
1

Universal Compression of Large Alphabets with
Constrained Compressors

Hao Lou, Farzad Farnoud, Electrical and Computer Engineering, University of Virginia, VA, USA. Email:
{haolou,farzad}@virginia.edu

Abstract—Over unknown, possibly large, alphabets, one ap-

proach for compressing sequences is to separately convey their

symbols and patterns (sequences of integers representing orders

in which the symbols appear). It has been shown that patterns

generated by i.i.d. sources can be compressed with diminishing

redundancy using compressors that know the number of occur-

rences of each integer symbol. Motivated by applications with

resource restrictions, e.g., data deduplication, we study universal

compression of patterns using compressors under constraints. A

characterization of constrained compressors is given and general

results for computing redundancies are derived. We also show

that for patterns generated by i.i.d. sources over an alphabet of

size k, the per-symbol average- and worst-case redundancies are

at least ⇥(log(min(k, n/ log n))) bits (n is the sequence length),

under the constraint that compressors only know the number

of distinct integer symbols in the pattern. A simple sequential

compressor satisfying this constraint is also analyzed and shown

to achieve this redundancy in the first order term.

I. INTRODUCTION

Shannon’s source coding theorem states that to compress a
source X , we should represent each outcome x with approx-
imately log(1/p(x)) bits. However, there are cases when the
source distribution is unknown. A common approach is then
to assume a class P of distributions, e.g., i.i.d. or Markov
distributions, to which the source distribution belongs. A good
compressor should have ‘universality’ over all possible sources
in the family instead of just being entropy-approaching for a
certain source.

A brief introduction to the universal compression framework
is as follows. Let a source X be distributed over a discrete
support set X according to a distribution p. Every compressor
of X corresponds to a probability distribution q over X where
x 2 X is represented by roughly log(1/q(x)) bits. The extra
number of bits required to represent x when q is used instead
of p is therefore

log
1

q(x)
� log

1

p(x)
= log

p(x)

q(x)
.

The worst-case redundancy of q with respect to P is defined
as the largest number of extra bits used for any x and any
distribution p, i.e.,

R̂(P, q) = sup
p2P

sup
x2X

log
p(x)

q(x)
= sup

x2X
log

p̂(x)

q(x)
,

where p̂(x) denotes supp2P p(x), the maximum probability
assigned to x by any p 2 P . The worst-case redundancy of P
is defined as

R̂(P) = inf
q
R̂(P, q) = inf

q
sup
x2X

log
p̂(x)

q(x)
, (1)

the lowest number of extra bits in the worst case required by
any compressor.

Similarly, one can define the average-case redundancy of
P as

R̄(P) = inf
q

sup
p2P

X

x2X

✓
p(x) log

p(x)

q(x)

◆!
, (2)

the lowest number of extra bits on average required by any
compressor. Note that R̄ and R̂ are always nonnegative and
R̂ is an upper bound on R̄.

Classic universal compression [1]–[5] considers encoding
sequences generated by sources with a known alphabet. How-
ever, in applications like language modeling, alphabets can
be very large or even unknown. To address this problem, [6]
took the approach of describing the sequences in two separate
parts: the set of symbols appearing in the sequence and the
pattern they form. The pattern of a sequence is a sequence of
integers representing the order in which the symbols appear.
For example, the sequence “data” is represented by its symbols
‘d’, ‘a’, ‘t’ and its pattern “1232”. It was shown in [6] and
subsequent works [7]–[11] that although the cost of encoding
symbols is inevitable, alphabet-independent patterns can be
efficiently compressed.

Another application of this encoding scheme is in data
deduplication [12], [13]. Data deduplication is an efficient data
reduction approach used in large-scale storage systems [14],
[15]. As formalized in [16], a typical data deduplication
algorithm [16] uses a chunking scheme to parse the data
stream into a sequence of ‘chunks’. The chunks are then
sequentially processed by a dictionary-based compressor. The
encoding of each chunk starts with an indicator of whether the
chunk has appeared before. For a new chunk, what follows
is simply the chunk itself. For a chunk that has previously
appeared, its indicator is followed by a pointer to one of its
previous appearances. Note that the specific chunking scheme
varies in different systems, and is out of the scope of this
paper. The above algorithm can be viewed as the symbol-
pattern encoding with chunks being new unit ‘symbols’.
Unique chunks are stored in full, corresponding to the storage
of symbols. Indicators and pointers are independent of the
actual content of chunks, corresponding to the encoding of
the pattern. Data deduplication has been well studied from a
practical perspective; see [17] for a comprehensive survey. It
was also studied from an information-theoretic point of view
in [16], [18]–[20].

Due to the scale of data, encoding schemes in deduplication
algorithms are designed to be of low complexity. As described
above, every chunk is encoded by an indicator followed by
a pointer if it has appeared before. To keep the encoding

2

process time- and memory-efficient, the pointer is encoded
by a number of bits equal to the log of the number of distinct
chunks seen so far. In this approach, the only information
needed to be kept in memory is the collection of chunks that
have previously appeared and the computation is simple as
all chunks appeared before are viewed as equally likely. The
number of bits assigned by the compressor to a previously ob-
served chunk is independent of its probability, which is clearly
suboptimal. Pattern compressors that were shown in [6], [7]
to have performance close to optimal need to store how many
times integer symbols appear so that frequent integers get
short representation. As a result, encoding schemes used in
deduplication systems will lead to higher redundancies, as a
cost to achieve low complexity.

Motivated by applications like data deduplication, we wish
to gain a better understanding of the trade-off between com-
plexity and redundancy. In this direction, we study compres-
sors under low-complexity constraints in the framework of
universal compression. Constrained compressors do not store
or compute all relevant information about a sequence. Such
estimators will assign the same probability to sets of sequences
whose elements look identical to the compressor. As a result,
we define constraints as partitions of the data space X into
parts, where the elements in each part must be assigned the
same probability. Alternatively, one can constrain the total
space used by a compressor. The partition-based constraints
studied here, however, appear more amenable to analysis,
as well as more compatible with existing compressors in
data deduplication, which are usually characterized by what
type of information they use rather than their total space or
computational complexity [16].

General results on the worst- and average-case redundan-
cies with respect to the constrained compressors are derived.
In particular, we consider universal compression of patterns
generated by i.i.d. sources over an alphabet of size k but
with constrained compressors. We consider the constraint that
compressors are only allowed to use the information about
how many distinct symbols (integers) are there in the pattern
sequence. (Patterns with the same number of distinct integers
are assigned the same probability.) We compute the worst- and
average-case redundancies for such compressors. It is shown
that under this constraint, the per-symbol redundancies are at
least a constant number of bits (diminishing redundancy can be
achieved without any constraint). We also show that a simple
dictionary-based encoding scheme satisfying this constraint
achieves this lower bound up to the first-order term.

Due to space limitation, some of the proofs will be omitted
or only sketched.

II. PRELIMINARIES AND NOTATION

In this paper, we use log to denote the logarithm to base 2
and use ln to denote the natural log. We use [n] to denote the
set of positive integers {1, 2, . . . , n}.

A. Sequences and patterns

Let xn = x1x2 · · ·xn be a sequence of n symbols. We use
|xn| to denote the length of xn and N(xn) the number of

distinct symbols in xn. We define the index ◆(x) of a symbol
x in a sequence xn to be one more than the number of distinct
symbols preceding x’s first appearance in xn. The pattern of
xn is defined as the sequence of indexes, i.e.,

 (xn) = ◆(x1)◆(x2) · · · ◆(xn).

As an example, in the sequence “abacbbc”, ◆(a) = 1, ◆(b) =
2, ◆(c) = 3, and hence, (abacbbc) = 1213223. In the
following, we use to denote a generic pattern. Elements
in patterns are referred to as index integers.

We consider a discrete alphabet A of size k. Let An denote
the set of all sequences of length n over A and let (An)
denote the set of patterns of all sequences in An, i.e,

 (An) = { (xn) : xn 2 An}.

It is clear that (An) is the same for any alphabet A of size
k. It contains all patterns of length n and at most k distinct
index integers. So we will write n

k instead of (An). For
example, if k = 2 and n = 3, then

 3
2 = {111, 112, 121, 122}.

Let n
k denote the set of patterns of length n and with exactly

k distinct index integers. It follows that n
k = [k

m=1
n
m.

For a pattern , the profile of is a vector of length | |,
defined as

�() =
�
'1,'2, . . . ,'| |

�
,

where 'j is the number of index integers that appear j times
in . For example, in pattern 12131, one integer (namely, 1)
appears 3 times and two integers (2 and 3) appear once. So
�(12131) = (2, 0, 1, 0, 0).

Moreover, we define the innovation vector ⇤() of to be
the vector containing indexes of new symbols. Formally,

⇤() = (�1,�2, . . . ,�N()),

where �j is the index of the first occurrence of integer j. For
example, in pattern 12131, integers 2 and 3 first appear in
positions 2 and 4, respectively. So ⇤(12131) = (1, 2, 4). Note
that we always have �1 = 1. We use ⇤n

k to denote the set of
innovation vectors of all patterns in n

k , i.e.,

⇤n
k = {⇤() : 2 n

k},

and write ⇤n
k = [k

m=1⇤
n
m.

B. Universal compression of patterns over i.i.d. sources

The class of i.i.d. sources that generate length-n sequences
over A is denoted In

k . Let ⇥k = {(✓1, ✓2, . . . , ✓k) :
Pk

i=1 ✓i =
1, 0  ✓i  1}. Each p✓ 2 In

k is then parameterized by a
vector ✓ 2 ⇥k.

Each p✓ induces a distribution over n
k as

p✓() =
X

xn: (xn)=

p✓(x
n).

For example, let k = 2, n = 2. For ✓ = (0.4, 0.6), the induced
pattern distribution is p✓(11) = 0.42+0.62 = 0.52, p✓(12) =
2⇥0.4⇥0.6 = 0.48. Note the dual use of p✓: p✓(xn) denotes

3

the probability of sequence xn and p✓() denotes the induced
probability of pattern .

As mentioned, we are interested in universal compression
of patterns generated by i.i.d. sources over alphabets of size
k. Let In,k

 denote the set of pattern distributions over n
k

induced by In
k . From (1), the worst-case redundancy of In,k

equals

R̂
⇣
In,k

⌘
= inf

q
sup

 2 n
k

log
p̂✓()

q()
,

where p̂✓() = sup✓2⇥k
p✓(). From (2), the average-case

redundancy of In,k
 equals

R̄
⇣
In,k

⌘
= inf

q
sup
✓2⇥k

0

@
X

 2 n
k

p✓() log
p✓()

q()

1

A.

In [7], it was shown that for an arbitrarily small ✏ > 0 and
k  O

�
n(1�✏)/3

�
, R̄
⇣
In,k

⌘
� k�1

2 log n1�✏

k3 (1 + o(1)). Other
existing results mainly focus on the class of i.i.d. sources over
arbitrarily large alphabet sizes, i.e., In

 = [1
k=1I

n,k
 = In,n

 .
It was shown in [6], [9] that both R̂(In

) and R̄(In
) are of

order n1/3 up to a logarithmic factor.

III. UNIVERSALITY OF CONSTRAINED COMPRESSORS

We consider constraints resulting from complexity restric-
tions. Resource-limited compressors are unable to fully pro-
cess the data, which leads to some data inputs to be indistin-
guishable. With this intuition, we assume that every constraint
C defines a partition of the support set X as X = [K

j=1Cj .
Under C, as elements in the same part are indistinguishable
to the compressor, they are assigned the same probability. So
the set of permitted compressors under C is

QC = {q : q(x1) = q(x2) if x1 ⇠ x2},

where ⇠ denotes the equivalence relation that x1 and x2

belong to the same partition set.
Similar to (1) and (2), for a class P of sources, we can

define the worst- and average-case redundancies under C as

R̂(P,QC) = inf
q2QC

sup
x2X

✓
log

p̂(x)

q(x)

◆
,

and

R̄(P,QC) = inf
q2QC

sup
p2P

X

x2X
p(x) log

p(x)

q(x)

!
,

respectively.
For a generic distribution p over X , we use p̃ to denote the

induced distribution by p over the parts {Cj}Kj=1,

p̃(j) =
X

x2Cj

p(x), j = 1, 2, . . . ,K.

For a family of distributions P , we write P̃ = {p̃ : p 2 P}.
Moreover, if we distribute p̃(j) evenly among all x 2 Cj ,

we get the flattened distribution of p, denoted p̄,

p̄(x) =
p̃(j)

|Cj |
=

P
x2Cj

p(x)

|Cj |
, for x 2 Cj .

Next, we present lemmas for computing R̂(P,QC) and
R̄(P,QC). The proofs are omitted due to space limitation.

Lemma 1. The worst-case redundancy of P under constraint

C satisfies

R̂(P,QC) = log

0

@
KX

j=1

|Cj | · sup

x2Cj

p̂(x)

!1

A,

where p̂(x) = supp2P p(x).

Lemma 1 can be proved by a similar argument to that of
Shtarkov’s sum [21]. The lowest redundancy in the worst case
is achieved by assigning each x probability proportional to the
largest maximum probability in the same part. Note that when
there is no constraint, i.e., the corresponding partition of X
is X = [x{x}, R̂(P,QC) is reduced to the normal case, i.e.,
log(

P
x p̂(x)).

Lemma 2. The average-case redundancy of P under con-

straint C satisfies

L(P,QC)  R̄(P,QC)  U(P,QC),

where

L(P,QC) = max

✓
sup
p2P

(D(p||p̄)), R̄
⇣
P̃
⌘◆

,

U(P,QC) = sup
p2P

(D(p||p̄)) + R̄
⇣
P̃
⌘
.

The bounds on average-case redundancy under constraint
is determined by supp2P D(p||p̄) and R̄

⇣
P̃
⌘

. The former is
the maximum KL-divergence between a distribution p and its
flattened version p̄ for all p 2 P , which can be viewed as
a ‘distance’ between P and QC . The latter is the average-
case redundancy of P̃ , the family of induced distributions over
the parts. Note that when there is no constraint, p, p̄ and p̃
are identical, so both upper and lower bounds are reduced to
R̄
⇣
P̃
⌘
= R̄(P).

IV. LOWER BOUNDS ON PATTERN REDUNDANCIES

In this section, we consider two specific sets of constrained
pattern compressors and present lower bounds on the worst-
and average-case redundancies for encoding patterns generated
by i.i.d. sources over an alphabet of size k.

The constraints are motivated by data deduplication. Recall
that deduplication can be viewed as encoding the contents
of chunks of data and their pattern separately. The pattern
corresponding to the chunks is encoded sequentially, i.e., one
index integer at a time. When the i-th integer is processed,
the compressor knows the number of distinct index integers
among the first i � 1 positions (i.e., the number of distinct
chunks among the first i chunks), but not how many times
each has appeared. We will start with the simpler block
version of this constraint, denoted C1, which assigns the same
probability to all patterns with the same number of distinct
index integers. We then consider the sequential version, C2,
where two patterns are assigned the same probability if their
length-i prefixes have the same number of distinct integers
for all i. It is clear that C1 is more restrictive than C2 and

4

any compressor that satisfies C1 also satisfies C2. We show
later C2 is equivalent of encoding by innovation vectors.
Note that although C2 is motivated by sequential algorithms,
compressors satisfying C2 need not be sequential.

A. Pattern compressors under constraint C1

The partition of n
k defined by C1 is n

k = [k
m=1

n
m,

and the set of allowed compressors is

Q1 = {q : q(1) = q(2) if N(1) = N(2)}.

Theorem 3. As n ! 1, R̂
⇣
In,k
 ,Q1

⌘
is greater than

(
(n log k � k log n)(1 + o(1)), for k  n

lnn ,

n(log n� log log n)(1 + o(1)), for k > n
lnn .

Proof: By Lemma 1,

R̂
⇣
In,k
 ,Q1

⌘
= log

kX

m=1

| n

m| · sup
 2 n

m

p̂ ()

!!
, (3)

where p̂ () = sup✓2⇥k
p✓() is the maximum probability

of pattern .
For a pattern with profile �() = ('1, . . . ,'n), it was

pointed out in [6] that the maximum probability assigned by
any i.i.d. distribution satisfies

p̂ () �
nX

µ=1

'µ!
⇣µ
n

⌘µ'µ

. (4)

Consider any m < n. Let ̄m be any pattern sequence in
 n

m such that integer 1 appears n�m+ 1 times and each of
the integers 2, 3, . . . ,m appears only once.

We lower bound sup 2 n
m
p̂ () by p̂

�
 ̄

m�. The profile
of ̄m equals �

�
 ̄

m�
= ('̄m

1 , . . . , '̄m
n) where '̄m

n�m+1 = 1,
'̄m
1 = m� 1, and '̄m

i = 0 for all other values of i. By (4),

p̂
�
 ̄

m� � (m� 1)!
(n�m+ 1)n�m+1

nn

=
⇣m
n

⌘m�1
p
2⇡m

em

✓
1� m� 1

n

◆n�m+1

, (5)

where the second inequality follows from Feller’s bound on
Stirling’s approximation [22] that for any m � 1, m! �p
2⇡m

�
m
e

�m
.

To compute | n
m|, we note that there is a one-to-one

correspondence between n
m and the set of unordered m-

partitions of [n]. The number of m-partitions of [n] is known
as the stirling number of the second kind and is lower bounded
in [23] by

1

2

�
m2 +m+ 1

�
mn�m�1 � 1, (6)

for 1  m  n� 1.

Plugging (5) and (6) into (3) gives

R̂
⇣
In,k
 ,Q1

⌘
� log

0

@
min(n�1,k)X

m=1

| n
m| · p̂

�
 ̄

m�
1

A

� log

 ✓
1

2

�
m2 +m+ 1

�
mn�m�1 � 1

◆

·
⇣m
n

⌘m�1
p
2⇡m

em

✓
1� m� 1

n

◆n�m+1
!�����

m=min(b n
lnnc,k)

=

(
(n log k � k log n)(1 + o(1)), for k  n

lnn

n(log n� log log n)(1 + o(1)), for k > n
lnn .

Theorem 4. Fix any 0 < ✏ < 1. As n ! 1, R̄
⇣
In,k
 ,Q1

⌘
is

greater than

(⇣
n log k � (loge)k(lnn)2

⌘
(1 + o(1)), for k<

�
n

lnn

�1�✏
,

(1� ✏)n(log n� log log n)(1 + o(1)), for k�
�

n
lnn

�1�✏
.

Proof: By Lemma 2, R̄
⇣
In,k
 ,Q1

⌘
is lower bounded by1

max

✓
sup
✓2⇥k

D(p✓||p̄✓), R̄
⇣
Ĩn,k

⌘◆
� sup
✓2⇥k

D(p✓||p̄✓).

Recall that p̄✓ is the flattened distribution of p✓ with respect
to the partition [k

m=1
n
m and Ĩn,k

 is the set of distributions
over [k] induced by In,k

 .
We first find a lower bound on sup✓2⇥k

D(p✓||p̄✓). Con-
sider J = min

⇣
k,
j�

n
lnn

�1�✏
k⌘

for an ✏ 2 (0, 1) and
vector ✓J = (✓1, ✓2, . . . , ✓k) 2 ⇥k where ✓j = lnn

n for
j = 1, . . . , J � 1, ✓J = 1 � (J � 1) lnn

n and ✓j = 0 for
j > J . We have sup✓2⇥k

D(p✓||p̄✓) is bounded from below
by D(p✓J ||p̄✓J), which can be shown to equal

�H✓J ()+
kX

m=1

p✓J (m) log| n
m|+

kX

m=1

p✓J (m) log
1

p✓J (m)
,

(7)

where H✓J () is the entropy of the pattern distribution
parameterized by ✓J and p✓J (m) =

P
 2 n

m
p✓J () =

Pr(2 n
m|✓J).

Since the distributions over patterns are induced by the
i.i.d. distributions over sequences, H✓J () is no larger than
H✓J (x

n), which equals

n

 ✓
1� (J � 1)

lnn

n

◆
log

1

1� (J � 1) lnn
n

+ (J � 1)
lnn

n
log

n

lnn

!
< J lnn log

ne

lnn
, (8)

where the inequality follows (1 � x) log 1
1�x < x log(e) for

all 0 < x < 1.

1R̄
⇣
Ĩn,k

⌘
can be shown to be upper bounded by log k, which can be seen

later to be negligible. So it suffices to only consider sup✓2⇥k
D(p✓ ||p̄✓).

5

For the second term in (7), we show that in the original se-
quence xn, all of the J symbols with positive probabilities will
appear with high probability, i.e., p✓J ((x

n) 2 n
J) ⇡ 1, thus

leading to a lower bound approximately log| n
J |. Rigorously,

given ✓J , in the original sequence xn, the probability that any
symbol does not appear is less than or equal to

�
1� lnn

n

�n 
1
n . By the union bound, the probability that all J symbols
appear is greater than or equal to 1 � J

n � 1 �
�

n
lnn

��✏ 1
lnn .

So p✓J (J) � 1�
�

n
lnn

��✏ 1
lnn and

kX

m=1

p✓J (m) log| n
m| � p✓J (J) log| n

J |

�
✓
1�

⇣ n

lnn

⌘�✏ 1

lnn

◆
log

✓
1

2

�
J2 + J + 1

�
Jn�J�1 � 1

◆

= (n� J + 1)(log J)(1 + o(1)), (9)

where the inequality follows again from (6).
Combining (7), (8), (9) and trivially lower bounding the

last term in (7) by 0 give sup✓2⇥k
D(p✓||p̄✓) � D(p✓J ||p̄✓J),

which is further lower bounded by

(n� J + 1)(log J)(1 + o(1))� J lnn log
ne

lnn

=

(⇣
n log k � (loge)k(lnn)2

⌘
(1 + o(1)), for k<

�
n

lnn

�1�✏
,

(1� ✏)n(log n� log log n)(1 + o(1)), for k�
�

n
lnn

�1�✏
.

Theorems 3 and 4 show that if compressors only know
the number of distinct integers, the worst- and average-case
redundancies are both greater than ⇥

⇣
n log

⇣
min

⇣
k, n

logn

⌘⌘⌘
.

Moreover, tightness of the lower bounds can be proved using
similar arguments. The per-symbol redundancy thus goes to
infinity as the alphabet size k increases. On the other hand,
from [9], the redundancies are upper bounded by ⇥̃

�
n1/3

�
for

all k  n when there is no constraint, i.e., diminishing per-
symbol redundancy can be achieved. This large discrepancy
results from the fact that pattern probabilities are determined
by the profiles, but under C1, little information about the
profiles is available.

B. Pattern compressors under constraint C2
We now consider the constraint C2, which requires com-

pressors to encode patterns according to the number of distinct
index integers in their prefixes. The number of distinct index
integers is determined by the occurrences of new symbols.
Therefore, the corresponding prefixes of two patterns have the
same number of distinct integers if and only if the innovation
vector of the two patterns are the same.

The partition of n
k defined by C2 is thus n

k =
[�2⇤n

k
 n(�), where n(�) = { : ⇤() = �}. The set of

allowed compressors is

Q2 = {q : q(1) = q(2) if ⇤(1) = ⇤(2)}.

Theorem 5. The worst-case redundancy of In,k
 with re-

spect to Q2 is the same as that with respect to Q1, i.e.,

R̂
⇣
In,k
 ,Q2

⌘
= R̂

⇣
In,k
 ,Q1

⌘
.

Theorem 6. Fix any ✏, � 2 (0, 1). As n ! 1, R̄
⇣
In,k
 ,Q2

⌘

is greater than

8
>>>><

>>>>:

⇣
(1� �)n log k � log e

� k(lnn)2
⌘
(1 + o(1)),

for k <
�

n
lnn

�1�✏
,

(1� � � ✏)n(log n� log log n)(1 + o(1)),

for k �
�

n
lnn

�1�✏
.

Proofs of Theorems 5 and 6 are omitted due to space
limitation. It follows that although C2 allows compressors to
acquire substantially more information compared with C1, the
redundancies do not decrease.

V. A LOW-COMPLEXITY SEQUENTIAL COMPRESSOR

In this section, we analyze the dictionary-based pattern
compressor used in data deduplication algorithms, e.g., the
fixed-length and variable length algorithms in [16]. For a
pattern = ◆1◆2 · · · ◆n, the compressor qd assigns probability
sequentially as qd() =

Qn
i=1 qd

�
◆i|◆i�1

1

�
, and

qd
�
◆i|◆i�1

1

�
=

(
1

|Mi�1| ·
1
2 if ◆i 2 Mi�1,

1
2 if ◆i /2 Mi�1,

where Mi�1 is the set of all index integers in ◆i�1
1 , i.e.,

Mi�1 = {◆1, ◆2, . . . , ◆i�1}. It can be seen from definition that
qd satisfies C2.

Theorem 7. Let n ! 1. For all patterns in n
k, the

compressor qd achieves redundancy R̂
⇣
In,k
 , qd

⌘
at most

8
>><

>>:

⇣
n log k � k log n+ n+ (log e)k2

n�k

⌘
(1 + o(1)),

for k < n
logn ,⇣

n log n
logn + (log e)n

(logn)2

⌘
(1 + o(1)), for k � n

logn .

Theorem 7 shows together with lower bounds derived in
Section IV that under C2, the lowest redundancies achievable
are of order n log

⇣
min

⇣
k, n

logn

⌘⌘
.

VI. CONCLUSION

Theorems 5, 6 and 7 show that the dictionary-based pat-
tern compressor in deduplication algorithms has high pattern
redundancy. Deduplication algorithms, although effective in
practice, are far from optimal and the saving mainly results
from removing duplicate chunks. Thus, finding constraints on
pattern compressors that can achieve low redundancies while
keeping time and memory costs affordable can benefit the
performance of deduplication algorithms. This provides an
intriguing direction for future work, which may benefit from
Lemmas 1 and 2 (general ways for computing redundancies
are derived).

Another direction of interest is determining families of
distributions for which common constraints, such as C2, lead
to low redundancy. Such families would represent suitable
applications for existing deduplication algorithms.

6

REFERENCES

[1] W. Szpankowski and M. J. Weinberger, “Minimax
pointwise redundancy for memoryless models over
large alphabets”, IEEE transactions on information the-

ory, vol. 58, no. 7, pp. 4094–4104, 2012.
[2] G. I. Shamir, “On the mdl principle for iid sources

with large alphabets”, IEEE transactions on information

theory, vol. 52, no. 5, pp. 1939–1955, 2006.
[3] A. Orlitsky and N. P. Santhanam, “Speaking of infinity”,

IEEE Transactions on Information Theory, vol. 50,
no. 10, pp. 2215–2230, 2004.

[4] J. Rissanen, “Universal coding, information, prediction,
and estimation”, IEEE Transactions on Information

theory, vol. 30, no. 4, pp. 629–636, 1984.
[5] J. Shtarkov, “Coding of discrete sources with unknown

statistics”, Topics in information theory, pp. 559–574,
1977.

[6] A. Orlitsky, N. P. Santhanam, and J. Zhang, “Univer-
sal compression of memoryless sources over unknown
alphabets”, IEEE Transactions on Information Theory,
vol. 50, no. 7, pp. 1469–1481, 2004.

[7] G. I. Shamir, “Universal lossless compression with un-
known alphabets–the average case”, IEEE Transactions

on Information Theory, vol. 52, no. 11, pp. 4915–4944,
2006.

[8] J. Acharya, H. Das, and A. Orlitsky, “Tight bounds on
profile redundancy and distinguishability”, in Proceed-

ings of the 25th International Conference on Neural

Information Processing Systems, 2012.
[9] J. Acharya, H. Das, A. Jafarpour, A. Orlitsky, and

A. T. Suresh, “Tight bounds for universal compression
of large alphabets”, in 2013 IEEE International Sym-

posium on Information Theory, IEEE, 2013, pp. 2875–
2879.

[10] A. Garivier, “A lower-bound for the maximin redun-
dancy in pattern coding”, Entropy, vol. 11, no. 4,
pp. 634–642, 2009.

[11] S. Boucheron, A. Garivier, and E. Gassiat, “Coding
on countably infinite alphabets”, IEEE Transactions on

Information Theory, vol. 55, no. 1, pp. 358–373, 2008.
[12] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,

G. Trezis, and P. Camble, “Sparse indexing: Large scale,
inline deduplication using sampling and locality.”, in
Fast, vol. 9, 2009, pp. 111–123.

[13] B. Zhu, K. Li, and R. H. Patterson, “Avoiding the
disk bottleneck in the data domain deduplication file
system.”, in Fast, vol. 8, 2008, pp. 269–282.

[14] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-
bandwidth network file system”, in ACM SIGOPS Op-

erating Systems Review, ACM, vol. 35, 2001, pp. 174–
187.

[15] S. Quinlan and S. Dorward, “Venti: A new approach to
archival storage”, in FAST, vol. 2, 2002, pp. 89–101.

[16] U. Niesen, “An information-theoretic analysis of dedu-
plication”, IEEE Transactions on Information Theory,
vol. 65, no. 9, pp. 5688–5704, Sep. 2019.

[17] W. Xia, H. Jiang, D. Feng, et al., “A comprehensive
study of the past, present, and future of data dedu-
plication”, Proceedings of the IEEE, vol. 104, no. 9,
pp. 1681–1710, 2016.

[18] H. Lou and F. Farnoud, “Data deduplication with ran-
dom substitutions”, in 2020 IEEE International Sym-

posium on Information Theory (ISIT), IEEE, 2020,
pp. 2377–2382.

[19] ——, “Asymptotic analysis of data deduplication with
a constant number of substitutions”, in 2021 IEEE

International Symposium on Information Theory (ISIT),
2021, pp. 3296–3301.

[20] ——, “Data deduplication with random substitutions”,
IEEE Transactions on Information Theory, forthcoming.

[21] Y. M. Shtar’kov, “Universal sequential coding of single
messages”, Problemy Peredachi Informatsii, vol. 23,
no. 3, pp. 3–17, 1987.

[22] W. Feller, “An introduction to probability theory and its
applications”, 1957,

[23] B. C. Rennie and A. J. Dobson, “On stirling numbers
of the second kind”, Journal of Combinatorial Theory,
vol. 7, no. 2, pp. 116–121, 1969.

	Introduction
	Preliminaries and Notation
	Sequences and patterns
	Universal compression of patterns over i.i.d. sources

	Universality of Constrained Compressors
	Lower Bounds on Pattern Redundancies
	Pattern compressors under constraint C1
	Pattern compressors under constraint C2

	A Low-complexity Sequential Compressor
	Conclusion

