA filters do not uniquely sample single temperatures or physical regimes (Lemen et al. 2012; 7
Warren et al. 2012; Cheung et al. 2015). This fact makes direct interpretation of the parameters ins«s  the
context of plasma temperature quite challenging if not potentially misleading, and obviating the e need
for, e.g., differential emission measure analysis (forthcoming, see Section 6). Still, analysis of e the

results as a function of filter (Figures 7-10) shows patterns of behavior that are notable in thes:  context
of the different regimes that the filters do sample.

612 For some filters there is a significant difference in the BS S across event definitions between the
613 Y(lg) parameters and the higher-order M (1lg) parameters. This result implies that the presence of s
emission is discriminating, but there is no further information from the spatial distribution of the es
emission. This trend is notably present in the 131, 171, 211, and 193 and 335A filter results. In es
contrast, for the 94, 304, and 1600 A filters there is non-negligible performance for the higher-order ¢
M (lg) parameters in addition to the X(lg), implying that distinctive information about the spatial es
distribution (features) can be present. The common theme between the first set of filters is that they e
are sensitive to hotter plasma than are the 304, and 1600 A fifters (Lemen et al. 2012; O’Dwyer et al. 6o
2010). These two filters are not sensitive to flare-temperature plasma and while the 94A filter intensity ez
is in fact dominated by hot plasma, it does include a cooler component (Warren et al. 2012).

622 The presence of hot plasma overall may be indicative of past flare activity, and we must be reminded &2
that data acquisition is not separate from flare events (Figure 3). The presence of a single flare doess:  not
usually directly impact (for example) the inferred longer temporal behavior as parametrized ez by the
“d/dt” variables (see Figure 2), although as mentioned earlier it can supply outlier events. ez But the
d3(lgz)/dt parameters stand out as well as the 3 (1) parameters. To the extent that thes:;  images in the
filters that may be dominated by flare-temperature plasma, this result signifies that its s presence is an
indicator of past and, hence, future activity. This result is reminiscent of the strong e performance
(reflected in “observer’s wisdom”) of “persistence” as a flare predictor (see discussions eso in Sawyer et al.
1986; Leka et al. 2019b)).

[y
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631 In line with this finding, we also see that parameters from the 94 and 131 A filters, sensitive to
632 hot flare plasma, dominate the top-performing parameters for the M 1.0+ event definitions compared &3
to C1.0+. This result implies that there is increased activity/dynamics in hotter plasma prior to e
M1.0+ flares, or that larger flares may be produced preferentially after smaller flares have energizedsss  the
corona. However, we note that as the exact order of the top parameters for M1.0+/24 hr and s
especially M1.0+/6 hr is not very robust given the uncertainties, this result only provides a hint ates;  the
importance of the hottest channels for differentiating larger-flare-imminent regions.

638 Additionally, in some AlA filters and across event definitions (see Figures 7—10), the mean intensity
639 K(lz) does not predict between the two populations well, but the standard deviation o(lz) does. The eo
spatial variation of the brightness is broader (larger standard deviation) for flare-imminent regions.ex  For

a few filters, notably 94, 304, and 1600A, this disparity extends to the higher-order moments of s the
intensity distribution, with notably better performance by ¢(lz) and k(lg) than pu(lg).
643 Two of those latter filters are distinctly not sensitive to flare-temperature coronal plasma. He Il e

304 A is a relatively cool optically thick line sensitive to the chromosphere / upper transition region, es
with a peak temperature response around 0.05MK, albeit with challenging radiative transfer char-ess
acteristics (Golding et al. 2017). It samples a different physical regime than the other filters which e
image the upper corona (see Figure 1), especially in the context of flares. The C IV and “continuum” ess
1600 A filter samples the upper photosphere and transition region. While flare ribbons are often e
traced using 1600 A emission, that emission is not particularly hot (Simdes et al. 2019) — but the es
brightness in 1600A filter images is also sensitive to the presence of magnetic structures and local-ss:  ized
areas of transient heating. The 94 A filter images are generally dominated by hot active-region es: core
plasma and flare plasma (Lemen et al. 2012; Cheung et al. 2015), but include a cooler-plasma es:
component (Warren et al. 2012), and additionally have a notoriously low signal-to-noise ratio.

654 From all of this we can conclude that there is evidence of a characteristic difference in the dis-ess
tribution of intensity between flare-imminent and flare-quiet active regions. In the high corona, ess the
features are more likely larger-scale, detectable by the standard deviation of the distribution,s:  whereas

in the upper photosphere, transition region, and chromosphere, the features are likely to ess include
smaller-scale features that impact the higher-order moments.
659 The temporal evolution of the moments of the brightness distributions, also shows notable differ-eso

ences in patterns between filters that follow the same trends as outlined above: du(lg)/dt shows e
no predictive capability across wavelength and event definition, do(lz)/dt only for 94, 304 and to a ee
small extent 335A, then d¢(lz)/dt, dk(lz)/dt show predictive power for 94, 304, and 1600A but not s
for the other filters. Again, this implies we detect evolution in the level of variability of small-scale ss
intensity changes, as could be related to general magnetic complexity and associated on-going small ees
reconnection events in the transition region and chromosphere. This variability is not reflected in e
parameters derived from filters that sample only hotter plasma, meaning we detect variations thate:  are
dominated by larger, less impulsively-varying structures.

668 The overall less-good performance of the 1600A parameters across event definitions, specifically sso
the dc¢(Alis00)/dt and dk(Alieoo)/dt compared to the strong results for the same parameters from &7
filters that sample coronal heights and temperatures, strengthens the case that parameters using en
EUV filters detect small-scale reconnection events. Such phenomena may be insufficiently large or e
energetic enough to produce UV-radiation signatures in the lower layers of the solar atmosphere. ¢ At
the chromospheric height and temperatures detected in the 304A channel, however, and the
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674 higher / hotter channels, these small-scale high-frequency variations are visible and bring power to
675 differentiating between the populations, across event definitions.

676 There are patterns in the results (Figures 7-10) which imply that the filters sensitive to more than
677 one temperature detect different behaviors from the different physical regimes they sample. For ex-e
ample, filters that are predominantly sensitive to active-region plasma temperatures (171, 193, 211 A) e
show poor performance for o(lz) whereas 1600 A shows moderate performance in that parameter, as sso do
94 A and 304 A. Simifar behavior is seen for d(ligo0)/dt, whereas dk(l171,103,211)/dt show poor e
performance. In contrast, the active-region plasma-dominated filters show moderate performance in es
o(Al171,193,211) Whereas 6(Al1g00) does not. The 131 A filter senses emission from both flare-relevant es Fe
XVI111 but also cooler transition-region Fe VII1; the 304 A line samples a mix of regimes; the 94 A e filter is
sensitive to the transition-region sensing Fe IX, Fe X emission as well as the flare-relevant ess Fe XVIII.
The performance patterns for the 94 A filter parameters, as compared to those from thess  more selective
hot- vs. cool-sensing filters, confirms that both flare- and transition-region behaviorse:  are being detected
in the 94 A filter, especially as we have not corrected for the “warm” component ess (c.f. Warren et al.
2012). The dominance of the 94 A filter parameters in overall performance shows ess that multi-regime
sampling may enhance the breadth of information available on the flare-imminenteo  nature of solar active
regions.

691 This analysis of NPDA results for the AIA filters and the implied physical regimes they sample ¢
is not straightforward, that is very clear. Rather than pushing the analysis further with regards to e
physical interpretation, we acknowledge the need for, e.g., Differential Emission Measure analysis, e
which is beyond the scope of this article.

695 6. DISCUSSION

696 We present here a large-sample statistical analysis of the behavior of the solar chromosphere and e~
corona as deduced from the parametrization of UV and EUV images from AIA. We specifically e ask
how these parametrizations behave in flare-imminent active regions. This study complements e
previous work that focuses on the photospheric magnetic field (Leka & Barnes 2007; Leka et al. 2018); 70
we find that there is some information available to statistically, but not uniquely, differentiate between 7
regions that will produce a flare event, according to various event definitions, from those that will ..  not.

703 Superficially, the work by Nishizuka et al. (2017); Jonas et al. (2018); Alipour et al. (2019) appears
704 similar to the present study, given their use of AIA data in the context of flare prediction. However,
705 there are very important differences. First and foremost, this is nor a study focused on empirical 7o

flare prediction, but rather we ask whether there are physical characteristics of flare-imminent active 7>
regions as viewed from chromospheric, transition region, and coronal emission. The data handling~s and
preparation is different, performed here with a strong emphasis on ensuring the ability to perform 7o
quantitative physical analysis (Dissauer et al. 2022c). Lastly and most importantly, by constructing.c  the
parameters specifically to investigate physical behavior, including behavior on different temporal .2 scales,
the results can lead to some physical interpretation.

712 The results show classification performance that varies from “very good” through “mediocre” to s
“poor”, depending on which combination of event definition and metric is used. The BS S is similar 74 to
what is achieved on similar-sized datasets when the question is posed for parametrizations of the s
photosphere; this metric provides a summary of how well the predicted probability for any given s
target reflects the frequency of occurrence for other samples with the same measure. High BSS is
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717 extremely difficult to achieve as it is constructed against the climatology, and class-imbalance — while 75
inconvenient, is a strong influence for this metric. It is a metric based on the probabilities and thus

719 the true distribution of the parameters, so that the “mediocre” and worse scores reflect the fact that 7o
substantial differences in the distributions can be partially offset by the prior probabilities (Figures 4, 71
11).

722 The Max(TSS) results are good, but caution must be used to understand that this metric is opti-7zs

mized when the probability threshold used (or incorporated into a cost function, for example) reflects s  the

event rate, again coming up against the class-imbalance reality of the Sun (Bloomfield et al. 2012; s  Barnes

et al. 2016; Kubo 2019). Comparing the present results to the very similar targets (although 72 different

latency periods), sample sizes, and approach in Leka et al. (2018), the Max(TSS) results 7z are similar
even though that study invoked multi-parameter NPDA.
728 The impressive scores here are the RO CS S or G, which summarize the ROC plots and the corre-»s

spondence between the value of a parameter, its associated probability, and whether or not there was 720 a
corresponding event. In this sense, we can definitively say that there is information in the coronal
images that is related to whether or not a region produces a flare event as we define one, given the 7.
parameters we use.

733 As the event rate decreases (Table 2), the best BS'S values get smaller while the Max(TSS), 7
ROCSS, and G values get larger. The distributions of event-imminent versus event-quiet populations s
become increasingly different with lower event rates, which is reflected in the Max(TSS), ROCSS, = and
G values, but this is more than offset by the increasing class imbalance that enters intothe BSS. 7,  Similar
behavior is also present in predictions made from parameters characterizing the photosphere s (Barnes
et al. 2016; Leka et al. 2018, 2019a). Clearly, no single metric provides a thorough evaluation 7z of
performance, and factors such as class imbalance or event rate must also be considered when 70
interpreting metrics, especially those for which thresholds or limits must be set.

781 We find that enhanced variability in EUV and UV intensity on short timescales and small spatial 72
scales is one of the strongest discriminators across event definitions and AlA filters. This enhancement 7
is most likely of the form of intense transient brightenings, whether small-scale and localized or 7.
rapid larger loop movement, rather than gradual loop movement or gradual heating/cooling, as it 7s
preferentially enhances the wings (extremes) of the running-difference image brightness distributions. s  Of
note here, spatial resolution matters in order for the parametrizations to detect these differences, 7 and
these results validate our approach of retaining the full Al1A spatial sampling across the AARP s fields of
view (Dissauer et al. 2022c).

749 On longer timescales, strong increases (or decreases) in brightness moderately indicates impending 7o
flaring, and while overall the presence of hot plasma is a good indicator, this result is also consistent 75
with the general correlation between active region size and flare productivity. The evolution of 7
parameters describing the corona can provide flare-imminent indicators, but with little preference s
over “static” parameters.

754 Of note, while coronal loop structures are readily detected through an analysis of the spatial
755 variations of emission in the 171, 211 A filters. the quantitative measure of these spatial variations s
(e.g. o(li171,211)) is not a good discriminator. Also surprisingly poor is the mean intensity and its s
longer-term trending, which implies that there is minimal significant difference between magnetically 7ss
complex and magnetically simple active regions in terms of their average coronal brightness and its 7
temporal variation.
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760 The differences in coronal, transition-region, and chromospheric E/UV emission between flare-7:
imminent and not-flare-imminent active regions has broad implications for models of active-regions 7:
overall, and their upper atmospheres in particular. The approach outlined here and these results 7:
provide constraints on the expected emission and kinematic behavior of pre-event (and even post-se
event) active region upper atmospheres.

765 As pointed out in Section 5.3, simply analyzing the behavior of the brightness and kinematics in AIA
766 filters is tricky due to their multi-thermal sensitivity. We address this in an upcoming work that uses 7
differential emission measure analysis to disentangle densities and temperatures across this AARP e
database (Dissauer et al. 2022a). Similarly, a more complete picture will be built as we combine the 7s
AARP database with the HARP magnetic field inputs; as of this work we simply begin the process of 77
statistically understanding the behavior of the chromospheric, transition region, and coronal regimes in
the context of flare events using large-sample data finally afforded by high-resolution continual
imagery from SDO/AIA.
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