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SIGNIFICANCE: The behavior of diet choice or diet selection can have wide-reaching
implications, scaling from individual animals to ecological and evolutionary processes.
Previous work in this area has largely ignored the potential for intestinal microbiota to
modulate these signals. This notion has been highly speculated for years but has not
yet been explicitly tested. Here we show that germ-free mice colonized by differential
microbiomes (from wild rodents with varying natural feeding strategies) exhibited
significant differences in their voluntary dietary selection. Specifically, differences in
voluntary carbohydrate selection were associated with plasma amino acid levels and
bacterial genes involved in the metabolism of tryptophan. Together, these results

demonstrate a role for the microbiome in host nutritional physiology and behavior.
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ABSTRACT

Diet selection is a fundamental aspect of animal behavior with numerous ecological and
evolutionary implications. While the underlying mechanisms are complex, the availability
of essential dietary nutrients can strongly influence diet selection behavior. The gut
microbiome has been shown to metabolize many of these same nutrients, leading to the
untested hypothesis that intestinal microbiota may influence diet selection. Here we
show that germ-free mice colonized by gut microbiota from three rodent species with
distinct foraging strategies differentially selected diets that varied in macronutrient
composition. Specifically, we found that herbivore-conventionalized mice voluntarily
selected a higher protein:carbohydrate ratio diet, while omnivore- and carnivore-
conventionalized mice selected a lower P:C ratio diet. In support of the long-standing
hypothesis that tryptophan — the essential amino acid precursor of serotonin — serves as
a peripheral signal regulating diet selection, bacterial genes involved in tryptophan
metabolism and plasma tryptophan availability prior to the selection trial were
significantly correlated with subsequent voluntary carbohydrate intake. Finally,
herbivore-conventionalized mice exhibited larger intestinal compartments associated
with microbial fermentation, broadly reflecting the intestinal morphology of their donor
species. Together, these results demonstrate that gut microbiome can influence host
diet selection behavior, perhaps by mediating the availability of essential amino acids,
thereby revealing a novel mechanism by which the gut microbiota can influence host

foraging behavior.
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INTRODUCTION

Proper nutrition is essential to life, and thus animals have evolved complex internal
sensory systems that help maintain nutritional homeostasis by regulating macronutrient
intake’. The intestinal tract plays a critical role in this process by liberating dietary
nutrients (e.g., essential amino acids) that communicate meal quality to the central
nervous system by direct stimulation of enteric nerves or through post-absorptive
peripheral signals®™. The intestinal tract also harbors trillions of microorganisms
(collectively known as the gut microbiome), which have been shown to influence
numerous aspects of host behavior, most likely through metabolites that interact with
host sensory systems®. Given the importance of dietary nutrients in the regulation of
food intake and diet selection®, the gut microbiome may influence host foraging
behavior through metabolic processes that affect the availability of nutrients (or their
derivatives) recognized by the central nervous system2'7'8. For example, a recent study
showed that experimental colonization of Providencia bacteria in the gut of the model
organism C. elegans resulted in divergent foraging preferences through the bacterial
synthesis of the neurotransmitter tyramine from the essential amino acid tyrosineg.
While studies in model systems provide powerful opportunities to dissect host-microbe
interactions'®, the microbiome field recognizes the need to address and study the
complexity of these interactions in ecologically-realistic scenarios in which animals can

harbor thousands of microbial taxa'"'?

. It has been suggested that these complex
microbial communities could elicit host foraging behaviors that enrich the intestinal

environment in nutrients on which they depend (i.e., promoting their own fitness)’, while
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others have posited that a positive-feedback relationship between dietary nutrients and
microbial community composition eventually results in stable microbial communities and
host foraging behaviors®. However, these potential mechanisms operate under the
assumption that the gut microbiome influences diet selection behavior — a hypothesis
that has existed for years’®, but has never been tested using complex microbial
communities, or within an ecological or evolutionary context.

The transplantation of intestinal microbiota into germ-free mice is a powerful
approach for disentangling the effects of the gut microbiome on host phenotypes from
other potentially confounding factors (e.g., host genetics)'. This approach has been
successfully applied using a wide range of donor species (e.g., termites, zebrafish)',
demonstrating that germ-free mice are a tractable model system for understanding the
function of gut microbiota in evolutionarily-distant organisms. In one notable example,
Sommer et al. used fecal microbiome transplants from brown bears into germ-free mice
(two species separated by ~94 million years of evolution) to show that seasonal
changes in gut microbiota influence host energy metabolism™. In our study, we used
this approach to determine whether the gut microbiome influences diet selection
behavior. We chose three rodent species with distinct foraging strategies as microbial
donors for germ-free mice: a carnivore/insectivore (southern grasshopper mouse,
Onychomys torridus), an omnivore (white-footed mouse, Peromyscus leucopus), and an
herbivore (montane vole, Microtus montanus). These three species are in the same
taxonomic family (Cricetidae) and are all equally distantly related to lab mice (~27 MYA;
Mus musculus, family Muridae)'®. Under sterile laboratory conditions, we randomly

divided 30 adult male germ-free mice into Carn-CONV, Omni-CONV, and Herb-CONV
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93 treatment groups (n = 10 mice per group), where each mouse in a given group was
94  “conventionalized” (i.e., inoculated) with the cecal contents of a unique, wild-caught
95  donor individual (to better reflect natural interindividual variation) (Fig. 1a). One recipient
96 mouse from the Herb-CONV group was excluded from our dataset due to aberrant
97 behaviors that indicated possible injury during microbiome transplants.
98 Conventionalized mice were acclimated to their microbiota for 7 days, during which they
99  were offered only sterile water and a low protein:carbohydrate ratio diet (LPC; Table
100  S1). There were no differences in daily or cumulative macronutrient and food intake
101  across treatment groups during the acclimation period (Fig. S1; Dataset S1). After
102  acclimation, conventionalized mice were given a choice between the LPC diet and one
103 with a higher P:C ratio (HPC; Table S1) for a period of 11 days (Fig. 1a). Importantly,
104  these diets had identical energy densities (caloric content per gram).

105 To determine whether treatment groups differed in foraging behavior, we
106 employed a state-space approach known as the Geometric Framework in which
107  foraging decisions are analyzed within a multi-dimensional nutritional space where each
108  functionally relevant nutrient forms a single dimension'”'®. In this study, we defined
109 these nutritionally-explicit dimensions as protein and carbohydrate intake, thereby
110 allowing us to measure the effect of the gut microbiome on host diet selection.
111  Supporting the hypothesis that the gut microbiome influences diet selection behavior,
112 this approach revealed statistically significant differences in macronutrient intake across
113 groups of conventionalized mice (Fig. 1b). Treatment groups differed significantly in
114  daily (Fig. S1) and cumulative carbohydrate intake (Fig. 1b) during the diet selection

115 trial. Specifically, Herb-CONV mice voluntarily consumed fewer carbohydrates than


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

116 Carn-CONV and Omni-CONV mice. This trend was most apparent after approximately 1
117 week of diet choice (Fig. S1), suggesting that it may take time for internal nutritional
118 signals to stabilize' and for associative learning® to affect host feeding behavior. In
119  contrast, treatment groups did not differ in either daily (Fig. S1) or cumulative protein
120 intake (Fig. 1b). Lower cumulative carbohydrate intake among Herb-CONV mice led to
121  their selection of a significantly higher P:C ratio diet compared to Omni-CONV and
122 Carn-CONV mice (Fig. S2). Interestingly, we also observed a significant difference in
123  total food intake among Herb-CONV mice compared to the other treatment groups (Fig.
124 S1), suggesting that Herb-CONV mice’s preference for the higher P:C ratio diet may
125 have permitted them to reduce total energy intake without affecting nutritional
126  homeostasis (i.e., protein-leveraging)'®. Under natural scenarios, such differences in
127  selected P:C ratios could be accomplished by animals incorporating different levels of
128 insects, seeds, or foliage into their diets. The ratio of macronutrients an animal
129  consumes, rather than the total amount of any individual nutrient, has significant effects
130 on animal physiology, life history, and reproductive fitness*"*. The preference of Herb-
131 CONV mice for the HPC diet are also consistent with previous studies showing that
132 Microtus voles prefer high-protein foods when available?*2°, though a follow-up study on
133 the foraging preferences of M. montanus with respect to specific dietary nutrients would
134 more robustly support the ecological significance of our findings. More generally, these
135 results are also consistent with the “nitrogen limitation hypothesis”, which posits that the
136 relative scarcity of nitrogen in plant materials may drive the opportunistic consumption
137  of higher protein foods among herbivores®®*?2. Interestingly, the hindgut microbiota of

138 herbivorous mammals are also nitrogen-limited®®, and so our findings offer support to
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139 the hypothesis that microbes may alter host foraging behaviors to enrich the intestinal
140  environment in necessary nutrients’.

141 Next, we characterized day 0 (7 days post-inoculation and just prior to diet
142  selection trial) gut microbial community structure, microbiome function, and plasma
143  metabolites of conventionalized mice to determine how these aspects were associated
144  with differential diet selection across treatment groups. 16S rRNA inventories confirmed
145  that both donors and recipients harbored distinct bacterial communities that differed
146  significantly from blank extraction controls (Fig. 1c; Fig. S3; Fig. S4). We observed
147  significant differences in colonization efficiency across treatment groups. Specifically,
148  microbial communities of Carn- and Omni-CONV recipients were significantly most
149  similar to those of their donors, while Herb-CONV recipients were not significantly
150  similar to any donor group (Fig. S4). It is expected that recipient communities would not
151 match donors identically, as the Mus host physiology reshapes donor communities®,
152  and our donor communities were collected from individuals in the wild, and thus our
153 design does not account for the well-documented effects of captivity on the
154  microbiome®'. The comparatively lower colonization efficiency among Herb-CONV mice
155 may have been driven by the low content of indigestible plant fibers that are primarily
156 fermented by microbes. Even in established microbiomes, differences in the content or
157 composition of dietary fiber can result in the extirpation of some fermentive

158  microbes®>%3,

However, Herb-CONV mice were successfully colonized by donor
159  microbiota in the phylum Firmicutes (classes Bacilli and Clostridia), notably those in the
160 family Lachnospiracae, which are strict anaerobes known for their ability to transform

161 plant fibers into volatile fatty acids in the mammalian digestive tract®*. Additionally,
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162  microbiomes from herbivorous mammals colonize germ-free mice at a lower absolute
163 density than microbiomes from omnivorous or carnivorous mammals®. More work is
164  required to understand differential transfer of microbiomes across species, and we
165  discuss this limitation in more detail below.

166 Bacterial ASV richness and phylogenetic diversity were similar across donor
167  groups, but significantly lower in Herb-CONV mice compared to the other treatment
168  groups (Fig. S4). In general, the bacterial communities of conventionalized mice were
169  dominated by the phyla Bacteroidetes and Firmicutes (Fig. S4). Importantly, all recipient
170  fecal samples tested negative for the presence of pathogenic microorganisms.
171  Metagenomic analysis of recipient fecal samples revealed a statistically significant effect
172 of donor species on the relative abundances of 183 (51%) KEGG functional modules
173 (Fig. 1d; Dataset S2). These differences in microbiome community structure and
174  function were accompanied by concomitant differences in plasma metabolites (Fig. 1e),
175  with 27 identified metabolites (16%) differing significantly across treatment groups
176  (Dataset S3). Together, these results demonstrate that interspecific differences in gut
177  microbial communities across rodents with divergent foraging strategies translate to
178  distinct microbial functions and metabolite profiles independent of host diet.

179 There is substantial evidence that the availability of circulating essential amino
180 acids (EAAs) provide peripheral signals that act to regulate macronutrient intake and
181  diet selection*®. Despite consuming identical diets prior to the selection trial, treatment
182  groups differed in circulating levels of several amino acids, with Herb-CONV mice
183  exhibiting significantly higher amounts of the EAAs lysine, isoleucine, methionine,

184  phenylalanine, and tryptophan (Fig. 2a). While EAAs are primarily derived from the diet,
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185  bacteria can also produce these peptides through their own metabolic processes™, and
186  thus the gut microbiome may act as a source of EAAs for their hosts. In support of this
187  hypothesis, treatment groups exhibited broad differences in the microbial synthesis and
188 degradation of EAAs (Fig. 2b). Notably, the microbiome of Herb-CONV mice had a
189 higher abundance of genes involved in the synthesis of aromatic amino acids
190  (phenylalanine, tryptophan, and tyrosine) (Fig. 2b), all of which are synthesized from
191  chorismate (product of the Shikimate pathway)®’. The ratios of bacterial genes involved
192  in tryptophan biosynthesis (M00023) to those involved in tryptophan degradation via the
193  kynurenine pathway (M00038) were significantly correlated with plasma tryptophan (Fig.
194  2c). Given that conventionalized mice consumed identical diets prior to blood
195 collections, these results demonstrate that bacterial metabolism can alter the availability
196 of circulating levels of plasma EAAs, consistent with recent studies conducted in
197  Drosophila®.

198 There is emerging evidence that bacterial tryptophan metabolism is a key
199 mechanism by which the gut microbiome can influence host behavior’**°. This
200 relationship is a consequence of tryptophan’s role as the primary regulatory molecule
201 for the synthesis of central serotonin (5-hydroxytryptamine, 5-HT)*', which has been
202 shown to drive foraging behavior and diet selection in several experimental studies***?.
203  For example, when given a choice between low- or high-carbohydrate meals, rats
204  receiving hypothalamic injections of 5-HT significantly reduced their carbohydrate
205 intake®. Importantly, serotonin synthesis is extraordinarily sensitive to plasma
206 tryptophan availability, and thus plasma tryptophan is generally considered a reliable

207  proxy for central serotonin®. Therefore, we predicted that plasma tryptophan would be
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208 associated with differences in diet selection among conventionalized mice. Indeed, we
209 found a statistically significant correlation between day 0 plasma tryptophan and
210  subsequent voluntary carbohydrate intake (Fig. 2c). More recent work has argued that
211  serotonin synthesis is affected by the availability of tryptophan relative to the large
212 neutral amino acids (LNAA: Leu, lle, Phe, Tyr, and Val) that compete for transport
213 across the blood brain barrier*®. Consistent with these studies, we found a statistically
214  significant correlation between day O Trp:LNAA ratios and cumulative carbohydrate
215 intake (Fig. 2c). Further, the ratio of tryptophan biosynthesis and degradation KEGG
216 modules were also statistically significant predictors of carbohydrate and P:C intake
217  (Fig. 2c). Overall, these results support the hypothesis that bacterial tryptophan
218  metabolism influences host diet selection behavior.

219 Interspecific differences in foraging behavior are generally associated with diet-
220  specific adaptations to intestinal physiology. For example, herbivores generally maintain
221  an enlarged cecum (fermentation chamber) that enhances the digestibility of low-quality,
222 carbohydrate-rich foods*’. Given that the gut microbiome can profoundly alter host
223 intestinal gene expression and physiology*®™°, divergent microbial communities may
224  drive differences in intestinal morphology across feeding strategies. At the conclusion of
225 the diet selection trial (day 11), we quantified intestinal morphology with the prediction
226  that conventionalized mice would exhibit differences that broadly reflected that of their
227  donor species. While there was no change in body mass over the duration of the
228 experiment (F = 1.01, P = 0.377), treatment groups differed significantly in empty colon
229  mass (Fig. 3b), with Herb-CONV mice exhibiting comparatively larger colons than those

230 in other treatment groups. There were no significant differences in cecum mass (Fig.

10
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231  3a) or colon length (Fig. 3c). In general, the comparatively larger colons observed in
232  Herb-CONV mice are consistent with evolutionary adaptations observed in herbivorous
233 animals, which generally maintain larger hindguts to promote digestion*’. The gut is a
234 highly dynamic organ that can rapidly change in mass and length in response to
235 environmental conditions, often through altered rates of cellular proliferation in intestinal
236  crypts and cell loss through sloughing or apoptosis at the ends of intestinal villi, but also
237  through the change of the size of individual enterocytes®’. In the future, histological
238 analyses could be conducted to investigate whether these changes in gut size are
239 driven by hyperplasia (increase in cell number) and/or hypertrophy (increase in cell
240 size), and to rule out the possibility for these differences to be driven by intestinal
241  inflammation.

242 While the observed differences in gut size are consistent with adaptations
243  observed in herbivores, our study only tested the microbiome of a single species from
244  each feeding strategy. A robust test of whether the microbiome recapitulates the
245  differences in gut size observed across feeding strategies would require several donor
246  species from each dietary strategy. Another question is whether the gut microbiome
247  affected intestinal morphology directly or via differential diet selection. While our
248  experimental design makes it difficult to disentangle the effects of differential diet
249 selection from those of microbiome, it is worth noting that previous work has
250 demonstrated that lab mice fed low P:C ratio diets had larger intestinal compartments
251 (e.g., colon) compared to those fed higher P:C diets®’. In our study, we observed the
252  opposite — Herb-CONV mice, which consumed a higher P:C ratio diet (Fig. 1b),

253  exhibited larger colon masses (Fig. 3). These results contradict the generally accepted

11
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254  model of adaptive physiological responses to dietary carbohydrates, suggesting that the
255  gut microbiome may drive interspecific differences in host intestinal physiology to some
256  extent, independent from the effects of diet and genetics.

257 Here, we present evidence for an effect of the gut microbiome on host diet
258  selection behavior, however, it is important to recognize that our approach has several
259  substantial limitations. For example, the relative differences in nutrient composition
260 between diets have been shown to greatly influence animals’ ability to distinguish and
261 differentially feed'®, suggesting that our differential diet selection results may have been
262  more pronounced if we had used diets with greater differences in macronutrient content.
263  Further, previous work has shown that the evolutionary distance between donor species
264 and germ-free mice can affect the efficacy of microbiome transplants™. While our
265 selected donor species were similarly distant to Mus musculus, there were significant
266 differences in colonization success across donor species, suggesting that cecal
267 microbiota may be specifically adapted to their hosts. While differences in colonization
268 efficiency may limit our ability to robustly connect our study to the ecology of donor
269  species, this limitation should not diminish our major finding that conventionalized germ-
270 free mice harboring compositionally and functionally distinct microbiotas differing in
271  microbial diversity exhibited different feeding preferences. Overall, our approach is
272  stronger than comparing conventional mice with the highly artificial state of germ-free
273  mice, and the complex microbial communities that we used better reflect reality, which
274 is recognized as pressing need in the field of host-microbe interactions'""?.

275 In this study, we found that conventionalized germ-free mice harboring distinct

276 gut microbiota exhibited significant differences in diet selection behavior, providing

12
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277  support for our core hypothesis that microbiota can influence foraging decisions.
278  Specifically, our study provides evidence that variation in the gut microbiota alters host
279  nutrient availability and can yield significant differences in the diet selection of
280 conventionalized mice in just 11 days, likely through differential bacterial metabolism
281 and downstream availability of EAAs, especially tryptophan. These findings are largely
282  consistent with recent mechanistic work in model systems®?®, but address the natural
283  variation in microbial communities that exist among individuals and across species'"'%.
284  Therefore, this study not only represents a novel contribution to a large body of work
285  showing that the gut microbiome is a key player in host physiology and performance®,
286  but also more broadly supports the hypothesis that the gut microbiota can influence
287  ecological and evolutionary processes shaping animal behavior. Foraging strategies
288 and feeding behaviors can influence many aspects of an animal’s ecology (e.g., the
289 need to obtaining specific nutrients while also avoiding predators®), and animal feeding
290  can also shape the structures of entire plant and animal communities®. Thus, there may
291  be an underexplored role for gut microbes to influence far-reaching aspects of animal
292  and ecosystem ecology through influencing the feeding behavior of their hosts.
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308 MATERIALS AND METHODS

309 Wild rodents. Wild Onychomys torridus were collected in August 2018 from field
310 sites in near Green Valley, Pima Co., AZ (31.802834, -110.891172), Peromyscus
311  leucopus in May 2018 near Murray, Calloway Co., KY (36.686582, -88.221204), and
312 Microtus montanus in July 2018 at Timpie Springs Waterfowl Management Area,
313  Dugway, Tooele Co., UT (40.753708, -112.639903). Ten individuals from each species
314  were collected using baited Sherman live traps under the following state permits: O.
315  torridus (AZ Game and Fish Dept., SP627958), P. leucopus (KY Dept. of Fish and
316  Wildlife, SC1911097), and M. montanus (UT Division of Wildlife Resources,
317 1COLL5194-2). Animals were euthanized within 12 hours and immediately dissected
318 under IACUC protocols registered at the University of Utah (16-02011 to D. Dearing),
319  Murray State University (2018-026 to T. Derting), and University of Alabama (18-04-

320 1159 to S. Secor). Cecum contents for microbiome transplants were transferred to 1.7

14
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321 mL Eppendorf tubes using sterile instruments and temporarily frozen at -20°C in the
322 field before long-term lab storage at -80°C.

323 Microbiome transplants. Donor cecum contents were diluted at 100mg/mL in
324  sterile phosphate-buffered saline containing 0.2 g/L Na,S and 0.5 g/L cysteine as
325 reducing agents®™®. Under sterile laboratory conditions, 30 adult (aged 6-8 weeks)
326 male germ-free C57BL/6 mice (Taconic Biosciences, Inc., Rensselaer, NY) were
327 randomly divided into Carn-CONV, Omni-CONV, and Herb-CONV groups (n = 10 mice
328 per group), where each mouse in a given group was colonized by oral gavage of 200 uL
329  of fecal slurry from a unique, wild-caught donor individual. Conventionalized mice were
330 then singly-housed in sterile static cages (Innovive, Inc., San Diego, CA; MSX2-AD)
331 modified by the addition of two metabolic feeder hoods (Laboratory Products, Inc.,
332  Seaford, DE; 2110S) that prevent mice from caching powdered diets, and thus enable
333  the tracking daily macronutrient intake (see below). Due to a lack of similar studies on
334  this topic, we were unable to conduct an a priori power analysis to justify the number of
335 donor/recipient mice per group. Instead, we decided on n = 10 per group based on the
336 number of animals typically used in studies involving germ-free mice, the vast majority
337  of which used 5-10 individuals per group'. One recipient mouse from the Herb-CONV
338 group (V57) was excluded from our dataset due to aberrant behaviors that indicated
339  possible injury during microbiome transplants. All recipient fecal samples were screened
340 for 21 of the most common rodent pathogenic microorganisms using PCR tests
341 conducted by a third-party diagnostic company (Charles River Research Animal

342  Diagnostic Services, Wilmington, MA).

15
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343 Diet selection experiment. After colonization, conventionalized mice were
344  acclimated for 7 days (to allow the gut microbiome to stabilize®®), during which they
345 were offered only sterile water and a low protein:carbohydrate ratio diet (LPC [0.27];
346 Table S1), as this diet is rather similar to standard mouse chow. After acclimation (day
347 0), mice were briefly removed from their cages for a 200 pL blood draw for
348 metabolomics analysis (see details below). Mice were weighed (rounded to nearest
349  hundredth) and returned to empty cages to facilitate the collection of fresh fecal
350 samples for 16S rRNA microbial inventories and shotgun metagenomics (see details
351 below). Conventionalized mice were then presented with a choice between two
352 isocaloric diets (Table S1): (1) the LPC (0.27) diet offered during acclimation and (2) a
353 diet with a higher P:C ratio (HPC [0.71]). The positions of these two diets were rotated
354  daily to avoid learned preferences. Diets were designed by Teklad/Envigo (Indianapolis,
355 IN), and were powdered prior sterilization to be visually indistinguishable from each
356 other and to prevent food caching. Daily food consumption was calculated as the
357 difference between the mass (rounded to nearest thousandth) of each diet presented
358 (~8 g) and the mass of each diet remaining after a 24-hour period. After tracking diet
359 preferences for 11 consecutive days, animals were euthanized and dissected to
360 investigate differences in the empty masses (rounded to nearest thousandth) of
361 intestinal compartments. Conventionalized mice were maintained on a 12:12-h
362 light:dark cycle, with 21°C ambient temperature and 40% humidity for the duration of the
363 experiment. Animal experiments were conducted at the University of Pittsburgh Plum

364  Borough Primate Facility under IACUC protocol 19074445.
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365 Metabolomics. Blood plasma was analyzed for primary metabolites (amino
366 acids, hydroxyl acids, carbohydrates, sugar acids, sterols, aromatics, nucleosides,
367 amines, and miscellaneous compounds) by the West Coast Metabolomics Center at the
368 University of California — Davis, which performed all sample preparation, data
369  acquisition, and data processing as previously described®’. Briefly, metabolites were
370  extracted using a mixture of acetonitrile:isopropanol:water (3:3:2, v/v/v) as well as 1:1
371  acetonitrile:water for removal of protein from serum. Dried metabolite extracts were
372 resuspended in methoxyamine hydrochloride in pyridine for derivatization before being
373 analyzed using gas chromatography-time-of-flight (GC-TOF) using a LECO Pegasus |V
374 mass spectrometer equipped with automated liner exchange (ALEX; Gerstel
375 corporation) and cold injection system (CIS; Gerstel corporation) for data acquisition.
376  The CIS temperature was set at 501°C to 2500°C final temperature at a rate of 12[1°C
377 s-1. Raw GC-TOF MS data were preprocessed with ChromaTOF (version 2.32) and
378 apex masses were used to identify metabolites using the BinBase database. Values
379 were reported as peak height for the quantification ion (m/z value) at the specific
380 retention index, which is more precise than peak area for low abundant metabolites. All
381 database entries that were positively detected in more than 10% of the samples of a
382  study design class for unidentified metabolites were reported. Raw peak heights were
383  vector normalized to reduce the impact of between-series drifts of instrument sensitivity,
384  caused by machine maintenance status and tuning parameters.

385 DNA extractions. DNA was extracted from donor cecal contents and day 0
386  conventionalized mouse feces using the Qiagen PowerFecal DNA Kit (Qiagen, Hilden,

387  Germany; 12830) following the manufacturer’s instructions.
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388 16S rRNA microbial inventories. Extracted DNA from conventionalized mice
389 and donor cecum contents was amplified and sequenced by the Genome Research
390 Core of the University of lllinois at Chicago as previously described®. Briefly,
391 polymerase chain reaction (PCR) was used to amplify a portion of the bacterial 16S
392  rRNA gene for lllumina sequencing using the Earth Microbiome Project primers 515F
393 (GTGCCAGCMGCCGCGGTAA) and 806R (GGACTACNVGGGTWTCTAAT) targeting
394  the V4 region of microbial small subunit ribosomal RNA gene®. Amplicon libraries were
395 sequenced using a 2x251 paired-end run on an lllumina MiSeq. In addition to donor and
396 recipient fecal samples, we sequenced five ‘blank’ extractions to control for the
397  possibility of microbial contamination during the extraction procedure and microbial DNA
398  present in commercial extraction kits®®. A total of 1,398,994 raw lllumina sequencing
399 reads (mean of 22,206 per sample (n = 63) £ 1111 SE) were paired and quality filtered
400 via the DADA2 pipeline®’ in QIIME2 (version 2020.4)%* using default parameters.
401  Sequences that passed the quality filter were clustered into amplicon sequence variants
402 (ASVs), which were identified using the SILVA reference database (release 138)%.
403 Identified ASVs were filtered to exclude non-bacterial sequences (archaea, chloroplast,
404 eukaryote, and mitochondria), reducing our total number of reads to 1,396,450 (mean of
405 22,166 per sample £ 1,112 SE) and 4,359 ASVs. We detected a total of 4,118 ASVs in
406 donor and recipient fecal samples, 19 (0.46%) of which were also detected in blank
407  extractions (total of 260 ASVs from 27,807 reads with mean of 5,561 per sample %
408 1,419 SE). As recommended by McMurdie and Holmes (2014)%, we used un-rarefied

409 ASV tables for comparisons of colonization efficiency (Bray-Curtis distances), alpha
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410 diversity (ASV richness and Faith’s phylogenetic diversity), and beta diversity (Bray-
411  Curtis and unweighted/weighted UniFrac distances®).

412 Shotgun metagenomics. Extracted DNA from conventionalized mice was sent
413 to CoreBiome, Inc. (St. Paul, MN) for shotgun metagenomic analysis using
414  BoosterShot™[]. Briefly, sequencing libraries were prepared using a procedure adapted
415 from the lllumina Nextera Library Prep Kit (lllumina, 20018705) and sequenced on an
416  lllumina NovaSeq using single-end 1x100 reads with the Illumina NovaSeq SP reagent
417 kit (lllumina, 20027464). A total of 122,190,150 raw sequence reads (mean of 4,213,453
418 per sample (n = 29) + 151,158 SE) were filtered for low quality (Q-Score < 30) and
419 length (< 50), trimmed of adapter sequences, and converted into a single fasta using
420  SHI7 (version 0.99)%. Sequences were then trimmed to a maximum length of 100 bp
421  and aligned using BURST (version 0.99.8)°” at 97% identity against CoreBiome’s Venti
422  database consisting of all RefSeq bacterial genomes with additional manually curated
423  strains as well as a bacterial KEGG® annotated database created from dereplicating
424  the bacterial genes within the Venti database. KEGG orthology counts were converted
425  to relative abundance within a sample and collapsed into KEGG modules for statistical
426  analysis.

427 Statistics. Differences in macronutrient and total diet intake across treatment
428 groups were tested using a multivariate analysis of variance (MANOVA) while
429  controlling for the effects of body mass. A post hoc power analysis for MANOVA was
430  conducted using G*Power®® (version 3.1) to confirm that statistical power was
431  sufficiently greater than the widely-accepted minimum threshold of 0.807°. Microbial

432  community structure (from 16S rRNA inventories) was visualized using principal
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433  coordinates analysis (PCoA) on ASV relative abundances, which were then assessed
434  for differences (controlling for multiple comparisons using false discovery rate corrected
435  P-values) across treatment groups using non-parametric permutational multivariate
436 analysis of variance (PERMANOVA), analysis of similarity (ANOSIM), and
437  permutational analysis of dispersion (PERMDISP) in QIIME2%%. Microbiome function
438 was visualized using PCoA on KEGG module relative abundances and analyzed for
439  differences across treatment groups with PERMANOVA in QIIMEZ2. Differences in the
440 relative abundance of functional KEGG modules across conventionalized mice were
441 tested using the non-parametric Krustal-Wallis test and linear discriminant analysis in
442  LEfSe using the “one-against-all” strategy for multi-class analysis’'. Identified plasma
443  metabolites were filtered (based on mean intensity and IQR) and auto-scaled before
444  using non-parametric median tests to identify metabolites that varied significantly across
445  treatment groups and visualized using supervised partial least square discriminant
446  analysis (PLS-DA) in MetaboAnalyst (version 4.0)2. Non-parametric Spearman rank
447  correlations between plasma Trp availability, Trp KEGG modules, and macronutrient
448  intake were conducted using non-parametric Spearman’s test (controlling for the effect
449  of donor species) in the R package ppcor (version 1.1)"® and visualized using corrplot
450  (version 0.85)™. Differences in empty cecum mass, empty colon mass, and colon length
451  across treatment groups were tested using ANOVA with body mass as a covariate and
452  corrected for multiple comparisons using Tukey’s HSD. Unless otherwise noted, all
453  statistical tests were two-sided and conducted in JMP Pro version 14.1.0 (SAS Institute
454  Inc., Cary, NC). For all statistical analyses, P-values < 0.05 were defined as ‘significant’.

455

20


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

456 REFERENCES
457 1. Kyriazakis, |., Tolkamp, B. J. & Emmans, G. Diet selection and animal state: an
458 integrative framework. Proc. Nutr. Soc. 58, 765-772 (1999).

459 2. Blanco, A. M., Calo, J. & Soengas, J. L. The gut-brain axis in vertebrates:

460 Implications for food intake regulation. J Exp Biol 224, jeb231571 (2021).
461 3. Furness, J. B. The enteric nervous system and neurogastroenterology. Nature
462 Reviews Gastroenterology & Hepatology 9, 286—-294 (2012).

463 4. Stubbs, R. J. Peripheral signals affecting food intake. Nutrition 15, 614—625
464 (1999).

465 5. Cryan, J. F. et al. The microbiota-gut-brain axis. Physiological Reviews 99,
466 1877-2013 (2019).

467 6. Berthoud, H.-R., Munzberg, H., Richards, B. K. & Morrison, C. D. Neural and
468 metabolic regulation of macronutrient intake and selection. Proceedings of the
469 Nutrition Society 71, 390—400 (2012).

470 7. Alcock, J., Maley, C. C. & Aktipis, C. A. Is eating behavior manipulated by the
471 gastrointestinal microbiota? Evolutionary pressures and potential mechanisms.
472 Bioessays 36, 940-949 (2014).

473 8. Norris, V., Molina, F. & Gewirtz, A. T. Hypothesis: Bacteria control host appetites.
474 Journal of Bacteriology 195, 411-416 (2013).

475 9. O’Donnell, M. P., Fox, B. W., Chao, P.-H., Schroeder, F. C. & Sengupta, P. A
476 neurotransmitter produced by gut bacteria modulates host sensory behaviour.

477 Nature 583, 415-420 (2020).

21


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

478 10. Douglas, A. E. Simple animal models for microbiome research. Nature Reviews
479 Microbiology 17, 764—775 (2019).

480 11. Hanage, W. P. Microbiology: Microbiome science needs a healthy dose of
481 scepticism. Nature News 512, 247 (2014).

482 12. Greyson-Gaito, C. J. et al. Into the wild: Microbiome transplant studies need
483 broader ecological reality. Proceedings of the Royal Society B 287, 20192834
484 (2020).

485 13. Luczynski, P. et al. Growing up in a bubble: Using germ-free animals to assess
486 the influence of the gut microbiota on brain and behavior. International Journal of
487 Neuropsychopharmacology 19, (2016).

488 14. Seedorf, H. et al. Bacteria from diverse habitats colonize and compete in the
489 mouse gut. Cell 159, 253—-266 (2014).

490 15. Sommer, F. et al. The gut microbiota modulates energy metabolism in the
491 hibernating brown bear Ursus arctos. Cell Reports 14, 1655-1661 (2016).

492 16. Steppan, S. J., Adkins, R. M. & Anderson, J. Phylogeny and divergence-date
493 estimates of rapid radiations in muroid rodents based on multiple nuclear genes.
494 Systematic Biology 53, 533-553 (2004).

495 17. Raubenheimer, D., Simpson, S. J. & Mayntz, D. Nutrition, ecology and nutritional
496 ecology: toward an integrated framework. Functional Ecology 23, 4-16 (2009).
497 18. Simpson, S. J., Raubenheimer, D. & Bone, Q. A multi-level analysis of feeding
498 behaviour: the geometry of nutritional decisions. Philosophical Transactions of

499 the Royal Society of London. Series B: Biological Sciences 342, 381-402 (1993).

22


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

500 19. Sarensen, A., Mayntz, D., Raubenheimer, D. & Simpson, S. J. Protein-leverage

501 in mice: The geometry of macronutrient balancing and consequences for fat
502 deposition. Obesity 16, 566-571 (2008).

503 20. |Integration of learning and metabolic signals into a theory of dietary choice and
504 food intake. in Ruminant physiology: digestion, metabolism, growth, and
505 reproduction (eds. Cronjé, P. & Boomker, E. A.) (CABI Pub, 2000).

506 21. Reddiex, A. J., Gosden, T. P., Bonduriansky, R. & Chenoweth, S. F. Sex-specific
507 fitness consequences of nutrient intake and the evolvability of diet preferences.
508 The American Naturalist 182, 91-102 (2013).

509 22. Solon-Biet, S. M. et al. The ratio of macronutrients, not caloric intake, dictates
510 cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab
511 19, 418-430 (2014).

512 23. Solon-Biet, S. M. et al. Macronutrient balance, reproductive function, and lifespan
513 in aging mice. Proc Natl Acad Sci USA 112, 3481-3486 (2015).

514 24. Bergeron, J. M. & Jodoin, L. Defining ‘high quality’ food resources of herbivores:
515 the case for meadow voles (Microtus pennsylvanicus). Oecologia 71, 510-517
516 (1987).

517 25. Harju, A. & Hakkarainen, O. Effect of protein and birch-bark powder on selection
518 of food by root voles (Microtus oeconomus). Journal of Mammalogy 78, 563—568
519 (1997).

520 26. White, T. C. R. The inadequate environment: Nitrogen and the abundance of

521 animals. (Springer Science & Business Media, 2012).

23


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

522 27. White, T. C. R. The importance of a relative shortage of food in animal ecology.
523 Oecologia 33, 71-86 (1978).

524 28. Mattson, W. J. Herbivory in relation to plant nitrogen content. Annual Review of
525 Ecology and Systematics 11, 119-161 (1980).

526 29. Reese, A. T. et al. Microbial nitrogen limitation in the mammalian large intestine.
527 Nature Microbiology 3, 1441-1450 (2018).

528  30. Rawls, J. F., Mahowald, M. A., Ley, R. E. & Gordon, J. |. Reciprocal gut
529 microbiota transplants from zebrafish and mice to germ-free recipients reveal
530 host habitat selection. Cell 127, 423—-433 (2006).

531 31. Alberdi, A., Martin Bideguren, G. & Aizpurua, O. Diversity and compositional
532 changes in the gut microbiota of wild and captive vertebrates: a meta-analysis.
533 Sci Rep 11, 22660 (2021).

534 32. Martinez-Mota, R., Kohl, K. D., Orr, T. J. & Denise Dearing, M. Natural diets
535 promote retention of the native gut microbiota in captive rodents. ISME J 14, 67—
536 78 (2020).

537 33. Sonnenburg, E. D. et al. Diet-induced extinctions in the gut microbiota compound
538 over generations. Nature 529, 212-215 (2016).

539 34. Meehan, C. J. & Beiko, R. G. A phylogenomic view of ecological specialization in
540 the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome
541 Biol Evol 6, 703-713 (2014).

542 35. Contijoch, E. J. et al. Gut microbiota density influences host physiology and is

543 shaped by host and microbial factors. eLife 8, e40553 (2019).

24


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

544  36. Dai, Z.-L., Wu, G. & Zhu, W.-Y. Amino acid metabolism in intestinal bacteria:
545 Links between gut ecology and host health. Frontiers in bioscience: a journal and
546 virtual library 16, 1768-86 (2011).

547  37. Hermann, K. M. & Weaver, L. M. The shikimate pathway. Annual Review of Plant
548 Biology 473-503.

549 38. Lesperance, D. N. A. & Broderick, N. A. Gut bacteria mediate nutrient availability
550 in Drosophila diets. Appl. Environ. Microbiol. 87, (2020).

551 39. Gao, K., Mu, C., Farzi, A. & Zhu, W. Tryptophan metabolism: A link between the
552 gut microbiota and brain. Advances in Nutrition 11, 709-723 (2020).

553 40. O’Mahony, S. M., Clarke, G., Borre, Y. E., Dinan, T. G. & Cryan, J. F. Serotonin,
554 tryptophan metabolism and the brain-gut-microbiome axis. Behavioural Brain
555 Research 277, 32—48 (2015).

556 41. Fernstrom, J. D. Role of precursor availability in control of monoamine
557 biosynthesis in brain. Physiological Reviews 63, 484-546 (1983).

558 42. Harrold, J. A., Dovey, T. M., Blundell, J. E. & Halford, J. C. G. CNS regulation of
559 appetite. Neuropharmacology 63, 3—17 (2012).

560 43. Blundell, J. E. & Halford, J. CG. Serotonin and appetite regulation. Mol Diag Ther
561 9, 473-495 (1998).

562 44. Shor-Posner, G., Grinker, J. A., Marinescu, C., Brown, O. & Leibowitz, S. F.
563 Hypothalamic serotonin in the control of meal patterns and macronutrient
564 selection. Brain Research Bulletin 17, 663—-671 (1986).

565 45. Fernstrom, J. D. & Wurtman, R. J. Brain serotonin content: Physiological

566 dependence on plasma tryptophan levels. Science 173, 149-152 (1971).

25


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

567 46. Fernstrom, J. D. Large neutral amino acids: dietary effects on brain
568 neurochemistry and function. Amino Acids 45, 419-430 (2013).

569 47. Stevens, C. E. & Hume, |. D. Comparative physiology of the vertebrate digestive
570 system. (Cambridge University Press, 2004).

571 48. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold.
572 Cell 163, 1360-1374 (2015).

573  49. Broderick, N. A., Buchon, N. & Lemaitre, B. Microbiota-induced changes in
574 Drosophila melanogaster host gene expression and gut morphology. mBio 5,
575 e01117-14 (2014).

576  50. Sgrensen, A., Mayntz, D., Simpson, S. J. & Raubenheimer, D. Dietary ratio of
577 protein to carbohydrate induces plastic responses in the gastrointestinal tract of
578 mice. J Comp Physiol B 180, 259-266 (2010).

579 51. Starck, J. M. Shaping up: How vertebrates adjust their digestive system to
580 changing environmental conditions. Animal Biology 53, 245-257 (2003).

581 52. McFall-Ngai, M. et al. Animals in a bacterial world, a new imperative for the life
582 sciences. Proc Natl Acad Sci USA 110, 3229-3236 (2013).

583  53. McArthur, C., Banks, P. B., Boonstra, R. & Forbey, J. S. The dilemma of foraging
584 herbivores: Dealing with food and fear. Oecologia 176, 677—689 (2014).

585 54. Martin, T. E. & Maron, J. L. Climate impacts on bird and plant communities from
586 altered animal—plant interactions. Nature Climate Change 2, 195-200 (2012).

587 55. Molinaro, A. et al. Host—-microbiota interaction induces bi-phasic inflammation

588 and glucose intolerance in mice. Molecular Metabolism 6, 1371-1380 (2017).

26


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

589 56. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty
590 induce long-term changes on the human gut microbiome contributing to fat mass
591 regulation. Cell Metabolism 22, 228—-238 (2015).

592 57. Fiehn, O. et al. Quality control for plant metabolomics: Reporting MSI-compliant
593 studies. The Plant Journal 53, 691-704 (2008).

594 58. Trevelline, B. K., MacLeod, K. J., Langkilde, T. & Kohl, K. D. Gestation alters the
595 gut microbiota of an oviparous lizard. FEMS Microbiology Ecology 95, (2019).

596 59. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions
597 of sequences per sample. Proceedings of the National Academy of Sciences
598 108, 45164522 (2011).

599 60. Salter, S. J. et al. Reagent and laboratory contamination can critically impact
600 sequence-based microbiome analyses. BMC Biol 12, 87 (2014).

601 61. Callahan, B. J. et al. DADA2: High-resolution sample inference from lllumina
602 amplicon data. Nature Methods 13, 581-583 (2016).

603 62. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome
604 data science using QIIME 2. Nature Biotechnology 37, 852—857 (2019).

605 63. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data
606 processing and web-based tools. Nucleic Acids Research 41, D590-D596
607 (2013).

608 64. McMurdie, P. J. & Holmes, S. Waste not, want not: Why rarefying microbiome
609 data is inadmissible. PLoS Comput Biol 10, e1003531 (2014).

610 65. Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing

611 microbial communities. AEM 71, 8228-8235 (2005).

27


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

612 66. Al-Ghalith, G. A., Hillmann, B., Ang, K., Shields-Cutler, R. & Knights, D. SHI7 is a
613 self-learning pipeline for multipurpose short-read DNA quality control. mSystems
614 3, e00202-17 (2018).

615 67. Al-Ghalith, G. & Knights, D. BURST enables optimal exhaustive DNA alignment
616 for big data. (2017).

617 68. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes.
618 Nucleic Acids Research 28, 27-30 (2000).

619 69. Faul, F., Erdfelder, E., Lang, A.-G. & Buchner, A. G*Power 3: A flexible statistical
620 power analysis program for the social, behavioral, and biomedical sciences.
621 Behavior Research Methods 39, 175-191 (2007).

622 70. Cohen, J. Statistical Power Analysis for the Behavioral Sciences. (Academic
623 Press, 2013).

624 71. Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome
625 Biology 12, R60 (2011).

626 72. Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 4.0 for comprehensive
627 and integrative metabolomics data analysis. Current Protocols in Bioinformatics
628 68, €86 (2019).

629 73. Kim, S. ppcor: An R package for a fast calculation to semi-partial correlation
630 coefficients. Communications for Statistical Applications and Methods 22, 665
631 (2015).

632 74. Wei, T. & Simko. R package ‘corrplot’: Visualization of a correlation matrix.
633 (2017).

634

28


https://doi.org/10.1101/2020.07.02.184382

bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.184382; this version posted March 4, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

635 FIGURE LEGENDS

636

637 Fig. 1. The gut microbiome influences host diet selection behavior. a, Overview of
638 experimental design. Germ-free mice were colonized with the gut microbiome of three
639 species of wild rodents with distinct foraging strategies: carnivorous Onychomys torridus
640 (Carn-CONV), omnivorous Peromyscus leucopus (Omni-CONV), and herbivorous
641  Microtus montanus (Herb-CONV). Conventionalized mice were acclimated on LPC diet
642 for 7 days before day 0 blood and fecal sampling. After acclimation, conventionalized
643 mice were then given a choice between LPC and HPC diets for 11 days. Daily diet
644 intakes were tracked via two feeder hoods, which were rotated daily to avoid learned
645 preferences. b, Treatment groups differed significantly in macronutrient intake (Wilks’ A
646 = 0.455, Cohen’s = 0.41, power = 0.98, P = 0.0007), with Herb-CONV mice voluntarily
647  consuming fewer carbohydrates than the Omni- and Carn-CONV groups (F = 9.22, P =
648 0.001). There was no difference in cumulative protein intake across treatment groups (F
649 =1.362, P = 0.275). Dashed rails and associated P:C ratios indicate the expected result
650 if mice consumed only a single diet. Error bars represent the standard error of the mean
651 (SEM). ¢, Principal coordinate analysis (PCoA) of 16S rRNA inventories of wild donors
652 (squares) and conventionalized recipients at day O (circles) using Bray-Curtis
653  dissimilarity. Microbial community structure differed significantly among wild donors
654  (Pseudo-F = 7.41, P = 0.001) and recipients (Pseudo-F = 3.24, P = 0.001). All groups
655 differed significantly from blank extraction controls (gray diamonds; Pseudo-F = 4.78, P
656 = 0.001). d, PCoA analysis showing a statistically significant difference in the relative

657 abundances of microbial KEGG modules using Bray-Curtis dissimilarity (Pseudo-F =
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658 5.96, P = 0.001). e, PLS-DA analysis illustrating broad differences in identified plasma
659 metabolites across conventionalized mice at day 0. * denotes P < 0.05.

660

661 Fig. 2. Day 0 plasma tryptophan availability and bacterial tryptophan metabolism
662 are associated with differential macronutrient intake across treatment groups. a,
663  Heatmap illustrating broad differences in plasma levels of essential amino acids across
664 treatment groups, with Herb-CONV mice exhibiting significantly greater levels of lysine
665 (X?=6.13, P = 0.047), isoleucine (X? = 11.42, P = 0.003), methionine (X* = 6.13, P =
666  0.047), phenylalanine (X? = 6.13, P = 0.047), and tryptophan (X* = 9.10, P = 0.011)
667 compared Carn-CONV and Omni-CONV mice. Columns represent individual
668 conventionalized mice for each treatment group. * denotes P < 0.05 and color indicates
669 the treatment group with greatest circulating plasma levels (red = Carn-CONV, blue =
670  Omni-CONV, and yellow = Herb-CONV). b, Heatmap illustrating broad differences in
671  the abundances of microbial genes associated with metabolism of essential amino acids
672 (Dataset S2). * denotes P < 0.05 and color indicates the treatment group with greatest
673 relative abundance. ¢, Correlation plot summarizing relationships between plasma
674  tryptophan availability, bacterial tryptophan metabolism, and host diet selection among
675 conventionalized mice. The direction and color of the ellipses indicate whether
676  correlations were positive or negative, and asterisks indicate whether Spearman’s
677  correlations were statistically significant (* denotes P < 0.05, ** denotes P < 0.01, and

678 ** denotes P <0.001).
679

680 Fig. 3. Treatment groups exhibit differences in intestinal morphology. a, Empty

681 cecum mass did not differ significantly across treatment groups (F = 2.18, P = 0.133). b,
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682 Empty colon mass differed significantly across treatment groups (F = 6.91, P = 0.004),
683  with Herb-CONV mice exhibiting a greater colon mass than Carn-CONV mice (FDR-ad;.
684 P =0.003). ¢, Colon length did not differ significantly across treatment groups (F = 2.03,

685 P =0.151). ** denotes P < 0.01.
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