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SIGNIFICANCE: The behavior of diet choice or diet selection can have wide-reaching 13 

implications, scaling from individual animals to ecological and evolutionary processes. 14 

Previous work in this area has largely ignored the potential for intestinal microbiota to 15 

modulate these signals. This notion has been highly speculated for years but has not 16 

yet been explicitly tested. Here we show that germ-free mice colonized by differential 17 

microbiomes (from wild rodents with varying natural feeding strategies) exhibited 18 

significant differences in their voluntary dietary selection. Specifically, differences in 19 

voluntary carbohydrate selection were associated with plasma amino acid levels and 20 

bacterial genes involved in the metabolism of tryptophan. Together, these results 21 

demonstrate a role for the microbiome in host nutritional physiology and behavior. 22 
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ABSTRACT 24 

Diet selection is a fundamental aspect of animal behavior with numerous ecological and 25 

evolutionary implications. While the underlying mechanisms are complex, the availability 26 

of essential dietary nutrients can strongly influence diet selection behavior. The gut 27 

microbiome has been shown to metabolize many of these same nutrients, leading to the 28 

untested hypothesis that intestinal microbiota may influence diet selection. Here we 29 

show that germ-free mice colonized by gut microbiota from three rodent species with 30 

distinct foraging strategies differentially selected diets that varied in macronutrient 31 

composition. Specifically, we found that herbivore-conventionalized mice voluntarily 32 

selected a higher protein:carbohydrate ratio diet, while omnivore- and carnivore-33 

conventionalized mice selected a lower P:C ratio diet. In support of the long-standing 34 

hypothesis that tryptophan – the essential amino acid precursor of serotonin – serves as 35 

a peripheral signal regulating diet selection, bacterial genes involved in tryptophan 36 

metabolism and plasma tryptophan availability prior to the selection trial were 37 

significantly correlated with subsequent voluntary carbohydrate intake. Finally, 38 

herbivore-conventionalized mice exhibited larger intestinal compartments associated 39 

with microbial fermentation, broadly reflecting the intestinal morphology of their donor 40 

species. Together, these results demonstrate that gut microbiome can influence host 41 

diet selection behavior, perhaps by mediating the availability of essential amino acids, 42 

thereby revealing a novel mechanism by which the gut microbiota can influence host 43 

foraging behavior. 44 

 45 
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 47 

INTRODUCTION 48 

Proper nutrition is essential to life, and thus animals have evolved complex internal 49 

sensory systems that help maintain nutritional homeostasis by regulating macronutrient 50 

intake1. The intestinal tract plays a critical role in this process by liberating dietary 51 

nutrients (e.g., essential amino acids) that communicate meal quality to the central 52 

nervous system by direct stimulation of enteric nerves or through post-absorptive 53 

peripheral signals2–4. The intestinal tract also harbors trillions of microorganisms 54 

(collectively known as the gut microbiome), which have been shown to influence 55 

numerous aspects of host behavior, most likely through metabolites that interact with 56 

host sensory systems5. Given the importance of dietary nutrients in the regulation of 57 

food intake and diet selection6, the gut microbiome may influence host foraging 58 

behavior through metabolic processes that affect the availability of nutrients (or their 59 

derivatives) recognized by the central nervous system2,7,8. For example, a recent study 60 

showed that experimental colonization of Providencia bacteria in the gut of the model 61 

organism C. elegans resulted in divergent foraging preferences through the bacterial 62 

synthesis of the neurotransmitter tyramine from the essential amino acid tyrosine9. 63 

While studies in model systems provide powerful opportunities to dissect host-microbe 64 

interactions10, the microbiome field recognizes the need to address and study the 65 

complexity of these interactions in ecologically-realistic scenarios in which animals can 66 

harbor thousands of microbial taxa11,12. It has been suggested that these complex 67 

microbial communities could elicit host foraging behaviors that enrich the intestinal 68 

environment in nutrients on which they depend (i.e., promoting their own fitness)7, while 69 
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others have posited that a positive-feedback relationship between dietary nutrients and 70 

microbial community composition eventually results in stable microbial communities and 71 

host foraging behaviors8. However, these potential mechanisms operate under the 72 

assumption that the gut microbiome influences diet selection behavior – a hypothesis 73 

that has existed for years7,8, but has never been tested using complex microbial 74 

communities, or within an ecological or evolutionary context.  75 

The transplantation of intestinal microbiota into germ-free mice is a powerful 76 

approach for disentangling the effects of the gut microbiome on host phenotypes from 77 

other potentially confounding factors (e.g., host genetics)13. This approach has been 78 

successfully applied using a wide range of donor species (e.g., termites, zebrafish)14, 79 

demonstrating that germ-free mice are a tractable model system for understanding the 80 

function of gut microbiota in evolutionarily-distant organisms. In one notable example, 81 

Sommer et al. used fecal microbiome transplants from brown bears into germ-free mice 82 

(two species separated by ~94 million years of evolution) to show that seasonal 83 

changes in gut microbiota influence host energy metabolism15. In our study, we used 84 

this approach to determine whether the gut microbiome influences diet selection 85 

behavior. We chose three rodent species with distinct foraging strategies as microbial 86 

donors for germ-free mice: a carnivore/insectivore (southern grasshopper mouse, 87 

Onychomys torridus), an omnivore (white-footed mouse, Peromyscus leucopus), and an 88 

herbivore (montane vole, Microtus montanus). These three species are in the same 89 

taxonomic family (Cricetidae) and are all equally distantly related to lab mice (~27 MYA; 90 

Mus musculus, family Muridae)16. Under sterile laboratory conditions, we randomly 91 

divided 30 adult male germ-free mice into Carn-CONV, Omni-CONV, and Herb-CONV 92 
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treatment groups (n = 10 mice per group), where each mouse in a given group was 93 

“conventionalized” (i.e., inoculated) with the cecal contents of a unique, wild-caught 94 

donor individual (to better reflect natural interindividual variation) (Fig. 1a). One recipient 95 

mouse from the Herb-CONV group was excluded from our dataset due to aberrant 96 

behaviors that indicated possible injury during microbiome transplants. 97 

Conventionalized mice were acclimated to their microbiota for 7 days, during which they 98 

were offered only sterile water and a low protein:carbohydrate ratio diet (LPC; Table 99 

S1). There were no differences in daily or cumulative macronutrient and food intake 100 

across treatment groups during the acclimation period (Fig. S1; Dataset S1). After 101 

acclimation, conventionalized mice were given a choice between the LPC diet and one 102 

with a higher P:C ratio (HPC; Table S1) for a period of 11 days (Fig. 1a). Importantly, 103 

these diets had identical energy densities (caloric content per gram). 104 

To determine whether treatment groups differed in foraging behavior, we 105 

employed a state-space approach known as the Geometric Framework in which 106 

foraging decisions are analyzed within a multi-dimensional nutritional space where each 107 

functionally relevant nutrient forms a single dimension17,18. In this study, we defined 108 

these nutritionally-explicit dimensions as protein and carbohydrate intake, thereby 109 

allowing us to measure the effect of the gut microbiome on host diet selection. 110 

Supporting the hypothesis that the gut microbiome influences diet selection behavior, 111 

this approach revealed statistically significant differences in macronutrient intake across 112 

groups of conventionalized mice (Fig. 1b). Treatment groups differed significantly in 113 

daily (Fig. S1) and cumulative carbohydrate intake (Fig. 1b) during the diet selection 114 

trial. Specifically, Herb-CONV mice voluntarily consumed fewer carbohydrates than 115 
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Carn-CONV and Omni-CONV mice. This trend was most apparent after approximately 1 116 

week of diet choice (Fig. S1), suggesting that it may take time for internal nutritional 117 

signals to stabilize19 and for associative learning20 to affect host feeding behavior. In 118 

contrast, treatment groups did not differ in either daily (Fig. S1) or cumulative protein 119 

intake (Fig. 1b). Lower cumulative carbohydrate intake among Herb-CONV mice led to 120 

their selection of a significantly higher P:C ratio diet compared to Omni-CONV and 121 

Carn-CONV mice (Fig. S2). Interestingly, we also observed a significant difference in 122 

total food intake among Herb-CONV mice compared to the other treatment groups (Fig. 123 

S1), suggesting that Herb-CONV mice’s preference for the higher P:C ratio diet may 124 

have permitted them to reduce total energy intake without affecting nutritional 125 

homeostasis (i.e., protein-leveraging)19. Under natural scenarios, such differences in 126 

selected P:C ratios could be accomplished by animals incorporating different levels of 127 

insects, seeds, or foliage into their diets. The ratio of macronutrients an animal 128 

consumes, rather than the total amount of any individual nutrient, has significant effects 129 

on animal physiology, life history, and reproductive fitness21–23. The preference of Herb-130 

CONV mice for the HPC diet are also consistent with previous studies showing that 131 

Microtus voles prefer high-protein foods when available24,25, though a follow-up study on 132 

the foraging preferences of M. montanus with respect to specific dietary nutrients would 133 

more robustly support the ecological significance of our findings. More generally, these 134 

results are also consistent with the “nitrogen limitation hypothesis”, which posits that the 135 

relative scarcity of nitrogen in plant materials may drive the opportunistic consumption 136 

of higher protein foods among herbivores26–28. Interestingly, the hindgut microbiota of 137 

herbivorous mammals are also nitrogen-limited29, and so our findings offer support to 138 
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the hypothesis that microbes may alter host foraging behaviors to enrich the intestinal 139 

environment in necessary nutrients7. 140 

Next, we characterized day 0 (7 days post-inoculation and just prior to diet 141 

selection trial) gut microbial community structure, microbiome function, and plasma 142 

metabolites of conventionalized mice to determine how these aspects were associated 143 

with differential diet selection across treatment groups. 16S rRNA inventories confirmed 144 

that both donors and recipients harbored distinct bacterial communities that differed 145 

significantly from blank extraction controls (Fig. 1c; Fig. S3; Fig. S4). We observed 146 

significant differences in colonization efficiency across treatment groups. Specifically, 147 

microbial communities of Carn- and Omni-CONV recipients were significantly most 148 

similar to those of their donors, while Herb-CONV recipients were not significantly 149 

similar to any donor group (Fig. S4). It is expected that recipient communities would not 150 

match donors identically, as the Mus host physiology reshapes donor communities30, 151 

and our donor communities were collected from individuals in the wild, and thus our 152 

design does not account for the well-documented effects of captivity on the 153 

microbiome31. The comparatively lower colonization efficiency among Herb-CONV mice 154 

may have been driven by the low content of indigestible plant fibers that are primarily 155 

fermented by microbes. Even in established microbiomes, differences in the content or 156 

composition of dietary fiber can result in the extirpation of some fermentive 157 

microbes32,33. However, Herb-CONV mice were successfully colonized by donor 158 

microbiota in the phylum Firmicutes (classes Bacilli and Clostridia), notably those in the 159 

family Lachnospiracae, which are strict anaerobes known for their ability to transform 160 

plant fibers into volatile fatty acids in the mammalian digestive tract34. Additionally, 161 
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microbiomes from herbivorous mammals colonize germ-free mice at a lower absolute 162 

density than microbiomes from omnivorous or carnivorous mammals35. More work is 163 

required to understand differential transfer of microbiomes across species, and we 164 

discuss this limitation in more detail below. 165 

Bacterial ASV richness and phylogenetic diversity were similar across donor 166 

groups, but significantly lower in Herb-CONV mice compared to the other treatment 167 

groups (Fig. S4). In general, the bacterial communities of conventionalized mice were 168 

dominated by the phyla Bacteroidetes and Firmicutes (Fig. S4). Importantly, all recipient 169 

fecal samples tested negative for the presence of pathogenic microorganisms. 170 

Metagenomic analysis of recipient fecal samples revealed a statistically significant effect 171 

of donor species on the relative abundances of 183 (51%) KEGG functional modules 172 

(Fig. 1d; Dataset S2). These differences in microbiome community structure and 173 

function were accompanied by concomitant differences in plasma metabolites (Fig. 1e), 174 

with 27 identified metabolites (16%) differing significantly across treatment groups 175 

(Dataset S3). Together, these results demonstrate that interspecific differences in gut 176 

microbial communities across rodents with divergent foraging strategies translate to 177 

distinct microbial functions and metabolite profiles independent of host diet. 178 

There is substantial evidence that the availability of circulating essential amino 179 

acids (EAAs) provide peripheral signals that act to regulate macronutrient intake and 180 

diet selection4,6. Despite consuming identical diets prior to the selection trial, treatment 181 

groups differed in circulating levels of several amino acids, with Herb-CONV mice 182 

exhibiting significantly higher amounts of the EAAs lysine, isoleucine, methionine, 183 

phenylalanine, and tryptophan (Fig. 2a). While EAAs are primarily derived from the diet, 184 
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bacteria can also produce these peptides through their own metabolic processes36, and 185 

thus the gut microbiome may act as a source of EAAs for their hosts. In support of this 186 

hypothesis, treatment groups exhibited broad differences in the microbial synthesis and 187 

degradation of EAAs (Fig. 2b). Notably, the microbiome of Herb-CONV mice had a 188 

higher abundance of genes involved in the synthesis of aromatic amino acids 189 

(phenylalanine, tryptophan, and tyrosine) (Fig. 2b), all of which are synthesized from 190 

chorismate (product of the Shikimate pathway)37. The ratios of bacterial genes involved 191 

in tryptophan biosynthesis (M00023) to those involved in tryptophan degradation via the 192 

kynurenine pathway (M00038) were significantly correlated with plasma tryptophan (Fig. 193 

2c). Given that conventionalized mice consumed identical diets prior to blood 194 

collections, these results demonstrate that bacterial metabolism can alter the availability 195 

of circulating levels of plasma EAAs, consistent with recent studies conducted in 196 

Drosophila38. 197 

There is emerging evidence that bacterial tryptophan metabolism is a key 198 

mechanism by which the gut microbiome can influence host behavior39,40. This 199 

relationship is a consequence of tryptophan’s role as the primary regulatory molecule 200 

for the synthesis of central serotonin (5-hydroxytryptamine, 5-HT)41, which has been 201 

shown to drive foraging behavior and diet selection in several experimental studies42,43. 202 

For example, when given a choice between low- or high-carbohydrate meals, rats 203 

receiving hypothalamic injections of 5-HT significantly reduced their carbohydrate 204 

intake44. Importantly, serotonin synthesis is extraordinarily sensitive to plasma 205 

tryptophan availability, and thus plasma tryptophan is generally considered a reliable 206 

proxy for central serotonin45. Therefore, we predicted that plasma tryptophan would be 207 
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associated with differences in diet selection among conventionalized mice. Indeed, we 208 

found a statistically significant correlation between day 0 plasma tryptophan and 209 

subsequent voluntary carbohydrate intake (Fig. 2c). More recent work has argued that 210 

serotonin synthesis is affected by the availability of tryptophan relative to the large 211 

neutral amino acids (LNAA: Leu, Ile, Phe, Tyr, and Val) that compete for transport 212 

across the blood brain barrier46. Consistent with these studies, we found a statistically 213 

significant correlation between day 0 Trp:LNAA ratios and cumulative carbohydrate 214 

intake (Fig. 2c). Further, the ratio of tryptophan biosynthesis and degradation KEGG 215 

modules were also statistically significant predictors of carbohydrate and P:C intake 216 

(Fig. 2c). Overall, these results support the hypothesis that bacterial tryptophan 217 

metabolism influences host diet selection behavior. 218 

Interspecific differences in foraging behavior are generally associated with diet-219 

specific adaptations to intestinal physiology. For example, herbivores generally maintain 220 

an enlarged cecum (fermentation chamber) that enhances the digestibility of low-quality, 221 

carbohydrate-rich foods47. Given that the gut microbiome can profoundly alter host 222 

intestinal gene expression and physiology48–50, divergent microbial communities may 223 

drive differences in intestinal morphology across feeding strategies. At the conclusion of 224 

the diet selection trial (day 11), we quantified intestinal morphology with the prediction 225 

that conventionalized mice would exhibit differences that broadly reflected that of their 226 

donor species. While there was no change in body mass over the duration of the 227 

experiment (F = 1.01, P = 0.377), treatment groups differed significantly in empty colon 228 

mass (Fig. 3b), with Herb-CONV mice exhibiting comparatively larger colons than those 229 

in other treatment groups. There were no significant differences in cecum mass (Fig. 230 
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3a) or colon length (Fig. 3c). In general, the comparatively larger colons observed in 231 

Herb-CONV mice are consistent with evolutionary adaptations observed in herbivorous 232 

animals, which generally maintain larger hindguts to promote digestion47. The gut is a 233 

highly dynamic organ that can rapidly change in mass and length in response to 234 

environmental conditions, often through altered rates of cellular proliferation in intestinal 235 

crypts and cell loss through sloughing or apoptosis at the ends of intestinal villi, but also 236 

through the change of the size of individual enterocytes51. In the future, histological 237 

analyses could be conducted to investigate whether these changes in gut size are 238 

driven by hyperplasia (increase in cell number) and/or hypertrophy (increase in cell 239 

size), and to rule out the possibility for these differences to be driven by intestinal 240 

inflammation. 241 

While the observed differences in gut size are consistent with adaptations 242 

observed in herbivores, our study only tested the microbiome of a single species from 243 

each feeding strategy. A robust test of whether the microbiome recapitulates the 244 

differences in gut size observed across feeding strategies would require several donor 245 

species from each dietary strategy. Another question is whether the gut microbiome 246 

affected intestinal morphology directly or via differential diet selection. While our 247 

experimental design makes it difficult to disentangle the effects of differential diet 248 

selection from those of microbiome, it is worth noting that previous work has 249 

demonstrated that lab mice fed low P:C ratio diets had larger intestinal compartments 250 

(e.g., colon) compared to those fed higher P:C diets50. In our study, we observed the 251 

opposite – Herb-CONV mice, which consumed a higher P:C ratio diet (Fig. 1b), 252 

exhibited larger colon masses (Fig. 3). These results contradict the generally accepted 253 
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model of adaptive physiological responses to dietary carbohydrates, suggesting that the 254 

gut microbiome may drive interspecific differences in host intestinal physiology to some 255 

extent, independent from the effects of diet and genetics. 256 

Here, we present evidence for an effect of the gut microbiome on host diet 257 

selection behavior, however, it is important to recognize that our approach has several 258 

substantial limitations. For example, the relative differences in nutrient composition 259 

between diets have been shown to greatly influence animals’ ability to distinguish and 260 

differentially feed19, suggesting that our differential diet selection results may have been 261 

more pronounced if we had used diets with greater differences in macronutrient content. 262 

Further, previous work has shown that the evolutionary distance between donor species 263 

and germ-free mice can affect the efficacy of microbiome transplants14. While our 264 

selected donor species were similarly distant to Mus musculus, there were significant 265 

differences in colonization success across donor species, suggesting that cecal 266 

microbiota may be specifically adapted to their hosts. While differences in colonization 267 

efficiency may limit our ability to robustly connect our study to the ecology of donor 268 

species, this limitation should not diminish our major finding that conventionalized germ-269 

free mice harboring compositionally and functionally distinct microbiotas differing in 270 

microbial diversity exhibited different feeding preferences. Overall, our approach is 271 

stronger than comparing conventional mice with the highly artificial state of germ-free 272 

mice, and the complex microbial communities that we used better reflect reality, which 273 

is recognized as pressing need in the field of host-microbe interactions11,12. 274 

In this study, we found that conventionalized germ-free mice harboring distinct 275 

gut microbiota exhibited significant differences in diet selection behavior, providing 276 
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support for our core hypothesis that microbiota can influence foraging decisions. 277 

Specifically, our study provides evidence that variation in the gut microbiota alters host 278 

nutrient availability and can yield significant differences in the diet selection of 279 

conventionalized mice in just 11 days, likely through differential bacterial metabolism 280 

and downstream availability of EAAs, especially tryptophan. These findings are largely 281 

consistent with recent mechanistic work in model systems9,38, but address the natural 282 

variation in microbial communities that exist among individuals and across species11,12. 283 

Therefore, this study not only represents a novel contribution to a large body of work 284 

showing that the gut microbiome is a key player in host physiology and performance52, 285 

but also more broadly supports the hypothesis that the gut microbiota can influence 286 

ecological and evolutionary processes shaping animal behavior. Foraging strategies 287 

and feeding behaviors can influence many aspects of an animal’s ecology (e.g., the 288 

need to obtaining specific nutrients while also avoiding predators53), and animal feeding 289 

can also shape the structures of entire plant and animal communities54. Thus, there may 290 

be an underexplored role for gut microbes to influence far-reaching aspects of animal 291 

and ecosystem ecology through influencing the feeding behavior of their hosts. 292 
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 307 

MATERIALS AND METHODS 308 

Wild rodents. Wild Onychomys torridus were collected in August 2018 from field 309 

sites in near Green Valley, Pima Co., AZ (31.802834, -110.891172), Peromyscus 310 

leucopus in May 2018 near Murray, Calloway Co., KY (36.686582, -88.221204), and 311 

Microtus montanus in July 2018 at Timpie Springs Waterfowl Management Area, 312 

Dugway, Tooele Co., UT (40.753708, -112.639903). Ten individuals from each species 313 

were collected using baited Sherman live traps under the following state permits: O. 314 

torridus (AZ Game and Fish Dept., SP627958), P. leucopus (KY Dept. of Fish and 315 

Wildlife, SC1911097), and M. montanus (UT Division of Wildlife Resources, 316 

1COLL5194-2). Animals were euthanized within 12 hours and immediately dissected 317 

under IACUC protocols registered at the University of Utah (16-02011 to D. Dearing), 318 

Murray State University (2018-026 to T. Derting), and University of Alabama (18-04-319 

1159 to S. Secor). Cecum contents for microbiome transplants were transferred to 1.7 320 
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mL Eppendorf tubes using sterile instruments and temporarily frozen at -20ºC in the 321 

field before long-term lab storage at -80ºC. 322 

Microbiome transplants. Donor cecum contents were diluted at 100mg/mL in 323 

sterile phosphate-buffered saline containing 0.2 g/L Na2S and 0.5 g/L cysteine as 324 

reducing agents55,56. Under sterile laboratory conditions, 30 adult (aged 6-8 weeks) 325 

male germ-free C57BL/6 mice (Taconic Biosciences, Inc., Rensselaer, NY) were 326 

randomly divided into Carn-CONV, Omni-CONV, and Herb-CONV groups (n = 10 mice 327 

per group), where each mouse in a given group was colonized by oral gavage of 200 μL 328 

of fecal slurry from a unique, wild-caught donor individual. Conventionalized mice were 329 

then singly-housed in sterile static cages (Innovive, Inc., San Diego, CA; MSX2-AD) 330 

modified by the addition of two metabolic feeder hoods (Laboratory Products, Inc., 331 

Seaford, DE; 2110S) that prevent mice from caching powdered diets, and thus enable 332 

the tracking daily macronutrient intake (see below). Due to a lack of similar studies on 333 

this topic, we were unable to conduct an a priori power analysis to justify the number of 334 

donor/recipient mice per group. Instead, we decided on n = 10 per group based on the 335 

number of animals typically used in studies involving germ-free mice, the vast majority 336 

of which used 5-10 individuals per group13. One recipient mouse from the Herb-CONV 337 

group (V57) was excluded from our dataset due to aberrant behaviors that indicated 338 

possible injury during microbiome transplants. All recipient fecal samples were screened 339 

for 21 of the most common rodent pathogenic microorganisms using PCR tests 340 

conducted by a third-party diagnostic company (Charles River Research Animal 341 

Diagnostic Services, Wilmington, MA). 342 
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Diet selection experiment. After colonization, conventionalized mice were 343 

acclimated for 7 days (to allow the gut microbiome to stabilize55), during which they 344 

were offered only sterile water and a low protein:carbohydrate ratio diet (LPC [0.27]; 345 

Table S1), as this diet is rather similar to standard mouse chow. After acclimation (day 346 

0), mice were briefly removed from their cages for a 200 µL blood draw for 347 

metabolomics analysis (see details below). Mice were weighed (rounded to nearest 348 

hundredth) and returned to empty cages to facilitate the collection of fresh fecal 349 

samples for 16S rRNA microbial inventories and shotgun metagenomics (see details 350 

below). Conventionalized mice were then presented with a choice between two 351 

isocaloric diets (Table S1): (1) the LPC (0.27) diet offered during acclimation and (2) a 352 

diet with a higher P:C ratio (HPC [0.71]). The positions of these two diets were rotated 353 

daily to avoid learned preferences. Diets were designed by Teklad/Envigo (Indianapolis, 354 

IN), and were powdered prior sterilization to be visually indistinguishable from each 355 

other and to prevent food caching. Daily food consumption was calculated as the 356 

difference between the mass (rounded to nearest thousandth) of each diet presented 357 

(~8 g) and the mass of each diet remaining after a 24-hour period. After tracking diet 358 

preferences for 11 consecutive days, animals were euthanized and dissected to 359 

investigate differences in the empty masses (rounded to nearest thousandth) of 360 

intestinal compartments. Conventionalized mice were maintained on a 12:12-h 361 

light:dark cycle, with 21°C ambient temperature and 40% humidity for the duration of the 362 

experiment. Animal experiments were conducted at the University of Pittsburgh Plum 363 

Borough Primate Facility under IACUC protocol 19074445. 364 
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Metabolomics. Blood plasma was analyzed for primary metabolites (amino 365 

acids, hydroxyl acids, carbohydrates, sugar acids, sterols, aromatics, nucleosides, 366 

amines, and miscellaneous compounds) by the West Coast Metabolomics Center at the 367 

University of California – Davis, which performed all sample preparation, data 368 

acquisition, and data processing as previously described57. Briefly, metabolites were 369 

extracted using a mixture of acetonitrile:isopropanol:water (3:3:2, v/v/v) as well as 1:1 370 

acetonitrile:water for removal of protein from serum. Dried metabolite extracts were 371 

resuspended in methoxyamine hydrochloride in pyridine for derivatization before being 372 

analyzed using gas chromatography-time-of-flight (GC-TOF) using a LECO Pegasus IV 373 

mass spectrometer equipped with automated liner exchange (ALEX; Gerstel 374 

corporation) and cold injection system (CIS; Gerstel corporation) for data acquisition. 375 

The CIS temperature was set at 50�°C to 250�°C final temperature at a rate of 12�°C 376 

s−1. Raw GC-TOF MS data were preprocessed with ChromaTOF (version 2.32) and 377 

apex masses were used to identify metabolites using the BinBase database. Values 378 

were reported as peak height for the quantification ion (m/z value) at the specific 379 

retention index, which is more precise than peak area for low abundant metabolites. All 380 

database entries that were positively detected in more than 10% of the samples of a 381 

study design class for unidentified metabolites were reported. Raw peak heights were 382 

vector normalized to reduce the impact of between-series drifts of instrument sensitivity, 383 

caused by machine maintenance status and tuning parameters. 384 

DNA extractions. DNA was extracted from donor cecal contents and day 0 385 

conventionalized mouse feces using the Qiagen PowerFecal DNA Kit (Qiagen, Hilden, 386 

Germany; 12830) following the manufacturer’s instructions. 387 
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16S rRNA microbial inventories. Extracted DNA from conventionalized mice 388 

and donor cecum contents was amplified and sequenced by the Genome Research 389 

Core of the University of Illinois at Chicago as previously described58. Briefly, 390 

polymerase chain reaction (PCR) was used to amplify a portion of the bacterial 16S 391 

rRNA gene for Illumina sequencing using the Earth Microbiome Project primers 515F 392 

(GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) targeting 393 

the V4 region of microbial small subunit ribosomal RNA gene59. Amplicon libraries were 394 

sequenced using a 2x251 paired-end run on an Illumina MiSeq. In addition to donor and 395 

recipient fecal samples, we sequenced five ‘blank’ extractions to control for the 396 

possibility of microbial contamination during the extraction procedure and microbial DNA 397 

present in commercial extraction kits60. A total of 1,398,994 raw Illumina sequencing 398 

reads (mean of 22,206 per sample (n = 63) ± 1111 SE) were paired and quality filtered 399 

via the DADA2 pipeline61 in QIIME2 (version 2020.4)62 using default parameters. 400 

Sequences that passed the quality filter were clustered into amplicon sequence variants 401 

(ASVs), which were identified using the SILVA reference database (release 138)63. 402 

Identified ASVs were filtered to exclude non-bacterial sequences (archaea, chloroplast, 403 

eukaryote, and mitochondria), reducing our total number of reads to 1,396,450 (mean of 404 

22,166 per sample ± 1,112 SE) and 4,359 ASVs. We detected a total of 4,118 ASVs in 405 

donor and recipient fecal samples, 19 (0.46%) of which were also detected in blank 406 

extractions (total of 260 ASVs from 27,807 reads with mean of 5,561 per sample ± 407 

1,419 SE). As recommended by McMurdie and Holmes (2014)64, we used un-rarefied 408 

ASV tables for comparisons of colonization efficiency (Bray-Curtis distances), alpha 409 
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diversity (ASV richness and Faith’s phylogenetic diversity), and beta diversity (Bray-410 

Curtis and unweighted/weighted UniFrac distances65). 411 

Shotgun metagenomics. Extracted DNA from conventionalized mice was sent 412 

to CoreBiome, Inc. (St. Paul, MN) for shotgun metagenomic analysis using 413 

BoosterShot™�. Briefly, sequencing libraries were prepared using a procedure adapted 414 

from the Illumina Nextera Library Prep Kit (Illumina, 20018705) and sequenced on an 415 

Illumina NovaSeq using single-end 1x100 reads with the Illumina NovaSeq SP reagent 416 

kit (Illumina, 20027464). A total of 122,190,150 raw sequence reads (mean of 4,213,453 417 

per sample (n = 29) ± 151,158 SE) were filtered for low quality (Q-Score < 30) and 418 

length (< 50), trimmed of adapter sequences, and converted into a single fasta using 419 

SHI7 (version 0.99)66. Sequences were then trimmed to a maximum length of 100 bp 420 

and aligned using BURST (version 0.99.8)67 at 97% identity against CoreBiome’s Venti 421 

database consisting of all RefSeq bacterial genomes with additional manually curated 422 

strains as well as a bacterial KEGG68 annotated database created from dereplicating 423 

the bacterial genes within the Venti database. KEGG orthology counts were converted 424 

to relative abundance within a sample and collapsed into KEGG modules for statistical 425 

analysis. 426 

Statistics. Differences in macronutrient and total diet intake across treatment 427 

groups were tested using a multivariate analysis of variance (MANOVA) while 428 

controlling for the effects of body mass. A post hoc power analysis for MANOVA was 429 

conducted using G*Power69 (version 3.1) to confirm that statistical power was 430 

sufficiently greater than the widely-accepted minimum threshold of 0.8070. Microbial 431 

community structure (from 16S rRNA inventories) was visualized using principal 432 
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coordinates analysis (PCoA) on ASV relative abundances, which were then assessed 433 

for differences (controlling for multiple comparisons using false discovery rate corrected 434 

P-values) across treatment groups using non-parametric permutational multivariate 435 

analysis of variance (PERMANOVA), analysis of similarity (ANOSIM), and 436 

permutational analysis of dispersion (PERMDISP) in QIIME262. Microbiome function 437 

was visualized using PCoA on KEGG module relative abundances and analyzed for 438 

differences across treatment groups with PERMANOVA in QIIME2. Differences in the 439 

relative abundance of functional KEGG modules across conventionalized mice were 440 

tested using the non-parametric Krustal-Wallis test and linear discriminant analysis in 441 

LEfSe using the “one-against-all” strategy for multi-class analysis71. Identified plasma 442 

metabolites were filtered (based on mean intensity and IQR) and auto-scaled before 443 

using non-parametric median tests to identify metabolites that varied significantly across 444 

treatment groups and visualized using supervised partial least square discriminant 445 

analysis (PLS-DA) in MetaboAnalyst (version 4.0)72. Non-parametric Spearman rank 446 

correlations between plasma Trp availability, Trp KEGG modules, and macronutrient 447 

intake were conducted using non-parametric Spearman’s test (controlling for the effect 448 

of donor species) in the R package ppcor (version 1.1)73 and visualized using corrplot 449 

(version 0.85)74. Differences in empty cecum mass, empty colon mass, and colon length 450 

across treatment groups were tested using ANOVA with body mass as a covariate and 451 

corrected for multiple comparisons using Tukey’s HSD. Unless otherwise noted, all 452 

statistical tests were two-sided and conducted in JMP Pro version 14.1.0 (SAS Institute 453 

Inc., Cary, NC). For all statistical analyses, P-values ≤ 0.05 were defined as ‘significant’. 454 

 455 
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FIGURE LEGENDS 635 

 636 

Fig. 1. The gut microbiome influences host diet selection behavior. a, Overview of 637 

experimental design. Germ-free mice were colonized with the gut microbiome of three 638 

species of wild rodents with distinct foraging strategies: carnivorous Onychomys torridus 639 

(Carn-CONV), omnivorous Peromyscus leucopus (Omni-CONV), and herbivorous 640 

Microtus montanus (Herb-CONV). Conventionalized mice were acclimated on LPC diet 641 

for 7 days before day 0 blood and fecal sampling. After acclimation, conventionalized 642 

mice were then given a choice between LPC and HPC diets for 11 days. Daily diet 643 

intakes were tracked via two feeder hoods, which were rotated daily to avoid learned 644 

preferences. b, Treatment groups differed significantly in macronutrient intake (Wilks’ λ 645 

= 0.455, Cohen’s f2 = 0.41, power = 0.98, P = 0.0007), with Herb-CONV mice voluntarily 646 

consuming fewer carbohydrates than the Omni- and Carn-CONV groups (F = 9.22, P = 647 

0.001). There was no difference in cumulative protein intake across treatment groups (F 648 

= 1.362, P = 0.275). Dashed rails and associated P:C ratios indicate the expected result 649 

if mice consumed only a single diet. Error bars represent the standard error of the mean 650 

(SEM). c, Principal coordinate analysis (PCoA) of 16S rRNA inventories of wild donors 651 

(squares) and conventionalized recipients at day 0 (circles) using Bray-Curtis 652 

dissimilarity. Microbial community structure differed significantly among wild donors 653 

(Pseudo-F = 7.41, P = 0.001) and recipients (Pseudo-F = 3.24, P = 0.001). All groups 654 

differed significantly from blank extraction controls (gray diamonds; Pseudo-F = 4.78, P 655 

= 0.001). d, PCoA analysis showing a statistically significant difference in the relative 656 

abundances of microbial KEGG modules using Bray-Curtis dissimilarity (Pseudo-F = 657 
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5.96, P = 0.001). e, PLS-DA analysis illustrating broad differences in identified plasma 658 

metabolites across conventionalized mice at day 0. * denotes P ≤ 0.05. 659 

 660 

Fig. 2. Day 0 plasma tryptophan availability and bacterial tryptophan metabolism 661 

are associated with differential macronutrient intake across treatment groups. a, 662 

Heatmap illustrating broad differences in plasma levels of essential amino acids across 663 

treatment groups, with Herb-CONV mice exhibiting significantly greater levels of lysine 664 

(X2 = 6.13, P = 0.047), isoleucine (X2 = 11.42, P = 0.003), methionine (X2 = 6.13, P = 665 

0.047), phenylalanine (X2 = 6.13, P = 0.047), and tryptophan (X2 = 9.10, P = 0.011) 666 

compared Carn-CONV and Omni-CONV mice. Columns represent individual 667 

conventionalized mice for each treatment group. * denotes P ≤ 0.05 and color indicates 668 

the treatment group with greatest circulating plasma levels (red = Carn-CONV, blue = 669 

Omni-CONV, and yellow = Herb-CONV). b, Heatmap illustrating broad differences in 670 

the abundances of microbial genes associated with metabolism of essential amino acids 671 

(Dataset S2). * denotes P ≤ 0.05 and color indicates the treatment group with greatest 672 

relative abundance. c, Correlation plot summarizing relationships between plasma 673 

tryptophan availability, bacterial tryptophan metabolism, and host diet selection among 674 

conventionalized mice. The direction and color of the ellipses indicate whether 675 

correlations were positive or negative, and asterisks indicate whether Spearman’s 676 

correlations were statistically significant (* denotes P ≤ 0.05, ** denotes P < 0.01, and 677 

*** denotes P < 0.001). 678 

  679 

Fig. 3. Treatment groups exhibit differences in intestinal morphology. a, Empty 680 

cecum mass did not differ significantly across treatment groups (F = 2.18, P = 0.133). b, 681 
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Empty colon mass differed significantly across treatment groups (F = 6.91, P = 0.004), 682 

with Herb-CONV mice exhibiting a greater colon mass than Carn-CONV mice (FDR-adj. 683 

P = 0.003). c, Colon length did not differ significantly across treatment groups (F = 2.03, 684 

P = 0.151). ** denotes P ≤ 0.01. 685 
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