
Cost-Asymmetric Memory Hard
Password Hashing

Wenjie Bai , Jeremiah Blocki(B) , and Mohammad Hassan Ameri

Purdue University, West Lafayette, IN 47907, USA
{bai104,jblocki,mameriek}@purdue.edu

Abstract. In the past decade billions of user passwords have been
exposed to the dangerous threat of offline password cracking attacks.
An offline attacker who has stolen the cryptographic hash of a user’s
password can check as many password guesses as s/he likes limited only
by the resources that s/he is willing to invest to crack the password.
Pepper and key-stretching are two techniques that have been proposed
to deter an offline attacker by increasing guessing costs. Pepper ensures
that the cost of rejecting an incorrect password guess is higher than
the (expected) cost of verifying a correct password guess. This is useful
because most of the offline attacker’s guesses will be incorrect. Unfor-
tunately, as we observe the traditional peppering defense seems to be
incompatible with modern memory hard key-stretching algorithms such
as Argon2 or Scrypt. We introduce an alternative to pepper which we call
Cost-Asymmetric Memory Hard Password Authentication which bene-
fits from the same cost-asymmetry as the classical peppering defense
i.e., the cost of rejecting an incorrect password guess is larger than the
expected cost to authenticate a correct password guess. When configured
properly we prove that our mechanism can only reduce the percentage
of user passwords that are cracked by a rational offline attacker whose
goal is to maximize (expected) profit i.e., the total value of cracked pass-
words minus the total guessing costs. We evaluate the effectiveness of
our mechanism on empirical password datasets against a rational offline
attacker. Our empirical analysis shows that our mechanism can signif-
icantly reduce the percentage of user passwords that are cracked by a
rational attacker by up to 10%.

Keywords: Memory Hard Functions · Password Authentication ·
Stackelberg Game

1 Introduction

In the past decade data-breaches have exposed billions of user passwords to the
dangerous threat of offline password cracking. An offline attacker has stolen the
cryptographic hash hu = H(pwu, saltu) of a target user (u) and can validate as
many password guesses as s/he likes without getting locked out i.e., given hu

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
C. Galdi and S. Jarecki (Eds.): SCN 2022, LNCS 13409, pp. 21–44, 2022.
https://doi.org/10.1007/978-3-031-14791-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-14791-3_2&domain=pdf
http://orcid.org/0000-0001-7330-4599
http://orcid.org/0000-0002-5542-4674
http://orcid.org/0000-0002-2415-3285
https://doi.org/10.1007/978-3-031-14791-3_2

22 W. Bai et al.

and saltu
1 the attacker can check if pwu = pw′ by computing h′ = H(pw′, saltu)

and comparing the hash value with hu. Despite all of the security problems text
passwords remain entrenched as the dominant form of authentication online and
are unlikely to be replaced in the near future [17]. Thus, it is imperitive to
develop tools to deter offline attackers.

An offline attacker is limited only by the resources s/he is willing to
invest in cracking the password and a rational attacker will fix a guessing
budget to optimally balance guessing costs with the expected value of the
cracked passwords. Key-Stretching functions intentionally increase the cost of
the hash function H to ensure that an offline attack is as expensive as possi-
ble. Hash iteration is a simple technique to increase guessing costs i.e., instead
of storing (u, saltu, hu = H(pwu, saltu)) the authentication server would store
(u, saltu, hu = Ht(pwu, saltu)) where Hi+1(x) := H(Hi(x)) and H1(x) :=
H(x). Hash iteration is the traditional key-stretching method which is used
by password hashing algorithms such as PBKDF2 [27] and BCRYPT [36]. Intu-
itively, the cost of evaluating a function like PBKDF2 or BCRYPT scales linearly
with the hash-iteration parameter t which, in turn, is directly correlated with
authentication delay. Cryptocurrencies have hastened the development of Appli-
cation Specific Integrated Circuits (ASICs) to rapidly evaluate cryptographic
hash functions such as SHA2 and SHA3 since mining often involves repeated
evaluation of a hash function H(·). In theory an offline attacker could use ASICs
to substantially reduce the cost of checking password guesses. In fact, Blocki
et al. [13] argued that functions like BCRYPT or PBKDF2 cannot provide ade-
quate protection against an offline attacker without introducing an unacceptable
authentication delay e.g., 2 min.

Memory-Hard Functions (MHFs) [35] have been introduced to address the
short-comings of hash-iteration based key-stretching algorithms like BCRYPT
and PBKDF2. Candidate MHFs include SCRYPT [35], Argon2 (which was
declared as the winner of Password Hashing Competition [2] in 2015) and
DRSample [5]. Intuitively, a password hash function is memory hard if any algo-
rithm evaluating this function must lock up large quantities of memory for the
duration of computation. One advantage of this approach is that RAM is an
expensive resource even on an ASIC leading to egalitarian costs i.e., the attacker
cannot substantially reduce the cost of evaluating the hash function using cus-
tomized hardware. The second advantage is that the Area-Time cost associated
with a memory hard function can scale quadratically in the running time param-
eter t. Intuitively, the honest party can evaluate the hash function MHF(·; t) in
time t, while any attacker evaluating the function must lock up t blocks of mem-
ory for t steps i.e., the Area-Time cost is t2. The running time parameter t is

1 The salt value protects against pre-computation attacks such as rainbow tables
and ensures that the attacker must crack each individual password separately.
For example, even if Alice and Bob select the same password pwA = pwB their
password hashes will almost certainly be different i.e., hA = H(pwA, saltA) �=
H(pwB , saltB) = hB due to the different choice of values and collision resistance
of the cryptographic hash function H.

Cost-Asymmetric Memory Hard Password Hashing 23

constrained by user patience as we wish to avoid introducing an unacceptably
long delay while the honest authentication server evaluates the password hash
function during user authentication. Thus, quadratic cost scaling is desireable
as it allows an authentication server to increase password guessing costs rapidly
without necessarily introducing an unacceptable authentication delay.

Peppering [32] is an alternative defense against an offline password attacker.
Intuitively, the idea is for a server to store (u, saltu, hu = H(pwu, saltu, xu)).
Unlike the random salt value saltu, the random pepper value xu ∈ [1, xmax]
is not stored on the authentication server. Thus, to verify a password guess
pw′ the authentication server must compute h1 = H(pw′, saltu, 1), . . . , hxmax

=
H(pw′, saltu, xmax). If pw′ = pwu then we will have hxu

= hu and authentication
will succeed. On the other hand, if pw′ �= pwu then we will have hi �= hu for
all i ≤ xmax and authentication will fail. In the first case (correct login) the
authentication server will not need to compute hi = H(pw′, saltu, i) for any
i > xu, while in the second case (incorrect guess) the authentication server will
need to evaluate hi for every i ≤ xmax. Thus, the expected cost to verify a correct
password guess is lower than the cost of rejecting an incorrect password guess.
This can be a desirable property as a password attacker will spend most of his
time eliminating incorrect password guesses, while most of the login attempts
sent to the authentication server will be correct.

A natural question is whether or not we can combine peppering with Mem-
ory Hard Functions to obtain both benefits: quadratic cost scaling and cost-
asymmetry.

Question 1. Can we design a password authentication mechanism that incor-
porates cost-asymmetry into ASIC resistant Memory Hard Functions while
having the benefits of fully quadratic cost scaling under the the constraints
of authentication delay and expected workload?

Naive Approach: At first glance it seems trivial to integrate pepper with a
memory hard function MHF(·) e.g., when a new user u registers with password
pwu we can simply pick our random pepper xu ∈ [1, xmax], salt saltu, compute
hu = MHF(pwu, saltu, xu; t) and store the tuple (u, saltu, hu). Unfortunately,
the solution above is overly simplistic. How should the parameters be set? We
first observe that the authentication delay for our above solution can be as large
as t · xmax since we may need to compute MHF(pw, saltu, x; t) for every value of
x ∈ [1, xmax] and this computation must be carried out sequentially to reap the
cost-asymmetry benefits of pepper. Similarly, the Area-Time cost for the attacker
to evaluate MHF(pw, saltu, x; t) for every value of x ∈ [1, xmax] would scale with
t2 ·xmax. This may seem reasonable at first glance, but what if the authentication
server had not used pepper and instead stored hu = MHF(pwu, saltu; t · xmax)
using the running time parameter t′ = t · xmax? In this case the authentication
delay is identical, but the attacker’s Area-Time cost would be t′2 = t2 ·x2

max—an
increase of xmax in comparison to the naive solution. Thus, the naive approach
to integrate pepper and memory hard functions loses much of the benefit of
quadratic scaling.

24 W. Bai et al.

Halting Puzzles: Boyen [18] introduced the notion of a halting puzzle where
the “pepper” value is replaced with a random running time parameter. In partic-
ular, when a new user u registers with a password pwu we can pick our random
running time parameter tu ∈ [1, tmax] along with saltu and store (u, saltu, hu)
where hu = MHF(pwu, saltu; tu). Given a password guess pw′ the authentication
server will locate saltu, hu and accept if and only if hu = MHF(pw′, saltu; t) for
some t ∈ [1, tmax]. All memory hard functions MHF(w; t) we are aware of gen-
erate a stream of data-labels L1, . . . , Lt where Li = MHF(w; i) and Li+1 can be
computed quickly once the prior labels L1, . . . , Li are all stored in memory e.g.,
we might have Li+1 = H(Li−1, Lj) where j < i−1 and H is the underlying cryp-
tographic hash function. Thus, whenever the user attempts to login with pass-
word pw′

u the honest server can simply start computing MHF(pw′
u, saltu; tmax) to

generate a stream of labels L′
1, L

′
2, . . . and immediately accept if the server finds

some label i ≤ t which matches the password hash i.e., Li = hu. Observe that
whenever the user enters the correct password pw′

u = pwu the honest authentica-
tion server will be able to halt early after just tu ≤ tmax iterations. By constrast,
the only way to definitely reject an incorrect password pw′

u is to finish computing
MHF(pw′

u, saltu; i). The authentication delay is at most tmax and it seems like
the attacker’s area-time cost will scale quadratically i.e., t2max. Thus, the solution
ostensibly seems to benefit from quadratic cost scaling and cost-asymmetry.

However, we observe that an attacker might not choose to compute the entire
function MHF(pw′, saltu; t) for each password guess. For example, suppose that,
as proposed in [18], the running time parameter tu is selected uniformly at ran-
dom in the range [1, tmax], but for each password guess pw′ in the attacker’s
dictionary the attacker only computes MHF(pw′, saltu; tmax/3) to compare the
stolen hash hu with the first tmax/3 labels. The attacker’s area-time cost per
password guess (t2max/9) would decrease by a factor of 9, but the attacker’s suc-
cess rate only diminishes by a factor of 1/3—the probability that tu ∈ [1, tmax/3].
Motivated by this observation there are several natural questions to ask. First,
can we model how a rational offline attacker would adapt his approach to deal
with halting puzzles? Second, if tu is picked uniformly at random is it possi-
ble that the solution could have an adverse impact i.e., could we unintention-
ally increase the number of passwords cracked by a rational (profit-maximizing)
attacker? Finally, can we find the optimal distribution over tu which minimizes
the success rate of a rational offline attacker subject to constraints on (amor-
tized) server workload and maximum authentication delay.

1.1 Our Contributions

We introduce Cost-Asymmetric Memory Hard Password Hashing, an extention
of Boyen’s halting puzzles which can only decrease the number of passwords
cracked by a rational password cracking attacker. Our key modification is to
introduce cost-even breakpoints as random running time parameters i.e., we
fix m values t1 ≤ . . . ≤ tm = t such that t2m = t2i (m/i) for all 1 ≤ i < m.
Now instead of selecting xu randomly in the range [1, t] (time-even breakpoints)
we pick xu ∈ {t1, . . . , tm}. We can either select xu ∈ {t1, . . . , tm} uniformly

Cost-Asymmetric Memory Hard Password Hashing 25

at random or, if desired, we can optimize the distribution in an attempt to
minimize the expected number of passwords that the adversary breaks. Then
the authentication server computes hu = MHF(pwu, saltu;xu) and store the
tuple (u, saltu, hu) as the record for user u.

We adapt the Stackelberg game theoretic framework of Blocki and Datta
[12] to model the behavior of a rational password cracking attacker when the
authentication server uses Cost-Asymmetric Memory Hard Password Hashing.
In this model the attacker obtains a reward v for every cracked password and
will choose a strategy which maximizes its expected utility—expected reward
minus expected guessing costs. One of the main challenges in our setting is
that the attacker’s action space is exponential in the size of the support of the
password distribution. For each password pw the attacker can chose to ignore
the password, partially check the password or completely check the password.
We design efficient algorithms to find a locally optimal strategy for the attacker
and identify conditions under which the strategy is also a global optimum (these
conditions are satisfied in almost all of our empirical experiments). We can then
use black-box optimization to search for a distribution over xu which minimizes
the number of passwords cracked by our utility maximizing attacker.

When xu ∈ {t1, . . . , tm} is selected uniformly at random we prove that cost-
even breakpoints will only reduce the number of passwords cracked by a ratio-
nal attacker. By contrast, we provide examples where time-even breakpoints
increases the number of passwords that are cracked—some of these examples
are based on empirical password distributions.

We empirically evaluate the effectiveness of our mechanism with 8 large pass-
word datasets. Our analysis shows that we can reduce the fraction of cracked
passwords by up to 10% by adopting cost-asymmetric memory hard password
hashing with cost-even breakpoints sampled from uniform distribution. In addi-
tion, our analysis demonstrates that the benefit of optimizing the distribution
over xu is marginal. Optimizing the distribution over the breakpoints t1, . . . , tm
requires us to accurately estimate many key parameters such as the attacker’s
value v for cracked passwords and the probability of each password in the user
password distribution. If our estimates are inaccurate then we could unintention-
ally increase the number of cracked passwords. Thus, we recommend instantiat-
ing Cost-Asymmetric Memory Hard Password Hashing with the uniform distri-
bution over our cost-even breakpoints t1, . . . , tm as a prior independent password
authentication mechanism.

1.2 Related Work

Trade-off between usability and security lie in the core of mechanism design of
password authentication. Users tend to pick low-entropy passwords [16], leaving
their accounts insecure. Convincing them to select stronger passwords is a diffi-
cult task [19,29]. Password strength meters are commonly embedded in website
in the hope that users would select stronger passwords after the strength of their
original passwords being displayed. However, it is found that users are often not
persuaded by the suggestion of password strength meters [20,39]. In order to

26 W. Bai et al.

encourge users to pick high-entropy passwords some sites mandate users to fol-
low stringent guidelines when users create their passwords. However, it has been
shown that these policies can incur undesirable usability costs [3,24,26,37], and
in some cases can even lead to users selecting weaker passwords [14,29].

Password offline attacks have been a concern since the Unix system was
devised [34]. Various approaches are developed to expedite the cracking process
by the adversary or model password guessability by the hoesty party. Tools
like Hashcat [1] and John the Ripper [23] enumerate combinations of tokens as
dictionary candidates and are widely used by real-world attackers. Liu et al. [30]
analyzed these tools using techniques of rule inversion and guess counting to
retrive guessing number without explicit enumeration. Probabilistic models like
Probabilistic Context-Free Grammars [28,43], Markov models [21,22,31] have
been applied and analyzed in password cracking. Character-level text generation
with Long-Short Term Memory (LSTM) recurrent neural networks is fast, lean
and accurate in modeling password guessability [33].

Memory-Hard Functions (MHF) is a key cryptographic primitive. Evalua-
tion of MHF requires large amount of memory in addition to longer computa-
tion time, making parallel computation and customized hardware futile to speed
up computation process. Candidate MHFs include SCRYPT [35], Balloon hash-
ing [15], and Argon2 [11] (the winner of the Password Hashing Competition[2]).
MHFs can be classified into two distinct categories or modes of operation—
data-independent MHFs (iMHFs) and data-dependent MHFs(dMHFs) (along
with the hybrid idMHF, which runs in both modes). dMHFs like SCRYPT are
maximally memory hard [7], but they have the issue of possible side-channel
attacks. iMHFs, on the other hand, can resist side-channel attakcs but the aAT
(amortized Area Time) complexity is at most O(N2 log log N/ log N) [4]—a com-
binatorial graph property called depth-robustness is both necessarily [4] and
sufficient [6] for constructing iMHFs with large aAT complexity. Ameri et al.
[8] introduced the notion of a computationally data-independent MHF (ciMHF)
which protects against side-channel leakage as long as the adversary is com-
putationally bounded and constructed a ciMHF with optimal aAT complexity
Ω(N2).

2 Background and Notations

Password Dataset. We use P to denote the set of all possible passwords, the
corresponding distribution is P. The process of a user u choosing a password
for his/her account can be viewed as a random sampling from the underlying

distribution pwu
$← P. It will be convenient to assume that the passwords in

P are sorted such that Pr[pw1] ≥ Pr[pw2] ≥ Given a password dataset
D of na accounts, we can obtain empirical distribution De by approximating
Prpwi∼De

[pwi] = fi

na
, where fi is the frequency of pwi and na is the number of

accounts present in D. Often the empirical distribution can be represented in
compact form by grouping passwords with the same frequency into an equivalence
set i.e., Des = {(f1, s1), . . . , (fi, si), . . . , (fne

, sne
)}, where si is the number of

Cost-Asymmetric Memory Hard Password Hashing 27

passwords which appear with frequency fi in D and ne is the total number of
equivalence sets and, for convenience, we assume f1 > f2 > . . . > fne

. We use
esi = (fi, si) to describe the ith equivalence set. In empirical experiments it is
often more convenient to work with the compact representation Des of password
distribution. In addition, we use np to denote the number of distinct passwords
in our dataset D. Observe that for any dataset we have na ≥ np ≥ ne. In fact,
we will typically have na � np � ne.

Computation Cost of an MHF. The evaluation of MHF(x; t) produces a sequence
of labels L1, L2, . . . , Lt where the last label generated Lt is the final output.
Once L1, . . . , Li−1 are all stored in memory it is possible to compute label i
by making a single call to an underlying cryptographic hash function H e.g.,
we might have Li = H(Lj , Lk) where j, k < i denote prior labels. We can
also define MHF(x; i) = Li for i < t. Thus, we can obtain all of the values
MHF(x; 1), . . . ,MHF(x; t) in time t. We model the (amortized) Area-Time cost
of evaluating MHF(·; t) as cHt + cM t2, where cH and cM are constants. Intu-
itively, cH denotes the area of a core implementing the hash function H and cM

represents the area of an individual cell with the capacity to hold one data-label
(hash output). Since the memory cost tend to dominant, we ignore the hash cost
as simply model the cost as cM t2.

3 Defender’s Model

In this section, we present the model of the defender. In particular, we describe
how passwords are stored and verified on the authentication server.

Account Registration. When a user u registers for a new account with a password
pwu the authentication server randomly generates a saltu value, samples a run-
ning time parameter tu ∈ T from our set of possible running time breakpoints
T = {t1, t2, . . . , tm} (we let qi = Pr[ti] to denote the probability that tu = ti)
and stores the tuple (u, saltu, hu) where hu = MHF(pwu, saltu; tu). Note that
the salt value saltu is recorded while the running time parameter tu is discarded.

Password Verification. When a user u attempts to login to his/her account
by submitting (u, pw′

u), the authentication server would first retrieve record
(u, saltu, hu), calculate h1 = MHF(pw′

u, saltu; t1) and compare h1 with hu. It
they are equal, login request is granted. Otherwise, the server would continue to
calculate h2 = MHF(pw′

u, saltu; t2), compare h2 with hu, so on and so forth. If
any of hi matches hu, then user u successfully logs in his/her account. However, if
for all possible running time parameters t ∈ T we have hu �= MHF(pw′

u, saltu; t)
then the login request is rejected.

Defender Action and Workload Constraint. The defender’s (leader’s) action in
our Stackelberg game is to select the probability distribution q1, . . . , qm over
the running time breakpoints. The goal is to pick the distribution q1, . . . , qm to
minimize the percentage of passwords cracked by a rational adversary subject

28 W. Bai et al.

to constraints on the expected server workload. Whenever user u logs in with
the correct password pwu the authentication server will incur cost cM t2u. Since
tu = ti with probability qi the expected cost of verifying a correct password is∑m

i=1 qicM t2i . Thus, given a maximum workload parameter Cmax we require that
the distribution q1, . . . , qm are selected subject to the constraints that qi ≥ 0,
q1 + . . . qm = 1 and

m∑

i=1

qicM t2i ≤ Cmax. (1)

4 Attacker’s Model

In this section, we first state the assumptions we use in our economic analysis.
Then we show how a rational attacker who steals the password hashes from the
server would run a dictionary offline attack. Finally, we present the Stackelberg
game in modeling the interaction between the defender and the attacker within
the framework of [12].

4.1 Assumptions of Economics Analysis

We assume that the attacker is rational, knowledgeable and untarteged. By ratio-
nality, we mean that the attacker will attempt to maximize its expected utility
i.e., the value of the cracked password(s) minus the attacker’s guessing costs.
By knowledgeable we mean that by Kerckhoffs’s principle the attacker knows
the exact distribution P from which the user’s password was sampled. In prac-
tice, an attacker would not have perfect knowledge of the distribution P, but
could still rely on sophisticated password cracking models e.g., using Neural
Networks [33], Markov Models [22,40] or Probabilistic Context-Free Grammars
(PCFGs) [28,42,43]. Finally, we assume that the attacker is untargetted mean-
ing we assume that each account has the same value v for the attacker and the
attacker does not have background information about the passwords that indi-
vidual user’s may have selected. One can derive a range of estimates for v based
on black market studies e.g., Symantec reported that passwords generally sell
for $4—$30 [25] and [38] reported that Yahoo! e-mail passwords sell for ≈ $1.

4.2 Cracking Process

We now specify how an offline attacker would use the stolen hash to run a
dictionary attack. The password distribution and the breakpoint distribution
induce a joint distribution over pairs (pw, t) ∈ P × {t1, . . . , tm} where we have
Pr[(pwi, tj)] = Pr[pwi]qj .

The adversary’s strategy is to formulate a checking sequence π = {(pwi, tj)}
with the purpose of finding the target (pwu, tu). An instruction (pwi, tj) in π
means the adversary selects pwi as current guess and compute the jth label
for pwi i.e., evaluate MHF(pwi, saltu; tj). The cracking process terminates when

Cost-Asymmetric Memory Hard Password Hashing 29

Fig. 1. Password Cracking Process. Black nodes denote current checking sequence π.
White nodes denote unchecked instructions Π(np, m)−π. Star denotes unknown target
(pwu, tu).

the adversary found the hidden target (pwu, tu) or timeout. Thus, the order of
instructions in a checking sequence π can impact the attackers expected cost.

A checking sequence is subject to legit restrictions:

1. Small label first. If (pwi, tj1) appears before (pwi, tj2) in π, then it should be
the case tj2 > tj1 .

2. Label backward continuity. If (pwi, tj) ∈ π then (pwi, t1), . . . , (pwi, tj−1) ∈ π.
3. No inversions. Inversions in the form of (pwi1 , tj1), (pwi2 , tj2), (pwi1 , t

′
j1

)
where t′j1 > tj1 are not allowed.

The first two restrictions state that the attacker cannot advance to a larger
label without computing all previous labels. The third is an assumption that we
made. Intuitively, the assumption is justified because an attacker who computes
labels for pwi2 while storing labels for pwi1 will incur extra memory cost which is
undesirable for a rational attacker. The cracking process is illustrated in Fig. 1.

4.3 Attacker’s Utility

After specifying the restrictions for a legit checking sequence, we can formulate
the the attacker’s utility. Suppose the kth instruction in checking sequence π
is πk = (pwi, tj), then the probability that the attacker succeeds on step k is
Pr[πk] = Pr[pwi]·qj . Let λ(π,B) .=

∑B
k=1 Pr[πk] denote the attacker’s probability

of success after the first B ≤ |π| instructions and let λ(π) .= λ(π, |π|) denote the
attacker’s overall probability of success. Recall that the overall cost to compute
MHF(·; tj) is cM t2j . After computing MHF(pwi; tj−1) the additional cost of exe-
cuting instruction πk to compute MHF(pwi; tj) is denoted c(πk) .= cM (t2j −t2j−1).
For notational convenience, we define t0

.= 0.

30 W. Bai et al.

The attacker’s utility is described by the equation below:

Uadv(v, �q, π) = v · λ(π) −
|π|∑

k=1

c(πk) (1 − λ(π, k − 1)) . (2)

The first term in Eq. (2) gives us the attacker’s expected reward. In particular,
the attacker will receive value v if s/he crack’s the password and, given a checking
sequence π, the attacker succeeds with probability λ(π) i.e., in expectation the
reward is v · λ(π). The second term in Eq. (2) gives us the attacker’s expected
guesing costs, which is the summation of product of 2 terms where the probability
that the attacker incurs cost c(πk) to evalute the instruction πk is given by the
probability that the attacker does not succeed after the first k − 1 steps i.e.,
1 − λ(π, k − 1).

Besides legit restrictions that make a checking sequence valid a rational
attacker would restrict its attention to checking sequences π that satisfy the
following opt restrictions:

1. Popular password first. If (pwi1 , tj) appears before (pwi2 , tj), then Pr[pwi1] ≥
Pr[pwi2].

2. Password backward continuity. If (pwi, tj) ∈ π for some j, then (pwi−1, tj′) ∈
π for some j′.

3. Stop at equivalence class boundary. If (pwi, tj) is the last instruction in π
where pwi ∈ esk, then pwi+1 ∈ esk+1.

It can be easily proved that an attacker who violates opt restrictions will
suffer utility loss. Legit restrictions, together with the first 2 opt restrictions,
determine a complete ordering, which we call natural ordering, over all instruc-
tions {(pwi, tj)}, namely,

{
(pwi1 , tj1) < (pwi2 , tj2), if Pr[pwi1] > Pr[pwi2],

(pwi, tj1) < (pwi, tj2), if j1 < j2.
(3)

We use Π(n,m) to denote the sequence of all instructions for top n passwords
with respect to natural ordering,

Π(n, m) := (pw1, t1), . . . , (pw1, tm), . . . , (pwn, t1), . . . , (pwn, tm). (4)

We say a sequence containing consecutive instructions for a single password is
a instruction bundle, which is denoted by

�i(j1, j2) := (pwi, tj1), . . . , (pwi, tj2). (5)

Specifically, �i(j1, j2) = ∅ when j1 = j2 = 0. Then the attacker’s strategy π is
a sub-sequence of Π(np,m) (recall that np is the number of distinct passwords)
in the form of

π = ⊕Len(π)

i′=1 �i′(1, τi′) := �1(1, τ1) ◦ �2(1, τ2) ◦ · · · ◦ �Len(1, τLen), (6)

where ◦ denotes the concatenation of two disjoint instruction sequence and
Len(π) is the largest index of password for which the attacker would check at

Cost-Asymmetric Memory Hard Password Hashing 31

least one label, which depends on the associated checking sequence, when the
context is clear it is just written as Len. Because of opt restriction 3, Len can
only take values in {0, |es1|, |es1| + |es2|, . . . ,

∑ne

k=1 |esk|}. Notice that π is fully
specified by the largest label index τi for pwi.

4.4 Stackelberg Game

We use Stackelberg game to model the interaction between the attacker and
defender. The defender (leader) fixes a distribution �q over the breakpoints
{t1, . . . , tm}. The attacker (follower) responds by selecting checking sequence
π∗ = arg max Uadv(v, �q, π) to maximize its utility.

Define server’s utility to be User(v, �q) = −λ(π∗), where π∗ is the attacker’s
best response to defender’s strategy �q given password value v. At equilibrium
no player has the incentive to deviate form her/his strategy, thus equilibrium
profile (�q∗, π∗) satisfies,

{
Uadv(v, �q, π∗) ≥ Uadv(v, �q, π), ∀π,

User(v, �q∗) ≥ User(v, �q), ∀�q.
(7)

The defender’s goal is try to find a distribution �q which minimizes λ(π∗)
subject to the constraint that the rational attacker responds with its utility
optimizing strategy π∗ given the breakpoint distribution �q and value parameter
v. Thus, before the defender can attempt to optimize �q we need to be able to
compute the attacker’s response π∗.

5 Computing the Attacker’s Optimal Strategy

As we noted in the previous section a rational attacker will use its utility optimiz-
ing strategy π∗ = arg max Uadv(v, �q, π). In this section, we show how to compute
the attacker’s optimal strategy π∗ for both time-even breakpoints and cost-even
breakpoints.

Before we introduce our algorithm used to find the optimal checking sequence,
let us see why the native brute force algorithm is computationally infeasible.
If the attacker chose to check top Len passwords; for each password pwi the
attacker has m possible choices for each password i.e., select τi ∈ {1, . . . , m}
and evaluate MHF(pwdi; tτi). Thus the native brute force algorithm runs in time
O (∑np

Len=1 mLen
) ⊆ O(mnp) with a very large exponent (np ≈ 2.14× 107 for our

largest dataset Linkedin, and np ≈ 3.74 × 105 for our smallest dataset Bfiled).
This is why we need to design polynomial time algorithms.

In the following subsections, we first specify a superset2 of π∗, setting a
boundary within which we will gradually extend the checking sequence from an
empty one. Then we introduce our local search algorithm which finds the optimal
2 We use the concept and notation of subset and superset for ordered sequences the

way they were defined for regular set. If all elements of sequence A are also elements
of sequence B regardless the order, we say A ⊆ B.

32 W. Bai et al.

Fig. 2. Algorithm Flowchart

checking sequence most of the time. Our key intuition in designing algorithms
is that an unchecked instruction bundle should be included into the optimal
checking sequence if it provides non-negative marginal utility. Generally there
are two local search directions, either concatenate instructions at the end of cur-
rent checking sequence or insert instructions in the middle of current checking
sequence. After the local search algorithm terminates we reach a local optimum
πLO. Finally we design algorithms to verify if the local optimum is also global
optimum or promote the local optimum to global optimum under specifc param-
eter settings. As a overview we briefly summarize our results (also demonstrated
in the flowchart, see Fig. 2) in this section as follows:

– When we use cost-even breakpoints sampled from uniform distribution,
namely, βi =

√
i and qi = 1

m , we have a local search algorithm ExtendbyConcat
(v, �q, ∅) which iteratively considers instruction bundle that can be concate-
nated, ExtendbyConcat(v, �q, ∅) runs in time O(npm) and gives optimal check-
ing sequence;

– When breakpoints are cost-even (β =
√

i) but the distribution is non-uniform,
we design an algorithm Extend(v, �q) which returns a locally optimal checking
sequence πLO in time O(npm). By locally optimal we mean that advancing
any number of labels for any single password on the basis of πLO will decrease
attacker’s utility.
After obtaining πLO, we can run a polynomial algorithm OptimalityTest(v, �q,
πLO) to check if πLO is also a global optimum. If OptimalityTest(v, �q, πLO)
returns PASS, we know for sure that πLO = π∗; otherwise, no conclusion can
be drawn. If m ≤ 3 we will use an efficient brute force algorithm FindOptSeq
(v, �q, πLO), which runs in time O(n2

p), to the reach global optimum.
– When β �= √

i, regardless of the breakpoint distribution we can still run
Extend(v, �q) to obtain locally optimal πLO, and feed πLO to OptimalityTest
(v, �q, πLO). If OptimalityTest(v, �q, πLO) returns PASS, again we have πLO =

Cost-Asymmetric Memory Hard Password Hashing 33

π∗; if OptimalityTest(v, �q, πLO) returns FAIL, we cannot deduce any informa-
tion about the global optimality of πLO; in this case, confirm that πLO = π∗

or promote πLO to π∗ will take exponential time.

5.1 Marginal Utility

Since we are going to use marginal utility as metrics of state transition in local
search, we first specify how to compute marginal utility.

Definition 1. Fixing v and �q, define Δ(π1, π2) to be marginal utility from strat-
egy π1 to π2, namely,

Δ(π1, π2) := Uadv(v, �q, π2) − Uadv(v, �q, π1). (8)

For most of the time π2 is the result of modifying π1 which is called base,
in order to avoid redundantly repeating base we often write Δ◦ (e | π1) and
Δ+ (e | π1) to denote Δ (π1, π1 ◦ e) and Δ (π1, π1 + e), respectively, where e is
some ordered set of instructions, referred to as extension. Recall that ◦ is con-
catenation operation, here we formally introduce insertion operation +.
Definition 2. Given a checking sequence π = ⊕Len

i=1�i(1, τi) and an instruction
bundle �i′(j1, j2), define operation π + �i′(j1, j2) to be the checking sequence

π + �i′(j1, j2) := ⊕i′
i=1�i(1, τi) ◦ �i′(j1, j2) ◦ ⊕Len

i=i′+1�i(1, τi).

We discard superscript and comprehensively write Δ (e | π) to denote the
marginal utility by including e into π, either through concatenation or inser-
sion. Operations are valid only if the extension is compatible with the base.
By compatible we mean the resulting checking sequence also satisfy both legit
restrictions and opt restrictions.

When e is a singleton, from Eq. (2) we can derive the marginal utility by
inserting instruction e = (pwi, tj) /∈ π to base π,

Δ+ (e | π) = Pr[pwi]qj

⎛

⎝v +
∑

e′>e,e′∈π

c(e′)

⎞

⎠ −
⎛

⎝1 −
∑

e′<e,e′∈π

Pr[e′]

⎞

⎠ cM (t2j − t2j−1).

(9)
where Pr[pwi]qj

∑
e′>e,e′∈π c(e′) is the influence of e on future instructions since

it eliminates some uncertainty about the user’s password pwu thus reduces the
expected cost for future trials.

When e is a singleton, marginal utility upon concatenation has no future
influence, hence,

Δ◦ (e | π) = Pr[pwi]qjv − (1 − λ(π)) cM (t2j − t2j−1). (10)

When e consists of multiple consecutive instructions, the marginal utility can
be computed by iteratively applying Eq. (9) and (10). Namely,

Δ (e | π) =

|e|∑

i=1

Δ (ei | π ∪ {e0, . . . , ei−1}) , (11)

where e0 = ∅, ei is the ith instruction of e and ∪ denotes inclusion (whether
through concatenation or insertion) while maintaining natural ordering.

34 W. Bai et al.

5.2 A Superset of the Optimal Checking Sequence

Before we present our algorithms we first show how to prune down the search
space for π∗. Particularly, fixing v and �q we find an index Lenmax such that
π∗ ⊆ Π(Lenmax,m) i.e., π∗ will not even partially check passwords with rank
larger than Lenmax. Thus there is no need to consider any instructions beyond
Π(Lenmax,m) in construction of the optimal checking sequence.

Lemma 1. Δ◦ (π3 | π1) ≤ Δ◦ (π3 | π2) , if λ(π1) ≤ λ(π2).

Definition 3. Fixing v and �q we define

Lenmax :=

{
maxi{i : F (v, �q, i) ≥ 0}, if such i exists,
0, o.w.

where

F (v, �q, i) :=

{
max1≤j≤m{Δ (∅, �i(0, j))}, if i = 1,

max1≤j≤m{Δ◦ (�i(0, j) | Π(i − 1, m))}, o.w.

Intuitively, Lenmax is the largest possible password index for which at least one
of instruction bundles �Lenmax

(1, j), 1 ≤ j ≤ m provide non-negative marginal
utility no matter what previous instructions are. We remark even though there is
no theoretical proof of monotonicity of F (v, �q, i), we have verified that F (v, �q, i)
is decreasing in i for our empirical password distribution. Note that by Lemma
1 we have

Δ◦
(
�i(0, j)

∣∣∣ ⊕i−1
i=1�i(1, τi)

)
≤ F (v, �q, i),

if F (v, �q, i) < 0, then �i(0, j) would certainly provide negative marginal utility,
thus cannot be included in π∗. It is described in the following theorem.

Theorem 1.
π∗ ⊆ Π(Lenmax, m).

5.3 Extension by Concatenation

We have established a superset of π∗ in last subsection, now we design a local
search algorithm that gives us a checking sequence πLOC which is a subset of
π∗. Here, LOC stands for “locally optimal with respect to concatenation.” The
sequence πLOC will be helpful to further prune down the search space for π∗. In
fact, in the special case where the breakpoint distribution is uniform (qi = 1

m)
and cost-even breakpoints (βi =

√
i) are used, we can prove that equality holds

i.e., πLOC = π∗ is the optimal solution.
To find our sequence πLOC we start with the empty sequence of instructions

and repeatedly include instructions that provide non-negative marginal utility
upon concatenation to the current solution. We design a local search algorithm
ExtendbyConcat(v, �q, ∅) to find a checking sequence πLOC . Our local search algo-
rithm ExtendbyConcat(v, �q, ∅) terminates after at most np rounds.

After the i − 1th round we have πLOC ⊆ Π(i − 1,m) i.e., the current
solution only includes checking instructions for the first i − 1 passwords. In

Cost-Asymmetric Memory Hard Password Hashing 35

the ith round we find an instruction bundle for password i which maximizes
(marginal) utility upon concatenation. More specifically, in round i we compute
τi = arg max0≤j≤m{Δ◦ (�i(0, j) | πLOC)} and append this instruction bundle to
obtain an updated checking sequence πLOC = πLOC ◦ �i(0, τi). Details can be
found in Algorithm 1.

Algorithm 1: ExtendbyConcat(v, �q, π)
Input: v, �q
Output: πLOC

1 πLOC = π;
2 start = i∗(πLOC);
3 for i = start : np do
4 for j = 0 : m do
5 Compute Δ◦ (�i(0, j) | πLOC);
6 end
7 τi = arg max0≤j≤m{Δ◦ (�i(0, j) | πLOC)};
8 if τi > 0 then
9 πLOC = πLOC ◦ �i(1, τi);

10 else break;

11 end

12 end
13 return πLOC

We can use Eq. (10) to compute the marginal utility in time O(1) by caching
previously computed values of λ(π). Thus, ExtendbyConcat(v, �q, ∅) runs in time
O(Lenmaxm) ⊆ O(npm), recall that np is the number of distinct password.

Theorem 2.
πLOC ⊆ π∗.

From Theorem 1 and Theorem 2, it is easy to derive the following corollaries.

Corollary 1.
Len(πLOC) ≤ Len(π∗) ≤ Lenmax,

and
Len(πLOC), Len(π∗), Lenmax ∈ {x0, x1, . . . , xne} ,

where

xk =

{
0, if k = 0,
∑k

k′=1 |esk′ |, if k = 1, . . . , ne.
(12)

Corollary 2.

λ(πLOC) ≤ Padv = λ(π∗) ≤ λ (Π(Lenmax, m)) .

Now we have a polynomial algorithm that returns a checking sequence πLOC

locally optimal with respect to concatenation. The following theorem states that
πLOC = π∗ if breakpoints are cost-even and follow uniform distribution.

36 W. Bai et al.

Theorem 3. When qi = 1
m and βi =

√
i, ExtendbyConcat(v, �q, ∅) returns the

optimal checking sequence, i.e., πLOC = π∗.

Even though the attacker behaviors optimally—following strategy π∗. We
can guarantee that our mechanism results in lower (or equal if no passwords are
cracked) percentage of cracked passwords than deterministic cost hashing, which
is captured by Theorem 4.

Theorem 4. When βi =
√

i and qi = 1
m then, λ(π∗) ≤ P d

adv, where P d
adv is the

percentage of cracked passwords in traditional deterministic cost hashing.

We have shown that our mechanism configured with cost-even breakpoints
sampled from uniform distribution will only decrease the percentage of cracked
passwords. In the next subsections we consider how the attacker would react to
general configuration of the mechanism.

5.4 Local Search in Two Directions

In the previous section we introduced an algorithm ExtendbyConcat(v, �q, ∅) to
produce a locally optimal solution πLOC with respect to concatenation. We
showed the instruction sequence πLOC is a subset of the instructions in π∗ and
argued that in specific cases the algorithm is guaranteed to find the optimal
solution. However, in more general cases the local optimum may not be globally
optimum. One possible reason for this is that there may be a missing instruction
from π∗ that we would like to insert into the middle of the checking sequence
πLOC , while our local search algorithm ExtendbyConcat(v, �q, ∅) only considers
instructions that can be appended to πLOC .

In this subsection we extend the local search algorithm to additionally con-
sider insertions. Note that we can still use local search to test if inserting instruc-
tion bundle �i(j1, j2) improves the overall utility, i.e., Δ+ (�i(j1, j2) | π) ≥ 0 .
We design an algorithm ExtendbyInsert(v, �q, π) which performs such an update.
Combining ExtendbyConcat(v, �q, π) and ExtendbyInsert(v, �q, π), we design an
Algorithm Extend(v, �q) to construct a checking sequence πLO (LO=Locally Opti-
mal) which is locally optimal with respect to both operations: concatenation and
insertions. Specifically, after each call of ExtendbyInsert(v, �q, π) we immediately
run ExtendbyConcat(v, �q, π) to ensure that the solution is still locally optimal
with respect to concatenation. See Algorithm 3 for details. The algorithms still
maintain the invariant that πLO is a subset of π∗—see Theorem 5.

Given πLOC computed in time O(npm), the number of unchecked instruc-
tions is upper bounded by |Π(Lenmax,m)| − |πLOC |. By caching the proba-
bility summation of previous and future instructions at each insertion posi-
tion, verify if an instruction bundle is profitable and update the checking
sequence take time O(1). One pass of repeat loop of Algorithm 3 takes time
O(|Π(Lenmax,m)|−|πLOC |) ⊆ O(npm), the number of repeat loop execution is
finite (in experiment it terminates after at most 3 passes). Therefore, Extend(v, �q)
runs in time O(npm).

Cost-Asymmetric Memory Hard Password Hashing 37

Algorithm 2: ExtendbyInsert(v, �q, π)
Input: v, �q, π
Output: πLOI

1 πLOI = π;
2 while e exists such that Δ+ (e | πLOI) ≥ 0 do
3 πLOI = πLOI + e
4 end
5 return πLOI

Algorithm 3: Extend(v, �q)
Input: v, �q
Output: πLO

1 πLO = ExtendbyConcat(v, �q, ∅);
2 repeat
3 πLO = ExtendbyInsert(v, �q, πLO);
4 πLO = ExtendbyConcat(v, �q, πLO);

5 until no single profitable instruction bundle exist ;
6 return πLO

Lemma 2. If π ⊆ π∗ and Δ+ (e | π) ≥ 0 then π + e ⊆ π∗.

Lemma 2 guarantees that + operation preserves the invariance that our con-
struction is subset of π∗. Naturally follows Theorem 5, which states the output
of Extend(v, �q) is a subset of π∗.

Theorem 5. Let πLO = Extend(v, �q), then πLO ⊆ π∗.

Since we are using local search to construct πLO, together with Theorem 5
we know πLO is a local optimum. When Algorithm 3 terminates, advancing any
number of labels for any single password cannot improve the overall utility, but
there is no guarantee of utility reduction upon inclusion of multiple instruction
bundles that associated with different passwords. In the next subsection we will
discuss how to verify if the local optimum πLO is indeed the global optimum and
design an efficient brute force algorithm that improves local optimum to global
optimum under specific parameter settings.

5.5 Optimality Test and Globally Optimal Checking Sequence

In the previous subsections, we designed a polynomial algorithm Extend(v, �q) to
construct locally optimal checking sequence πLO with respect to insertions and
concatenation. We also proved that the sequence πLO is a subset of the optimal
sequence π∗. In practice we find that it is often the case that πLO = π∗ and
we give an efficient heuristic algorithm which (often) allows us to confirm the
global optimality of πLO. In particular, our procedure will never falsely indicate

38 W. Bai et al.

that πLO = π∗ though it may occasionally fail to confirm that this is the case.
When our optimality test fails, we design algorithms to promote locally optimal
solution to globally optimal solution for cost-even breakpoints and m ≤ 3, see
full version of this paper [10] for details.

6 Defender’s Optimal Strategy

When making decisions about breakpoint distribution, the defender will take
attacker’s best response into consideration. Specifically, the defender would
choose �q∗ = arg min λ(π∗) where π∗ = arg max Uadv(v, �q, π)). Formally, the opti-
mization problem (OPT) is

min
�q

λ(π∗)

s.t. 0 ≤ qi ≤ 1, ∀1 ≤ i ≤ m,
m∑

i=1

qi = 1, (13)

m∑

i=1

qicM t2i ≤ Cmax,

π∗ = arg max Uadv(v, �q, π))

The optimization goal is to minimize attacker’s success rate. The first two con-
strains guarantee qi are valid probabilities. The third constraint forces that the
expected cost does not exceed maximum workload Cmax. The last constraint
states that the attacker responds optimally given password value v and the
defender’s strategy �q. Since there is no closed form expression of λ(π∗) we use
heuristic black box optimization solvers to optimize �q. We refer to the black box
solver as FindOptDis(). This heuristic algorithm is parametrized by the attacker’s
value v and by the password distribution P and outputs a distribution �q. As a
caveat our heuristic algorithm is not absolutely guaranteed to find the optimal
breakpoint distribution �q∗. Detailed discussion about FindOptDis() can be found
in the full version of this paper [10].

7 Experiments

7.1 Experiment Setup

In this section, we evaluate the performance of our mechanism using empirical
password datasets. Due to length limitations we only report results for the two
largest datasets: Linkedin (1.74∗108 accounts with 5.74∗107 distinct passwords)
and Neopets (6.83∗107 accounts with 2.8∗107 distinct accounts). In the full ver-
sion [10] we include results for 6 additional password datasets (Bfield, Brazzers,
Clicksense, CSDN, RockYou and Webhost)3.
3 The password datasets we analyze and experiment with are publicly available and

widely used in literature research. We did not crack any new passwords. Thus, our
usage of the datasets would not cause further harm to users.

Cost-Asymmetric Memory Hard Password Hashing 39

For each dataset we derive the corresponding empirical distribution De

(namely, Prpw∼De
[pw] = fi/na where fi is the frequency of pw) and analyze

the attacker’s success rate under this password distribution. The drawback is
that the tail of empirical distribution De can significantly diverge from real
distribution P. We follow the approach of [9] and use Good-Turing Frequency
estimation to upbound the CDF divergence E between De and P. In particular,
we use yellow (resp. red) to denote the unconfident region where the empirical
distribution might diverge significantly from the real distribution E > 0.01 (resp.
E > 0.1).

We plot the attacker’s success rate λ(π∗) as the ratio v/Cmax varies under
different conditions. In Fig. 3 we consider time-even breakpoints with uniform
distribution over breakpoints. Similarly, Fig. 4 considers cost-even breakpoints
under the uniform distribution as the number of breakpoints m varies. In Fig. 5,
we fix m = 3 continue to use cost-even breakpoints, and run our algorithm
FindOptDis() (implemented with BITEOPT [41]), to optimize the breakpoint
distribution.

Fig. 3. Time-Even Breakpoints, Uniform Breakpoint Distribution

7.2 Experiment Analysis and Discussion

Time-Even Breakpoints with Uniform Distribution. Fig. 3 plots the attacker’s
success rate (vs. v/Cmax) when we use time-even breakpoints with the uniform
distribution i.e., Boyen’s Halting puzzles [18]. In most parameter ranges the
usage of Boyen’s Halting puzzles reduces the % of cracked passwords in compar-
ison to using deterministic (cost-equivalent) memory hard functions. However,
one significant observation is that for some parameters v/Cmax (highlighted
with amplified circles on the plots) using Boyen’s halting puzzles can actually
increase the percentage of cracked passwords. Take LinkedIn as example, when
v/Cmax = 100 using time-even breakpoints increases the % of cracked passwords
from 0% (determistic MHF) to 0.2%. Similar phenomenon can be observed in

40 W. Bai et al.

Fig. 4. Cost-Even Breakpoints, Uniform Breakpoint Distribution

other datasets. Intuitively, these findings are explained by the observation that
it is relatively cheap for the attacker to check the first few cost-even breakpoints.

We also provide a (admitedly contrived) example to show that time-even
breakpoints could be very harmful. Suppose a dataset has 2 passwords, each
occurs with probability 1

2 , and password value v = 1.45, and cost parameter
Cmax = 1. With deterministic MHFs a simple calculation shows that the rational
attacker’s utility optimal strategy is to give up immediately without checking any
passwords. On the other hand, if we use Halting Puzzles (time-even breakpoints
with a uniform distribution) then a rational attacker will recover the user’s
password with probability at least 1

4 e.g., a rational attacker will always want to
check the first label of both passwords.

Cost-Even Breakpoints and Uniform Distribution. Figure 5 plots the success rate
of the rational adversary when we use cost-even breakpoints with the uniform dis-
tribution. Our results are consistent with Theorem 4 where we proved that cost-
even breakpoints with the uniform distribution can never increase the attacker’s
success rate. In Fig. 5 we also explore the impact of increasing the number of
breakpoints m. We find that increasing m decreases the attacker’s success rate
although the impact dimishes as m increases—see the [10] for additional dis-
cussion. When m = 99 we find instances where the attacker’s success rate is
decreased by an additive factor of 10%.

Optimized Distribution and Cost-Even Breakpoints. Continuing to use cost-
even breakpoints we attempted to optimize the breakpoint distribution using
BITEOPT[41]—see Fig. 5. In all instances we only obtained marginal reductions
in the attacker’s success rate when compared to the uniform distribution over
breakpoints. Furthermore, optimizing the breakpoint distribution �q requires the
defender to know the password distribution and the attacker’s value v a priori.
In practice there is a very real risk that we would optimize �q with respect to

Cost-Asymmetric Memory Hard Password Hashing 41

Fig. 5. Cost-Even Breakpoints, Optimized Breakpoint Distribution

the wrong distribution or value v. Thus we recommend to use cost-even break
points with uniform distribution as this solution can be implemented without
any knowledge of v or the password distribution.

8 Conclusion

In this paper, we introduce cost-asymmetric memory hard password authenti-
cation, a prior independent authentication mechanism, to defend against offline
attacks. As traditional hash function are replaced by memory hard functions,
we propose to use random breakpoints in evaluation of an MHF in order to
have the benefit of both cost asymmetry and cost quadratic scaling. The inter-
action between the defender and the attacker is modeled by a Stackelberg game,
within the game theory framework we formulate the optimal strategies for both
defender and attacker. We theoretically proved that cost-asymmetric memory
hard password authentication with cost-even breakpoints sampled from uniform
distribution will reduce attacker’s cracking success rate. In addition we set up
experiments to validate the effectiveness of our proposed mechanism for arbitrary
parameter settings, experiment results show that the reduction of attacker’s suc-
cess rate is up to 10%.

Acknowledgments. The research was supported in part by the National Science
Foundation under awards CNS #2047272 and by IARPA under the HECTOR program.
Mohammad Hassan Ameri was also supported in part by a Summer Research Grant
from Purdue University.

References

1. Hashcat: advanced password recovery. https://hashcat.net/hashcat/
2. Password hashing competition. https://password-hashing.net/

https://hashcat.net/hashcat/
https://password-hashing.net/

42 W. Bai et al.

3. Adams, A., Sasse, M.A.: Users are not the enemy. Commun. ACM 42(12), 40–46
(1999)

4. Alwen, J., Blocki, J.: Efficiently computing data-independent memory-hard func-
tions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 241–
271. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 9

5. Alwen, J., Blocki, J., Harsha, B.: Practical graphs for optimal side-channel resistant
memory-hard functions. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D.
(eds.) ACM CCS 2017, pp. 1001–1017. ACM Press, Dallas, TX, USA, 31 Oct–2
Nov 2017. https://doi.org/10.1145/3133956.3134031

6. Alwen, J., Blocki, J., Pietrzak, K.: Depth-robust graphs and their cumulative mem-
ory complexity. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 1

7. Alwen, J., Chen, B., Pietrzak, K., Reyzin, L., Tessaro, S.: Scrypt is maximally
memory-hard. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10212, pp. 33–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 2

8. Ameri, M.H., Blocki, J., Zhou, S.: Computationally data-independent memory hard
functions. In: Vidick, T. (ed.) ITCS 2020. vol. 151, pp. 36:1–36:28. LIPIcs, Seattle,
WA, USA, 12–14 Jan 2020. https://doi.org/10.4230/LIPIcs.ITCS.2020.36

9. Bai, W., Blocki, J.: DAHash: distribution aware tuning of password hashing costs.
In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12675, pp. 382–405. Springer,
Heidelberg (2021). https://doi.org/10.1007/978-3-662-64331-0 20

10. Bai, W., Blocki, J., Ameri, M.H.: Cost-asymmetric memory hard password hashing
(2022). https://arxiv.org/abs/2206.12970

11. Biryukov, A., Dinu, D., Khovratovich, D.: Argon2: new generation of memory-hard
functions for password hashing and other applications. In: Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on, pp. 292–302. IEEE (2016)

12. Blocki, J., Datta, A.: CASH: a cost asymmetric secure hash algorithm for optimal
password protection. In: IEEE 29th Computer Security Foundations Symposium,
pp. 371–386 (2016)

13. Blocki, J., Harsha, B., Zhou, S.: On the economics of offline password cracking.
In: 2018 IEEE Symposium on Security and Privacy. pp. 853–871. IEEE Computer
Society Press, San Francisco, CA, USA, 21–23 May 2018. https://doi.org/10.1109/
SP.2018.00009

14. Blocki, J., Komanduri, S., Procaccia, A., Sheffet, O.: Optimizing password compo-
sition policies. In: Proceedings of the Fourteenth ACM Conference on Electronic
Commerce, pp. 105–122. ACM (2013)

15. Boneh, D., Corrigan-Gibbs, H., Schechter, S.: Balloon hashing: a memory-hard
function providing provable protection against sequential attacks. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 220–248. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 8

16. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: 2012 IEEE Symposium on Security and Privacy, pp. 538–552. IEEE
Computer Society Press, San Francisco, CA, USA, 21–23 May 2012. https://doi.
org/10.1109/SP.2012.49

17. Bonneau, J., Herley, C., van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: 2012 IEEE Symposium on Security and Privacy, pp. 553–567. IEEE Computer
Society Press, San Francisco, CA, USA, 21–23 May 2012. https://doi.org/10.1109/
SP.2012.44

https://doi.org/10.1007/978-3-662-53008-5_9
https://doi.org/10.1145/3133956.3134031
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_1
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.4230/LIPIcs.ITCS.2020.36
https://doi.org/10.1007/978-3-662-64331-0_20
https://arxiv.org/abs/2206.12970
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1109/SP.2018.00009
https://doi.org/10.1007/978-3-662-53887-6_8
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1109/SP.2012.44
https://doi.org/10.1109/SP.2012.44

Cost-Asymmetric Memory Hard Password Hashing 43

18. Boyen, X.: Halting password puzzles: hard-to-break encryption from human-
memorable keys. In: Provos, N. (ed.) USENIX Security 2007, pp. 6–10, Boston,
MA, USA. Aug, USENIX Association (2007)

19. Campbell, J., Ma, W., Kleeman, D.: Impact of restrictive composition policy on
user password choices. Behav. Inf. Technol. 30(3), 379–388 (2011)

20. Carnavalet, X., Mannan, M.: From very weak to very strong: analyzing password-
strength meters. In: NDSS 2014. The Internet Society, San Diego, CA, USA, 23–26
Feb 2014

21. Castelluccia, C., Chaabane, A., Dürmuth, M., Perito, D.: When privacy meets
security: leveraging personal information for password cracking. arXiv preprint
arXiv:1304.6584 (2013)

22. Castelluccia, C., Dürmuth, M., Perito, D.: Adaptive password-strength meters from
Markov models. In: NDSS 2012. The Internet Society, San Diego, CA, USA, 5–8
Feb 2012

23. Designer, S.: John the ripper password cracker (2006)
24. Florêncio, D., Herley, C., Van Oorschot, P.C.: An administrator’s guide to Inter-

net password research. In: Proceedings of the 28th USENIX Conference on Large
Installation System Administration, pp. 35–52. LISA 2014 (2014)

25. Fossi, M., et al.: Symantec report on the underground economy (2008). Accessed
1 Aug 2013

26. Inglesant, P.G., Sasse, M.A.: The true cost of unusable password policies: password
use in the wild. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 383–392. CHI 2010, ACM, New York, NY, USA (2010).
https://doi.org/10.1145/1753326.1753384

27. Kaliski, B.: Pkcs# 5: password-based cryptography specification version 2.0 (2000)
28. Kelley, P.G., et al.: Guess again (and again and again): measuring password

strength by simulating password-cracking algorithms. In: 2012 IEEE Symposium
on Security and Privacy, pp. 523–537. IEEE Computer Society Press, San Fran-
cisco, CA, USA, 21–23 May 2012. https://doi.org/10.1109/SP.2012.38

29. Komanduri, S., et al.: Of passwords and people: measuring the effect of password-
composition policies. In: CHI, pp. 2595–2604 (2011). http://dl.acm.org/citation.
cfm?id=1979321

30. Liu, E., Nakanishi, A., Golla, M., Cash, D., Ur, B.: Reasoning analytically about
password-cracking software. In: 2019 IEEE Symposium on Security and Privacy
(SP), pp. 380–397. IEEE (2019)

31. Ma, J., Yang, W., Luo, M., Li, N.: A study of probabilistic password models. In:
2014 IEEE Symposium on Security and Privacy, pp. 689–704. IEEE Computer
Society Press, Berkeley, CA, USA, 18–21 May 2014. https://doi.org/10.1109/SP.
2014.50

32. Manber, U.: A simple scheme to make passwords based on one-way functions much
harder to crack. Comput. Secur. 15(2), 171–176 (1996)

33. Melicher, W., et al.: Fast, lean, and accurate: modeling password guessability using
neural networks. In: Holz, T., Savage, S. (eds.) USENIX Security 2016, pp. 175–
191. USENIX Association, Austin, TX, USA, 10–12 Aug 2016

34. Morris, R., Thompson, K.: Password security: a case history. Commun. ACM
22(11), 594–597 (1979)

35. Percival, C.: Stronger key derivation via sequential memory-hard functions. In:
BSDCan 2009 (2009)

36. Provos, N., Mazieres, D.: Bcrypt algorithm. USENIX (1999)

http://arxiv.org/abs/1304.6584
https://doi.org/10.1145/1753326.1753384
https://doi.org/10.1109/SP.2012.38
http://dl.acm.org/citation.cfm?id=1979321
http://dl.acm.org/citation.cfm?id=1979321
https://doi.org/10.1109/SP.2014.50
https://doi.org/10.1109/SP.2014.50

44 W. Bai et al.

37. Steves, M., Chisnell, D., Sasse, A., Krol, K., Theofanos, M., Wald, H.: Report:
authentication diary study. Technical report NISTIR 7983, National Institute of
Standards and Technology (NIST) (2014)

38. Stockley, M.: What your hacked account is worth on the dark web (2016). https://
nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-
the-dark-web/

39. Ur, B., et al.: How does your password measure up? the effect of strength meters
on password creation. In: Proceedings of USENIX Security Symposium (2012)

40. Ur, B., et al.: Measuring real-world accuracies and biases in modeling password
guessability. In: Jung, J., Holz, T. (eds.) USENIX Security 2015, pp. 463–481.
USENIX Association, Washington, DC, USA, 12–14 Aug 2015

41. Vaneev, A.: BITEOPT - derivative-free optimization method (2021). https://
github.com/avaneev/biteopt. c++ source code, with description and examples

42. Veras, R., Collins, C., Thorpe, J.: On semantic patterns of passwords and their
security impact. In: NDSS 2014. The Internet Society, San Diego, CA, USA, 23–26
Feb 2014

43. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: 2009 IEEE Symposium on Security and
Privacy, pp. 391–405. IEEE Computer Society Press, Oakland, CA, USA, 17–20
May 2009. https://doi.org/10.1109/SP.2009.8

https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-the-dark-web/
https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-the-dark-web/
https://nakedsecurity.sophos.com/2016/08/09/what-your-hacked-account-is-worth-on-the-dark-web/
https://github.com/avaneev/biteopt
https://github.com/avaneev/biteopt
https://doi.org/10.1109/SP.2009.8

	Cost-Asymmetric Memory Hard Password Hashing
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work

	2 Background and Notations
	3 Defender's Model
	4 Attacker's Model
	4.1 Assumptions of Economics Analysis
	4.2 Cracking Process
	4.3 Attacker's Utility
	4.4 Stackelberg Game

	5 Computing the Attacker's Optimal Strategy
	5.1 Marginal Utility
	5.2 A Superset of the Optimal Checking Sequence
	5.3 Extension by Concatenation
	5.4 Local Search in Two Directions
	5.5 Optimality Test and Globally Optimal Checking Sequence

	6 Defender's Optimal Strategy
	7 Experiments
	7.1 Experiment Setup
	7.2 Experiment Analysis and Discussion

	8 Conclusion
	References

