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8 A B S T R A C T
9 A  large sample of active-region-targeted time-series images from the Solar Dynamics 10

Observatory /  Atmospheric Imaging Assembly, the A I A  Active Region Patch database 11

(“AARPs”,  Paper I: Dissauer et al. (2022c)) is used to investigate whether parameters 12

describing the coronal, transition region, and chromospheric emission can differentiate 13                                          a
region that will imminently produce a solar flare from one that will not. Parametriza-14                                          tions
based on moment analysis of direct and running-difference images provide for 15                                          physically-
interpretable results from nonparametric discriminant analysis. Across four 16                                          event
definitions including both 24 hr and 6 hr validity periods, 160 image-based pa-17                                          rameters
capture the general state of the atmosphere, rapid brightness changes, and 18                                          longer-term
intensity evolution. We find top Brier Skill Scores in the 0.07 – 0.33 range, 19                                          True Skill
Statistics in the 0.68 – 0.82 range (both depending on event definition), and 20                                          Receiver
Operating Characteristic Skill Scores above 0.8. Total emission can perform 21                                          notably as
can steeply increasing or decreasing brightness, although mean brightness 22                                          measures do
not, demonstrating the well-known active-region-size/flare-productivity re-23                                          lation. Once
a region is flare productive, the active-region coronal plasma appears to 24                                          stay hot. The
94 A filter data provides the most parameters with discriminating power, 25                                          with indications
that it benefits from sampling multiple physical regimes. In particular, 26                                          classification success
using higher-order moments of running difference images indicate 27                                          a propensity for flare-
imminent regions to display short-lived small-scale brightening 28                                          events. Parameters
describing the evolution of the corona can provide flare-imminent 29                                          indicators, but at no
preference over “static” parameters. Finally, all parameters and 30                                          NPDA-derived
probabilities are available to the community for additional research.
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32 1. INTRODUCTION

33 In Dissauer et al. (2022c, hereafter Paper I)  we briefly introduce the goal for this study: to quanti-34

tatively characterize the brightness distributions, their temporal variations and implied kinematics, 35

and eventually a more complete physical state of the chromosphere and corona, for two populations 36                 of
solar active regions: those that are flare-productive on specified time-scales vs. those that are 37                 not.
We are addressing this goal with a large sample of data from the Atmospheric Imaging Assem-38                 bly
(AIA;  Lemen et al. 2012) onboard the Solar Dynamics Observatory (SDO; Pesnell et al. 2012, 39                 see
Section 2). There has not yet been such a characterization in the context of flare productivity. 40                 The
approach we invoke explicitly avoids focusing on “pre-flare”-specific phenomena, and instead 41

examines more general behaviors.
42 Recently, the dominant use of large-sample coronal image data in the context of solar energetic 43

phenomena has been for machine learning tools to try and predict solar flares (Nishizuka et al. 2017; 44

Jonas et al. 2018; Alipour et al. 2019, although see (Krista & Chih 2021)). Generally, these statistical 45

tools have not yet provided “interpretable” results in terms of a physics-based outcome, although 46

they have demonstrated some added classification success when combining coronal data with, e.g., 47

photospheric magnetic field data from the Helioseismic and Magnetic Imager (HMI; Scherrer et al. 48

2012; Hoeksema et al. 2014; Bobra et al. 2014).
49 Case-study analyses of the pre-event solar corona have found evidence of loop formation, en-50

ergization and increased dynamic behavior (“crinkles”; Sterling & Moore 2001a; Joshi et al. 2011; 51

Sterling et al. 2011; Imada et al. 2014, and references therein), an increase in chromospheric 52                 non-
thermal velocities and high blueshifts (Cho et al. 2016; Harra et al. 2013; Woods et al. 2017; 53                 Seki
et al. 2017), very localized chromospheric heating (Li  et al. 2005; Bamba et al. 2014), and coro-54                 nal
dimming (Imada et al. 2014; Zhang et al. 2017; Qiu & Cheng 2017) in the hours prior to energetic 55                 events.
56 The present study attempts to do for the solar corona and chromosphere what was done for the pho-57

tosphere in a previous series of papers (Leka & Barnes 2003a,b; Barnes & Leka 2006; Leka & Barnes 58

2007; Leka et al. 2018): test the ability to statistically differentiate between flare-quiet and flare-59

imminent active regions through analysis of photospheric magnetic field data. Here we begin to test 60                 the
same question but with a focus on the chromosphere, transition region, and corona. Guided by 61                 the
previous series of papers, we use here active regions as defined by the HMI Active Region Patches 62

(HARPs: Hoeksema et al. 2014) but now use time-series images of the upper solar atmosphere in the 63

UV and EUV (Section 2.1; see also Paper I). We introduce human-constructed parametrizations (Sec-64

tion 3.1) designed to provide insights into the physical state of the upper atmosphere in a manner 65

parallel to what the “SHARP parameters” (Bobra et al. 2014) and especially the extended parame-66                 ter
list examined in Leka & Barnes (2007); Leka et al. (2018) provide for the photosphere (see also 67

Georgoulis et al. 2021, and references therein). Without focusing on forecasting per se, here we ex-68                 tend
insights gained by prior case studies to a large sample, to statistically test (Section 3.2) whether 69                 we can
differentiate the state of active region atmospheres that are flare-imminent from those that 70                 are not.
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71 Employing a large sample size provides a broad picture not only of the standard workings of the 72

corona over all sizes and activity levels of active regions, but to what extent there is such a thing 73                 as
standard workings. In other words, what is important for our understanding of the Sun is not 74                 only
the mean of some characteristics, but the more nuanced nature of the distributions of those 75

characteristics, their degree of overlap, etc. Here we quantify some characteristic behaviors between 76

defined groups, setting empirically-derived standards to which models may then need to speak.

77 2. T H E  D ATA

78 The observational data used in this study are described in this section, both the A I A  timeseries
79                 data (Section 2.1) and the data used (Section 2.2) to construct the solar flare event lists for analysis
80                 (Section 3.2.1).

81 2.1. The AIA Active Region Patches (AARPs)

82 The A I A  Active Region Patches (AARP s )  database is described in full in Dissauer et al. (Paper I;
83                 2022c). Broadly speaking, they consists of curated UV- and EUV-image timeseries counterparts to 84

the photospheric magnetic field time-series data deployed in Leka et al. (2018).
85 The primary data source used in constructing the A A R P s  is SDO /AIA, supplemented with meta-86

data from the Helioseismic and Magnetic Imager (HMI; Scherrer et al. 2012; Hoeksema et al. 2014) 87

hmi.Mharp 720s series. The latter provides the coordinates and bounding-box of the HMI Active 88

Region Patches (HARPs; Hoeksema et al. 2014), which are the basis for defining the areas extracted 89

from the A I A  full-disk images. Of note, however, the A A R P  boxes are larger by 20% than the 90

HA R P  definitions in order to accommodate the larger projected extent of the 3-D coronal structures, 91

especially when a region is located near a limb, and the bounding-box is extended further in the 92

limb-direction to include the A R  loops (see Paper I  for details). There is no spatial binning applied 93

to the images.
94                       For each numbered HA R P  on any particular day, there is one corresponding A A R P  consisting of
95                 seven hourly samples each containing 13 min of data sampled at 72 s (11 images), across each of eight
96                 A I A  bands. To  match the database of HMI vector magnetic field extractions already in place at
97                 NWRA, the seven hourly samples span 15:48 TA I  – 21:48 TA I .  F I TS  files are produced for each of
98                 seven EUV filters (94, 131, 171, 193, 211, 304, and 335 A), and the UV 1600 A. This approach provides
99                 information on both short-term and longer-term evolution of all magnetic patches at chromospheric,

100                 transition region, and coronal heights and temperatures. The NWRA A A R P  database, which is
101                 available at the Solar Data Analysis Center (Dissauer et al. 2022b), is summarized in Table 1; here
102                 the number of samples is the total number of A A R P  datasets available over the full date range. The
103                 A A R P s  provide the data for parametrization (Section 3.1), so the number of samples in Table 1
104                 is the total sample size available for statistical analysis for the present study. There is no further

105 down-selecting for A R  size, complexity, location, or activity level.

Table 1. Summary of A A R P  Data Set

Date Range
06/2010 – 12/2018

A A R P  Range
36 – 7331

NOAA A R  Range
11073 – 12731

Number of “AARP-Day”  Samples
32,067

Archive Size
≈  9.5 TB
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106 2.2. GOES Data and Source for Event Lists

107 The event lists are constructed following Leka et al. (2018), using events as recorded by NOAA
108                 using the Geostationary Operational Environmental Satellite X-Ray Sensor (“GOES”/XRS Garcia 109

1994). The dataset used is consistent with regards to flux calibration (Viereck & Machol 2017; 110

Machol 2022). Only those events associated with NOAA-assigned Active Regions are included. Flare 111

lists based on GOES 1–8A peak emission from the GOES/XRS sensors are available through either 112                 the
National Center for Environmental Information (NCEI)  or by way of the “edited event lists” 113                 from
NOAA/Space Weather Prediction Center. In the present study we used the latter by which to 114                 construct
the event lists used (see Section 3.2.1).

115 3. ANALYSIS

116 The question posed here is, “for solar active regions, are flare-imminent epochs distinguishable
117                 from flare-quiet epochs on the basis of chromospheric and coronal emission and kinematics?” Specif-118

ically we ask this using UV and EUV intensity images and HMI-defined active regions, without the 119

added benefit of spectroscopy (Panos & Kleint 2020), but with the explicit use of time-series analysis 120

(Cinto et al. 2020) in order to enhance physical interpretation of the results. We answer the question 121

through statistical classification, multiple event definitions, and quantitative metrics to evaluate how 122

well the samples can differentiate the two populations.

123 3.1. Parametrization

124 Parametrization allows both spatial and temporal information to be summarized succinctly and in 125

a manner conducive to physical interpretation upon statistical analysis. Moment analysis through 126                 the
fourth moment is used on the spatially-sampled target x: mean μ(x)1, standard deviation σ(x), 127                 skew
ς (x), and kurtosis κ(x). The lower-order moments capture bulk differences whereas the higher-128                 order
moments are much more sensitive to subtle differences in distribution wings, but are also more 129

susceptible to errors when image sizes are small. The odd moments detect offsets or asymmetries as 130

related to a normal distribution, whereas the even moments are sensitive to deviations in width or 131

peakedness. Previous research of magnetic field distributions (Leka & Barnes 2003b; Barnes & Leka 132

2006; Leka & Barnes 2007; Barnes et al. 2007; Leka et al. 2018) shows the power of 3rd and 4th-133                 order
moments to capture subtle differences in distribution tails that can signal significant, but very 134                 localized,
changes – such as from a small emerging flux region.
135 The moment-analysis parametrizations produce a selection of intensive variables that do not scale 136

directly with active region size (Welsch et al. 2009); these are complemented by extensive parameters 137

(such as totals over the field of view), which do scale with region size. It is important to note that the 138

moment analysis is not intended to provide a basis for image decomposition (Raboonik et al. 2017) 139                 and
as such, while the resulting parametrizations may not be unique, they readily allow interpretation 140                 of the
image intensity behavior. The parametrization is applied to the images by themselves, what 141                 we call the
“direct” images (“I”), as well as the running-difference images (“ΔI”). For this analysis, 142                 the parameters
target the following (for each wavelength separately, indicated by “ *”):
143 • The total brightness of an image, Σ( I�),  and of the running-difference image Σ (Δ I�) .

1 To  avoid confusion, we use here μ(x) for mean(x) which breaks with our previous use of x; we also refer explicitly to
the cosine of the observing angle cos(θ) without invoking μ in that context.
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144 • The moments of the brightness distribution M ( I�)  which summarizes the mean μ(I�), stan-
145                                                          dard deviation σ(I�), skew ς (I�), and kurtosis κ(I�).
146 • The moments of the running-difference image distributions M (Δ I�) ,  which summarizes indi-
147                                                          vidually the mean μ(ΔI�), standard deviation σ (ΔI�), skew ς (ΔI�), and kurtosis κ(Δ I�) .
148 • The cosine of the central observing angle cos(θ); this is essentially used as a control since flare
149                                                          activity should not have preferred locations.
150 In all, 80 base parameters are defined plus the observing angle (the same for all wavelengths). A  151

parameter X  is computed for each of 11 images (or each of 10 running-difference image) within the 152

13-minute sample (see Figure 1). The average and standard deviation of these 11 (10) is assigned
153 to the mid-time (the “:48”) that matches the hmi.Mharp 720s data (see Figure 2, top panels), the
154 standard deviation being used as an estimate of the uncertainty of that parameter over the 13 min. 155

This procedure is performed for each of the 7 hourly samples (see Figure 2, bottom panels).
156 A  parameter X ’s  “static” state and its temporal behavior dX/dt are finally described using the 157

slope and intercept (at the last data sample’s central time (using T REC), 21:48 TAI) of a linear fit over 158                 the
7 hourly samples (Figure 2, bottom panels), following the magnetic field analysis in Leka et al. 159                 (2018).
Of note, parameters that are by definition positive- or negative- definite are limited in the 160                 “static”
parameter to the appropriate sign; if the inferred value by the intercept of the fit does imply 161                 a crossing in
sign, the returned parameter is set to 0.0. Data outages exist; at minimum, 2 data 162                 points are
required, for which only the mean is returned as the static parameter, and the dX/dt 163                 is returned
as a NaN. To  fit the slope, we require a minimum of 3 data points. We have found 164                 that a linear fit is
sufficient to describe the general behavior without over-fitting for short-timescale 165                 fluctuations. We (de-
)weight the fits by the uncertainties at each time, and one or a few outlier 166                 data points rarely corrupt
the linear fits, especially if they include large uncertainties. Flares occur 167                 during the data acquisition
(Figure 3) but rarely do their influence persist more than 2 – 3 hr, and 168                 they are usually extremely
variable on short timescales (resulting in large uncertainties in the hourly 169                 means of the parameters).
As such, the linear fits generally all but ignore them. That being said, 170                 there exist “perfect storm”
situations that will introduce outlier points. One example is 2016.01.20, 171                 AARP#6281 where two B-
class flares occurred between 15:48–17:48 TAI, after which there was a 172                 data outage, so that only three
points were available. The parameters for this A A R P  on this day 173                 were severely influenced (e.g.
d(κ(I131))/dt). This situation can influence both the static and dX/dt 174                 parameters, but the latter may be
more susceptible. That being said, we have examined the frequency 175                 of such outliers and have found that
they typically occur no more than 0.1% of the time, which should 176                 not influence the final metrics beyond
that level.
177 Thus, the final number is 160 image-based parameters plus the cos(θ) variable, for 161 independent
178                 parameters to be analyzed. These parametrizations are chosen to be physically interpretable. For 179

example, one can expect that the appearance of new bright loops will enhance overall brightness 180

levels of, for example, 171A images (Σ(I171 )) and the mean brightness levels (μ(I171)), but also 181

possibly produce a distinct positive skew in the associated running-difference images (ς (ΔI171 )) as 182                 the
new loops appear. The brightness of coronal structures can also change due to heating or cooling 183                 (Viall
& Klimchuk 2012) especially for 171A. On the other hand, we could expect that increased 184                 kinematic
activity such as enhanced loop motion without significant brightness enhancements or new 185                 structures
appearing will be signaled by broader distributions in running-difference images without 186                 an
accompanying increase in the total, mean, or skew.
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F igure  1. Demonstration of parametrizing A I A  171 A (top row) and A I A  304 A (second row) intensity
(left) and running-difference (right) timeseries, for AARP 746, NOAA AR 11260; direct images: 2011-07-
26T17:45:38Z, running-difference images are 2011-07-26T17:45:38Z - 2011-07-26T17:44:26Z. The running-
difference variations are similar between the two but there is more structure in the A I A  171 A data that
could provide additional information, or could be construed as noise by NCI. The procedure demonstration
continues in Figure 2.

187 We do not, here, consider parameters that use base-difference or base-ratio analysis. The event
188                 definitions employed (Section 3.2.1) mean that the data sampling is agnostic as to the time of any 189

event. Base-difference and similar approaches are most relevant when the base image refers to a 190

known or specified state against which changes are measured (Plowman 2016). The running-difference 191

images used here focus instead on evaluating the degree of variability of the atmosphere, by way of 192                 the
intensity images, at the sampled times only.

193 3.2. The NWRA Classification Infrastructure

194 The NWRA Classification Infrastructure (NCI; Leka et al. 2018) is a well-established statistical
195                 classifier system based on Nonparametric Discriminant Analysis (NPDA). There are four components 196

at work in this facility: the input parameters, the event definitions and event lists, the statistical 197

package, and the evaluation metrics. We described the input parameters that will be used here, 198

in Section 3.1, above. A  general description of NCI is given in the referenced work, and below we 199

describe the particulars as employed here.

200 3.2.1. Event Definitions and Event Lists

201 The “event definition” includes all relevant characteristics to what defines “an event”, such as details 202

on timing, event size, event characteristics, etc. In this context, an event is when at least one flare 203

above a specified threshold occurs during a specified validity period. A  data point (e.g. a parameter
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F igure  2. Following from Figure 1, the standard deviation of the brightness images of 171 A is calculated for
the 13 min (11 images) (“σ(I171)”, left, top) centered at 2011.07.26 17:48 TAI, from which the mean and
standard deviation are shown (thick point with error bar); these become the data points for each of the 7
samples covering 6 hours inclusive (left, bottom), from which the linear slope and last-data (21:48 TAI)
intercept (thick asterisk) provide the final variables that are analyzed in NCI. Shown are the results for an
M1.0+/24 hr “yes-event” sequence sample on 2011.07.26 (red) and a “no event” sample time period on
2011.07.25 (blue). The same sequence is shown for the kurtosis of the running-difference images of
304 A(“κ(ΔI304 )”, right plots).

204 for one A A R P )  will be assigned to the flaring population in this case (Figure 3), and assigned to 205

the flare-quiet population if no such events occurred. The assignments of A A R P s  to populations
206 change according to the event definitions. We invoke NCI in its standard “prediction” mode which
207 describes the timing definitions (see Figure 3). Specifically, there is no explicit coordination between
208 the time of the events and the data acquisition time (as is the case for super-posed epoch analysis,
209 e.g. Mason & Hoeksema 2010; Bobra & Couvidat 2015; Jonas et al. 2018).
210 The solar flare specific event definitions used here are described by (1) lower- and upper- peak
211                 intensity thresholds of peak GOES 1–8A flux (here upper-thresholds are set to infinity), (2) the
212                 validity period during which an event is predicted to occur, (3) the latency period that defines the
213                 interval between the end of the data and the beginning of the validity period. The event definitions
214                 considered here are summarized in Table 2. Some reflect standard definitions used for flare-prediction 215

research, but some are more focused on shorter-term chromospheric and coronal behavior in the 216

present context.
217                       Of note, for M1.0+/24 hr and M1.0+/6 hr definitions, C-class and smaller flares are considered
218                 “non-events”. Additionally, for all definitions, multiple qualifying flares within the validity window
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F igure  3. Schematic illustrating the relationship between the A A R P  data acquisition periods, the two
validity periods invoked, and a few flares (events). Time proceeds to the right. 24 hr days are marked out by
the blue arrows, with an implied start/stop time of 22:00 TAI. The data are acquired at the same time each
day (green). The validity periods, both 6 hr (orange) and 24 hr (red) are indicated, all starting at
22:00 TAI. The first event (yellow graphic) would be a “yes-event” for the 24 hr validity period based on the
data acquired by “A” but a “non-event” for the 6 hr period, whereas the data collected during “B” leads to
a classification of the second flare as an “event” entry for both validity periods. The third and fourth events
are classified according to the data collected in “C” even though it occurs during the “D” data collection, and
would be designated an “event” for both the 6 hr and 24 hr definitions, even though there are two qualifying
events for the latter within its validity period.

219 are considered together as a single positive event, so that the number of events may be smaller
220 than the total number of flares during the period. Finally, a data point assigned to the “non-event”
221 population may have previously or may subsequently flare – a “flare-quiet region” in the context of 222

this analysis is a “flare-quiet epoch”, or a time of no events, regardless of past or future activity.
223 One difference from earlier work on magnetic field-based analysis (Leka et al. 2018) is the start
224                 time for the validity periods. We matched the A A R P s  to the HMI-based database already in place
225                 (see Paper I). That database was constructed with anticipation to the delay in acquiring the near-
226                 real-time vector data for a true forecasting system that would produce forecasts starting at 00:00 UT
227                 (Leka et al. 2018). We have no such constraints here except the desire to match the HMI dataset.
228 Hence, the start time of the validity periods moved to 22:00 TAI for all event definitions. For the
229                 “24 hr” definitions, the validity time then runs from 22:00 TAI the day of the data acquisition, to
230                 21:59:59 TAI the next day; in the case of the “6 hr” definitions, it runs from 22:00 TAI the day of the
231                 data acquisition to 03:59:59 TAI the next day. The “6 hr” definitions thus have significantly smaller
232                 event sample sizes, but the analysis becomes closer to “precursor” parameter evaluation.

233 3.2.2. NonParametric Discriminant Analysis

Table 2. Event Definition Summary

Label

C1.0+/24 hr
M1.0+/24 hr
C1.0+/6 hr
M1.0+/6 hr

GOES lower limit
10−6 W m−2

1.0
10.0
1.0

10.0

Validity Period
hr
24
24
6
6

Latency Period
hr
0.2
0.2
0.2
0.2

#  Events,
(Event Rate R )

2752 (0.086)
450 (0.014)

1262 (0.039)
155 (0.005)
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234 Discriminant Analysis (DA)  in general classifies input as belonging to one of two (or more) popu-235

lations by dividing parameter space into two regions based on where the probability density of one 236

population (e.g. flare-imminent regions) exceeds the other (e.g. not flare-imminent regions) so as to 237

best separate the two samples. Discriminant Analysis does not simply look for correlations; a statis-238

tical classifier such as D A  or Random Forest (Breiman 2001) divides parameter-space from samples 239                 of
known populations, in the same mathematical “spirit” as machine-learning algorithms.
240 In NonParametric Discriminant Analysis (NPDA), no assumptions are made about the functional 241

form of the distributions; instead, the probability density function is estimated directly from the 242

data. Since it was described in Leka et al. (2018), we have added the capability of using adaptive 243

kernel density estimation to NCI. This technique, used here, starts with a pilot density estimate from 244                 the
Epanechnikov kernel and a fixed smoothing parameter determined by reference to a standard 245

distribution (normal in this case; Silverman 1986; Leka & Barnes 2007), which works well for suffi-246

ciently large sample sizes, but tends to under-smooth the tails of a distribution and over-smooth the 247

peak. This pilot density estimate is then used to estimate local bandwidth factors which determine 248                 the
local width of the Epanechnikov kernel in combination with an overall sensitivity parameter, 249                 taken
here to be α =  0.5.
250 Although NCI with NPDA can be used for multi-variable analysis (multiple parameters simulta-251

neously creating a higher-dimension parameter-space), we focus here on single-variable NPDA and 252

strive for statistically-significant sample sizes for each event definition (Section 3.2.1) and a first-look 253                 set
of results that can be physically interpretable. Example density functions and NPDA boundaries 254                 are
given for select parameters in Figure 4, and discussed in Section 4, below.
255 NCI generates probabilities that a datapoint will belong to one or the other population based on the
256                 ratio of probability density function estimates from the samples plus the populations’ prior probabil-257

ities. Note that as described in Leka et al. (2018), NCI treats “null” data and “bad” data differently. 258

Additionally, in cases where a parameter is positive- (negative-) definite, NCI automatically works 259

with the natural logarithm of the variable (absolute value of the variable). This practice guarantees 260

that the density estimate is zero for negative (positive) values of the parameter, as it should be. The 261

result is typically a slight improvement in the evaluation metrics.
262 NCI provides unbiased estimates of the table entries using cross-validation (Hills 1966;
263                 Leka & Barnes 2003b; Leka et al. 2018); previously NCI relied upon “n-1” method but now performs
264                 cross-validation based on active-region number. For the results here, the last digit of the A A R P
265                 number is used to define 10 groups, with which 10-fold cross-validation is performed. This approach 266

is invoked in recognition that for any given A A R P,  some parameters may not evolve significantly over 267                 a
day or longer. The goal then of AARP-based cross-validation is to avoid using samples of the same 268

A A R P  to both construct the probability density functions and then use them to predict a sample 269

from the same A A R P.

270 3.2.3. Evaluation Metrics

271 The classifications made by NCI are evaluated using standard quantitative metrics
272                 (Jolliffe & Stephenson 2012), to answer the question, “how well did the classifier separate the samples 273

drawn from the two known populations?” NCI reports a large selection of metrics and graphical tools 274                 for
interpretation; here we focus on a few that are most informative for the present study.
275                       The native results from NCI are the probabilities for each data point of belonging to one or the
276                 other population, hence evaluation metrics based on probabilities are most appropriate. The Brier
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F igure  4. NonParametric Probability Density Functions of six parameters for the C1.0+/24 hr event
definition: (Top, left-to-right): the natural log of the total of the 94A emission (ln Σ(I94 )), the natural log of
the mean of the 94A emission (ln μ(I94)), and the change with time of the skew of the 211A emission
(dς (I211)/dt). (Bottom, left-to-right): the natural log of the kurtosis of the running-difference of 304A images
(ln κ(ΔI304 )), the natural log of the standard deviation of the 171A emission (ln σ(I171), c.f. Figure 2), and the
change with time of the total of the 94A running-difference images (dΣ(Δ I94 )/dt). For all, event, non-
event non-parametric density estimates are shown, their means (- - - / -  - -), and the discriminant
boundary(ies) which may not be present within the range shown (which itself always encompasses all but
the most extreme outliers, if any). See text for discussion.

277 skill score (B S S) quantifies the performance by normalizing the mean square error of the probability 278

that a point belongs to its true population by the mean square error for the probability based on the
279 “climatology”, or ratios of the two population sizes to the total sample size. It is normalized so that 280

“perfect” is 1.0, no skill against the reference is 0.0, and can be negative. B S S effectively summarizes 281

the Reliability Plot (“attributes diagram”) that is conditioned on the forecast (classification), and 282

by which sharpness and resolution can be judged; we report the B S S and present Reliability plots
283 in Section 4.
284 With the assignment of a Probability Threshold (Pthr ) above/below which the resulting probability 285

is deemed to belong to one or the other population, categorical metrics are available (see the dis-286

cussions in Barnes et al. 2016; Leka et al. 2019a). For these, a classification table is first constructed 287

according to the assigned probability that a data point belongs to one or the other populations, 288

given an assigned Pthr). Four entries (for 2-option classification) then comprise the classification
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289 table: True Positive (TP) ,  True Negative (TN), False Positive ( F P )  and False Negative (FN). As we
290 are not providing any kind of custom forecasts, we use Pthr =  0.5 by default, which maximizes the 291

number of correct classifications when the prior probabilities are set proportional to the sample sizes, 292

and is appropriate for physics-interpretable research.
293 The popular True Skill Statistic (TSS), also known as the Peirce Skill Score (PSS) or Hanssen &
294                 Kuiper Skill Statistics (H&KSS) (see Bloomfield et al. 2012; Barnes et al. 2016; Leka et al. 2019a,
295                 for discussions) is the difference between the probability of detection (hit rate) and the probability of
296                 false detection (false alarm rate). As with all skill scores, it is normalized such that for perfect differ-
297                 entiation TSS=  1.0, while no power to discriminate the populations produces TSS=  0.0. Changing
298                 the sample sizes does not impact TSS provided the samples have been drawn from the same pop-
299                 ulations. “Optimal TSS” or “Maximum TSS” scores are often reported, and are generally earned
300                 by setting Pthr ≈  the event rate R  (Table 2) where R  =  nT P +  n F N /N and N  is the sample size
301                 (Bloomfield et al. 2012; Barnes et al. 2016; Kubo 2019). We report here Max(TSS) with Pthr =  R .
302 Finally, by calculating the hit rate (POD) and false alarm rate (POFD),  the two components of
303                 the TSS, through the range of Pthr one builds a Receiver (Relative) Operating Characteristic Curve
304                 (ROC) plot (see examples and discussion in Leka et al. 2019a). The ROC plot illustrates the ability
305                 of a forecast (or classification) to differentiate between events and non-events, and is observation-
306                 conditioned. This plot is then summarized by the ROC Skill Score (R O C S S; or the Gini Coefficient)
307                 that is related to the ROC area or popular Area Under the Curve (AUC) metric: G =  2 �AU C − 1.0
308                 where G =  1.0 denotes a perfect score and G <  0 indicates worse than zero-skill performance. We
309                 report here G but also present ROC plots for a few examples.
310 We sort the parameters based on the B S S metric, the only metric for which we perform 100-draw 311

bootstrap with replacement (Efron & Gong 1983; Jolliffe & Stephenson 2012; Leka et al. 2018), also 312

based on the last digit of the A A R P  number, to provide an estimate of the uncertainty in the 313

metric. That is, for each draw independently, the probability density estimates for each population 314                 are
calculated (Figure 4) and used to generate a probability of an event occurring. This probability 315                 varies
(usually only slightly) between the different draws, leading to a range of values for the B S S, and 316                 slightly
moving the location of the discriminant boundary, sometimes leading to different classification 317                 tables.
The standard deviation of the B S S values is used as an estimate of the uncertainty. The 318                 other
metrics are calculated directly from the probabilities for each data point, computed using cross-319

validation but no bootstrap. The rank order of the different metrics does not follow identically, but 320

is generally close (Tables 3–6). Our previous investigation on photospheric magnetic field parameters 321

(Leka et al. 2018) found that, for a given event definition and parameter, the uncertainty across a 322

range of skill scores was relatively constant. Thus, the uncertainties quoted for the B S S are likely 323                 to
be a reasonable representation of the uncertainty in the Max(TSS) and R O C S S.

324 3.3. Sample Size and Statistical Flukes

325 With the large number of parameters being considered, it is possible that a few parameters may 326

falsely appear to be successful at classifying the data solely by happenstance of this particular sample. 327

The likelihood of this happening is diminished with large sample sizes, but for the M1.0+/24 hr and 328

especially the M1.0+/6 hr event definitions, it may become a concern.
329 In Barnes et al. (2014), a Monte Carlo experiment was described that draws two random samples 330

from the same population with sizes equal to the sample sizes in question (e.g. of the event and non-331

event samples). In the experiment, the same analysis is performed as on the actual parameters for
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332 fifty times as many parameters as were in the investigation, to more accurately capture the range of 333

possible outcomes. The experiment was performed where the population was a normal distribution,
334 a Cauchy distribution, and a cosine distribution. The resulting distributions of skill scores for the
335 experiment, where no difference is expected, were then compared to the distribution found for the
336 real experiment, and the probability of finding outliers was estimated. In other words, this approach
337 determines the number of statistical outliers that may be expected were there no difference in the 338

two underlying populations.
339 When this experiment was applied to the AARP-matched HARP-based magnetic field parameters
340                 in a similar context as the present study and with a similar sample size (but indeed for a larger 341

number of parameters than is being tested here Leka et al. 2018), we estimated there would be 342

< 1% chance of a resulting BSS >  0.001/0.002/0.003 by chance alone for single variable NPDA for 343

C1.0+/M1.0+/X1.0+ flares, respectively. Hence we are confident that the results shown here are not 344

particularly susceptible to statistical flukes.
345 Additionally, the bootstrap provides an uncertainty for the B S S. As discussed in Section 4.2, for
346                 the top performing results and indeed for most parameters across the C1.0+ and M1.0+/24 hr event 347

lists, the reported B S S are at the 5 σ, 10 σ or higher detection level. For M1.0+/6 hr which is the 348

experiment with the smallest “yes-event” sample size and the smallest event rate, the B S S scores are 349

smaller, barely above 0.0, although the bootstrap-derived uncertainties are only a factor of 2 larger 350                 (see
Section 4.2). Even with almost a solar-cycle’s worth of data, the sample of larger events that 351                 occur
within 6 hours of any given time of day is, statistically speaking, very small.

352 4. RESULTS

353 In these sections we highlight some examples and call out the best and the worst performing
354                 parameters in order to give an overview of the results. All computed parameters, and resulting 355

probabilities are available (Leka et al. 2022), so readers can examine the distributions for other 356

parameters of interest, and (for example) compute additional skill scores or apply other analysis 357

methods to the data.

358 4.1. NonParametric Density Estimates

359 We show in Figure 4 the nonparametric density estimates for a selection of parameters, all for the 360

C1.0+/24 hr definition primarily because the distributions of both populations are clearly visible; 361

the class imbalance between events and non-events for the other definitions (Table 2) simply make 362

presentation more challenging.
363 There is quite a range of distribution shapes amongst the parameters. For one of the most intuitive 364

parameters, Σ ( I 9 4 )  (Figure 4 top left), the density estimates are distinctly offset from each other, 365                 and
there is a single discriminant boundary to the right of which the events have a higher probability 366                 than
the non-events. In the next two parameters μ(I94 ) and dς (I211)/dt (Figure 4 top middle and 367                 right,
respectively) there is no discriminant boundary; for the former, even though the distributions 368                 are
distinctively offset from each other (the means are visibly different), the low event rate (large 369                 class
imbalance) means that the event probability never exceeds the non-event probability whereas 370                 in the
latter, there is almost no difference in the event vs. non-event distribution means or shapes. 371                 Despite
the lack of a discriminant boundary, μ(I94 ) still has significant skill as measured by the B S S 372                 (B S S=
0.084 ±  0.006), while dς (I211)/dt does not.
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F igure  5. Receiver Operating Characteristic (ROC)  plots for (Top, Left/Right) C1.0+/24 hr, C1.0+/6 hr
(Bottom Left/Right) M1.0+/24 hr, M1.0+/6 hr, for the parameters as indicated. For all, the ‘climatology’
probability threshold is as listed in Table 2. The parameters shown are generally the top- and bottom-scoring
parameters by G, c.f. Tables 3–6.

373 The first two parameters in the bottom row of Figure 4 show similar behavior to the corresponding 374

parameters in the top row: κ(Δ I3 0 4 )  provides a single clear discriminant boundary and very different 375

distributions, while the distributions for the σ(I171) samples are reminiscent of the μ(I94) distribu-376

tions, again the population distributions are distinguishable (the means are well separated), there is 377

significant skill, but there is no discriminant boundary. Finally, the dΣ(Δ I94 )/dt distributions are 378

centered exactly the same, however, unlike dς (I211)/dt, there are two discriminant boundaries because 379

the event population is wider than the non-event population.

380 4.2. Metrics Scores and Evaluation Plots for AARP-based Parameters

381 The results are sorted on B S S, and we present the top-10 and bottom-5 B S S-scoring parameters in
382                 Tables 3 – 6; the full results are available in machine-readable format. For each of the parameters we 383

also compute the “Max(TSS)” (with Pthr =  R )  and the R O C S S or G. The order of the parameters 384

based on the latter scores does not exactly follow the ordering of the B S S, but does so loosely, 385

especially considering the bootstrap-based uncertainties for the B S S.
386 While the B S S and G summarize the Reliability and ROC plots respectively, it is instructive to 387

see the behaviors explicitly by which to judge bias, etc. ROC plots (Figure 5) and Reliability plots 388

(Figure 6) are shown for one of the best and one of the worst-scoring parameters each (according to 389

B S S, as per Tables 3 – 6), for each event definition.
390                       Overall, the classification results for select UV/EUV parameters show confidence at statistically
391                 significant levels for the C1.0+/24 hr, C1.0+/6 hr, and M1.0+/24 hr event definitions. By this we
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Table 3. Results: C1.0+/24 hr

Top 10 Scoring Parameters: C1.0+/24 hr
Parameter
κ(Δ I9 4 )
κ(Δ I131 )
κ(Δ I171 )
κ(Δ I304 )
Σ( I9 4 )
κ(Δ I193 )
κ(Δ I211 )
Σ (Δ I 9 4 )
Σ(I335 )
dΣ(Δ I 9 4 )/dt

Brier Skill Score
0.332 ±  0.011
0.315 ±  0.011
0.312 ±  0.012
0.310 ±  0.010
0.302 ±  0.013
0.301 ±  0.011
0.291 ±  0.011
0.286 ±  0.011
0.280 ±  0.014
0.273 ±  0.011

Max(TSS)
0.650
0.658
0.670
0.668
0.680*
0.657
0.651
0.626
0.672
0.597

G or R O C S S
0.816
0.810
0.809
0.812
0.830*
0.814
0.794
0.788
0.822
0.761

Bottom 5 Scoring Parameters: C1.0+/24 hr
Parameter
dμ(I193)/dt
μ(Δ I171 )
dσ(I171)/dt
dκ(I131 )/dt
dκ(I335 )/dt

Brier Skill Score
0.001 ±  0.000
0.001 ±  0.001
0.000 ±  0.000
−0.011 ±  0.009
−0.068 ±  0.028

Max(TSS)
0.035
0.052
0.023
0.203
0.160

G or R O C S S
0.046
0.047
0.015
0.283
0.262

*: Top or Bottom score for Max(TSS) and for G. In this case the worst Max(TSS)= -0.038, and G= -0.034
both for dς (I211)/dt which has B S S= 0.001 ±  0.001.
Note—Table 3 is published in its entirety in machine-readable format. A  portion is shown here for
guidance regarding its form and content.

392 mean that the sample sizes are large enough that the bootstrap-derived uncertainties in the B S S, 393

plus the AARP-focused cross validation, provide good estimates of the uncertainties and that the
394 B S S results indicate skill above climatology (B S S> 0.0). We did not perform a separate bootstrap 395

or sorting for the other metrics provided, but assume that the (un)certainty levels are similar. As 396

has been found in other studies, there are numerous parameters that perform similarly within the 397

error bars.
398 The uncertainties related to the B S S results are overall small especially compared to the B S S 399

results for C1.0+/24 hr and C1.0+/6 hr. For M1.0+/6 hr, while the larger error bars reflect a smaller 400

sample of events, the B S S results barely indicate skill above the climatology. The reliability plots 401

(Figure 6) for the better performing metrics do show a good correspondence between the predicted 402

probabilities and the observed frequency of occurrence, the points generally falling within their 1 σ 403

error bars of the x  =  y line. In other words, even for the M1.0+/6 hr events and even with their 404

low B S S, the predictions are “reliable”. However, the vast majority of the predictions (especially for 405                 the
M1.0+/24 hr and M1.0+/6 hr events) are probabilities close to the event rates, and this lack of 406

sharpness is reflected in the low B S S.
407                       However, the G results are quite high, generally, as are the Max(TSS). For rare events, as displayed
408                 in the ROC plots (Figure 5), the metrics reward a high probability of detection at the expense of an
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Table 4. Results: M1.0+/24 hr

Top 10 Scoring Parameters: M1.0+/24 hr
Parameter
κ(Δ I9 4 )
κ(Δ I131 )
Σ (Δ I 9 4 )
dκ(ΔI94 )/dt
Σ (Δ I 1 3 1 )
κ(Δ I211 )
dς (ΔI94 )/dt
κ(Δ I304 )
dς (ΔI131)/dt
dΣ(ΔI131 )/dt

Brier Skill Score
0.160 ±  0.015
0.132 ±  0.010
0.131 ±  0.015
0.125 ±  0.018
0.118 ±  0.021
0.117 ±  0.008
0.116 ±  0.009
0.116 ±  0.010
0.110 ±  0.016
0.109 ±  0.017

Max(TSS)
0.794*
0.734
0.704
0.680
0.640
0.750
0.640
0.725
0.658
0.626

G or R O C S S
0.909*
0.862
0.840
0.837
0.786
0.863
0.802
0.851
0.812
0.764

Bottom 5 Scoring Parameters: M1.0+/24 hr
Parameter
dσ(I171)/dt
dμ(I171)/dt
dμ(ΔI1600)/dt
μ(ΔI1600 )
dμ(I131)/dt

Brier Skill Score
0.000 ±  0.000
0.000 ±  0.000
0.000 ±  0.000
0.000 ±  0.000
−0.002 ±  0.004

Max(TSS)
0.049
0.028
-0.031*
-0.031
0.157

G or R O C S S
0.038
0.019
-0.036*
-0.024
0.197

*: Top or Bottom score for Max(TSS) and for G.
Note—Table 4 is published in its entirety in machine-readable format. A  portion is shown here for
guidance regarding its form and content.

409 increased false alarm rate. Thus the predictions have good ability to distinguish between the event
410 and non-event populations, or good resolution.
411 Overall, the class imbalance in all event definitions, but especially the M1.0+/24 hr and M1.0+/6 hr 412

as we define them here, is extreme. This can lead to impressive Max(TSS) scores. Simultaneously, 413                 the
B S S is negatively impacted by the class imbalance although it takes the climatology into account 414                 since
the climatology provides the reference prediction.
415 The best-performing parameters across the four event definitions are dominated by the kurtosis of
416                 the running-difference images. The kurtosis detects deviation from a Gaussian distribution in terms 417

of central peak vs. wing relative strength. An enhanced kurtosis or leptokurtic distribution, which 418                 is
associated with an increased probability of flaring, has an over-population of the wings relative 419                 to
a normal distribution, although it can also indicate an under-population of the central peak (and 420                 vice
versa for a low kurtosis or platykurtic distribution). In terms of moments, the remaining best-421

performing parameters are typically either the skew or the total of the running-difference images.
422 There are fewer direct-image (vs. running-difference image) and evolution (“dX/dt”) parameters 423

than expected in the top-10 across event definitions (fewer than 5 of 10); evolution-based parameters 424

in fact tend to dominate the low-scoring B S S results. As mentioned in Section 3.2.3, the “dX/dt” 425

parameters may be more susceptible to outliers, and looking beyond the top-10 their frequency 426

becomes higher although running-difference images still dominate over direct images. The cos(θ)
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Table 5. Results: C1.0+/6 hr

Top 10 Scoring Parameters: C1.0+/6 hr
Parameter
κ(Δ I9 4 )
κ(Δ I131 )
Σ (Δ I 9 4 )
κ(Δ I211 )
κ(Δ I171 )
κ(Δ I304 )
κ(Δ I193 )
dΣ(Δ I94 )/dt
ς (Δ I9 4 )
dς (ΔI94 )/dt

Brier Skill Score
0.247 ±  0.010
0.214 ±  0.010
0.207 ±  0.012
0.203 ±  0.008
0.199 ±  0.008
0.199 ±  0.007
0.199 ±  0.008
0.196 ±  0.014
0.192 ±  0.012
0.184 ±  0.012

Max(TSS)
0.703*
0.684
0.675
0.669
0.685
0.681
0.676
0.622
0.567
0.577

G or R O C S S
0.853*
0.828
0.816
0.818
0.828
0.820
0.829
0.775
0.717
0.735

Bottom 5 Scoring Parameters: C1.0+/6 hr
Parameter
dμ(I193)/dt
dμ(I171)/dt
dσ(I171)/dt
dκ(I211)/dt
dκ(I335)/dt

Brier Skill Score
0.000 ±  0.000
0.000 ±  0.000
0.000 ±  0.000
0.000 ±  0.004
−0.066 ±  0.024

Max(TSS)
0.027
0.014*
0.021
0.217
0.188

G or R O C S S
0.050
0.002*
0.027
0.269
0.320

*: Top or Bottom score for Max(TSS) and for G.
Note—Table 5 is published in its entirety in machine-readable format. A  portion is shown here for
guidance regarding its form and content.

427 location (observing angle) parameter shows minimal but not zero classification power. This result is 428

due to the HA R P  selection criteria that includes numerous small plage regions at greater absolute 429

latitudes than spot-containing active regions. These plage regions generally belong to the “no-event”
430 population, providing a small discriminating advantage to the middle latitudes and the corresponding 431

cos(θ) ranges.

432 4.2.1. Wavelength-compared Classification Performance

433 The different filters of A I A  are sensitive to plasma at different temperatures, and often sensitive to
434                 more than one temperature (Lemen et al. 2012). The behavior of the plasma in the corresponding 435

physical regimes may reflect different thermal or density responses to energy build up, or different 436

kinematic responses to photospheric driving motions, for example. To  address these questions, we 437                 first
simply evaluate the parameters’ performance as grouped by wavelength; in Section 5.3 we discuss 438                 more
the physical implications of the results.
439 A  cursory look at Tables 3–6 gives the impression that filters which detect hotter plasma more 440

frequently appear in the “Top-10”, across event definitions. The C  I V  1600A-based parameters are 441

never in the “top-10”, the He I I  304A- and Fe I X  171A-based parameters do make the top tiers in 442

B S S but rarely. The top parameters are dominated by parameters built from the Fe X V I I I  94A 443                 filter
and the other filters sensitive to hotter plasma, for example the Fe XXI-sensitive 131A filter.
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Table 6. Results: M1.0+/6 hr

Top 10 Scoring Parameters: M1.0+/6 hr
Parameter
κ (Δ I 9 4 )
σ(I94 )
dς (ΔI131 )/dt
Σ (Δ I 1 3 1 )
ς (Δ I131 )
dΣ(Δ I131 )/dt
κ(Δ I1 3 1 )
Σ (Δ I 9 4 )
σ (Δ I131 )
ς (Δ I9 4 )

Brier Skill Score
0.070 ±  0.014
0.070 ±  0.018
0.067 ±  0.017
0.061 ±  0.023
0.058 ±  0.014
0.056 ±  0.011
0.056 ±  0.011
0.055 ±  0.017
0.054 ±  0.019
0.054 ±  0.019

Max(TSS)
0.821*
0.707
0.701
0.646
0.720
0.624
0.778
0.708
0.575
0.661

G or R O C S S
0.913*
0.860
0.846
0.806
0.819
0.810
0.886
0.836
0.757
0.774

Bottom 5 Scoring Parameters: M1.0+/6 hr
Parameter
dσ(I171)/dt
μ(I171)
μ(ΔI1600 )
μ(I1600)
dμ(I131)/dt

Brier Skill Score
0.000 ±  0.000
0.001 ±  0.002
0.001 ±  0.001
−0.001 ±  0.001
−0.003 ±  0.006

Max(TSS)
0.042
0.268
0.060
0.141
0.150

G or R O C S S
0.036
0.340
0.046
0.139
0.259

*: Top score for Max(TSS) and for G. In this case the worst Max(TSS)= -0.104, G =  −0.116 both for
dμ(I171)/dt which has B S S= 0.000 ±  0.000.
Note—Table 6 is published in its entirety in machine-readable format. A  portion is shown here for
guidance regarding its form and content.

444 We note that the top-performing parameters for the C1.0+ event definitions include parameters
445 across all analyzed EUV filters, while for the M1.0+ event definitions the top-ranked parameters are 446

predominantly those derived from 94 and 131 A  filters (Tables 3–6).
447 In Figures 7, 8, 9, 10 we group the B S S results by wavelength. What is striking in these plots with
448                 regards to the performance by different A I A  filters is that the 94A parameters by and large perform 449

consistently well (comparatively speaking), with all “radar sectors” filled in at least somewhat. In 450

contrast, the radar plots for 211A, for example, have definite gaps; for example, while the κ(ΔI211 ) 451

scores well, the dκ(I211)/dt parameter does not.
452 Overall, this presentation confirms the highlights of Tables 3–6: the performance is overall lower for 453

the shorter-validity definitions, and uncertainties are larger for the event definitions that have smaller 454

event-population sample sizes (higher class imbalance). There are more parameters that perform with 455

higher classification success for the 94 A filter than most of the others, but then the 304 A parameters 456

also have a fairly high frequency of similar performance (albeit not “high performing” by this metric 457                 per
se). The other A I A  filters show a more mixed performance, with the 1600 A arguably the lowest 458                 overall.
Notably, for all wavelengths, the kurtosis- and skew- and total-based evaluation of running-459                 difference
images are often the highest performing parameters of any particular wavelength.
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F igure  6. Reliability plots for (Left to Right) C1.0+/24 hr, M1.0+/24 hr, C1.0+/6 hr, M1.0+/6 hr for top-
performing parameters (Top) and low-performing parameters (Bottom), according to B S S, as indicated.
The x  =  y line indicates perfect reliability, the histogram (blue) is the frequency of occurrence for each
prediction bin, the horizontal line (light-blue dashed) indicates the climatology (no resolution) and the “no
skill” line is also plotted (red dashes). The 1σ error bars are shown, and reflect the sample size in each bin.
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F igure  7. Radar plots showing Brier Skill Score for all parameters, grouped by filter, as labeled. Arcs
indicate the range of the B S S±σB S S ,  B S S> 0 (blue) and |BSS| for B S S< 0 (orange), with darker hues
indicating the uncertainty ranges. Shown: C1.0+/24 hr event definition results.
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F igure  8. Same as Figure 7 for the M1.0+/24 hr event definition results.
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F igure  9. Same as Figure 7 for the C1.0+/6 hr event definition results.

460 4.2.2. Performance Changes between Event Definitions

461 Generally speaking, the B S S scores decrease while Max(TSS) and G stay the same or increase 462

between C1.0+ and M1.0+ definitions, and between, for example, the 24 hr and 6 hr validity times. 463

This is fairly evident as a general rule from the discussion thus far and is not unexpected given the
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F igure  10. Same as Figure 7 for the M1.0+/6 hr event definition results.

464 sensitivity of B S S to event rates and relative insensitivity of Max(TSS) to the same (Bloomfield et al.
465 2012; Barnes et al. 2016).
466 However, there are some variations in this behavior. There are some parameters for which the 467

relative distributions (event- vs. non-event) vary noticeably with an expected increase in Max(TSS) 468

between, for example, C1.0+ and M1.0+ definitions - reflecting a shift to higher parameter values for 469                 the
event population, for example (Figure 11, top), and a relatively smaller decrease in the B S S. For 470                 other
parameters, the distributions vary in relative magnitude reflecting the different relative sample 471                 sizes,
but the distribution means, for example, do not significantly change (Figure 11, bottom). In 472                 this case,
the Max(TSS) does not appreciably change because the change in magnitude is offset by 473                 the change in
the value of R ,  and the value of the B S S decreases more substantially. We found no 474                 obvious or
systematic behavior in this regard between parameter “classes” (those based on direct vs. 475                 running-
difference images, or static vs. dX/dt parameters) except that similar parameters often (but 476                 not always)
behave the same across wavelengths.

477 4.3. Performance Changes with Solar Cycle

478 Solar-cycle-related variations may impact the ability of the parameters generated here to clas-479

sify flare-imminent active regions. The background UV- and EUV emission (Argiroffi et al. 2008; 480

Schonfeld et al. 2017) may add a constant to the mean or summation-based parameters, and vary-481                 ing
event rates can change the prior probabilities (McCloskey et al. 2018; Leka et al. 2019a). Even 482

running-difference images may be subject to subtle changes in signal-to-noise ratios due to high back-483

ground contamination, potentially impacting their ability to detect changes in active-region structure. 484

To  examine the behavior of these parameters against cycle-related influences, we break the data 485

set into two subsets, first with years that were “active” parts of the cycle (2011-2015 inclusive, plus 486

2017) and “quiet” (the rest), based partly on the start of the high-activity time as defined by coronal
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0.160 ±  0.015
0.240 ±  0.014
0.167 ±  0.008
0.095 ±  0.015

Max(TSS)
0.650
0.703
0.794
0.613
0.589
0.616

G or R O C S S
0.816
0.853
0.909
0.775
0.747
0.766

F igure  11. NonParametric Probability Density Functions of two parameters (top) κ(Δ I9 4 )  and (bottom)
Σ(I304 ) across three event definitions: C1.0+/24 hr, C1.0+/6 hr, M1.0+/24 hr. Presentation is the same as
Figure 4. Also shown are the relevant entries for the performance metrics. The distribution of the event and
non-event density estimations vary significantly for κ(Δ I9 4 )  across event definitions, most easily seen by the
increase in the mean for the event population, and is reflected in changes in their relative B S S, but for Σ(I304 )
the distributions change primarily in amplitude, due to the different prior probabilities from the different event
rates, so the differences in performance in particular for Max(TSS) are much less.

487 temperature (Schonfeld et al. 2017), and partly due to flaring rates. This partitioning provided total 488

sample size of 4898 A A R P S  (quiet) and 27169 A A R P S  (active). We run the full analysis, then look 489

in detail for two very different but originally high-scoring parameters, Σ ( I 9 4 )  and κ(Δ I 9 4 ).
490 The resulting probability density functions for the quiet and active periods for the C1.0+/24 hr
491                 event definition are shown in Figure 12, using equal prior probabilities for clarity. Overall, we find 492

very little difference in the distributions between the subsets. There is a very small shift toward
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493 higher values for the Σ ( I 9 4 )  parameter during the “active” years, but it shifts for both event- and
494 non-event distributions. There is almost no discernible difference in the distributions for κ(Δ I9 4 ).
495                       The event rates differ significantly between the active and quiet periods, as designed. The sample
496 sizes under this division are very small in most cases, leading to the situation that the adaptive-
497 kernal NPDA is no longer an appropriate model to use. The quiet period is most susceptible, with
498 the number of events for these years being: M1.0+/24 hr: 15; C1.0+/6 hr: 65; M1.0+/6 hr: 5. These
499 small numbers mean that for those event definitions, we cannot compare the results for active years
500 to those for quiet years with confidence; hence we concentrate on C1.0+/24 hr for the statistical
501 analysis.
502 In Figure 12 we show scatter plots of the B S S and Max(TSS) for C1.0+/24 hr for the quiet and 503

active periods separately against those scores resulting from the full dataset. For the active subset, 504                 the
difference against the full dataset is minimal for both metrics. For the quiet subset however, the 505                 B S S
shows a strong systematic decrease whereas the Max(TSS) shows scatter that is, within the 506                 expected
uncertainties, without significant trend. Recalling that B S S is sensitive to climatological 507                 event rates
whereas Max(TSS) is not (Jolliffe & Stephenson 2012), we demonstrate that the varying 508                 event rates
have a measureable impact on some evaluation metrics.
509 Combining this result with the minimal differences in the probability densities between quiet and
510                 active parts of the solar cycle, we conclude that cycle-related event-rate variations have a much larger 511

impact on the ability to classify our parametrizations, as measured by some metrics, than the impact 512                 of
variation in background emission.

513 5. I N T E R P R E TAT I O N

514 Because we construct the parametrizations ourselves, they enable physical interpretation to the
515                 extent allowed by analysis of just the images themselves. The span of regimes sampled, in temper-516

ature/density, height, and temporal dimensions, provides the opportunity to understand the causes 517

and effects of upper-atmosphere behavior in this context.

518 5.1. Temporal Variability

519 The parameterizations examine the variability of the corona on two different time scales. All of the 520

Δ I � parameters look at the variation in intensity on 72 s cadence which tracks both small-scale short-521

lived brightening events and (dis)appearances and kinematics of structures including coronal loops. 522

The moments of the running-difference images M (Δ I �)  further quantify the behavior: increased or 523

decreased mean indicates a preferential brightening or dimming on these timescales, or the appearance 524                 /
disappearance of structures. The standard deviation indicates the spatial (lack of) quietness. the 525                 skew
and kurtosis provide sensitivity to the far wings of the distributions indicating small-scale 526                 dynamics
related to temperature changes or to kinematic variations.
527 The M (Δ I �)  overwhelmingly dominate the top-10 performing parameters across all event defini-528

tions, and in particular the higher-order moments ς (Δ I�) , κ (Δ I�) .  The density estimates (see example 529                 in
Figure 4) show enhanced kurtoses for the event populations relative to the non-event populations, 530

indicating wing enhancements rather than degradation of the distribution peaks. Consistently high 531

kurtosis over the 13 min indicates continual presence of rapidly-changing but large-amplitude bright-532

ness fluctuations (see Figure 1). In contrast, the μ(Δ I�) , σ (Δ I�)  parameters that should be sensitive 533                 to
more subtle variations such as expected from gradual loop motion, do not generally perform well 534                 in
B S S although some have notable G. Non-activity-related intensity changes as due to gradual
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F igure  12. [Top]: Probability density functions for C1.0+/24 hr event- and non-event distributions
comparing the “quiet” part of the solar cycle (dashed) with the “active” part of the solar cycle (solid).
Equal prior probabilities are used to highlight differences in the shape of the PDEs,  separate from the
changes due to the different event rates. (Left): Σ( I9 4 ),  (Right): κ(Δ I9 4 ) .  [Bottom]: Comparisons of B S S
(left) and Max(TSS) (right) for all parameters, showing results for the quiet- and active- parts of the cycle (as
indicated) vs. the metrics for the full data set. The table summarizes the subset characteristics and the
resulting differences for two metrics for the C1.0+/24 hr event definition.

535 loop motion or gradual loop heating /  cooling generally proceed slower than the cadence here, and 536

additionally involve preferentially larger (full-loop) structures (Viall & Klimchuk 2012). Hence, there 537

is strong indication, from multiple parameter results, that enhanced variability in brightness or en-538

hanced kinematic activity, on short timescales and small spatial scales, is a discriminating feature of 539

flare-imminent active regions.
540 Longer-term evolution is reflected in the slope of the linear fit to the 7 hourly samples (Figure 2).
541                 We find that, for example, for C1.0+/24 hr the dΣ(Δ I9 4 )/dt parameter performs well, and has dis-542

criminant boundaries in the wings of the distribution (Figure 4). This means that impending activity 543                 is
indicated by either a rapid increase or a rapid decrease in the level of rapid intensity fluctuations 544                 in
the 94A filter. A  similar scenario is found for M1.0+/24 hr for dς (ΔI94,131)/dt, the temporal
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545 variation of the skew of the running-difference analysis from 94A and 131A filter images (Table 4): 546

on longer timescales, either increasing or decreasing levels of short-term brightness variability can 547

indicate upcoming activity (Table 4). In contrast, the dς (I211)/dt parameter for the C1.0+/24 hr
548 definition performs very poorly and in Figure 4 it is easy to see why: the event and non-event density
549 estimates are essentially identical, apart from the different prior probabilities.
550 Across the event definitions, parameters describing the evolution on hours-long timescales (the
551                 dX/dt parameters) are not generally overall better- or worse- performing than the static parameters. 552

They do not appear as frequently as would be expected by even chance in the top-most tiers of 553

performance, but have B S S that are within the uncertainties of many static parameters, and vice 554

versa. In other words, while in certain cases for certain parameters and certain event definitions 555

there may be a dX/dt parameter that shows promise for relating coronal evolution to imminent flare 556

activity, there will be at least a few other parameters that do not track the evolution but which 557

perform as well. The results here show a small preference for static parameters, but we note this 558                 may
be a result of outliers rather than a true property of the Sun.

559 5.2. The Totals, The Moments

560 The extensive Σ ( I�)  parameters scale with the size of the A A R P,  whereas the intensive param-561

eters (the moments M ( I�) )  do not. We see here that extensive parameters can perform at least 562                 as
well as some of the intensive parameters. In addition to Σ(I9 4 )  being a “top-10” discriminator 563                 for
C1.0+/24 hr (see also Figure 4), most Σ ( I λ )  parameters for EUV wavelengths (meaning, all but 564                 1600A)
have high ranking across the event definitions. The general ability of extensive AIA-based pa-565                 rameters to
differentiate between flare-imminent and flare-quiet groups is consistent with the results 566                 of numerous
prior studies, in particular those based on the photospheric magnetic flux (reflecting 567                 long-held
observers’ wisdom) that, simply put, “size matters” (see discussions in Sawyer et al. 1986; 568                 Leka &
Barnes 2003b, 2007). Larger active regions have more total emission in the corona and chro-569                 mosphere
(as heating functions are believed to scale with magnetic flux, (e.g. Warren et al. 2012)), 570                 and are also
the more flare-productive, so this is an example of “large active region bias”.
571 However, the μ(I�) parameters perform poorly across wavelengths and event definitions: see for 572

example μ(I94) for C1.0+/24 hr in Figure 4. The distributions are distinguishable (the means are 573

separated), and the “event” distribution tends toward higher values, but there is no discriminant 574

boundary within the bulk of the data. Pairing of these results (the Σ ( I�)  and μ(I�) parameter 575

performances), and looking in detail at the distributions, confirms that while in fact the μ(I�) values 576                 are
higher for the event populations, it is by not enough so as to provide good predictive power due 577                 to the
class imbalance.
578 In other words, flare-imminent regions are inherently only slightly brighter (higher specific intensity)
579                 than flare-quiet regions. This result is a bit surprising, as one might expect that the magnetic 580

complexity strongly related to flare productivity would produce strong corona-threading currents 581

available to heat and preferentially brighten flare-imminent regions significantly over similarly-sized 582

but flare-quiet sunspot groups (see, e.g. Asgari-Targhi et al. 2019). Such does not appear to be the 583

case.
584 However, small structures that produce intense brightness variations are more likely to impact 585

distribution wings. This can explain the dominating performances of parameters based on the kurtosis 586                 of
the running-difference distributions (κ(Δ I�);  Tables 3-6 and Figures 7 – 10, see also Sections 4.2, 587                 5.1).
The ability of the κ (Δ I�)  parameters to distinguish flare-imminent from flare-quiet targets
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588 indicates that flare-imminent regions display rapid variability in the E/UV images that is small in 589

spatial scale, as well. These results are consistent with an increased number of small-scale ongoing 590

reconnection events related to the increased magnetic complexity of these regions relative to A A R P s  591

that are imminently flare-quiet.
592 The skew of the running-difference has discriminating power for many filters and more than one 593

event definition. Noting that, for example, 171A filter images are often used to detect coronal loops, 594

we examined the parameter distributions and in fact the data display both positive and negative 595

skew, but the positive-skew dominates and is slightly more pronounced for the event populations. In 596

this context, the lack of performance for μ (Δ I�)  implies that overall, the brightness changes on short 597

timescales sum to zero. Hence, ς (Δ I�)  >  0 implies a small number of intense brightenings probably 598

combined with a larger number of less intense dimmings to produce an imbalance in the wings of the 599

running-difference brightness distributions.
600 Because we do not (yet) analyze the A A R P  data specifically in the context of, for example, 601

nearby open magnetic flux, we cannot comment on whether we are detecting “crinkles” specifically 602

(Sterling & Moore 2001b) or more generic enhanced small-scale activity. However, we can conclude 603

that these results, based on moment analysis of time-series data, is likely only available because we 604                 are
using full-resolution spatial sampling.

605 5.3. Wavelength, Temperature, and Physical Regimes

606 The A I A  filters do not uniquely sample single temperatures or physical regimes (Lemen et al. 2012; 607

Warren et al. 2012; Cheung et al. 2015). This fact makes direct interpretation of the parameters in 608                 the
context of plasma temperature quite challenging if not potentially misleading, and obviating the 609                 need
for, e.g., differential emission measure analysis (forthcoming, see Section 6). Still, analysis of 610                 the
results as a function of filter (Figures 7–10) shows patterns of behavior that are notable in the 611                 context
of the different regimes that the filters do sample.
612 For some filters there is a significant difference in the B S S across event definitions between the
613                 Σ ( I�)  parameters and the higher-order M ( I �)  parameters. This result implies that the presence of 614

emission is discriminating, but there is no further information from the spatial distribution of the 615

emission. This trend is notably present in the 131, 171, 211, and 193 and 335 A filter results. In 616

contrast, for the 94, 304, and 1600 A  filters there is non-negligible performance for the higher-order 617

M ( I�)  parameters in addition to the Σ ( I�) ,  implying that distinctive information about the spatial 618

distribution (features) can be present. The common theme between the first set of filters is that they 619

are sensitive to hotter plasma than are the 304, and 1600 A  filters (Lemen et al. 2012; O’Dwyer et al. 620

2010). These two filters are not sensitive to flare-temperature plasma and while the 94A filter intensity 621

is in fact dominated by hot plasma, it does include a cooler component (Warren et al. 2012).
622 The presence of hot plasma overall may be indicative of past flare activity, and we must be reminded 623

that data acquisition is not separate from flare events (Figure 3). The presence of a single flare does 624                 not
usually directly impact (for example) the inferred longer temporal behavior as parametrized 625                 by the
“d/dt” variables (see Figure 2), although as mentioned earlier it can supply outlier events. 626                 But the
dΣ(I�)/dt parameters stand out as well as the Σ ( I�)  parameters. To  the extent that the 627                 images in the
filters that may be dominated by flare-temperature plasma, this result signifies that its 628                 presence is an
indicator of past and, hence, future activity. This result is reminiscent of the strong 629                 performance
(reflected in “observer’s wisdom”) of “persistence” as a flare predictor (see discussions 630                 in Sawyer et al.
1986; Leka et al. 2019b)).
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631 In line with this finding, we also see that parameters from the 94 and 131 A  filters, sensitive to
632                 hot flare plasma, dominate the top-performing parameters for the M1.0+ event definitions compared 633

to C1.0+. This result implies that there is increased activity/dynamics in hotter plasma prior to 634

M1.0+ flares, or that larger flares may be produced preferentially after smaller flares have energized 635                 the
corona. However, we note that as the exact order of the top parameters for M1.0+/24 hr and 636

especially M1.0+/6 hr is not very robust given the uncertainties, this result only provides a hint at 637                 the
importance of the hottest channels for differentiating larger-flare-imminent regions.
638 Additionally, in some A I A  filters and across event definitions (see Figures 7 – 10), the mean intensity
639                 μ(I�) does not predict between the two populations well, but the standard deviation σ (I�) does. The 640

spatial variation of the brightness is broader (larger standard deviation) for flare-imminent regions. 641                 For
a few filters, notably 94, 304, and 1600A, this disparity extends to the higher-order moments of 642                 the
intensity distribution, with notably better performance by ς (I�) and κ( I�)  than μ(I�).
643 Two of those latter filters are distinctly not sensitive to flare-temperature coronal plasma. He I I  644

304 A is a relatively cool optically thick line sensitive to the chromosphere /  upper transition region, 645

with a peak temperature response around 0.05MK, albeit with challenging radiative transfer char-646

acteristics (Golding et al. 2017). It samples a different physical regime than the other filters which 647

image the upper corona (see Figure 1), especially in the context of flares. The C  I V  and “continuum” 648

1600 A filter samples the upper photosphere and transition region. While flare ribbons are often 649

traced using 1600 A emission, that emission is not particularly hot (Simões et al. 2019) – but the 650

brightness in 1600A filter images is also sensitive to the presence of magnetic structures and local-651                 ized
areas of transient heating. The 94 A filter images are generally dominated by hot active-region 652                 core
plasma and flare plasma (Lemen et al. 2012; Cheung et al. 2015), but include a cooler-plasma 653

component (Warren et al. 2012), and additionally have a notoriously low signal-to-noise ratio.
654 From all of this we can conclude that there is evidence of a characteristic difference in the dis-655

tribution of intensity between flare-imminent and flare-quiet active regions. In the high corona, 656                 the
features are more likely larger-scale, detectable by the standard deviation of the distribution, 657                 whereas
in the upper photosphere, transition region, and chromosphere, the features are likely to 658                 include
smaller-scale features that impact the higher-order moments.
659 The temporal evolution of the moments of the brightness distributions, also shows notable differ-660

ences in patterns between filters that follow the same trends as outlined above: dμ(I�)/dt shows 661

no predictive capability across wavelength and event definition, dσ(I�)/dt only for 94, 304 and to a 662

small extent 335A, then dς (I�)/dt, dκ(I�)/dt show predictive power for 94, 304, and 1600A but not 663

for the other filters. Again, this implies we detect evolution in the level of variability of small-scale 664

intensity changes, as could be related to general magnetic complexity and associated on-going small 665

reconnection events in the transition region and chromosphere. This variability is not reflected in 666

parameters derived from filters that sample only hotter plasma, meaning we detect variations that 667                 are
dominated by larger, less impulsively-varying structures.
668 The overall less-good performance of the 1600A parameters across event definitions, specifically 669

the dς (ΔI1600)/dt and dκ(ΔI1600 )/dt compared to the strong results for the same parameters from 670

filters that sample coronal heights and temperatures, strengthens the case that parameters using 671

EUV filters detect small-scale reconnection events. Such phenomena may be insufficiently large or 672

energetic enough to produce UV-radiation signatures in the lower layers of the solar atmosphere. 673                 At
the chromospheric height and temperatures detected in the 304A channel, however, and the
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674 higher /  hotter channels, these small-scale high-frequency variations are visible and bring power to
675 differentiating between the populations, across event definitions.
676 There are patterns in the results (Figures 7–10) which imply that the filters sensitive to more than
677                 one temperature detect different behaviors from the different physical regimes they sample. For ex-678

ample, filters that are predominantly sensitive to active-region plasma temperatures (171, 193, 211 A) 679

show poor performance for σ (I�) whereas 1600 A shows moderate performance in that parameter, as 680                 do
94 A and 304 A. Similar behavior is seen for dκ(I1600)/dt, whereas dκ(I171,193,211)/dt show poor 681

performance. In contrast, the active-region plasma-dominated filters show moderate performance in 682

σ(ΔI171,193,211) whereas σ (ΔI1600 ) does not. The 131 A filter senses emission from both flare-relevant 683                 Fe
X V I I I  but also cooler transition-region Fe VI I I ;  the 304 A line samples a mix of regimes; the 94 A 684                 filter is
sensitive to the transition-region sensing Fe IX ,  Fe X  emission as well as the flare-relevant 685                 Fe X V I I I .
The performance patterns for the 94 A filter parameters, as compared to those from the 686                 more selective
hot- vs. cool-sensing filters, confirms that both flare- and transition-region behaviors 687                 are being detected
in the 94 A filter, especially as we have not corrected for the “warm” component 688                 (c.f. Warren et al.
2012). The dominance of the 94 A filter parameters in overall performance shows 689                 that multi-regime
sampling may enhance the breadth of information available on the flare-imminent 690                 nature of solar active
regions.
691 This analysis of NPDA results for the A I A  filters and the implied physical regimes they sample 692

is not straightforward, that is very clear. Rather than pushing the analysis further with regards to 693

physical interpretation, we acknowledge the need for, e.g., Differential Emission Measure analysis, 694

which is beyond the scope of this article.

695 6. DISCUSSION

696 We present here a large-sample statistical analysis of the behavior of the solar chromosphere and 697

corona as deduced from the parametrization of UV and EUV images from AIA.  We specifically 698                 ask
how these parametrizations behave in flare-imminent active regions. This study complements 699

previous work that focuses on the photospheric magnetic field (Leka & Barnes 2007; Leka et al. 2018); 700

we find that there is some information available to statistically, but not uniquely, differentiate between 701

regions that will produce a flare event, according to various event definitions, from those that will 702                 not.
703 Superficially, the work by Nishizuka et al. (2017); Jonas et al. (2018); Alipour et al. (2019) appears
704                 similar to the present study, given their use of A I A  data in the context of flare prediction. However,
705                 there are very important differences. First and foremost, this is not a study focused on empirical 706

flare prediction, but rather we ask whether there are physical characteristics of flare-imminent active 707

regions as viewed from chromospheric, transition region, and coronal emission. The data handling 708                 and
preparation is different, performed here with a strong emphasis on ensuring the ability to perform 709

quantitative physical analysis (Dissauer et al. 2022c). Lastly and most importantly, by constructing 710                 the
parameters specifically to investigate physical behavior, including behavior on different temporal 711                 scales,
the results can lead to some physical interpretation.
712 The results show classification performance that varies from “very good” through “mediocre” to 713

“poor”, depending on which combination of event definition and metric is used. The B S S is similar 714                 to
what is achieved on similar-sized datasets when the question is posed for parametrizations of the 715

photosphere; this metric provides a summary of how well the predicted probability for any given 716

target reflects the frequency of occurrence for other samples with the same measure. High B S S is
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717 extremely difficult to achieve as it is constructed against the climatology, and class-imbalance – while 718

inconvenient, is a strong influence for this metric. It is a metric based on the probabilities and thus
719 the true distribution of the parameters, so that the “mediocre” and worse scores reflect the fact that 720

substantial differences in the distributions can be partially offset by the prior probabilities (Figures 4, 721

11).
722 The Max(TSS) results are good, but caution must be used to understand that this metric is opti-723

mized when the probability threshold used (or incorporated into a cost function, for example) reflects 724                 the
event rate, again coming up against the class-imbalance reality of the Sun (Bloomfield et al. 2012; 725                 Barnes
et al. 2016; Kubo 2019). Comparing the present results to the very similar targets (although 726                 different
latency periods), sample sizes, and approach in Leka et al. (2018), the Max(TSS) results 727                 are similar
even though that study invoked multi-parameter NPDA.
728 The impressive scores here are the R O C S S or G, which summarize the ROC plots and the corre-729

spondence between the value of a parameter, its associated probability, and whether or not there was 730                 a
corresponding event. In this sense, we can definitively say that there is information in the coronal 731

images that is related to whether or not a region produces a flare event as we define one, given the 732

parameters we use.
733 As the event rate decreases (Table 2), the best B S S values get smaller while the Max(TSS), 734

R O C S S, and G values get larger. The distributions of event-imminent versus event-quiet populations 735

become increasingly different with lower event rates, which is reflected in the Max(TSS), R O C S S, 736                 and
G values, but this is more than offset by the increasing class imbalance that enters into the B S S. 737                 Similar
behavior is also present in predictions made from parameters characterizing the photosphere 738                 (Barnes
et al. 2016; Leka et al. 2018, 2019a). Clearly, no single metric provides a thorough evaluation 739                 of
performance, and factors such as class imbalance or event rate must also be considered when 740

interpreting metrics, especially those for which thresholds or limits must be set.
741 We find that enhanced variability in EUV and UV intensity on short timescales and small spatial 742

scales is one of the strongest discriminators across event definitions and A I A  filters. This enhancement 743

is most likely of the form of intense transient brightenings, whether small-scale and localized or 744

rapid larger loop movement, rather than gradual loop movement or gradual heating/cooling, as it 745

preferentially enhances the wings (extremes) of the running-difference image brightness distributions. 746                 Of
note here, spatial resolution matters in order for the parametrizations to detect these differences, 747                 and
these results validate our approach of retaining the full A I A  spatial sampling across the A A R P  748                 fields of
view (Dissauer et al. 2022c).
749 On longer timescales, strong increases (or decreases) in brightness moderately indicates impending 750

flaring, and while overall the presence of hot plasma is a good indicator, this result is also consistent 751

with the general correlation between active region size and flare productivity. The evolution of 752

parameters describing the corona can provide flare-imminent indicators, but with little preference 753

over “static” parameters.
754 Of note, while coronal loop structures are readily detected through an analysis of the spatial
755                 variations of emission in the 171, 211 A filters. the quantitative measure of these spatial variations 756

(e.g. σ(I171,211)) is not a good discriminator. Also surprisingly poor is the mean intensity and its 757

longer-term trending, which implies that there is minimal significant difference between magnetically 758

complex and magnetically simple active regions in terms of their average coronal brightness and its 759

temporal variation.
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760 The differences in coronal, transition-region, and chromospheric E/UV emission between flare-761

imminent and not-flare-imminent active regions has broad implications for models of active-regions 762

overall, and their upper atmospheres in particular. The approach outlined here and these results 763

provide constraints on the expected emission and kinematic behavior of pre-event (and even post-764

event) active region upper atmospheres.
765 As pointed out in Section 5.3, simply analyzing the behavior of the brightness and kinematics in A I A
766                 filters is tricky due to their multi-thermal sensitivity. We address this in an upcoming work that uses 767

differential emission measure analysis to disentangle densities and temperatures across this A A R P  768

database (Dissauer et al. 2022a). Similarly, a more complete picture will be built as we combine the 769

A A R P  database with the HA R P  magnetic field inputs; as of this work we simply begin the process of 770

statistically understanding the behavior of the chromospheric, transition region, and coronal regimes 771                 in
the context of flare events using large-sample data finally afforded by high-resolution continual 772

imagery from SDO /AIA.
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