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Abstract—Data deduplication saves storage space by identi-
fying and removing repeats in the data stream. Compared with
traditional compression methods, data deduplication schemes are
more computationally efficient and are thus widely used in large
scale storage systems. In this paper, we provide an information-
theoretic analysis of the performance of deduplication algorithms
on data streams in which repeats are not exact. We introduce a
source model in which probabilistic substitutions are considered.
More precisely, each symbol in a repeated string is substituted
with a given edit probability. Deduplication algorithms in both
the fixed-length scheme and the variable-length scheme are
studied. The fixed-length deduplication algorithm is shown to
be unsuitable for the proposed source model as it does not take
into account the edit probability. Two modifications are proposed
and shown to have performances within a constant factor of
optimal for a specific class of source models with the knowledge of
model parameters. We also study the conventional variable-length
deduplication algorithm and show that as source entropy becomes
smaller, the size of the compressed string vanishes relative to the
length of the uncompressed string, leading to high compression
ratios.

I. INTRODUCTION

The task of reducing data storage costs is gaining increasing
attention due to the explosive growth of the amount of digital
data, especially redundant data [3], [10], [18]. Data dedupli-
cation is a data reduction approach that eliminates duplicate
data at the file or subfile level. Compared with traditional data
compression approaches, data deduplication is more efficient
when dealing with large-scale data. It has been widely used
in mass data storage systems, e.g., LBFS (low-bandwidth
network file system) [12] and Venti [14]. In this paper, we
aim to study the performance of data deduplication algorithms
from an information-theoretic point of view when repeated
data segments are not necessarily exact copies.

A typical data deduplication system uses a chunking scheme
to parse the data stream into multiple data ‘chunks’. Chunks
are entered into the dictionary at the first occurrences, and
duplicates are replaced by pointers to the dictionary. The
chunks can be of equal length (fixed-length chunking) or of
lengths that are content-defined (variable-length chunking) [8].
The fixed-length scheme has low complexity but suffers from
the boundary-shift problem: if insertions or deletions occur
in a part of the data stream, then all subsequent chunks are
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changed because the boundaries are shifted. In the variable-
length scheme, chunk breakpoints are determined using pre-
defined patterns and therefore edits will not affect subsequent
chunks and repeated data segments can still be identified.

An information-theoretic analysis of deduplication algo-
rithms was first performed by Niesen [13]. Niesen’s work in-
troduced a source model, formalized deduplication algorithms
in both fixed-length and variable-length schemes, including
(conventional) fixed-length deduplication (FLD) and variable-
length deduplication (VLD), and analyzed their performance.
We adopt a similar strategy in this paper. The source model
introduced by Niesen produces data strings that are composed
of blocks, with each block being an exact copy of one of the
source symbols, where the source symbols are pre-selected
strings. It is often the case, however, that the copies of a block
of data that is repeated many times are approximate, rather
than exact. This may occur, for example, due to edits to the
data, or in the case of genomic data1, due to mutations. Thus,
in our source model, we add probabilistic substitutions to
each block, resulting in data streams composed of approximate
copies of the source symbols.

We then analyze data deduplication algorithms over source
models with probabilistic edits. For the fixed-length scheme,
three algorithms: a generalization of FLD [13] named modified
fixed-length deduplication (mFLD), a variant of mFLD named
adaptive fixed-length deduplication (AFLD), and the edit-
distance deduplication (EDD), are presented and analyzed.
Due to the boundary-shift problem, algorithms in the fixed-
length scheme are studied over the source model where all
source symbols have the same length. We show that for
mFLD, if the chunk length is not properly chosen, the average
length of the compressed strings is greater than source entropy
by an arbitrarily large multiplicative factor for small enough
edit probability. Meanwhile, AFLD and EDD take source
model parameters into account and are shown to have perfor-
mances within a constant factor of optimal. For the variable-
length scheme, we consider the general scenario where source
symbols are of random lengths. We show that VLD can
achieve large compression ratios relative to the length of the
uncompressed strings.

A large number of works have studied data deduplication;
see [20] for a comprehensive survey. However, the problem is
not well-studied from an information-theoretic point of view.
This is important because information-theoretic analysis would
enable comparing the performance of deduplication algorithms
with theoretical limits, under appropriate probabilistic models,
and guide the development of more efficient, possibly optimal,

1Repeats are common in genomic data. For example, a majority of the
human genome consists of interspersed and tandem repeated sequences [6].
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algorithms. In addition to the seminal work by Niesen [13], the
work [19] also analyzed deduplication from an information-
theoretical point of view but with a source model that is incom-
patible with the current analysis. The problem of deduplication
under edit errors was also considered in [1]. While [1] focuses
on performing deduplication on two files, one being an edited
version of the other by insertions and deletions, we consider
a single data stream with substitution errors.

The rest of the paper is organized as follows. Notation and
preliminaries are given in the next section. In Section III, we
introduce the information source model and bound its entropy.
In Section IV, we formally state the deduplication algorithms.
In Section V, we summarize the main results of this paper.
Bounds on the performances of algorithms in the fixed- and
the variable-length schemes are derived in Section VI and VII,
respectively. We close the paper with concluding remarks and
open problems in Section VIII.

II. PRELIMINARIES

We consider the binary alphabet {0, 1}, denoted ⌃. The set
of all finite strings over ⌃ (including the unique empty string)
is denoted ⌃⇤. A j-(sub)string is a (sub)string of length j. For
a non-negative integer m, let ⌃m be the set of all strings of
length m over ⌃. For strings u,v 2 ⌃⇤, the concatenation of
u and v is denoted uv, and the concatenation of i copies of
u is denoted ui. We denote the substring of length ` starting
from the j-th symbol of u by uj,`, which is also referred to
as the j-th `-substring of u. The length of u is denoted |u|.
The cardinality of a set S is also denoted |S|. For a set T of
strings, u is said to be a substring of T if u is a substring of
one or more strings in T .

In this paper, all logarithms are to the base 2. For 0  p  1,
H(p) denotes the binary entropy function: p log

⇣
1
p

⌘
+ (1 �

p) log
⇣

1
1�p

⌘
. For 0  p, q  1, H(p, q) denotes the cross

entropy function: p log
⇣

1
q

⌘
+ (1� p) log

⇣
1

1�q

⌘
. For an event

E , we use Ē to denote its complement and use IE to denote
the indicator variable for E , which takes value 1 when E is
true, and 0 otherwise.

The following inequalities are used frequently: for x 2
(0, 1) and a positive integer n,

1

2
min(1, nx)  1� (1� x)n  min(1, nx). (1)

A binary string is k-runlength-limited (k-RLL) [9] if it does
not contain k consecutive zeros, i.e., all runs of zeros in the
string are of lengths less than k. We denote the set of binary k-
RLL strings by Rk and denote the set of binary k-RLL strings
of length n by Rn

k
. The following lemma provides bounds on

the size of Rn

k
.

Lemma 1. Let k be a positive integer. The number of binary
k-RLL strings of length n, |Rn

k
|, satisfies

(2� 1

2k�2
)n  |Rn

k
|  2(2� 1

2k
)n.

Lemma 1 is proved by induction in Appendix A. By
Lemma 1, we bound the number of binary k-RLL strings of
lengths at most 2k in the following corollary.

Corollary 1. The number of binary k-RLL strings of lengths
at most 2k satisfies

2kX

n=0

|Rn

k
| �

2kX

n=0

✓
2� 1

2k�2

◆n

� 22
k�2.

III. SOURCE MODEL

The source model studied in this paper extends the one
described in [13] by allowing probabilistic substitutions. The
output data stream s is a concatenation of approximate
copies of source symbols. The A source symbols, denoted
X1,X2, . . . ,XA, are iid binary strings generated in the follow-
ing way. Fix a length distribution Pl over positive integers
with mean L. For each 1  a  A, we draw La from Pl

and draw Xa uniformly from ⌃La . It is important to note that,
as a result of sampling with replacement, the source symbols
are distributed uniformly and independently. The probability
that (X1, . . . ,XA) = (x1, . . . ,xA) given the lengths La isQ

A

a=1
1

2La
, for any set of strings (xa) where xa has length

La. So the same sequence can be drawn multiple times as
source symbols. The draws are treated as separate symbols,
but with the same content. We use X to denote the source
symbol alphabet, i.e., X = {X1,X2, . . . ,XA}. The alphabet is
thus a multiset. To simplify some of the derivations, we adopt
the same assumption as [13] that Pl is concentrated around its
mean, specifically, Pl(

L

2  l  2L) = 1.
After generating the source symbols X1,X2, . . . ,XA, we

generate an iid sequence of length B, denoted Y1, . . . , YB ,
where each Yb is an approximate copy of a randomly chosen
source symbol. Specifically, for each 1  b  B, we first pick
Jb uniformly at random from {1, 2, . . . , A}. Next, we generate
Yb by flipping each bit of XJb

independently with probability
�, as a way of simulating edits and other changes to the data in
a simple manner. The bit flipping process is referred to as a �-
edit. As an example, if XJb

= 000000, then a possible outcome
of the �-edit could be 001001, which has probability �2(1��)4.
The data stream s will be a concatenation of Y1, Y2, . . . , YB ,
i.e., s = Y1Y2 · · ·YB . The approximate copies Y1, Y2, . . . , YB

are referred to as source blocks. The real number � is referred
to as the edit probability. The entropy of this source is denoted
H(s). Note that given s, the boundaries between source blocks
are not known to us.

In this paper, we study the asymptotic regime in which
B,A,L ! 1 while the edit probability � remains a constant
less than 1

2 . We consider the situation where A,L are functions
of B with A  B1�k2 for some 0 < k2 < 1 and L = ⇥

�
Bk1

�

for some k1 > 0. We allow A to grow large because it
is reasonable to assume that as the dataset gets larger, the
number of unique blocks is also higher. This necessitates L
to also grow large. The assumption A  B1�k2 ensures that,
on average, every source symbol has repeats. The polynomial
relationship between L and B ensures that B is much smaller
than 2⇥(L). So only a small fraction of all possible strings of
length ⇥(L) can appear as source symbols, or edited versions
of the source symbols, in the datastream. This is compatible
with our intuition that only a small number of all possible
strings are valid data, e.g., an image, or a piece of text or
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code. Furthermore, the polynomial relationship between B and
L appears to agree with results from experiments in [18] (also
referred to in [13]) suggesting that the reasonable range for L
is from a few KB to a few MB (⇡ 104 to 107 bits) and for B
is on the order of 105 to 109. Nevertheless, other asymptotic
regimes may also be appropriate but are left to future work
for simplicity.

The following lemma provides asymptotic bounds on H(s).
Under our assumptions, H(s) is shown to be dominated by
the term H(�)BL, i.e., the main component of the entropy is
the uncertainty arising from the random substitutions.

Lemma 2. As B ! 1, the entropy of the source model with
edit probability � satisfies

H(�)BL  H(s)  H(�)BL+B logA+A(2L+ 1).

Proof: For the lower bound,

H(s) � H(s|XJ1 , . . . ,XJB
) =

BX

b=1

H(Yb|XJb
) = H(�)BL.

For the upper bound,

H(s) H(s|XJ1 , . . . ,XJB
) +H(XJ1 , . . . ,XJB

|X ) +H(X )

H(�)BL+B logA+A(2L+ 1),

where H(X )  A(2L+1) follows from the fact that for each
Xa, there are at most 22L+1 different possibilities since we
assume La  2L.

A deduplication algorithm is said to (asymptotically)
achieve a constant factor of optimal if there exists a constant
c (independent of �) such that E[L(s)]  cH(s), for all
0 < � < 1

2 and all sufficiently large B, where L(s) is the
length of the encoding produced by the algorithm. Given our
assumptions on A,B,L, and the result from Lemma 2, the
entropy H(s) is dominated by the term H(�)E[|s|]. If � is
close to 1

2 , H(s) is close to the length of the uncompressed
sequence (s is close to an iid Bernoulli(1/2) process), while
if � is close to 0, there is large gap between the two. Hence,
to determine whether an algorithm achieves a constant factor
of optimal, the case of small � is especially important, which
is also the case where compression is more beneficial.

We also define the compression ratio R = E[|s|]
E[L(s)] . Note

that if there exists a constant c1 independent of � such that
R  c1, then the algorithm uses more bits than the entropy by
an arbitrarily large multiplicative factor as � goes to 0. While
if R ! 1 as � ! 0, then the algorithm can achieve arbitrarily
large compression ratios as entropy decreases. Finally, if there
exists a constant c2 such that R � c2

H(�) for all valid �, then
the algorithm achieves a constant factor of optimal.

We discuss some strategies that we use in the rest of the
paper for computing E[L(s)]. We say XJb

is the ancestor of
Yb and Yb is a descendant of XJb

. For each a, we use Y (a)
to denote the set {1  b  B : Jb = a} and use Y1/2(a) to
denote the set {1  b  dB/2e : Jb = a}. In other words,
Y (a) is the set of source block indexes of the descendants
of Xa and Y1/2(a) is the set of source block indexes of the
descendants of Xa among the first half of source blocks.

Note that E[|Y (a)|] = B/A and E[|Y1/2(a)|] = B/(2A).
We use Eu to denote the event that |Y (a)|  3B

2A for all 1 
a  A, and use El to denote the event that

��Y1/2(a)
�� � B

4A

for all 1  a  A. Since |Y (a)| =
P

B

b=1 IJb=a, where all
summands are iid with expected value 1

A
, by the Chernoff

bound [11] and the union bound,

Pr(Eu) � 1�Ae�
B

10A , Pr(El) � 1�Ae�
B

16A . (2)

Given our assumption that A  B1�k2 , asymptotically
B

16A� logA goes to infinity. So the probability of Eu goes to 1
(also true for El). In the performance analysis of deduplication
algorithms, we generally only need to consider the case in
which El or Eu holds. Specifically, we use the following
inequalities as bounds on E[L(s)]:

E[L(s)]  E[L(s)|Eu] + E[L(s)|Ēu] · Pr(Ēu),
E[L(s)] � E[L(s)|El] · Pr(El) = E[L(s)|El] ·

�
1� Pr(Ēl)

�
.

To find E[L(s)], we generally compute the terms E[L(s)|Eu],
E[L(s)|El] and show that the terms E[L(s)|Ēu] · Pr(Ēu) and
E[L(s)|El] ·Pr(Ēl) are asymptotically negligible, using trivial
bounds on L(s).

IV. DEDUPLICATION SCHEMES

In this section, we formally state the deduplication al-
gorithms, which can be regarded as mathematical abstrac-
tions of real-world deduplication systems. All algorithms
are dictionary-based and composed of two stages: chunking
and encoding. In particular, the conventional fixed-length
deduplication (FLD) and variable-length deduplication (VLD)
algorithms were formalized in [13] and are restated here.

In FLD, the chunk length ` is fixed. Source string s is
parsed into segments of length `, i.e., s = z1z2 · · · zC+1,
where |z1| = |z2| = · · · = |zC | = `, C = b|s|/`c. The
substrings {zc}C+1

c=1 are collected as deduplication chunks. The
encoding process starts with encoding the length of s by a
prefix-free code for positive integers, such as the Elias gamma
code [2], to ensure that the whole scheme is prefix-free. The
chunks are then encoded sequentially. Starting with c = 1,
if chunk zc appears for the first time, i.e., zc 6= zi for all
i < c, then it is encoded as the bit 1 followed by zc itself and
is entered into the dictionary. Otherwise, when there already
exists an entry in the dictionary storing the same string as zc,
it will be encoded as the bit 0 followed by a pointer to that
entry. The pointer is an index of the dictionary entries and
thus can be encoded by at most log

��T c�1
�� + 1 bits, where

T c�1 denotes the dictionary just after zc�1 is processed. The
number of bits FLD takes to encode s is denoted LF (s). It was
shown in [13] that FLD is ineffective when source symbols
have different lengths. So in this paper, we study FLD (as
well as its variations, mFLD and AFLD, described below)
only for sources in which all source symbols have the same
length. We note that such sources are not realistic except for
some scenarios such as deduplication in virtual machine disk
images [5]. However, the analysis of FLD and its variants is
helpful for the study of VLD, described next, as it reveals
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important insights about the effect of chunk lengths on the
performance.

Example 1. For s = 01101101 and ` = 2, the chunks gen-
erated by fixed-length chunking are z1 = 01, z2 = 10, z3 =
11, z4 = 01. The encoding of length |s| = 8 by Elias gamma
coding is 0001000. Chunks z1, z2 and z3 are new chunks
and thus are encoded as 101, 110, 111, respectively. Chunk z4

is a duplicate of z1. When z4 is processed, the dictionary
contains three strings 01, 10 and 11. So z3 is encoded as
000, where the first 0 indicates that the chunk is repeated and
the following 00 represents the first entry of the dictionary.
Concatenating all components, the final encoding of s is
0001000101110111000. Note that after encoding terminates,
the dictionary is the ordered set {01, 10, 11}, which appear in
the encoded string as the set of chunks preceded by indicator
bits with value 1.

In VLD, a string of length M (we assume 0M ) is chosen as
the marker string. The source string s is parsed into chunks
that end with the marker string. Specifically, the source string s
is parsed as s = z1 · · · zC , where each zc (except for perhaps
the last one) contains a single appearance of 0M at the end. We
again use z1, . . . , zC to represent the chunks. After splitting s
into the chunks {zc}Cc=1, the same dictionary encoding process
as in FLD is conducted. The number of bits variable-length
deduplication takes to encode s is denoted LV L(s).

Example 2. Consider the same string s = 01101101 as
Example 1. VLD, with marker length M = 1, parses s as
chunks 0, 110, 110, 1. The length of s is still encoded by
0001000. Chunks 0, 110, 1 are new and are encoded with
10, 1110, 11, respectively. The second occurrence of 110 is
encoded by a 0 followed by the pointer 1. The final encoding
of s is thus 00010001011100111.

The modified fixed-length deduplication (mFLD) has the
same encoding process as FLD but with a two-stage chunking
process. In mFLD, first, the source string s is parsed into
segments of length D, and then, each segment is parsed into
chunks of length `, where `  D. Specifically, the source
string s is parsed as

s = x1x2 · · ·xK+1, |x1| = |x2| = · · · = |xK | = D,

where K = b|s|/Dc and

xk = z1
k
z2
k
· · · zN+1

k
,
��z1

k

�� =
��z2

k

�� = · · · =
��zN

k

�� = `,

with 1  k  K, N = bD/`c (xK+1 is parsed in the same
way). The number of bits mFLD takes to encode s is denoted
LmF (s).

Note that mFLD is a generalization of FLD since with D =
`, mFLD is equivalent to FLD with the same chunk length `.
For FLD to perform well, the source symbols must all have
the same length L and the chunk length ` must also be chosen
equal to L to maintain synchronization between the chunks and
symbols. The generalization to mFLD allows us to maintain
synchronization by setting D = L and frees us to choose
values other than the symbol length for the chunk length `.
This flexibility enables us to study the effect of chunk length,
which as we will see, will provide important intuitions for

more practical algorithms such as VLD. We will focus on
analyzing the performance of mFLD and report that of FLD
as a corollary.

The adaptive fixed-length deduplication (AFLD) is a spe-
cialization of mFLD with source model parameters taken into
account. Given A,B,L, �, AFLD is the version of mFLD
with chunk length specified as ` =

l
log(B/A)
H(�,�)

m
(` = D if

D <
l
log(B/A)
H(�,�)

m
) for some � 2 (�, 1/2). AFLD thus contains

two parameters D and �. Note that in practice, source model
parameters can be estimated from data. We will show later
that AFLD is an optimized version of mFLD. The distinction
in names is made to emphasize the optimality and also for the
convenience of referring to this version of the algorithm. The
number of bits AFLD takes to encode s is denoted LAF (s).

Edit-distance deduplication (EDD) extends FLD by encod-
ing chunks relative to previously observed similar chunks, if
any. EDD takes the source model parameters into account
and is only defined for source models with edit probability
� < 1/4. EDD has two parameters, chunk length ` and
mismatch ratio �, where � < �  1/4. The chunking scheme
is the same as in FLD, i.e., parsing the source string s into
chunks of length `, denoted z1, z2, . . . , zC+1. The encoding
starts with a prefix-free code representing the length of the
source string. Next, each chunk zc is encoded as the bit 1
followed by itself if no chunk has appeared before whose
Hamming distance from zc is at most 2�`. Otherwise, let c0 be
the smallest index such that the Hamming distance between
zc0 and zc is  2�`. Chunk zc will be encoded as the bit
0 followed by a pointer to the dictionary entry where zc0 is
stored, along with the bits describing the mismatches between
zc and zc0 . The mismatches are the indexes of positions in
which zc0 and zc differ. Since we restrict the number of
mismatches to be no more than 2�`, the mismatches can be
encoded in at most log

⇣Pb2�`c
i=0

�
`

i

�⌘
+ 1  H(2�)`+ 1 bits.

The number of bits EDD uses to store s is denoted by LED(s).
Encoding differences between similar chunks is usually used

as a post-deduplication process, which spends extra com-
putation to eliminate redundancy among distinct but similar
chunks [16], [17], [21], [22]. In this paper, we study EDD
as a simple abstraction of this type of algorithms and only
consider the fixed-length chunking scheme. An edit-distance
based variable-length algorithm may potentially lead to better
performance and be more practically important. We leave it
to future consideration due to the technical challenges in the
analysis, primarily arising from the facts that chunk boundaries
may shift because of edits and that deriving the statistics of
the number of detected copies within a certain distance does
not appear readily tractable.

V. RESULTS

In this section, we summarize the main results of the paper.
Detailed analysis and proofs of these results will be provided
in the following corresponding sections.

A. Modified fixed-length deduplication and its variants
We first present results for mFLD and its variants AFLD and

FLD. Fixed-length deduplication has been shown in [13] to not
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perform well when source symbols have variable lengths. So
for algorithms in the fixed-length scheme, we assume Pl is
degenerate and let the first-stage parsing length be equal to
the source symbol length.

The mFLD algorithm allows us to set the chunk length `.
The effect of this length is investigated in Theorems 6, 7,
and 8. For simplicity of presentation, we give detailed analysis
about the theorems in Section VI and provide corollaries here
as summaries.

Corollary 2. Consider the source model in which source
symbols all have length L. For mFLD with D = L, if the
chunk length ` = o(logB) [ !(logB), the compression ratio

E[|s|]
E[LmF (s)] is upper bounded by a universal constant for any
edit probability � > 0.

Corollary 2 follows directly from Theorems 6 and 7. It
characterizes the performance of mFLD when the chunk length
` is chosen too small or too large. With the chunk length
improperly chosen, the average length of the compressed
strings is always at least a constant factor of the original length,
regardless of the edit probability �. This is not desirable for
small � since, as � goes to 0, the entropy gets smaller and the
ratio E[LmF (s)]

H(s) grows unboundedly. It can be seen later from
the proofs of Theorems 6 and 7 that when the chunk length
is chosen too small, the dictionary becomes so large that the
pointers become of similar lengths to the chunks. On the other
hand, when the chunk length is chosen too large, repeats can
not be identified and deduplication thus fails. It is therefore
important to pick a suitable chunk length when implementing
deduplication algorithms in practice.

If we pick ` = L, mFLD becomes FLD with chunk length
equal to source symbol length, which was shown in [13] to be
asymptotically optimal on sources with fixed symbol length
and no edits. However, in the case when edit probability � is
nonzero, since we assume L = ⇥

�
Bk1

�
, Corollary 2 implies

that the compression ratio of FLD is bounded and the gap
between FLD and entropy can be arbitrarily large, as stated in
the next corollary.

Corollary 3. Consider the source model in which source
symbols all have length L. For FLD, with chunk length L, the
compression ratio E[|s|]

E[LF (s)] is upper bounded by a universal
constant for any edit probability � > 0.

AFLD has its chunk length chosen adapted to source
parameters and is shown in Theorem 8 to be nearly optimal.
The following corollary is a summary of Theorem 8.

Corollary 4. For any edit probability � 2 (0, 1
2 ) and any

a > 1, there exists � < � < 1
2 such that

E[LAF (s)]

H(s)
 a(1 + k1)

k2
(1 + o(1)).

With k1, k2 being fixed constants, the preceding corollary
states that AFLD achieves a constant factor of optimal for
any edit probability �. Thus, to achieve high compression
ratio, deduplication algorithm parameters, especially the chunk
length, should be chosen based on the data. In practice,
it can thus be beneficial to first obtain an estimate of the

parameters of the data and then apply deduplication with
algorithm parameters properly chosen. A fixed chunk length
is unlikely to be universally effective for all datasets.

B. Edit-distance deduplication

The edit-distance deduplication is studied in Theorem 9 and
shown to achieve performance a constant factor of optimal.

Theorem 9. Consider the source model in which source
symbols have the same length L and the edit probability is
� < 1

4 . The performance of edit-distance deduplication with
chunk length ` = L and mismatch ratio � satisfies

1  E[LED(s)]

H(s)
 H(2�)

H(�)
(1 + o(1)), as B ! 1,

for any � < �  1
4 .

Note that for any � < 1
4 , we can always find � larger than

but close enough to � such that H(2�)
H(�) is upper bounded by a

constant value. With such choices of �, the preceding theorem
states that E[LED(s)] is at most a constant factor of H(s).
As an example, let � = min

�
3�
2 , 1

4

�
. The ratio H(2�)

H(�) is upper
bounded by

H(2�)

H(�)
 H(min(3�, 1/2))

H(�)
 3,

where the last inequality follows from the fact that H(3p)
H(p)  3

for all p  1
3 and H( 16 )  1

2 . Hence, EDD also achieves
a constant factor of optimal, as formalized in the following
corollary.

Corollary 5. Consider the source model in which source
symbols have the same length L and edit probability � < 1

4 .
There exists a mismatch ratio � such that the performance of
EDD with chunk length ` = L satisfies

E[LED(s)]

H(s)
 H(3�)

H(�)
(1 + o(1))  3(1 + o(1)).

We note however that EDD is more complex than AFLD as
it identifies chunks that are within a certain Hamming distance.

C. Variable-length deduplication

Similar to the algorithms in the fixed-length scheme, the
performance of VLD depends on the chunk length. In VLD,
the chunk length is controlled by the length M of the marker
(the expected chunk length is approximately 2M ). The effect
of M on the performance is studied in Theorems 14, 15, 17
and 18, in Section VII.

As a summary of Theorems 14, 15, and 17, we first present
the following corollary, showing that an inappropriate choice
of M leads to poor performance.

Corollary 6. Consider the source model with edit probability
� and variable-length deduplication with marker length M . If
2M = o(logB)[!(logB), the compression ratio E[|s|]

E[LV L(s)] is
upper bounded by a universal constant for any edit probability
� > 0.
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We also show that a well-chosen marker length M can lead
to arbitrarily large compression ratios as edit probability �
approaches 0.

Theorem 18. Consider the source model with edit probability
� < 1

2 . For any � 2 (�, 1/2), the performance of variable-
length deduplication with marker length M such that 2M =
⇥(log(B/A)) satisfies

E[LV L(s)] ✓
12e�cM (cM + 1)+4H(�, �)

(1 + k1)

k2
cM

◆
BL(1 + o(1)),

(21)

as B ! 1, where cM = log(B/A)
H(�,�)2M+1 .

We perform the following analysis for minimizing the upper
bound given by Theorem 18. For any given c > 0, there exists
an integer value for M such that c  cM  2c. For this M ,
(21) is upper bounded by

✓
12e�c(c+ 1) + 8H(�, �)

(1 + k1)

k2
c

◆
BL(1 + o(1)),

since e�c(c+1) is decreasing in c when c > 0. We can always
find � such that H(�, �)  2H(�). Such � gives

E[LV L(s)]


✓
12e�c(c+ 1) + 16H(�)

(1 + k1)

k2
c

◆
BL(1 + o(1)).(3)

Let h = 4H(�) (1+k1)
3k2

. Upper bounding the above expres-
sion is equivalent to upper bounding the function f(c) =
e�c(c + 1) + hc, c 2 (0,+1). If h < e�1, then f(c)
has a local minimum at c = �W�1(�h), where W�1 is
the lower branch of the Lambert W function. If h � e�1,
then f(c) is monotonically increasing in (0,+1). Therefore,
c = �W�1(�min

�
e�1, h

�
) provides an upper bound on f(c).

As an example, for A = L = B1/2 (i.e., k1 = k2 = 1
2 ),

Figure 1 shows the upper bound given by (3) with c =
�W�1(�min

�
e�1, h

�
), as well as H(�), as � ranges from

10�5 to 10�1.
Note that h  e�1 holds for small enough �. When this

holds, the upper bound (3) can be rewritten as

E[LV L(s)]


✓
12e�c(c+ 1) + 16H(�)

(1 + k1)

k2
c

◆
BL(1 + o(1))

 12e�c
�
c2 + c+ 1

�
BL(1 + o(1)),

where c = �W�1(�4H(�)(1 + k1)/(3k2)). Hence the upper
bound on the normalized expected compressed length ap-
proaches 0 as � approaches 0. This means that as the entropy
becomes smaller, the compression ratio grows if the length
of the marker is chosen appropriately. In particular, it can be
seen that the proper length of the marker depends on �, which
represents the degree of variability between the copies.

Large compression ratios when entropy is small is desirable
and variable-length deduplication achieves this. However, it
can be shown and also observed in Figure 1 that the upper
bound of the ratio E[LV L(s)]/H(s) given by Theorem 18

increases as � decreases. Therefore, despite the large com-
pression ratios, the gap to entropy may become large for small
�. Determining whether this is indeed the case or the bound
provided here is loose is left to future work.

10-5 10-4 10-3 10-2 10-1
10-4

10-3

10-2

10-1

100

101

Figure 1. Upper bound on E[LV L(s)]
BL and H(�) vs the edit probability �

with A = L = B
1/2, as � ranges from 10�5 to 10�1.

VI. DEDUPLICATION IN THE FIXED-LENGTH SCHEME

In this section, we study the performances of the dedupli-
cation algorithms in the fixed-length scheme. It is pointed out
by [13] that when all source symbols have the same length and
there are no edits, FLD with knowledge of the symbol length
can parse data strings in a way that chunk boundaries align
with source block boundaries (by setting the chunk length
equal to source block length) and achieve asymptotically
optimal performance under mild conditions. However, when
symbols have different lengths, the loss of synchronization
leads to poor performance. For instance, [13] considered
the scenario in which there are A = 2 source symbols,
with the source symbol length distribution Pl assigning equal
probability to L and L+1 (here L is an independent parameter
rather than the expected value of Pl) and with B = 3L source
blocks. FLD with chunk length ` = L was shown to satisfy
E[LF (s)]
H(s) � ⌦(B). In the case where copies are not exact, the

question of interest is then whether fixed-length deduplication
can still perform well when chunk boundaries align with repeat
boundaries. To answer this question, we need to ensure that
the two groups of boundaries are aligned. So we consider only
source models where source symbols all have the same length
L (Pl is degenerate).

We first study in detail the performance of mFLD and then
specialize the results to FLD. The first-stage parsing length of
mFLD (including AFLD) and the chunk length of EDD are
both assumed to be equal to L.

We present a lemma that will be used frequently. For
positive integers m, ` and � 2

�
0, 1

2

�
, define

S�(`,m) =
`X

t=0

✓
`

t

◆
min

�
1,m�t(1� �)`�t

�
.
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Lemma 3. Let r be a string drawn uniformly at random from
⌃`. Let r1, r2, . . . , rm be m iid descendants of r by �-edit and
let r[m] = {r1, r2, . . . , rm}. For any w 2 ⌃`, let w 2 r[m]

denote the event that w = ri for some i. Then

1

2

S�(`,m)

2`
 Pr

�
w 2 r[m]

�
 S�(`,m)

2`
, (4)

and thus the expected number of unique strings in r[m] is
bounded between 1

2S�(`,m) and S�(`,m).
Furthermore, S�(`,m) takes the following values for differ-

ent values of ` and m:
• If ` � logm

H(�) , then

S�(`,m) � 1

4
m. (5)

In particular if ` � logm

log( 1
1��

)
, then

S�(`,m) = m. (6)

• If `  logm

H( 1
2 ,�)

, then

S�(`,m) � 2`�1. (7)

In particular if `  logm

log( 1
�
)
, then

S�(`,m) = 2`.

• For any � < �0 < 1
2 ,

S�(`,m)  2`H(�0) +m2�`D(�0||�). (8)

In particular if ` = logm

H(�0,�) , then

S�(`,m)  2`H(�0) +m2�`D(�0||�) = 2`H(�0)+1. (9)

• For any values of ` and m,

S�(`,m)  min
�
2`,m

�
. (10)

The proof of Lemma 3 is presented in Appendix B.

A. Modified and adaptive fixed-length deduplication
We show that, even with knowledge of the source symbol

length, if the chunk length is not properly chosen, mFLD
encodes s with a constant number of bits per symbol regardless
of �. Therefore, the ratio E[LmF (s)]

H(s) can be arbitrarily large for
small �. Meanwhile for AFLD, with the adaptive chunk length
` =

l
log(B/A)
H(�,�)

m
, the ratio E[LAF (s)]

H(s) is shown to be upper
bounded by a constant for all � and for � properly chosen.

Consider the two-stage parsing of s with D = L. The
length-D segments after the first-stage parsing are exactly
the source blocks Y1, Y2, . . . , YB . Let C = bL/`c and r =
L � C`. Each Yb, 1  b  B, is then parsed into chunks
Zb

1, Z
b

2, . . . , Z
b

C+1 with
��Zb

c

�� = ` for all c  C and
��Zb

C+1

�� =
r (see Figure 2). If we also divide each source symbol Xa into
substrings of length ` as Xa = Ua

1U
a

2 · · ·Ua

C+1, then for all
1  c  C +1, {Zb

c
}b2Y (a) are iid �-edit descendants of Ua

c
.

Before performing a detailed evaluation of the algorithm,
let us first provide a rough analysis for a special case, which
will provide some insights into the general problem. Suppose
the alphabet X only has a single symbol X of length L, whose

Y1

...

Yb

YB

...

Z1
1 Z1

2 · · · Z1
C Z1

C+1

Zb
1 Zb

2 · · · Zb
C Zb

C+1

ZB
1 ZB

2 · · · ZB
C ZB

C+1

` r

Figure 2. Modified fixed-length chunking with segment length D = L and
chunk length `.

`-prefix is denoted by U1. We consider encoding only the set
Z1
1 , Z

2
1 , . . . , Z

B

1 , where each Zb

1 is a descendant of U1 by
�-edit. The expected size of the dictionary, i.e., the number
of distinct `-strings in {Z1

1 , Z
2
1 , . . . , Z

B

1 }, by Lemma 3 is
approximately

S := S�(`, B) =
`X

t=0

min

✓✓
`

t

◆
,

✓
`

t

◆
B�t(1� �)`�t

◆
. (11)

We can interpret (11) as follows. At a given distance t from
U1, there are

�
`

t

�
sequences of length `. Further, if we generate

B sequences, the expected number of sequences at distance t
is
�
`

t

�
B�t(1��)`�t. The number of sequences in the dictionary

at distance t is then approximated by the minimum of the two
terms. (This analysis of S is helpful whenever S�(·, ·) appears
in the sequel as well.)

We would like S to be small enough that logS ⌧ ` (so that
pointers to the dictionary have much smaller lengths than the
sequences being encoded) and S ⌧ B (so that each sequence
in the dictionary is repeated many times).2 As t ranges from
0 to ` in the sum in (11), the term

�
`

t

�
attain its maximum

at t ' `/2 while the second term inside the min attains its
maximum at t ' `�. We investigate which term determines
the behavior of the sum. Let ` = logB

H(�,�) for a constant 0 
�  1. Note that since � < 1

2 , H(�, �) and ` are increasing
and decreasing functions of �, respectively. With this choice,
B�t(1 � �)`�t � 1 for t  `� and B�t(1 � �)`�t  1 for
t � `�.

• If � < �, then B��`(1� �)(1��)` < 1, and S �P
`

t=d�`e
�
`

t

�
B�t(1 � �)`�t � B(1 � 2�`D(�||�)). In this

case, almost all Zb

1 are distinct and thus not compressible.
• If � = �, then ` = logB

H(�) , and S � B

4 by (5). In this
case, a constant fraction of Zb

1 are distinct and thus not
compressible.

• If � � 1/2, then `  logB

H( 1
2 ,�)

, and S � 2`�1 by (7). In
this case, due to the fact that ` is chosen too small, the
dictionary is so large that pointers to the dictionary are
as long as the chunks and there is no compression gain.

• If � < � < 1/2, then by (9),

S  2`H(�)+1.

2Note that the size of the dictionary, and hence the length of the pointers,
vary as the encoding progresses; we ignore this fact for now and approximate
pointer lengths based on the final size of the dictionary.
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Hence, pointers have an approximate length of `H(�) and
are smaller than ` by a factor of 1

H(�) . Furthermore, each
sequence is repeated approximately 2`D(�||�) times since
B = 2`H(�,�). The number of bits required to encode the
dictionary is 2`2`H(�), which is negligible compared to
B`, the length of the uncoded sequences since � 6= �.
Hence, we can encode {Z1

1 , . . . , Z
B

1 } using essentially
B`H(�) bits, achieving a compression ratio of 1

H(�) .

This analysis highlights that ` should be chosen appropriately
to avoid a large dictionary or a situation in which there
are no repetitions in the sequence. If these conditions are
satisfied, then we can successfully deduplicate the data, as
shown rigorously in Theorem 8 for AFLD.

Now we return to the general setting. It can be seen from the
description of mFLD that the compressed string is composed
of two parts: the bits used to encode the chunks at their first
occurrences and the bits used to encode repeated chunks by
pointers to the dictionary. For both parts, our first step is to
compute the expected size of the dictionary, i.e., the number of
distinct chunks, for which we present Lemma 4 and Lemma 5.

Lemma 4. Suppose K strings of length n are chosen indepen-
dently and uniformly from ⌃n. Assume each string produces
at least m1 and at most m2 descendants by �-edits. For any
string w with |w| = n, let Gw denote the event that w equals
one or more descendants. Then

1

2
min

✓
1,

1

2
K

S�(n,m1)

2n

◆

 Pr(Gw) 

min

✓
1,K

S�(n,m2)

2n

◆
.

The proof of Lemma 4 is presented in Appendix C. This
lemma considers the probability of observing a string w
when multiple random strings produce �-edit descendants
simultaneously. This setting models exactly our source string
generation process where the A source symbols correspond to
K random strings, and the source blocks correspond to the
�-edit descendants. In particular, Eu being true corresponds to
m2 = 3B

2A and El being true corresponds to m1 = B

4A .
Let T 1

F
(s) denote the dictionary after all chunks of s are

processed, i.e., T 1
F
(s) contains all distinct strings in {Zb

c
}b,c.

Let T
1/2

F
(s) denote the dictionary immediately after all chunks

in the first half of s, i.e., Y1Y2 · · ·YdB/2e, are processed. We
apply Lemma 4 to find bounds on the sizes of T 1

F
(s) and

T
1/2

F
(s) in the following lemma.

Lemma 5. Consider the two-stage fixed-length chunking pro-
cess with first-stage parsing length D = L and chunk length
`. The dictionary sizes T 1

F
(s) and T

1/2

F
(s) satisfy

E
⇥��T 1

F
(s)
��|Eu

⇤
 min

✓
2`, ACS�

✓
`,
3B

2A

◆◆
+B,

E
h���T

1/2

F
(s)
���|El
i
� 1

2
min

✓
2`,

1

2
ACS�

✓
`,

B

4A

◆◆
. (12)

The proof of Lemma 5 is presented in Appendix C.

Next, we show using Lemma 5 that if ` is chosen too small
relative to the scale of the system, then mFLD spends a con-
stant number of bits per symbol. The proof strategy is as fol-
lows: with ` small enough, the term min

�
2`, 1

2ACS�

�
`, B

4A

��

in (12) equals 1, which makes E
h���T

1/2

F
(s)
���|El
i

greater than
2`�1. Therefore, when encoding duplicated chunks using
pointers, each pointer takes approximately ` bits and there
is no compression gain.

Theorem 6. Consider the source model in which source
symbols have the same length L. For mFLD with first-stage
parsing length D = L and chunk length `, if `2` = O(AL)
or `  log(B/A)�2

H( 1
2 ,�)

, then

E[LmF (s)] �
1

12
BL(1 + o(1)), as B ! 1,

where the o(1) term is independent of �.

Proof: We first claim, to be proved later, that if `2` =
O(AL) or `  log(B/A)�2

H( 1
2 ,�)

, then

E
h���T

1/2

F
(s)
���|El
i
� 2`�1. (13)

It follows from Markov’s inequality that

Pr

✓
2` �

���T
1/2

F
(s)
��� �

3

4
· 2`|El

◆


1
2 · 2`
3
4 · 2`

=
2

3
,

which is equivalent to

Pr

✓���T
1/2

F
(s)
��� �

2`

4
|El
◆

� 1

3
. (14)

Next, we consider the second half of s, YdB/2e+1 · · ·YB . There
are bB/2cC chunks of length `, and encoding each of them
takes at least either ` or log

���T
1/2

F
(s)
��� bits plus an additional bit

indicating whether the chunk is stored in full or represented
by a pointer. So in total, we need at least

⇣
min

⇣
`, log

���T
1/2

F
(s)
���
⌘
+ 1
⌘
·
�
B

2

⌫
C

bits. It follows that for B sufficiently large,

E[LmF (s)|El] � E
⇣

min
⇣
`, log

���T
1/2

F
(s)
���
⌘
+ 1
⌘
·
�
B

2

⌫
C|El

�

� 1

3

✓
min

✓
`, log

2`

4

◆
+ 1

◆
·
�
B

2

⌫
C

� BL

12
(1 + o(1)),

where the second inequality follows from (14).
Finally, since (2) gives that Pr(El) = 1 + o(1), we get

E[LmF (s)] � E[LmF (s)|El] Pr(El) �
BL

12
(1 + o(1)).

It remains to prove the claim: E
h���T

1/2

F
(s)
���|El
i
� 2`�1 when

`2` = O(AL) or `  log(B/A)�2
H( 1

2 ,�)
. Consider the case when
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`2` = O(AL). For sufficiently large B (and thus A and L),
B

4A � 4`2`

AL
. Therefore, by Lemma 5,

E
h���T

1/2

F
(s)
���|El
i
� 1

2
min

✓
2`,

1

2
ACS�

✓
`,

B

4A

◆◆

� 1

2
min

✓
2`,

1

2
ACS�

✓
`,
4`2`

AL

◆◆
,

where the last inequality follows from the fact that S�(`,m)
is non-decreasing in m. By (6), if m(1 � �)`  1, then
S�(`,m) = m. Since asymptotically 4`2`

AL
(1� �)`  1,

E
h���T

1/2

F
(s)
���|El
i
� 2`�1 min

✓
1,

4`C

2L

◆
� 2`�1,

where the last step follows from the fact that C � L

2` .
When `  log(B/A)�2

H( 1
2 ,�)

, again by Lemma 5,

E
h���T

1/2

F
(s)
���|El
i
� 1

2
min

✓
2`,

1

2
ACS�

✓
`,

B

4A

◆◆

� 2`�1 min

✓
1,

AC

4

◆
� 2`�1,

where the second inequality follows from (7) that when ` 
logm

H( 1
2 ,�)

, S�(`,m) � 2`�1.
The preceding theorem shows that when ` is chosen too

small, the size of the dictionary will be of order 2`. Specifi-
cally, if `2` = O(AL), the number of distinct `-substrings in
the source alphabet is already of order 2`. If `  log(B/A)�2

H( 1
2 ,�)

,
then the �-edits are able to produce almost all `-strings instead
of only producing strings that are on the �` Hamming sphere.

In the next theorem, we show that if ` is chosen too large,
then mFLD again spends a constant number of bits per symbol.
The proof strategy is to show that if ` is chosen too large, then
almost every chunk is distinct, thus making the source string
incompressible.

Theorem 7. Consider the source model in which source
symbols have the same length L. For mFLD with first-stage
parsing length D = L and chunk `, if ` � log(B/A)�2

H(�) , then

E[LmF (s)] �
1

128
BL(1 + o(1)), as B ! 1,

where the o(1) term is independent of �.

Proof: When `  log(B/A)�2
H( 1

2 ,�)
,

E
h���T

1/2

F
(s)
���|El
i
� 1

2
min

✓
2`,

1

2
ACS�

✓
`,

B

4A

◆◆

� 2`�1 min

✓
1,

1

2
AC · 1

4
· B

4A2`

◆

= 2`�1 min

✓
1,

BC

32 · 2`

◆
,

where the first inequality follows from Lemma 5 and the
second from (5).

In the case where 1  BC

32·2` and hence E
h���T

1/2

F
(s)
���|El
i
�

2`�1, the proof follows from the discussion that follows (13).
So it remains to consider the case when BC

32·2`  1, i.e.,

E
h���T

1/2

F
(s)
���|El
i
� 2`�1 · BC

32 · 2` =
BC

64
.

Since it takes ` + 1 bits to store distinct chunks in the
dictionary,

E[LmF (s)|El] � (`+ 1)E
h���T

1/2

F
(s)
���|El
i
= `

BbL/`c
64

� 1

64
Bmax(`, L� `) � 1

128
BL.

The desired result thus follows again from E[LmF (s)] �
E[LmF (s)|El] Pr(El) and the fact that Pr(El) = 1 + o(1).

In the Results section, Theorems 6 and 7 imply Corollary 2,
which shows that choosing ` in o(logB) or !(logB) results
in poor performance, and Corollary 3, which shows that FLD
cannot compress the sequences effectively.

Next, we show that with the adapted chunk length, AFLD
can achieve performance within a constant factor of optimal.

Theorem 8. Consider the source model in which source
symbols have the same length L. The performance of AFLD
with D = L and ` =

l
log(B/A)
H(�,�)

m
satisfies

1  E[LAF (s)]

H(s)
 1 + k1

k2
· H(�, �)

H(�)
· (1 + o(1)),

as B ! 1, for any � 2 (�, 1
2 ).

Proof: We first note that the length of s can be encoded
in at most 2 log(|s|) + 3 bits with Elias gamma coding.

The number of bits used to encode chunks at their first
occurrences is upper bounded by

��T 1
F
(s)
��(`+1) since chunks

are all of lengths less than or equal to `. Consider the upper
bound on E

⇥��T 1
F
(s)
��|Eu

⇤
in Lemma 5. Note that by (8) and

B

A
 2`H(�,�) with our choice of `,

S�

✓
`,
3B

2A

◆
 2`H(�) +

3B

2A
2�`D(�||�)  5

2
· 2`H(�).

It follows that

E
⇥��T 1

F
(s)
��|Eu

⇤
(`+ 1)


✓
min

✓
2`, ACS�

✓
`,
3B

2A

◆◆
+B

◆
(`+ 1)

 min

✓
2`,

5AC

2
· 2`H(�)

◆
(`+ 1) +B(`+ 1)

 5AL

2`
· 2`H(�) · (`+ 1) +B(`+ 1)

=
5

2
AL

✓
B

A

◆H(�)/H(�,�)✓
1 +⇥

✓
1

log(B/A)

◆◆

+⇥(B logB)

= o(BL), (15)

where the last equality follows from H(�)
H(�,�) < 1 and thus

B
H(�)

H(�,�)A1� H(�)
H(�,�) = o(B).

Next, we derive an upper bound on the number of bits used
by pointers for encoding repeated chunks. There are (C+1)B
chunks and the number of bits needed for encoding one pointer
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is at most log(BL) + 1. So in total, the number of bits we
need is at most

(C + 1)B(log(BL) + 1)  (L+ `)B
log(BL) + 1

`

 BL

`
log(BL)

✓
1 +O

✓
1

logB

◆◆

 H(�, �)BL · log(BL)

log(B/A)
. (16)

Combining (15), (16), and including the number of bits used
for encoding the length of s by Elias coding, we get

E[LAF (s)|Eu]  H(�, �)BL · log(BL)

log(B/A)
+ o(BL)

 H(�, �)BL
1 + k1
k2

(1 + o(1)),

by noting that log(BL)
log(B/A) 

1+k1
k2

(1 + o(1)).
On the complement of Eu, the number of bits needed for

storing the dictionary is at most 2BL since the lengths of
chunks in total is at most BL and there are at most BL chunks.
The number of bits for encoding repeated chunks by pointers
is at most BL(log(BL) + 1). It follows that

E
⇥
LAF (s)|Ēu

⇤
Pr
�
Ēu
�

 (2ABL+ 2 log(BL) + 3) log(BL)e�
B

10A = o(1).

The desired result thus follows from

E[LAF (s)]

= E[LAF (s)|Eu] Pr(Eu) + E
⇥
LAF (s)|Ēu

⇤
Pr
�
Ēu
�
,

and the fact that Pr(Eu) = 1 + o(1).
For any � < 1

2 and a > 1, we can find � in the range (�, 1
2 )

such that H(�, �)/H(�)  a. It thus follows from Theorem 8
that adaptive fixed-length deduplication can compress the
sequence within a constant factor of the entropy, as stated
in Corollary 4 in the Results section.

B. Edit-distance deduplication
Next, we study the edit-distance deduplication algorithm.

EDD identifies positions in which the current chunk and
previously observed similar chunks differ. We show that with
chunk length being equal to source symbol length, EDD can
achieve a constant factor of optimal.

Theorem 9. Consider the source model in which source
symbols have the same length L and the edit probability is
� < 1

4 . The performance of edit-distance deduplication with
chunk length ` = L and mismatch ratio � satisfies

1  E[LED(s)]

H(s)
 H(2�)

H(�)
(1 + o(1)), as B ! 1,

for any � < �  1
4 .

Proof: With ` = L, the B source blocks, Y1, . . . , YB ,
are parsed as chunks. We know that each Yb is a descendant
of one of the source symbols. Let Ed denote the event that
every source block Yb is within Hamming distance �L from

its ancestor. By the Chernoff bound, the probability that more
than �L symbols of a source symbol are flipped in a �-edit is
at most 2�D(�||�)L. We then apply the union bound and get
Pr(Ed) � 1�B2�D(�||�)L.

When Ed holds, the source blocks are covered by A Ham-
ming balls of radius �L. Therefore, with mismatch ratio �,
the dictionary is of size at most A, and takes A(L+1) bits to
store. The pointer length is thus upper bounded by logA+1.
The difference with the referenced chunk can be encoded in
at most H(2�)L+1 bits. Including the 2 log(BL)+3 bits for
encoding |s| at the beginning, we get

E[LED(s)|Ed]  2 log(BL) + 3 +A(L+ 1)

+ (1 + logA+ 1 +H(2�)L+ 1)B

= H(2�)BL+ o(BL).

When the complement of Ed holds, we trivially upper bound
dictionary size by B. It follows that

E[LED(s)|Ēd]  2 log(BL) + 3 +B(L+ 1)

+ (1 + logB + 1 +H(2�)L+ 1)B

 2BL.

Thus,

E[LED(s)] = Pr(Ed)E[LED(s)|Ed] + Pr(Ēd)E[LED(s)|Ēd]

 H(2�)BL(1 + o(1)) + 2B2L2�D(�||�)L

= H(2�)BL(1 + o(1)),

where the term 2B2L2�D(�||�)L is absorbed into the o(1) term
since D(�||�) > 0.

The theorem is used in the Results section to establish
that EDD performs within a constant factor of entropy in
Corollary 5.

VII. DEDUPLICATION IN THE VARIABLE-LENGTH SCHEME

In this section, we study the variable-length deduplication
algorithm, which is more widely applicable than the algorithms
in the fixed-length scheme and does not require the source
symbol lengths to be the same or known. In the previous
section, we saw that for AFLD to achieve optimality, the chunk
length should be adapted to the source. Similarly for VLD, the
performance depends on chunk lengths which in turn depend
on the length of the marker M .

Before presenting the detailed analysis, we provide some
insights on how the marker length M affects the distribution
of chunk contents. In variable-length chunking, the chunks
(except perhaps the last one) end with the marker string 0M .
We write s = U10MU20M · · · 0MUN , where each Un, n < N ,
is either empty or of the form u1 for some M -RLL string
u. We can approximately treat s as a Bernoulli(1/2) process
for now. The lengths of strings Un are thus equivalent to
the stopping time in an infinite-length Bernoulli(1/2) process
untill the beginning of the first occurrence of 0M , which is of
expected length approximately 2M . The behavior of VLD with
marker length M is thus similar to that of mFLD with chunk
length 2M . When M is chosen so small that the number N of
chunks becomes much larger than the total number of strings
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of lengths around 2M , the dictionary becomes exhaustive
and pointers have similar lengths to chunks. When M is
chosen too large, most of U1, . . . , UN are distinct and thus
not compressible. In the following, we study in detail how
E[LV L(s)] varies for different values of M .

Similar to the fixed-length schemes, the dictionary size is an
essential first-step in computing E[LV L(s)]. To determine the
expected dictionary size, we again start with the probability
of occurrences of chunks. However, now the chunks are of
different lengths and the occurrences are not restricted to
a fixed set of positions. So we bound the probability of
occurrences of a chunk by the probability of occurrences
of certain substrings. Specifically, we consider strings of the
forms 10Mu10M or 0Mu10M (u 2 RM ): Except the first and
the last chunks, the probability of occurrence of chunk u10M

is greater than the probability of occurrence of a substring
10Mu10M since the prefix 10M always marks an ending of
the previous chunk; similarly, the probability of occurrence
of chunk u10M is less than or equal to the probability of
occurrence of a substring 0Mu10M since any occurrences of
chunk u10M must follow a 0M which is the ending marker
of the previous chunk.

Let w 2 Y B

1 denote the event that w appears as a substring
of Yb for some 1  b  B and let w 2 Y B/2

1 denote the event
that w appears as a substring of Yb for some 1  b  dB/2e.3
We first present in Lemmas 10, 11 and 12 two lower bounds
on w 2 Y B/2

1 and an upper bound on w 2 Y B

1 .

Lemma 10. Suppose K strings of length n are chosen
independently and uniformly from ⌃n. Assume each string
produces at least m1 and at most m2 descendants by �-edits.
For any string w with |w|  n, let Hw denote the event that
w appears as a substring of one or more descendants. Then,

1

2
min

✓
1,

1

2

�
n

|w|

⌫
K

S�(|w|,m1)

2|w|

◆

 Pr(Hw) 

min

✓
1, (n� |w|+ 1)K

S�(|w|,m2)

2|w|

◆
.

The proof of Lemma 10 is presented in Appendix D. Similar
to Lemma 4, the setting described in Lemma 10 matches the
model for the generation of source strings. This time, we allow
string w to be any substring of the descendants because chunks
can now be in any position of the source string. Note that
Lemma 10 is also a generalization of Lemma 4.

Next, we use Lemma 10 to bound the probability of w 2
Y B/2
1 and w 2 Y B

1 .

Lemma 11. Consider the source model with edit probability
�. For any string w 2 ⌃⇤ with |w|  2L,

Pr(w 2 Y B

1 |Eu)  min

 
1, 2AL

S�

�
|w|, 3B

2A

�

2|w|

!
.

3Here we only consider string/chunk occurrences inside source blocks and
leave the study of strings/chunks that occur across the boundaries of source
blocks for later.

For any string w 2 ⌃⇤ with |w| 
⌃
1
2L
⌥
,

Pr
⇣
w 2 Y B/2

1 |El
⌘
� 1

2
min

 
1,

AL

8|w|
S�

�
|w|, B

4A

�

2|w|

!
.(17)

The proof of Lemma 11 is presented in Appendix D.
Although Lemma 11 holds for any string w, we will later
restrict w to be of the forms 10Mu10M or 0Mu10M .

Next, we consider another lower bound as an alternative
to (17) for the cases when w is of larger lengths. From the
proofs of Lemmas 10 and 11, the lower bound (17) is obtained
by only taking into account the possibilities of w appearing
in non-overlapping positions of each Yb. Lemma 12 considers
every possible substring of Yb to be equal to w and gets the
lower bound by the inclusion-exclusion principle and turns
out to be more accurate for w with large lengths. Note that
Lemma 12 directly considers w to be of the form 10Mu10M

and the bound is given in the form of a summation.

Lemma 12. Consider the source model with edit probability
� < 1

2 . For any n such that log(B/A)�2
H(�)  n+ 2M + 2  L

4 ,

X

u2R
n

M

Pr
⇣
10Mu10M 2 Y B/2

1 |El
⌘
�

BL

27 · 22M+2
·
✓
1� 1

2M�1

◆n

� 3B2L2

2n+2M+2
.

The proof of Lemma 12 is presented in Appendix E.
After characterizing the probabilities of strings (and thus

chunks) occurring, we consider in Lemma 13 the number of
chunks. Let CM

VL
(s) denote the number of chunks of length

over 2M�4 in YdB/2e+1 · · ·YB for variable-length chunking
with marker length M . We show that when 2M = o(L), with
high probability, CM

VL
(s) is of order |s|/2M .

Lemma 13. Consider the source string s = Y1Y2 . . . YB .
When 2M = o(L), for B,L sufficiently large,

Pr

✓
CM

VL
(s) � 1

4
·
�
B

2

⌫✓
L

2M+8
� 1

◆◆
� 5

6
.

The proof of Lemma 13 is presented in Appendix F. It can
be seen from the proof that Lemma 13 can be extended to the
case when El holds since each source block Yb by itself is still
a Bernoulli(1/2) process. Therefore, the following corollary
holds.

Corollary 7. When 2M = o(L), for B,L sufficiently large,

Pr

✓
CM

VL
(s) � 1

4
·
�
B

2

⌫✓
L

2M+8
� 1

◆
|El
◆

� 5

6
.

Next, we use Lemmas 11, 12 and Corollary 7 to bound
E[LV L(s)] from below. As marker length M takes different
values, different lower bounds of E[LV L(s)] are presented in
Theorems 14, 15 and 17. Let T 1

V L
(s) denote the dictionary

when all chunks in s are processed and let T
1/2

V L
(s) denote

the dictionary immediately after chunks in Y1 · · ·YdB/2e are
processed.

We first show in Theorem 14 that similar to the fixed-length
schemes, small values for M lead to an oversized dictionary.
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Theorem 14. Consider the source model with edit probability
� and the variable-length deduplication algorithm with marker
length M . If 2M = o(logB), then

E[LV L(s)] �
1

3 · 216BL(1 + o(1)), as B ! 1,

where the o(1) term is independent of �.

Proof: We show that with high probability,
���T

1/2

V L
(s)
��� is

of the order 22
M

. So encoding each chunk in YdB/2e+1 · · ·YB

takes number of bits either equal to the chunk length or pointer
length 2M . We then show using Lemma 13 that the length of
the compressed string is a constant fraction of BL.

If a string w of the form w = 10Mu10M , u 2 RM , occurs
as a substring of some data block Yb, b 

⌃
B

2

⌥
, then u10M

must be contained in T
1/2

V L
(s). For any w = 10Mu10M with

|u|  2M , by Lemma 11,

Pr
⇣
w 2 Y B/2

1 |El
⌘
� 1

2
min

 
1,

AL

8|w|
S�

�
|w|, B

4A

�

2|w|

!

� 1

2
min

✓
1,

AL

8|w|

◆
� 1

2
, (18)

where the second inequality follows from |w|  2M +2M +
2 = o(logB) and the property that S�(`,m) = 2` if m�` � 1.

Denote the set of all M -RLL strings of lengths less than
2M by R2M

M
. Let ⇣ =

���
n
u 2 R2M

M
: 10Mu10M 2 Y B/2

1

o���.

Then (18) gives E[⇣|El] � |R2M

M
|/2 and thus E[|R2M

M
| �

⇣|El]  |R2M

M
|

2 . By Markov inequality, Pr(|R2M

M
| � ⇣ �

3|R2M

M
|/4)  2

3 and thus Pr(⇣ > |R2M

M
|/4) � 1

3 . Noting
that |T 1/2

V L
| � ⇣ and |R2M

M
| � 22

M�2 by Corollary 1, we get

Pr
⇣���T

1/2

V L
(s)
��� � 22

M�4|El
⌘
� 1

3
. (19)

For each chunk in YdB/2e+1 · · ·YB of length at least 2M�4,
we need at least either 2M�4 or log

���T
1/2

V L
(s)
��� bits. So by

Corollary 7 and inequality (19),

E[LV L(s)|El] � E
h
min

⇣
2M�4, log

���T
1/2

V L
(s)
���
⌘
· CM

VL
(s)|El

i

�
✓
1� 2

3
� 1

6

◆
min

�
2M�4, 2M � 4

�

· 1
4

�
B

2

⌫✓
L

2M+8
� 1

◆

� BL

3 · 216 (1 + o(1)).

The desired result follows from

E[LV L(s)] � E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
We then show in Theorems 15 and 17 that an oversized

M leads to a large number of distinct chunks, each of which
needs to be encoded in full and thus compression becomes
ineffective. In particular, Theorem 15 covers the case when
2M is of larger order than logB but still much smaller than

the expected source symbol length L. Theorem 17 considers
the case when 2M = ⌦(L), and therefore a large number
of chunks can be of lengths close to or even larger than the
expected source symbol length.

Theorem 15. Consider the source model with edit probability
� and the variable-length deduplication algorithm with marker
length M . If 2M = !(logB) \ o(L), then

E[LV L(s)] �
1

210e2
BL(1 + o(1)), as B ! 1,

where the o(1) term is independent of �.

Proof: We show that if 2M is in !(logB) and o(L), the
sum of the lengths of distinct chunks is a constant fraction of
|s|.

Each new chunk is encoded as a bit 1 followed by itself.
Given El, the expected number of bits needed for encoding
distinct chunks is greater than or equal to

E

2

4
X

v2T
1
V L

(s)

(|v|+ 1)|El

3

5

=
X

v2⌃⇤

Pr
�
v 2 T 1

V L
(s)|El

�
(|v|+ 1)

�
X

u2RM

Pr
⇣
10Mu10M 2 Y B/2

1 |El
⌘
(|u|+M + 2). (20)

As a lower bound, we consider M -RLL strings with lengths
in the range

h
2M ,

l�
2ML

�1/2mi. Since asymptotically we have

2M � log(B/A)�2
H(�) , we apply Lemma 12 on (20) and get

⇠
(2ML)

1/2
⇡

X

`=2M

X

u2R
`

M

Pr
⇣
10Mu10M 2 Y B/2

1 |El
⌘

· (`+M + 1)

�

⇠
(2ML)

1/2
⇡

X

`=2M

 
BL

27 · 22M+2

✓
1� 1

2M�1

◆`

� 3B2L2

2`+2M+2

◆

· (`+M + 1)

�

⇠
(2ML)

1/2
⇡

X

`=2M

 
BL

27 · 22M+2

✓
1� 1

2M�1

◆`

`

!
� 3B2L4

22M

� BL

27 · 22M+2
22(M�1)

✓
2M � 1

2M�1
+ 1

◆
e�2(1 + o(1))

� 3B2L4

22M

� BL

210e2
(1 + o(1))� 3B2L4

22M

=
BL

210e2
(1 + o(1)), as B ! 1,

where the second inequality follows from
�
2ML

�1/2
+M+1 

L and the equality follows from 2M = !(logB). The second
to last inequality follows from applying summation (43) in
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Appendix G-B with a = 2M , b =
l�
2ML

�1/2m
,� = 2M�1

and noting that 1
2M�1

l�
2ML

�1/2m
= !(1).

Thus,

E[LV L(s)|El] � E

2

4
X

v2T
1
V L

(s)

(|v|+ 1)|El

3

5

� BL

210e2
(1 + o(1)),

and the desired result follows from

E[LV L(s)] � E[LV L(s)|El] Pr(El)

and Pr(El) = 1 + o(1).
Next, we present a lemma that will be used in the proof of

Theorem 17.

Lemma 16. Consider the source string s = Y1Y2 · · ·YB ,
with each Yb being a descendant of source symbol XJb

. For
any integer h and any pairs of integers (b1, b2), (i1, i2), the
probability of Yb1 and Yb2 having identical substrings of length
h starting at positions i1 and i2, respectively, is

Pr
⇣
(Yb1)i1,h = (Yb2)i2,h

⌘
=

1

2h
,

if Jb1 6= Jb2 or i1 6= i2.

The proof of Lemma 16 is presented in Appendix F.

Theorem 17. Consider the source model with edit probability
� and the variable-length deduplication algorithm with marker
length M . If 2M = ⌦(L), then

E[LV L(s)] �
1

360
BL(1 + o(1)), as B ! 1,

where the o(1) term is independent of �.

Proof: Let q = min
�
2M�5, L/2

�
. We find a set of distinct

M -RLL q-substrings of s that are encoded in full. In other
words, any two such q-substrings are contained in two distinct
chunks, or in two chunks that are duplicates, or in a single
chunk without overlapping with each other. The total length
of these q-substrings thus provides a lower bound on LV L(s).

Let L1, . . . , LA be given and assume El holds. We consider
the first dB/(4A)e descendants of each source symbol. Let
Ga denote the set of the first dB/(4A)e descendants of Xa.
Let Qa be the set containing all non-overlapping q-substrings
of Ga, i.e., Qa = {x1+(c�1)q,q : x 2 Ga, 1  c  ca},
where ca = bLa/qc and let Q = [A

a=1Qa. For w 2 ⌃q , let
w 2 Q denote the event that one of the substrings in Q equals
w. Applying Lemma 4 on Q (with substring length equal to
descendant length) yields

Pr(w 2 Q) � 1

2
min

 
1,

1

2

 
AX

a=1

ca

!
S�

�
q,
⌃

B

4A

⌥�

2q

!

=
1

4

⇠
B

4A

⇡PA

a=1 ca
2q

,

where the equality follows from q = ⌦(L) and the property
that S�(`,m) = m if m(1� �)`  1. So the expected number
of distinct M -RLL strings in Q is at least

X

w2R
q

M

1

4

⇠
B

4A

⇡PA

a=1 ca
2q

� 1

4

✓
2� 1

2M�2

◆q⇠ B

4A

⇡PA

a=1 ca
2q

� 1

5
·
⇠
B

4A

⇡ AX

a=1

ca,

for all M > 5. Since the size of Q is
⌃

B

4A

⌥P
A

a=1 ca, by
the Markov bound, with probability at least 1

9 , the number of
distinct M -RLL q-strings in Q is at least 1

10

⌃
B

4A

⌥P
A

a=1 ca.
Let q0 = dq/2e. Consider the q0-substrings of source blocks

Y1, . . . , YB , i.e., (Yb)i,q0 for all b 2 [B], i 2 [|Yb|]. Define
Ed to be the following event: for every two source blocks
Yb1 and Yb2 , the substring of Yb1 starting at position i1 is
different from the substring of Yb2 starting at position i2, i.e.,
(Yb1)i1,q0 6= (Yb2)i2,q0 , as long as Jb1 6= Jb2 or i1 6= i2. Since
there are at most (2BL)2 pairs of such substrings, by the union
bound and Lemma 16, Ed holds with probability at least

1� (2BL)2/2q
0
.

When Ed holds, the distinct M -RLL q-substrings in Q are
then non-overlapping substrings of the dictionary and it takes
q-bits to encode each of them. To see this, we consider the first
time such q-strings appear in the source string. Let (Yb)j,q be
one of the M -RLL strings in Q. Given Ed, the only possible
substrings of s that equal (Yb)k,q are (Y1)k,q, . . . , (YB)k,q .
Let b0 be the smallest integer such that (Yb0)j,q = (Yb)j,q .
By the M -RLL property, (Yb0)j,q must be fully contained in
a chunk. Moreover, this chunk must be a new chunk by the
minimality of b0 and is entered into the dictionary. Similarly,
every distinct M -RLL q-substring corresponds to a q-substring
in the dictionary. Since strings in Q do not overlap with each
other, the corresponding q-substrings in the dictionary also do
not overlap, and each takes q bits to store.

Combining the two arguments, with probability at least 1
9 �

(2BL)2

2q0
, there are 1

10

⌃
B

4A

⌥P
A

a=1 ca distinct non-overlapping
RLL substrings of length q, and each needs q bits to be
encoded. It sums up to

q · 1

10

⇠
B

4A

⇡ AX

a=1

ca � B

40A

AX

a=1

(La � q)

bits. Therefore,

E[LV L(s)|El] �
✓
1

9
� (2BL)2

2q0

◆
B

40A

AX

a=1

(L� q)

� BL

360
(1 + o(1)).

The desired result thus follows from (2).
The above three theorems are summarized in Corollary 6 in

the Results section to show that poorly choosing M prevents
efficient compression by VLD.

In the next theorem, we give our upper bound on
E[LV L(s)]. We consider the case when 2M is of order
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⇥(logB) and show that variable-length deduplication achieves
high compression ratios.

Theorem 18. Consider the source model with edit probability
� < 1

2 . For any � 2 (�, 1/2), the performance of variable-
length deduplication with marker length M such that 2M =
⇥(log(B/A)) satisfies

E[LV L(s)] ✓
12e�cM (cM + 1)+4H(�, �)

(1 + k1)

k2
cM

◆
BL(1 + o(1)),

(21)

as B ! 1, where cM = log(B/A)
H(�,�)2M+1 .

Proof: First, encoding the length |s| takes 2 log|s|+3 
2 log(BL) + 5 bits. We study next the encoding of chunks.
We adopt the same strategy as [13]: dividing chunks into two
categories, interior chunks and boundary chunks. Consider
all chunks whose first symbols are in Yb (see Figure 3).
Some chunks depend on the values of the neighboring source
blocks Yb�1 and Yb+1, i.e., it is possible to alter the chunk
by replacing Yb�1 or Yb+1 with other strings. We call these
the ‘boundary’ chunks of Yb. Other chunks are independent
of the values of the neighboring source blocks. We call
these the ‘interior’ chunks of Yb. Denote the set of interior
chunks in s by C�(s). Note that we consider the first chunk
and the last chunk of the whole data stream as boundary
chunks. It is pointed out in [13] that the number of boundary
chunks is upper bounded by 3(B + 1) and the expected total
length of boundary chunks is upper bounded by B2M+2.4
Therefore, encoding unique boundary chunks takes at most
3(B + 1) +B2M+2 bits.

0M 0M 0M0M

boundary interior boundary

Yb�1 Yb Yb+1

Figure 3. Occurrences of boundary chunks and interior chunks of Yb in
variable-length chunking.

We consider next encoding unique interior chunks. Clearly,
every interior chunk follows a 0M , i.e., the ending marker
of the previous chunk. Moreover, this 0M must also fully
lie in the same source block as the chunk since otherwise
this chunk is not an interior chunk. Therefore, the probability
of occurrence of an interior chunk u10M is at most the
probability of the occurrence of 0Mu10M as a source block

4Although in [13], the upper bounds are derived for source strings produced
by an edit-free source, the same upper bounds hold when edits exist since
every source block is still a Bernoulli(1/2) process by itself.

substring. It follows that

E

2

4
X

w2C�(s)

(|w|+ 1)|Eu

3

5

(M + 1) +
X

u2RM

Pr
�
u10M 2 C�(s)|Eu

�
(|u|+M + 2)

(M + 1) +
X

u2RM

Pr
�
0Mu10M 2 Y B

1 |Eu
�
(|u|+M + 2),

(22)

where the term M+1 accounts for the chunk 0M . We compute
the summation in (22). Fix � 2 (�, 1/2) and let `� = log(B/A)

H(�,�) .

• For all u such that
��0Mu10M

��  logB, we trivially
bound Pr

�
0Mu10M 2 Y B

1 |Eu
�

from above by 1. It fol-
lows that

blogBc�2M�1X

`=0

X

u2R
`

M

Pr
�
0Mu10M 2 Y B

1 |Eu
�
(`+M + 2)


blogBc�2M�1X

`=0

X

u2R
`

M

(`+M + 2)


blogBc�2M�1X

`=0

2`(`+M + 2)

 (blogBc �M + 1)2logB�2M

 B logB

22M
. (23)

• For u such that
��0Mu10M

�� � `� , we apply Lemma 11
and find

Pr
�
0Mu10M 2 Y B

1 |Eu
�
 2AL

S�

���0Mu10M
��, 3B

2A

�

2|0Mu10M |

 3BL

2|0Mu10M | .
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It follows that

2LX

`=d`�e�2M�1

(`+M + 2)
X

u2R
`

M

Pr
�
0Mu10M 2 Y B

1 |Eu
�


2LX

`=d`�e�2M�1

X

u2R
`

M

3BL

2`+2M+1
(`+M + 2)


2LX

`=d`�e�2M�1

2

✓
2� 1

2M

◆` 3BL

2`+2M+1
(`+M + 2)

=
3BL

22M

0

@
2LX

`=d`�e�2M�1

✓
1� 1

2M+1

◆`

(M + 2)

+
2LX

`=d`�e�2M�1

✓
1� 1

2M+1

◆`

`

1

A

= (1 + o(1))
3BL

22M

✓
2M+1 · e�

d`�e�2M�1

2M+1

+ 22(M+1) · e�
d`�e�2M�1

2M+1

✓
d`�e � 2M � 1

2M+1
+ 1

◆◆

= 12BL · e�
`�

2M+1

✓
`�

2M+1
+ 1

◆
(1 + o(1)), (24)

where the second equality follows by applying summa-
tions (42) and (43) in Appendix G with a = d`�e�2M�
1, b = 2L, � = 2M+1 and noting that 2L

2M+1 = !(1).
• If logB  `� , then there are additional terms correspond-

ing to string u such that logB 
��0Mu10M

��  `� . Again
by Lemma 11,

Pr
�
0Mu10M 2 Y B

1 |Eu
�
 2AL

S�

���0Mu10M
��, 3B

2A

�

2|0Mu10M |

 5BL2�|0
Mu10M |(1+D(�||�)),

where the second inequality follows from (8) and the fact
that 2nH(�)  B

A
2�nD(�||�) if n  log(B/A)

H(�,�) .

Thus,

b`�c�2M�1X

`=dlogBe�2M�1

X

u2R
`

M

Pr
�
0Mu10M 2 Y B

1 |Eu
�

· (`+M + 2)


b`�c�2M�1X

`=dlogBe�2M�1

X

u2R
`

M

5BL2�(`+2M+1)(1+D(�||�))

· (`+M + 2)

5BL

22M

b`�c�2M�1X

`=dlogBe�2M�1

✓
1� 1

2M+1

◆`

2�(`+2M+1)D(�||�)

· (`+M + 2)


5BL`2

�

22M

✓
1� 1

2M+1

◆logB�2M�1

2�D(�||�) logB

=⇥
⇣
B1�D(�||�)L

⌘

=o(BL), (25)

where the first equality follows from the fact that `
2
�

22M

and
�
1� 1

2M+1

�logB�2M�1 are both ⇥(1) since 2M and
`� are ⇥(log(B/A)).

Plugging (23), (24) and (25) in (22), we find that as B ! 1
(also A,L ! 1),

E

2

4
X

w2C�(s)

(|w|+ 1)|Eu

3

5  12e�cM (cM + 1)BL+ o(BL),

where cM = `�

2M+1 .
If the complement of Eu holds, then the number of bits

needed for encoding interior chunks at their first occurrences
is at most 4BL, since the total length of interior chunks is at
most 2BL and the total number of chunks is at most 2BL.
By noting that Pr

�
Ēu
�
 Ae�

B

10A ,

E

2

4
X

w2C�(s)

(|w|+ 1)

3

5

 12e�cM (cM + 1)BL+ o(BL) + 4BLAe�
B

10A

= 12e�cM (cM + 1)BL(1 + o(1)). (26)

The number of bits needed for encoding pointers of repeated
chunks can be bounded from above in a trivial way. Note that
there are at most |s|

M
+1 strings in the dictionary T . So a pointer

takes at most log
⇣

|s|
M

+ 1
⌘
+ 1  log|s| bits. Moreover, the

total number of chunks is less than the number of occurrences
of 0M plus 1 since every chunk except possibly the last one
ends with 0M . On average, the number of occurrences of 0M

in Yb is at most |Yb|
2M . So given |s|, the expected number of
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chunks in s is at most |s|
2M + B + 1. Therefore the expected

number of bits used by pointers is at most

E

(log|s|+ 1) ·

✓
|s|
2M

+B + 1

◆�

 log(2BL+ 1)

✓
2BL

2M
+B + 1

◆

 2BL
log(BL)

2M
(1 + o(1))

 4H(�, �)
(1 + k1)

k2
cM ·BL(1 + o(1)), (27)

where the last inequality follows from log(BL)
log(B/A) 

1+k1
k2

(1 + o(1)).
The desired result follows from summing (26) and (27) and

noting that the number of bits used for encoding the length of
s and the unique boundary chunks are o(BL).

A detailed analysis in the Results section shows that as �
approaches 0, by appropriately choosing M , the compression
ratio E[|s|]

E[LV L(s)] can get arbitrarily large.

VIII. CONCLUSION

In this paper, we studied the performance of deduplication
algorithms on data streams with approximate repeats, a situ-
ation that is common in practice. For simplicity, we modeled
the process producing approximate repeats as independent bit-
wise Bernoulli substitutions. We showed, in particular, that
correctly choosing the chunk lengths is critical to the suc-
cess of deduplication. With optimally chosen chunk lengths,
deduplication in the fixed-length scheme is shown to achieve
performance within a constant factor of optimal for a specific
family of source models and with the knowledge of source
parameters. Additionally, appropriately choosing the length of
the marker leads to suitable chunk lengths for variable-length
deduplication, resulting in arbitrarily large compression ratios
as source entropy gets smaller.

While this work sheds light on certain important aspects of
the problem, the information-theoretic analysis of data dedu-
plication provides a wealth of open problems. For example,
while VLD was shown to achieve high compression ratios,
it is not known whether it is order optimal. Moreover, the
source model proposed in this paper only included independent
substitution edits. However, in practice, insertions, deletions
and substitutions of single symbols, as well as longer strings,
occur frequently. The probabilistic description of the source
models can also be further refined based on experiments.
Therefore, to gain a fuller understanding, it is important to
study deduplication algorithms under more general source
models and edit processes.

APPENDIX A
PROOF OF LEMMA 1

Lemma 1. Let k be a positive integer. The number of binary
k-RLL strings of length n, |Rn

k
|, satisfies

(2� 1

2k�2
)n  |Rn

k
|  2(2� 1

2k
)n.

Proof: Clearly, if 0  n  k�1, then any string of length
n is a k-RLL string (we consider the empty string as the only
string of length 0). Therefore, for all 0  n  k � 1,

|Rn

k
| = 2n � (2� 1

2k�2
)n,

and

|Rn

k
| = 2n = 2n+12�1  2n+1(1� 1

2k+1
)k�1

 2n+1(1� 1

2k+1
)n = 2(2� 1

2k
)n.

For n � k, we prove the lemma by induction on n.
Suppose the desired results hold for all n0 < n. It is shown
in [15, Chapter 8] that

��RN

k

�� =
P

k

i=1

��RN�i

k

�� for all N � k.
Therefore,

|Rn

k
| =

kX

i=1

��Rn�i

k

�� �
kX

i=1

(2� 1

2k�2
)n�i

=
(2� 1

2k�2 )n � (2� 1
2k�2 )n�k

1� 1
2k�2

=

✓
2� 1

2k�2

◆n

+
(2� 1

2k�2 )n�k2k

2k�2 � 1

✓
(1� 1

2k�1
)k � 1

4

◆

� (2� 1

2k�2
)n,

and

|Rn

k
| =

kX

i=1

��Rn�i

k

�� 
kX

i=1

2(2� 1

2k
)n

= 2
(2� 1

2k )
n � (2� 1

2k )
n�k

1� 1
2k

= 2(2� 1

2k
)n +

2(2� 1
2k )

n�k

1� 1
2k

0

@
 
2� 1

2k

2

!k

� 1

1

A

 2(2� 1

2k
)n.

APPENDIX B
PROOF OF LEMMA 3

Lemma 3. Let r be a string drawn uniformly at random from
⌃`. Let r1, r2, . . . , rm be m iid descendants of r by �-edit and
let r[m] = {r1, r2, . . . , rm}. For any w 2 ⌃`, let w 2 r[m]

denote the event that w = ri for some i. Then

1

2

S�(`,m)

2`
 Pr

�
w 2 r[m]

�
 S�(`,m)

2`
, (4)

and thus the expected number of unique strings in r[m] is
bounded between 1

2S�(`,m) and S�(`,m).
Furthermore, S�(`,m) takes the following values for differ-

ent values of ` and m:
• If ` � logm

H(�) , then

S�(`,m) � 1

4
m. (5)
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In particular if ` � logm

log( 1
1��

)
, then

S�(`,m) = m. (6)

• If `  logm

H( 1
2 ,�)

, then

S�(`,m) � 2`�1. (7)

In particular if `  logm

log( 1
�
)
, then

S�(`,m) = 2`.

• For any � < �0 < 1
2 ,

S�(`,m)  2`H(�0) +m2�`D(�0||�). (8)

In particular if ` = logm

H(�0,�) , then

S�(`,m)  2`H(�0) +m2�`D(�0||�) = 2`H(�0)+1. (9)

• For any values of ` and m,

S�(`,m)  min
�
2`,m

�
. (10)

Proof: We first prove inequality (4). Given r, the prob-
ability of a �-edit descendant being equal to w is �dw,r (1 �
�)`�dw,r , where dw,r denotes the Hamming distance between
w and r. Therefore,

Pr
�
w 2 r[m]

�
= 1� Pr

�
w /2 r[m]

�

= 1�
X

r2⌃`

Pr(r) Pr(w 6= r1|r)m

= 1�
X

r2⌃`

Pr(r)
�
1� �dw,r (1� �)`�dw,r

�m

= 1�
`X

t=0

 �
`

t

�

2`
�
1� �t(1� �)`�t

�m
!
,

where the second equality follows from the fact that
r1, r2, . . . , rm are iid given r and the last equality follows
from the fact that there are

�
`

t

�
strings of length ` that

are at Hamming distance t from w. The desired inequal-
ities then follow directly from applying inequalities (1) on
1�

⇣
1� �t(1� �)`�t

⌘m
.

The expected number of unique strings in r[m] equals

E

2

4
X

w2⌃`

Iw2r[m]

3

5 =
X

w2⌃`

Pr
�
w 2 r[m]

�
.

So the upper bound S�(`,m) and the lower bound 1
2S�(`,m)

follow from replacing Pr
�
w 2 r[m]

�
with its upper and lower

bounds, respectively.
We show that S�(`,m) takes the given values for different

m and `:
• When ` � logm

H(�) , m��`(1� �)(1��)`  1. It follows that

S�(`,m) �
`X

t=d�`e

✓
`

t

◆
min

�
1,m�t(1� �)`�t

�

=
`X

t=d�`e

✓
`

t

◆
m�t(1� �)`�t � 1

4
m,

where the equality follows from the fact that m�t(1 �
�)`�t is decreasing in t so m�t(1� �)`�t  1 for all
t � �` and the second inequality follows from the result
shown in [4] that for a binomial random variable X with
parameters n and p, Pr(X � np) > 1

4 if p � 1/n.
Moreover, when ` � logm

log( 1
1��

)
, m�t(1� �)`�t  1 for all

t. Hence,

S�(`,m) =
`X

t=0

✓
`

t

◆
m�t(1� �)`�t = m.

• When `  logm

H( 1
2 ,�)

, m�
`

2 (1� �)
`

2 � 1. It follows that

S�(`,m) �
b `

2cX

t=0

✓
`

t

◆
min

�
1,m�t(1� �)`�t

�
=

b `

2cX

t=0

✓
`

t

◆

� 2`�1,

where the first inequality follows from the fact that
m�t(1� �)`�t � 1 for all t  `

2 .
Moreover, when `  logm

log( 1
�
)
, m�t � 1 for all t. Hence,

S�(`,m) =
`X

t=0

✓
`

t

◆
· 1 = 2`.

• For any � < �0 < 1/2,

S�(`,m) 
b�0`cX

t=0

✓
`

t

◆
+

`X

t=d�0`e

✓
`

t

◆
m�t(1� �)`�t

 2`H(�0) +m2�`D(�0||�),

where the second inequality follows from applying the
Chernoff bound on a binomial distribution with parame-
ters ` and �.
When ` = logm

H(�0,�) , 2`H(�0) = m2�`D(�0||�). So 2`H(�0)+

m2�`D(�0||�) = 2`H(�0)+1 and

S�(`,m)  2`H(�
0)+1.

• The upper bounds 2` and m follow from:

S�(`,m) 
`X

t=0

�
`

t

�

2`
= 1,

S�(`,m) 
`X

t=0

�
`

t

�

2`
m�t(1� �)`�t =

m

2`
.

APPENDIX C
PROOFS OF LEMMA 4 AND LEMMA 5

Lemma 4. Suppose K strings of length n are chosen indepen-
dently and uniformly from ⌃n. Assume each string produces
at least m1 and at most m2 descendants by �-edits. For any
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string w with |w| = n, let Gw denote the event that w equals
one or more descendants. Then

1

2
min

✓
1,

1

2
K

S�(n,m1)

2n

◆

 Pr(Gw) 

min

✓
1,K

S�(n,m2)

2n

◆
.

Proof: Let the K strings be denoted y1,y2, . . . ,yK
. Let

Gw(i) denote the event that w equals one of the descendants
of y

i
. Clearly, Gw(1), Gw(2), . . . , Gw(K) are independent

and

Gw = [K

i=1Gw(i). (28)

Note that by Lemma 3 and the fact that S�(n,m) is non-
decreasing in m,

1

2

S�(n,m1)

2n
 Pr(Gw(i))  S�(n,m2)

2n
.

Applying the union bound on (28) gives

Pr(Gw) 
KX

i=1

Pr(Gw(i))  K
S�(n,m2)

2n
.

The desired upper bound follows by noting that 1 is a trivial
upper bound.

We then prove the lower bound. By independence,

Pr(Gw) = Pr
�
[K

i=1Gw(i)
�

= 1�
KY

i=1

(1� Pr(Gw(i)))

� 1�
✓
1� 1

2

S�(n,m1)

2n

◆K

� 1

2
min

✓
1,

1

2
K

S�(n,m1)

2n

◆
,

where the last inequality follows from inequality (1) that 1�
(1� x)n � 1

2 min(1, nx) for x 2 (0, 1) and integer n.

Lemma 5. Consider the two-stage fixed-length chunking pro-
cess with first-stage parsing length D = L and chunk length
`. The dictionary sizes T 1

F
(s) and T

1/2

F
(s) satisfy

E
⇥��T 1

F
(s)
��|Eu

⇤
 min

✓
2`, ACS�

✓
`,
3B

2A

◆◆
+B,

E
h���T

1/2

F
(s)
���|El
i
� 1

2
min

✓
2`,

1

2
ACS�

✓
`,

B

4A

◆◆
. (12)

Proof: The size of T 1
F
(s) equals the number of distinct

strings among chunks Zb

c
, 1  c  C+1, 1  b  B. Clearly,

chunks of length ` are �-edit descendants of the AC source
symbol substrings Ua

c
, 1  c  C, 1  a  A, which are

independent and uniformly distributed in ⌃`. Given Eu, each
Ua

c
has at most 3B

2A descendants. Moreover, since we assume
that the source symbols X1, . . . ,XA are chosen uniformly and
independently, it follows directly from Lemma 4 that for any
`-string w,

Pr
�
w 2 T 1

F
(s)|Eu

�
 min

 
1, AC

S�

�
`, 3B

2A

�

2`

!
.

Hence

E
⇥��T 1

F
(s)
��|Eu

⇤

X

w2⌃`

Pr
�
w 2 T 1

F
(s)|Eu

�
+B

 min

✓
2`, ACS�

✓
`,
3B

2A

◆◆
+B,

where the addend B accounts for the chunks of lengths less
than ` at the end of each source block, if any.

The lower bound on
���T

1/2

F
(s)
��� given El follows similarly

from Lemma 4.

APPENDIX D
PROOF OF LEMMA 10 AND LEMMA 11

Lemma 10. Suppose K strings of length n are chosen
independently and uniformly from ⌃n. Assume each string
produces at least m1 and at most m2 descendants by �-edits.
For any string w with |w|  n, let Hw denote the event that
w appears as a substring of one or more descendants. Then,

1

2
min

✓
1,

1

2

�
n

|w|

⌫
K

S�(|w|,m1)

2|w|

◆

 Pr(Hw) 

min

✓
1, (n� |w|+ 1)K

S�(|w|,m2)

2|w|

◆
.

Proof: Let the K strings be denoted y1,y2, . . . ,yK
. We

use Di to denote the set of �-edit descendants of y
i
. Let

Hw(i, j) denote the event that w = xj,|w| for some x 2 Di.
Clearly,

Hw = [K

i=1 [
n�|w|+1
j=1 Hw(i, j). (29)

Note that the strings {xj,|w|}x2Di
are iid �-edit descendants

of (y
i
)j,|w|. Hence by Lemma 3

1

2

S�(|w|,m1)

2|w|  1

2

S�(|w|, |Di|)
2|w|

 Pr(Hw(i, j)) 
S�(|w|, |Di|)

2|w|  S�(|w|,m2)

2|w| .

where the first and the last inequalities follow from m1 
|Di|  m2.

Applying the union bound on (29) gives

Pr(Hw)  [K

i=1 [
n�|w|+1
j=1 Pr(Hw(i, j))

 (n� |w|+ 1)K
S�(|w|,m2)

2|w| .

The desired upper bound follows by noting that 1 is a trivial
upper bound.

We next prove the lower bound. For each i, non-overlapping
substrings of ri are independent and so are their descendants.
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Hence, events Hw(i, j), j = 1, 1 + |w|, . . . , 1 + (p � 1)|w|,
where p =

j
n

|w|

k
, are mutually independent. It follows that

Pr
�
[K

i=1 [
p

a=1 Hw(i, 1 + (a� 1)|w|)
�

= 1�
KY

i=1

pY

a=1

(1� Pr(Hw(i, 1 + (a� 1)|w|)))

� 1�
✓
1� 1

2

S�(|w|,m1)

2|w|

◆Kp

� 1

2
min

✓
1,

1

2
Kp

S�(|w|,m1)

2|w|

◆
,

where the last inequality follows from inequality (1) that 1�
(1 � x)n � 1

2 min(1, nx) for x 2 (0, 1) and integer n. The
desired lower bound thus follows by noting that

[K

i=1 [
p

a=1 Hw(i, 1 + (a� 1)|w|) ✓ Hw.

Lemma 11. Consider the source model with edit probability
�. For any string w 2 ⌃⇤ with |w|  2L,

Pr(w 2 Y B

1 |Eu)  min

 
1, 2AL

S�

�
|w|, 3B

2A

�

2|w|

!
.

For any string w 2 ⌃⇤ with |w| 
⌃
1
2L
⌥
,

Pr
⇣
w 2 Y B/2

1 |El
⌘
� 1

2
min

 
1,

AL

8|w|
S�

�
|w|, B

4A

�

2|w|

!
.(17)

Proof: Recall that we assume every source symbol (and
thus every source block) is of length at least 1

2L and at most
2L. So we can get a lower bound on Pr

⇣
w 2 Y B/2

1 |El
⌘

by
assuming every source block is of length L

2 . Similarly, we get
an upper bound on Pr

�
w 2 Y B

1 |Eu
�

by assuming every source
block is of length 2L.

Now that the B source blocks are independent and each
is a �-edit descendant of one of the A source symbols.
Moreover, each random string (source symbol) has at most
3B
2A descendants given Eu. Therefore, by directly applying
Lemma 10,

Pr
�
w 2 Y B

1 |Eu
�
 min

 
1, (2L� |w|+ 1)A

S�

�
|w|, 3B

2A

�

2|w|

!

 min

 
1, 2LA

S�

�
|w|, 3B

2A

�

2|w|

!
.

The lower bound can be obtained similarly:

Pr
⇣
w 2 Y B/2

1 |El
⌘
� 1

2
min

 
1,

1

2

�
L/2

|w|

⌫
A
S�

�
|w|, B

4A

�

2|w|

!

� 1

2
min

 
1,

1

8

L

|w|A
S�

�
|w|, B

4A

�

2|w|

!
.

APPENDIX E
PROOF OF LEMMA 12

Lemma 12. Consider the source model with edit probability
� < 1

2 . For any n such that log(B/A)�2
H(�)  n+ 2M + 2  L

4 ,

X

u2R
n

M

Pr
⇣
10Mu10M 2 Y B/2

1 |El
⌘
�

BL

27 · 22M+2
·
✓
1� 1

2M�1

◆n

� 3B2L2

2n+2M+2
.

Proof: Let w = 10Mu10M . By assumption, |w| = |u|+
2M + 2 � log(B/A)�2

H(�) .
For definiteness, we assume

��Y1/2(a)
�� = B

4A for all a and
all source symbols are of length L

2 . With these assumptions,
we have a similar setting to that in Lemma 10. So we adopt
the same notation. Let Hw denote w 2 Y B/2

1 and Hw(a, j)
denote the event that w = xj,|w| for some x 2 Y1/2(a).
Similar to (29):

Hw = [A

a=1 [
dL/2e�|w|+1
j=1 Hw(a, j). (30)

Moreover,

1

2

S�

�
|w|, B

4A

�

2|w|  Pr(Hw(a, j)) 
S�

�
|w|, B

4A

�

2|w| .

In Lemma 11, an upper bound on Pr
⇣
w 2 Y B/2

1 |El
⌘

is
obtained by applying the union bound on (30). Here, we get
a lower bound by the inclusion-exclusion principle:

Pr(Hw) �
AX

a=1

dL/2e�|w|X

i=1

Pr(Hw(a, i)) (31)

�
X

1a1 6=a2A

dL/2e�|w|X

j=1

dL/2e�|w|X

k=1

Pr(Hw(a1, j) \Hw(a2, k))

(32)

�
AX

a=1

X

1j,kdL/2e�|w|
j 6=k

Pr(Hw(a, j) \Hw(a, k)). (33)

We compute the three terms on the right-hand side of the
inequality above as follows.

For the term in (31), since |w| � log(B/A)�2
H(�) ,

Pr(Hw(a, i)) � 1

2

S�

�
|w|,

⌃
B

4A

⌥�

2|w| � 1

2

S�

�
|w|, B

4A

�

2|w|

� B

32A · 2|w| ,

where the last inequality follows from (5). It follows that

AX

a=1

dL/2e�|w|X

i=1

Pr(Hw(a, i)) � A(dL/2e � |w|) B

32A · 2|w|

� BL

27 · 2|w| . (34)
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For the term in (32), since for all a1 6= a2, y
a1

and y
a2

are
independent and so are their descendants, we get

X

1a1 6=a2A

dL/2e�|w|X

j=1

dL/2e�|w|X

k=1

Pr(Hw(a1, j) \Hw(a2, k))

=
X

1a1 6=a2A

dL/2e�|w|X

j=1

dL/2e�|w|X

k=1

Pr(Hw(a1, j)) Pr(Hw(a2, k))


X

1a1 6=a2A

dL/2e�|w|X

j=1

dL/2e�|w|X

k=1

 
S�

�
|w|,

⌃
B

4A

⌥�

2|w|

!2


X

1a1 6=a1A

B2L2

A222|w|

 B2L2

22|w| , (35)

where the second inequality follows from (10) that S�(`,m) 
m and the inequalities dL/2e � |w|  L,

⌃
B

4A

⌥
 B

A
.

We then consider the term in (33), where the two occur-
rences of w are among the descendants of a single source
symbol, and thus might not be independent. Unlike the pre-
vious two terms, we consider lower bounding the sum of
probabilities Pr(Hw(a, j) \Hw(a, k)) over all w of the form
10Mu10M ,u 2 Rn

M
. For clarity of presentation, we first claim

(to be proved later) that for any a,
X

w:w=10Mu10M
u2R

n

M

X

1j,kdL/2e�|w|
j 6=k

Pr(Hw(a, j) \Hw(a, k))

 B2L2

A22|w|

✓
1 +

n+M + 1

L

◆
. (36)

It follows that
X

w:w=10Mu10M
u2R

n

M

AX

a=1

X

1j,kdL/2e�|w|
j 6=k

Pr(Hw(a, j) \Hw(a, k))

 B2L2

A2|w|

✓
1 +

n+M + 1

L

◆
. (37)

Thus, combining (33), (34), (35) and (37) gives
X

w:w=10Mu10M
u2R

n

M

Pr(Hw)

�
X

w:w=10Mu10M
u2R

n

M

✓
BL

27 · 2|w| �
B2L2

22|w|

◆

� B2L2

A2|w|

✓
1 +

n+M + 1

L

◆

� BL

27 · 2|w| · |R
n

M
|

� B2L2

22|w| · |Rn

M
|� B2L2

A2|w|

✓
1 +

n+M + 1

L

◆

� BL

27 · 2|w| · |R
n

M
|� 3B2L2

2|w| ,

where the last inequality follows from |Rn

M
|  2|w|,

n+M+1
L

 1 and A � 1. The desired lower bound thus follows
from bounding |Rn

M
| by Lemma 1.

Finally, we prove inequality (36). Fix a. That Hw(a, j)
and Hw(a, k) both hold means there exist descendants x1,x2

(possibly the same one) of y
a

such that (x1)j,|w| =
(x2)k,|w| = w. Assume j < k without loss of generality.
We compute Pr(Hw(a, j) \Hw(a, k)) for different values of
(j, k):

• |j � k| � |w|. The two occurrences of w in x1 and x2

are plotted in Figure 4. In this case, they are produced
by two non-overlapping substrings of y

a
and thus are

independent. It follows that
X

|j�k|�|w|

Pr(Hw(a, j) \Hw(a, k))

=
X

|j�k|�|w|

Pr(Hw(a, j)) Pr(Hw(a, k))

 L2

 
S�

�
|w|,

⌃
B

4A

⌥�

2|w|

!2

 L2B2

A222|w| . (38)

ya

x1 10M u 10M

x2 10M u 10M

j k

w

w

Figure 4. Relative position of the two occurrences of w at position j and k

when |j � k| � |w|.

• 1  |j � k| < |u|. The two occurrences of w in x1

and x2 are plotted in Figure 5. In this case, the two
occurrences of w are descendants of two overlapping
substrings of y

a
. Recall that w = 10Mu10M . We write

the string u in x1 as u1u2, and write the string u in
x2 as u0

2u3, so that u2 and u0
2 have the same ancestors,

denoted r2. Denote the ancestor of u1 and u3 by r1
and r3, respectively. Denote the ancestor of 10M at the
beginning of w in x1 by r0, and the ancestor of 10M at
the end of w in x2 by r4. We have |r1| = |u1| = |r3| =
|u3| = k � j, |r2| = |u2| = |u0

2| = |u|� (k � j). Write
r = r0r1r2r3r4.

ya r0 r1 r2 r3 r4

x1 10M u1 u2 10M

x2 u0
2 u3 10M10M

j k

w

w

Figure 5. Relative position of the two occurrences of w at position j and k

when 1  |j � k| < |u|.

For a single descendant x of y
a
, x can not have w as

substrings at positions j and k simultaneously since u is



21

M -RLL. In other words, either exactly one of xj,|w| and
xk,|w| equals w or none of them does. So given r, we
can get an upper bound on the probability of Hw(a, j)\
Hw(a, k) by assuming they are independent, i.e.,

Pr(Hw(a, j) \Hw(a, k)|r)
 Pr(Hw(a, j)|r) Pr(Hw(a, k)|r). (39)

We prove (39) rigorously by Lemma 19 at the end of this
section.
Denote the Hamming distance between r0 and 10M by
d0, r1 and u1 by d1, r2 and u2 by d2, r2 and u0

2 by
d02, r3 and u3 by d3, and r4 and 10M by d4. Let wl =
10Mu and wr = u10M . The probability of occurrences
increases if we only consider substrings wl or wr. We
have

Pr(Hw(a, j)|r)
 Pr(Hwl

(a, j)|r)

=1�
⇣
1� �d0+d1+d2(1� �)|w|�M�1�(d0+d1+d2)

⌘d B

4Ae

 B

A
�d0+d1+d2(1� �)|w|�M�1�(d0+d1+d2),

and

Pr(Hw(a, k)|r)
 Pr(Hwr

(a, k +M + 1)|r)

=1�
⇣
1� �d

0
2+d3+d4(1� �)|w|�M�1�(d0

2+d3+d4)
⌘d B

4Ae

 B

A
�d

0
2+d3+d4(1� �)|w|�M�1�(d0

2+d3+d4).

It follows from (39) that Pr(Hw(a, j) \Hw(a, k)) is less

than or equal to
X

r2⌃|w|

Pr(r) Pr(Hw(a, j)|r) Pr(Hw(a, k)|r)

=

✓
B

A

◆2

·

0

@
X

r02⌃M+1

1

2|r0|
�d0(1� �)|r0|�d0

1

A

·

0

@
X

r12⌃k�j

1

2|r1|
�d1(1� �)|r1|�d1

1

A

·

0

@
X

r32⌃k�j

1

2|r3|
�d3(1� �)|r3|�d3

1

A

·

0

@
X

r42⌃M+1

1

2|r4|
�d4(1� �)|r4|�d4

1

A

·

0

@
X

r22⌃|u|�(k�j)

1

2|r2|
�d2+d

0
2(1� �)2|r2|�(d2+d

0
2)

1

A

=

✓
B

A

◆2

· 1

22M+2+2(k�j)

·

0

@
X

r22⌃|u|�(k�j)

1

2|r2|
�d2+d

0
2(1� �)2|r2|�(d2+d

0
2)

1

A.

Let d� denote the Hamming distance between u2 and u0
2.

Among the |u2|� d� positions where u2 and u0
2 are the

same, suppose u2 differs from r2 in v of them. Among
the d� positions where u2 differs from u0

2, suppose u2

differs from r2 in t of them. It follows that d2 = v + t
and d02 = d� + v � t. Thus, we further have

X

r22⌃|u|�(k�j)

1

2|r2|
�d2+d

0
2(1� �)2|r2|�(d2+d

0
2)

=
X

r22⌃|u|�(k�j)

1

2|r2|
�2v+d

�
(1� �)2|r2|�2v�d

�

=

|r2|�d
�

X

v=0

✓
|r2|� d�

v

◆
2d

�

2|r2|
�2v+d

�
(1� �)2|r2|�2v�d

�

=
(2�(1� �))d

�

2|r2|

|r2|�d
�

X

v=0

✓
|r2|� d�

v

◆

·
�
�2
�v�

(1� �)2
�(|r2|�d

�)�v

=
1

2|r2|
(2�(1� �))d

��
�2 + (1� �)2

�|r2|�d
�

.

Since |r2| = |w|� (k � j),

Pr(Hw(a, j) \Hw(a, k))


✓
B

A

◆2 (2�(1� �))d
��
�2 + (1� �)2

�|r2|�d
�

2|w|+(k�j)
.

Note that u2 is the |r2|-suffix of u and u0
2 is the |r2|

prefix of u. With |u| = n, the number of n-strings whose
|r2|-suffix and |r2|-prefix are at Hamming distance d�
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is 2n�|r2|
�|r2|
d�

�
since an n-string can be uniquely deter-

mined by its |r2|-prefix and the mismatches. Therefore,

X

w:w=10Mu10M
u2R

n

M

X

1|j�k|<|u|

Pr(Hw(a, j) \Hw(a, k))


X

1|j�k|<|u|

X

w:w=10Mu10M
u2⌃n

Pr(Hw(a, j) \Hw(a, k))

 L|u| ·
|r2|X

d�=0

2|r1|
✓
|r2|
d�

◆
·
✓
B

A

◆2

·
(2�(1� �))d

��
�2 + (1� �)2

�|r2|�d
�

2|w|+k�j

=

✓
B

A

◆2 Ln

2|w| . (40)

• |u|  |j � k| < |w|. The two occurrences of w in x1

and x2 are plotted in Figure 6.

ya

x1 10M u 10M

x2 10M u 10M

j k

w

w

Figure 6. Relative position of the two occurrences of w at position j and k

when |u|  |j � k| < |w|.

It can be seen that the prefix 10Mu of w in x1 and w in
x2 are descendants of non-overlapping substrings of y

a

and thus independent. We can write

Pr(Hw(a, j) \Hw(a, k))

 Pr(Hwl
(a, j) \Hw(a, k))

= Pr(Hwl
(a, j)) Pr(Hw(a, k))


S�

�
|wl|,

⌃
B

4A

⌥�
S�

�
|w|,

⌃
B

4A

⌥�

2|wl|+|w|


✓
B

A

◆2 1

22|w|�M�1
.

It follows that

X

|u||j�k|<|w|

Pr(Hw(a, j) \Hw(a, k))


✓
B

A

◆2L · 2(M + 1)

22|w|�M�1
. (41)

Thus, combining (38), (40), (41) gives
X

w:w=10Mu10M
u2R

n

M

X

1j,kdL/2e�|w|
j 6=k

Pr(Hw(a, j) \Hw(a, k))


X

w:w=10Mu10M
u2R

n

M

0

@
X

|j�k|�|w|

Pr(Hw(a, j) \Hw(a, k))

+
X

1|j�k|<|u|

Pr(Hw(a, j) \Hw(a, k))

+
X

|u||j�k||w|

Pr(Hw(a, j) \Hw(a, k))

1

A

 L2B2

A2 · 22|w| · |R
n

M
|+ B2Ln

A2 · 2|w| +
2B2L(M + 1)

A2 · 22|w|�M�1
· |Rn

M
|

 B2L2

A22|w|

✓
1 +

n+M + 1

L

◆
.

We present a lemma from which inequality (39) follows
directly.

Lemma 19. Let r be any string of length n with m iid �-
edit descendants. For a string v, |v| < n and 1  j < k 
n� |v|+1, let J (v),K(v) denote the events that there exists
a descendant of r whose j-th, k-th |v|-substring equal v,
respectively. We have

Pr(J (v) \K(v))  Pr(J (v)) Pr(K(v)),

if the (|v|� (k � j))-suffix and (|v|� (k � j))-prefix of v are
not the same.

Proof: If the (|v|� (k � j))-suffix and (|v|� (k � j))-
prefix of v are not the same, then in any descendant x, v
can not be both the j-th and the k-th substring. Therefore,
in x, exactly one of the following three mutually exclusive
events holds: i) xj,|v| = v, ii) xk,|v| = v, iii) xj,|v| 6= v and
xk,|v| 6= v. Let pj denote the probability of xj,|v| = v and
pk denote the probability of xk,|v| = v. We have

Pr
�
xj,|v| 6= v \ xk,|v| 6= v

�
= 1� pj � pk.

Therefore, among the m iid descendants of r,

Pr(J (v) \K(v))

= Pr(J (v)) + Pr(K(v)) + Pr
�
J̄ (v) \ K̄(v)

�
� 1

= (1� (1� pj)
m) + (1� (1� pk)

m)

+ (1� pj � pk)
m � 1

= 1� (1� pj)
m � (1� pk)

m + (1� pj � pk)
m.

On the other hand,

Pr(J (v)) Pr(K(v))

= (1� (1� pj)
m)(1� (1� pk)

m)

= 1� (1� pj)
m � (1� pk)

m

+ (1� pj)
m(1� pk)

m.

The desired inequality thus follows by noting that 1�pj�pk 
(1� pj)(1� pk).
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Inequality (39) can be obtained by replacing J (v) and K(v)
with Hw(a, j) and Hw(a, k), respectively.

APPENDIX F
PROOFS OF LEMMA 13 AND LEMMA 16

Lemma 13. Consider the source string s = Y1Y2 . . . YB .
When 2M = o(L), for B,L sufficiently large,

Pr

✓
CM

VL
(s) � 1

4
·
�
B

2

⌫✓
L

2M+8
� 1

◆◆
� 5

6
.

Proof: Equally parse each of YdB/2e+1, . . . , YB into seg-
ments of length 2M+7. So that every Yb contains

j
|Yb|
2M+7

k

segments. We show that among these
P

B

b=bB

2 c+1

j
|Yb|
2M+7

k

segments, a constant fraction of them contain a chunk of length
over 2M�4.

Pick an arbitrary segment, denoted z. Consider the two
halves of z. The second half of z, which is of length 2M+6,
is by itself a Bernoulli(1/2) process going forward. We study
the first time a run of M 0’s appears in this process. By the
union bound, with probability at least 1 � 2M�5

2M , there exist
no runs of M 0s in the first 2M�5 bits. Moreover, the average
position of the end of the first run of M 0s in a Bernoulli(1/2)
process is 2M+1 � 2 [15]. Therefore, by Markov’s inequality,
with probability at least 1� 2M+1�2

2M+6 , there is a 0M within the
first 2M+6 bits. So the first time we see 0M is after 2M�5

bits and before 2M+6 bits (i.e., the first 0M is within the last
2M+6 � 2M�5 bits) with probability at least

1� 2M�5

2M
� 2M+1 � 2

2M+6
� 1� 1

24
.

Similarly, the first half of z can be regarded as a reversed
Bernoulli(1/2) process. So we also have with probability at
least 1 � 1

24 , the first 0M (counting backwards) is within the
first 2M+6�2M�5 bits. Clearly, a chunk exists between these
two occurrences of 0M . So with probability at least 1� 1

23 , z
contains a chunk of length at least 2M�4. Since this property
holds for all such segments of length 2M+7, by the Markov
inequality, with probability at least 1 � 1

6 , at least 1
4 of the

segments in YdB/2e+1 · · ·YB contain a chunk of length at least
2M�4. The desired result is derived by noting |Yb| � L/2.

Lemma 16. Consider the source string s = Y1Y2 · · ·YB ,
with each Yb being a descendant of source symbol XJb

. For
any integer h and any pairs of integers (b1, b2), (i1, i2), the
probability of Yb1 and Yb2 having identical substrings of length
h starting at positions i1 and i2, respectively, is

Pr
⇣
(Yb1)i1,h = (Yb2)i2,h

⌘
=

1

2h
,

if Jb1 6= Jb2 or i1 6= i2.

Proof: We compute Pr((Yb1)i1,h = (Yb2)i2,h) as
(b1, b2), (i1, i2) take different values in the following three
cases:

• Jb1 6= Jb2 or |i1 � i2| � h. If Jb1 6= Jb2 , then Yb1 and
Yb2 have different ancestors and are thus independent.
It follows that their substrings are also independent.
If |i1 � i2| � h, then (Yb1)i1,h and (Yb2)i2,h are de-
scendants of non-overlapping substrings of the source

alphabet and are thus also independent. The desired result
follows from the fact that (Yb1)i1,h and (Yb2)i2,h are both
Bernoulli(1/2) processes by themselves.

• b1 = b2, |i1 � i2| < h. In this case, (Yb1)i1,h and
(Yb2)i2,h are overlapping substrings of a single source
block. Again, Yb1 is Bernoulli(1/2) by itself. So the
probability of (Yb1)i1,h = (Yb2)i2,h is the same as that
when (Yb1)i1,h and (Yb2)i2,h are independent.

• Jb1 = Jb2 , b1 6= b2, |i1 � i2| < h. Let Jb1 = Jb2 = a.
Assume i1 < i2 without loss of generality. In this
case, (Yb1)i1,h and (Yb2)i2,h are two independent �-
edit descendants of (Xa)i1,h and (Xa)i2,h, respectively.
So Pr((Yb1)i1,h = (Yb2)i2,h) is uniquely determined by
the Hamming distance between (Xa)i1,h and (Xa)i2,h.
Moreover, the distribution of the Hamming distance be-
tween (Xa)i1,h and (Xa)i2,h is the same as the distribu-
tion of the Hamming distance between two independent
Bernoulli(1/2) process of length h. Therefore, we can
assume (Yb1)i1,h and (Yb2)i2,h are independent and thus
Pr((Yb1)i1,h = (Yb2)i2,h) =

1
2h .

APPENDIX G
SUMMATIONS

For integers b � a and � > 1, summations of the formsP
b

n=a

⇣
1� 1

�

⌘n
and

P
b

n=a
n
⇣
1� 1

�

⌘n
appear in the proofs

of Theorem 15 and Theorem 18. Let x = 1� 1
�

. The limits of
these sums in a certain asymptotic regime is discussed bolew.

A. Asymptotic behavior of
P

b

n=a
xn

We have

bX

n=a

xn =
xa
�
1� xb�a+1

�

1� x

= �

✓
1� 1

�

◆a
 
1�

✓
1� 1

�

◆b�a+1
!
.

If b� a = !(�), then as � ! 1,

✓
1� 1

�

◆b�a+1

=

 ✓
1� 1

�

◆�
! b�a+1

�

= o(1).

It follows that

bX

n=a

✓
1� 1

�

◆n

= �

✓
1� 1

�

◆a

(1 + o(1))

= �e�
a/�(1 + o(1)). (42)
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B. Asymptotic behavior of
P

b

n=a
nxn

We have
bX

n=a

nxn = x
bX

n=a

nxn�1 = x

 
bX

n=a

xn

!0

= x

 
xa
�
1� xb�a+1

�

1� x

!0

= x

�
axa�1 � (b+ 1)xb

�
(1� x) +

�
xa � xb+1

�

(1� x)2

= �2

 ✓
a� 1

�
+ 1

◆✓
1� 1

�

◆a

+

✓
b

�
+ 1

◆✓
1� 1

�

◆b+1
!
.

If b

�
= !(1), then as � ! 1,

✓
b

�
+ 1

◆✓
1� 1

�

◆b+1

=

✓
b

�
+ 1

◆ ✓
1� 1

�

◆�
! b+1

�

= o(1).

It follows that
bX

n=a

n

✓
1� 1

�

◆n

= �2

✓✓
a� 1

�
+ 1

◆✓
1� 1

�

◆a

+ o(1)

◆

= �2

✓
a� 1

�
+ 1

◆
e�

a/�(1 + o(1)). (43)
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