

1 **Title:** Comparative digestive morphology and physiology of five species of *Peromyscus* under
2 controlled environment and diet

3 **Authors:** Tate A. Yawitz¹, Nick Barts¹, *Kevin D. Kohl¹

4 **Affiliations:** 1 - Department of Biological Sciences, University of Pittsburgh, 4249 Fifth
5 Avenue, Pittsburgh, PA 15260, USA

6 ***Corresponding Author:** kkohl@pitt.edu, (412) 383-4401, Department of Biological Sciences,
7 University of Pittsburgh, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA

8 **Highlights:**

- 9 • In individual organs, we identified a phylogenetic signal in relative foregut mass and
10 small intestine length (Pagel's $\lambda = 1$). As proportions of total gut mass, we identified
11 phylogenetic signals in relative foregut mass and relative small intestine mass ($\lambda = 1$)
12 across five *Peromyscus* species.
- 13 • Several species exhibited distinct differences in gut morphology, such as species from
14 arid regions (*P. californicus* and *P. eremicus*) exhibiting larger foregut chambers, and the
15 oldfield mouse (*Peromyscus polionotus*) exhibiting a longer large intestine.
- 16 • We suggest that *Peromyscus* is a promising model to study interactions between the
17 environment, genetics, morphology, physiology, and natural history.

18

19

20 **Abstract:** Digestive morphology and physiology differ across animal species, with many
21 comparative studies uncovering relationships between animal ecology or diet, and the
22 morphology and physiology of the gastrointestinal tract. However, many of these studies
23 compare wild-caught animals feeding on uncontrolled diets and compare broadly related taxa.
24 Thus, few studies have disentangled the phenotypic consequences of genetics from those
25 potentially caused by the environment, especially across closely related species that occupy
26 similar ecological niches. Here, we examined differences in digestive morphology and
27 physiology of five closely related species of *Peromyscus* mice that were captive bred under
28 identical environmental conditions and identical diets for multiple generations. Using
29 phylogenetic generalized least squares (PGLS) of species means to control for body size, we
30 identified a phylogenetic signal in the mass of the foregut and length of the small intestine across
31 species. As proportions of total gut mass, we identified phylogenetic signals in relative foregut
32 and small intestine masses, indicating that the sizes of these structures are more similar among
33 closely related species. Finally, we detected differences in activities of the protease
34 aminopeptidase-N enzyme across species. Overall, we demonstrate fine-scale differences in
35 digestive morphology and physiology among closely related species. Our results suggest that
36 *Peromyscus* could provide a system for future studies to explore the interplay between natural
37 history, morphology, and physiology (e.g. ecomorphology and ecophysiology), and to
38 investigate the genetic architecture that underlies gut anatomy.

39 **Keywords:** comparative anatomy, gut anatomy, aminopeptidase-N, gut length, evolutionary
40 hotspot

42 INTRODUCTION

43 Digestive morphology and physiology differ widely across animal taxa, often to promote
44 efficient nutrient extraction from foods and to support the overall fitness of animals. Generally,
45 the digestive tracts of animals are adapted to their feeding strategy. For example, due to the
46 presence of refractory material, plant tissue is often considerably more difficult to digest and
47 extract nutrients from than animal tissue, and thus herbivores tend to have more voluminous or
48 longer digestive anatomy than carnivores (Duque-Correa et al., 2021; Griffen and Mosblack,
49 2011; Karasov and Douglas, 2013); though this trend depends on the dataset and phylogenetic
50 breadth used (Hoppe et al., 2021; Langer and Clauss, 2018; O’Grady et al., 2005). Additionally,
51 it is generally hypothesized that because the digestive tract tissue is one of the most expensive to
52 maintain in terms of energy and protein metabolism, there is selective pressure towards
53 physiological efficiency and the avoidance of maintaining excess tissues (Cant et al., 1996).
54 Although digestive morphology and physiology are well studied across animals with different
55 feeding strategies, our understanding of the differences between closely related species,
56 particularly when they occupy similar ecological niches, is lacking. Feeding and nutrition are
57 critical components of an animal’s niche and fitness, and understanding the dynamics and
58 patterns that underlie the relationship between ecological variation, genetic control, and
59 physiological and morphological specialization across species is a goal for the field of
60 comparative physiology (Griffen and Mosblack, 2011; Mykles et al., 2010).

61 Most inquiries that aim to uncover digestive differences across species have been limited
62 to observational interspecific studies that use wild-caught individuals (Naya et al., 2014; Spinks
63 and Perrin, 1995). These studies have each correlated varying wild diets to differences in gut
64 morphology and physiology among species. For example, one study examined wild-caught

65 individuals from nineteen species of Southern African myomorph rodents and found that the
66 ratio of small to large intestine was smallest in herbivorous rodents compared to those with other
67 feeding strategies (Perrin and Curtis, 1980). A similar study from Mongolia compared six
68 species of syntopic rodents and also found the largest hindgut in the herbivorous species (Wang
69 et al., 2003). While there are some benefits to conducting these studies in wild animals, these
70 studies are limited in their ability to disentangle the effects of short-term variation in diet or
71 environmental characteristics from the consequences of long-term evolutionary history across
72 species and within populations. For example, intraspecific experimental studies show that
73 insectivorous and herbivorous diets, fiber quantity, temperature, and water availability can all
74 influence gastrointestinal morphology (Gorman et al., 1997; Green and Millar, 1987; Gross et
75 al., 1985; Koteja, 1996; Spinks and Perrin, 1995; Woodall, 1987). Thus, captive-based studies
76 may control for environmental variation and better highlight species-level differences in gut
77 anatomy and physiology. However, animals in these studies are often wild-caught, and the
78 environmental conditions experienced during development may yield life-long differences to
79 digestive physiology via developmental plasticity (Kotrschal et al., 2014). Further, biomedical
80 studies have demonstrated multigenerational effects of diet on metabolic phenotypes of offspring
81 (Adedeji et al., 2019; Ng et al., 2010). Collectively, these studies highlight the complex set of
82 factors that may impact gut anatomy and physiology across closely related species. Moving
83 forward, the use of comparative animal models in captivity under identical or variable conditions
84 may aid in understanding the genetic and molecular mechanisms underlying variation in gut
85 anatomy and physiology.

86 Rodents offer enormous potential to understand the effects of the environment and
87 genetics on digestive morphology and physiology (Cork, 1994; Hume, 1994). Rodents are the

88 most diverse mammalian order and from an evolutionary perspective, they have been a highly
89 successful group of animals, as indicated by their vast ecological distribution, number of families
90 (~30), number of species (~1700), and overall abundance/biomass of individuals (Stevens and
91 Hume, 2004). Understandably, a small number of species have become very well studied in
92 various fields of biology thanks to their overall tractability and easy maintenance in labs.
93 Consequently, the huge diversity of rodent species is currently underutilized in biology,
94 presenting both challenges and great potential to learn about morphological and physiological
95 specialization across species.

96 In recent years, *Peromyscus* mice have become increasingly useful as model organisms.
97 Species in this genus occupy similar ecological niches from a broad perspective, but also exhibit
98 distinct adaptations to particular environments. Additionally, at least two of these species (*P.*
99 *maniculatus* and *P. polionotus*) can produce hybrids, and have been used to identify the genetic
100 loci involved in complex behaviors such as burrowing (Weber et al., 2013) and parental care
101 (Bendesky et al., 2017). Thus, *Peromyscus* species may provide a promising opportunity and
102 first step towards understanding the complex and interconnected influence of genetics and the
103 environment on digestive morphology and physiology across species.

104 Here, we compare various metrics of gut morphology and physiology across five species
105 of *Peromyscus* mice (Table 1, Fig. 1) while controlling environmental conditions and offering
106 the same controlled diets. We investigated relative mass of the foregut, stomach, small intestine,
107 cecum, and large intestine in each of our species, length and surface areaas of the small and large
108 intestines. Most rodents have a pouch called the cecum that sits at the first part of the large
109 intestine, where absorption of some nutrients begins and bacterial communities help to digest
110 food material (Kohl et al., 2014). Some species also have an additional segment of their stomach,

111 known as the foregut, for which the overall function is poorly understood (Kohl et al., 2014;
112 Langer and Clauss, 2018). We also investigated activities of the digestive enzymes maltase and
113 sucrase, which are two of the most abundant intestinal disaccharidases, and aminopeptidase-N,
114 an intestinal peptidase involved in the final stages of alanine digestion. Using these metrics, our
115 results uncover the extent to which morphological and physiological phenotypes vary across
116 closely related species in the absence of environmental variation, opening the door for future
117 studies to investigate the genetic basis of this variation.

118

119 MATERIALS AND METHODS

120

121 **Animals:** We obtained female individuals of each of the following *Peromyscus* species (*P.*
122 *polionotus* [n = 6], *P. maniculatus* [n = 6], *P. leucopus* [n = 5], *P. eremicus* [n = 6], *P.*
123 *californicus* [n = 6]) from the *Peromyscus* Genetic Stock Center at the University of South
124 Carolina (Havighorst et al., 2019). This facility has maintained breeding colonies of all 5
125 *Peromyscus* species since 1993 or earlier for some species. (Havighorst et al., 2019). All
126 individuals were shipped to the University of Utah, where we attempted to maintain husbandry
127 conditions to those of the *Peromyscus* Genetic Stock Center. During the experiment, all animals
128 were housed individually in shoebox cages with paper bedding and small plastic tubes as
129 nests/shelters. Animals were held for a period of 5 weeks, under a 12h:12h light:dark cycle, 28°C
130 ambient temperature and 20% humidity, and given *ad libitum* water from bottles with stainless-
131 steel nipples. All the animals were adults and sexually mature at the time of our study (between 5
132 and 8 months of age) and were provided with *ad libitum* access to the same powdered laboratory
133 rodent chow as used at the *Peromyscus* Genetic Stock Center (Formula 8904, Harlan Teklad,

134 Madison, WI), which is composed of 24.3% protein, 4.7% fat, 40.2% available carbohydrates,
135 and 12.4% neutral detergent fiber (NDF) on an as-fed basis. Individuals were moved to a wire-
136 bottom metabolic cages for 4 evenings before dissection as part of other experiments (Brooks et
137 al., 2016), but did not lose significant body mass during this portion of the experiment.

138

139 **Dissection Procedures:** After measuring body mass (± 0.1 g), all animals were euthanized using
140 a high dose of isoflurane. Immediately after being euthanized, we dissected each animal's
141 abdominal cavity and collected their foregut (fornix ventricularis or fundus), acidic stomach,
142 small intestine, caecum, and large intestine. For our purposes, the large intestine is defined as all
143 hindgut tissue independent of the cecum (*i.e.* the colon and rectum). Contents of each gut region
144 were placed into plastic tubes, and the pH of gut contents was immediately measured using an
145 Omega Soil pH electrode (PHH-200). All tissues were then briefly cleaned of mesenteric and
146 adipose tissues, rinsed with physiological saline solution, blotted dry, and masses of each region
147 were measured. Next, total length of small and large intestines were measured to the nearest
148 millimeter using a stainless-steel ruler. Then, small and large intestines were cut open
149 longitudinally and opened flat on a metal tray with ice underneath. We used digital calipers to
150 take measurements of the width of these flattened tissues, which essentially represent the
151 circumference of the intestines. We collected 9 "width" measurements for the small intestine and
152 4 measurements for the large intestine. These values were averaged within a tissue and used to
153 estimate surface area by multiplying length and width. We investigated for differential results
154 depending on normalization to organ mass or surface area, but these methods produced
155 consistent conclusions. Finally, tissues were frozen on dry ice and stored at -80°C. All

156 procedures involving rodents were approved under the University of Utah Institutional Animal
157 Care and Use Committee protocol #12-12010.

158

159 **Enzyme Assays (Maltase, Sucrase, Aminopeptidase-N)**: Small intestine tissue samples were
160 thawed over ice and immediately homogenized with cold homogenizing buffer (300 mM
161 mannitol in 1 mM HEPES/ KOH, pH 7; HEPES came from Sigma-Aldrich Corp., St. Louis,
162 Missouri, CAS number 7365-45-9) with an OMNI TH-01 tissue homogenizer (Omni
163 International, Kennesaw, Georgia) set at ~20,000 rpm for 30 s. To avoid underestimating
164 enzyme activity, whole tissue homogenates were utilized instead of isolated brush border
165 membrane preparations (Martínez del Rio 1990). Each assay was performed in triplicate.

166 For disaccharidase activities (maltase and sucrase), we diluted tissue homogenates in the
167 homogenizing buffer above (maltase: 2 μ L of homogenate in 498 μ L of homogenizing buffer;
168 sucrase: 10 μ L of homogenate in 90 μ L) Then, we took 30 μ L of the diluted tissue homogenate
169 and incubated it for 20 min at 37°C in a 1.5 ml vial containing 30 μ L of maleate/NaOH buffer
170 (0.1 maleate/1 N NaOH, pH 7) containing 56 mM maltase or sucrase, depending on the enzyme
171 of interest. The reactions were stopped with the addition of 400 μ l of Glucose-Assay-Kit stop
172 solution (GAGO-20 glucose assay kit; Sigma Aldrich, St. Louis, MO. USA) to each vial. All the
173 replicates were incubated at 37°C for 30 min, after which 400 μ L of 12 N H₂SO₄ was added to
174 each tube, and the absorbances were measured at 540 nm using a plate reader (BioTek Synergy
175 H1 , Winooski, VT, USA). Using a glucose standard curve, maltase and sucrase activities were
176 calculated as the average of triplicate absorbances for each sample minus blanks and expressed
177 as μ mol min⁻¹ g⁻¹ wet tissue.

178 Aminopeptidase-N activity was assayed using L-alanine-p-nitroanilide (Sigma-Aldrich,
179 item # A9325) as a substrate (Brzék et al. 2013). Each reaction began in a 1.5 ml vial upon
180 mixing 2.5 μ L of tissue homogenate with 250 μ l of assay solution (0.1 M phosphate buffer
181 [NaH₂PO₄ /Na₂HPO₄, pH = 7.0] containing 2.0 mM L-alanine-p-nitroanilide). After 20 min
182 of incubation at 37°C, each reaction was stopped by adding 250 μ l of chilled 2 N acetic acid to
183 the vial. The absorbances were measured at 380 nm using a plate reader (as above). After
184 subtracting background absorbance, we used a calibration standard curve made with dilutions of
185 L-alanine-p-nitroanilide to calculate aminopeptidase-N activity in units of μ mol min⁻¹ g⁻¹ wet
186 tissue.

187

188 **STATISTICS**

189 We used analysis of variance (ANOVA) and post-hoc Tukey's HSD tests to compare
190 body mass and pH differences and analysis of covariance (ANCOVA) to compare morphological
191 and physiological metrics across species. For all ANCOVA results, the interaction between
192 species and body mass was never significant (data not shown). We also investigated the
193 proportion of each region in regards to total gut mass, a metric that is independent of body size.
194 Enzyme activities are standardized to mass-specific values for tissue (μ mol min⁻¹ g⁻¹ wet
195 tissue), and were compared with ANOVA and post-hoc Tukey's HSD tests.

196 For each morphological or physiological metric, we tested for phylogenetic signals, or the
197 tendency for more closely related species to resemble each other, as opposed to resembling
198 species on a randomly drawn tree. We estimated phylogenetic signal by conducting a
199 phylogenetic generalized least squares (PGLS) regression analysis of species means and by
200 calculating lambda using maximum likelihood as implemented in the *caper* package using R

201 version 4.1.2 (Orme et al., 2012; Orme et al., 2013). Body mass was incorporated into the PGLS
202 analyses for absolute organ masses, lengths, and surface areas. To determine the allometric
203 scaling relationship for each morphometric trait, log-transformation was used. For other traits
204 (pH of contents, organ masses standardized to total gut mass, enzyme activities), we simply
205 tested for a phylogenetic signal of the trait values.

206

207 RESULTS

208 *Peromyscus* species exhibited body masses that were significantly different from one
209 another (ANOVA: $F_{4,24} = 64.55$, $P < 0.0001$). Specifically, the body mass [g; mean \pm standard
210 error (S.E.)] of each species was as follows: *P. californicus*: 41.09 ± 1.72 ; *P. eremicus*: $19.18 \pm$
211 0.40 ; *P. leucopus*: 22.11 ± 2.76 ; *P. maniculatus*: 17.94 ± 0.46 ; *P. polionotus*: 14.59 ± 0.31 . Using
212 Tukey's HSD test, *P. californicus* was significantly heavier than all other species, and *P.*
213 *polionotus* weighed significantly less than all other species, with *P. eremicus*, *P. leucopus*, and *P.*
214 *maniculatus* exhibiting intermediate body masses (with no significant differences based on
215 Tukey's HSD). All individual measurements can be found in our supplemental materials.

216 The pH of gut contents varied significantly by gut region ($F_{4,23} = 353.88$, $P < 0.0001$).
217 However, there were no significant differences by species, nor a significant species x region
218 interaction. The mean \pm S.E. values of pH for each region were as follows: foregut: 5.02 ± 0.11 ;
219 stomach: 2.06 ± 0.13 ; small intestine: 7.23 ± 0.07 ; cecum: 6.79 ± 0.07 ; large intestine: $6.76 \pm$
220 0.09 . There was no evidence of a phylogenetic signal for pH of any gut region ($\lambda = 0$).

221 We observed that the relative masses of individual gut compartments exhibited
222 significant differences across *Peromyscus* species. For example, after accounting for body mass,
223 *P. eremicus* exhibited a foregut chamber that was roughly 1.5 x heavier than several other

224 species (Fig. 2). Large intestine mass exhibited the largest effect size across rodent species, with
225 this being relatively heavier in *P. polionotus*. Specifically, *Peromyscus polionotus* exhibited a
226 1.41x greater relative large intestinal mass when compared to *P. maniculatus*, the most closely
227 related species (Fig. 1, 2). When investigating for phylogenetic signals, we only found a
228 significant relationship between phylogeny and relative foregut mass ($\lambda = 1$).

229 We also compared the relative masses of specific gut regions as a percentage of the total
230 gut mass, highlighting differential investment in various gut regions. Here, we found significant
231 differences in the relative masses of all gut regions across species (Fig. 3). Again, *P. eremicus*
232 exhibited a heavier foregut region as compared to most other species. Similarly, the relative mass
233 of the large intestine was greater in *P. polionotus* as compared to a closely related species, *P.*
234 *maniculatus*. Using phylogenetic analysis, we found that relative foregut mass and relative small
235 intestine mass (as a percentage of total gut mass) exhibited significant relationships with
236 phylogeny ($\lambda = 1$).

237

238 Next, we compared the relative lengths and surface areas of the animals' small and large
239 intestines. Across species, we identified significant differences in both relative small intestine
240 length and small intestine surface area. Two species, *P. polionotus* and *P. maniculatus*, exhibited
241 significantly greater small intestine surface areas than *P. eremicus* (Fig. 4). Similarly, we found
242 significant differences in relative large intestine length and surface area across the species.
243 Specifically, *P. polionotus* demonstrated a large intestine length of approximately 1.24 x longer
244 than *P. maniculatus* and a large intestine surface area about 1.3 x larger than *P. maniculatus*.
245 Estimates of phylogenetic signal suggest that small intestine length is highly dependent on the
246 phylogenetic relationship of species ($\lambda = 1$).

247 Finally, we investigated activities of digestive enzymes as a measurement of gut
248 physiology and digestive function. There were no significant differences in mass specific maltase
249 activities across our five different *Peromyscus* species ($P = 0.21$; Fig. 5). Similarly, sucrase
250 activities did not vary across species (data not shown). However, we did observe species-specific
251 differences in aminopeptidase activity (Fig. 5). *Peromyscus leucopus* and *P. maniculatus*
252 demonstrated 1.96 x greater aminopeptidase-N than *P. californicus*. We did not observe any
253 significant relationship between enzyme activities and phylogeny.

254

255 **DISCUSSION**

256 Thanks to the rich history of comparative anatomy, numerous studies have previously
257 investigated differences in digestive form and function across species, often identifying
258 morphological and physiological differences among species with different feeding strategies.
259 However, we currently lack an understanding regarding how digestive morphology and
260 physiology differ across closely related species that share similar broad feeding strategies and
261 ecological niches, especially in controlled experimental settings, and thus in the absence of
262 environmental variation. Here, we examined morphology and physiology of digestive structures
263 in five closely related species of *Peromyscus* mice. We found several aspects of gut anatomy and
264 physiology that vary across species, which demonstrate that *Peromyscus* is a promising model
265 for future studies aimed at understanding genetic determination of gut anatomy and physiology.

266 First, we aimed to investigate for phylogenetic signals, which are statistical
267 measurements that quantify how species' phenotypes differ from one another relative to their
268 phylogenetic relationships. We used phylogenetic generalized least squares (PGLS), a statistical
269 test that allowed us to test for phylogenetic signal across our phenotypes of interest using Pagel's

270 lambda. It is important to note that our study includes data for only five closely related species of
271 *Peromyscus*, and some of our traits of interest may have an undetected phylogenetic signal due to
272 our small sample size (Boettiger et al., 2012; Münkemüller et al., 2012). For both anatomical and
273 physiological traits, the power of the test increases dramatically with an increased sample size of
274 animals. It should be noted that because we are only examining traits in five different species of
275 *Peromyscus*, we recognize that some of our traits of interest may have a phylogenetic signal that
276 we were unable to detect because of our small sample size. Additionally, our study design and
277 the phylogenetic distances across our species may preclude us from detecting traits under
278 phylogenetic influence that are shared across *Peromyscus* species. For example, if we included
279 more distantly related species into our study, we would be more likely to identify significant
280 signals in *Peromyscus* than by just using the five closely related species alone. Thus, in our
281 study, the lack of a phylogenetic signal indicates that there is no significant phylogenetic
282 relationship in a given trait across our species, but it does not indicate whether they share a
283 unique characteristic that might otherwise be identifiable as a phylogenetic signal if other species
284 were incorporated in our analysis. For these reasons, we remained conservative with the
285 conclusions we made regarding the phylogenetic signals that we identified.

286 Specifically, we identified a significant phylogenetic signal in small intestine length,
287 relative small intestine mass as a proportion of total gut mass, and relative foregut mass (both
288 accounting for body size and as a proportion of total gut mass). Thus, closely related *Peromyscus*
289 species are more likely to resemble each other in these traits. Interestingly, other studies with
290 wider taxonomic breadth have come to varied conclusions about phylogenetic influence on gut
291 morphology. One study that analyzed previously published datasets on 493 species of birds and
292 nonflying mammals found that small intestine length and surface area demonstrated phylogenetic

293 signals in birds, but not in mammals (Lavin et al., 2008). Another study that examined
294 relationships between diet and intestine length in 32 species of tropical cichlid fishes found that
295 intestine length demonstrated significant phylogenetic signal (Wagner et al., 2009), and a more
296 recent study examined published datasets for small intestine length in 397 mammalian species
297 also identified a strong phylogenetic signal (Duque-Correa et al., 2021). Notably, while these
298 studies have the benefit of large sample sizes, it is impossible to standardize diets and environment
299 across so many different species. While smaller, our study accounts for these challenges by
300 feeding a single diet across species and individuals from long-term captive breeding lines.
301 Collectively, these findings underscore the importance of studying the digestive morphology and
302 physiology of closely related species using phylogenetically informed methods.

303 We also identified several morphological or physiological traits that differed significantly
304 across *Peromyscus* species. Given that our animals were bred in captivity and fed captive diets,
305 these differences represent evolutionary differences. We briefly discuss the potential functional
306 significance of these differences in relation to natural environments, though strongly
307 acknowledge that these are largely speculative given our limited sample size of species and life
308 history strategies.

309 In *P. polionotus*, we identified significantly larger large intestine in terms of mass, length,
310 and surface area, when combined to *P. maniculatus*. The oldfield mouse (*P. polionotus*) is found
311 in early successional habitat, which is often characterized by nutrient fluctuations, temporary
312 influxes of plant productivity, and high food web complexity (Swanson et al., 2011). Further,
313 population sizes of *P. polionotus* have been found to correlate with peak seed abundance
314 (Everett, 1985), suggesting strong selection on aspects of feeding, nutrition, and likely digestion.

315 While speculative, it could be that the enlarged hindgut of this species facilitates fermentation of
316 low nutrient foods in an area of fluctuating resources.

317 Species of *Peromyscus* from the southwestern USA (*P. californicus* and *P. eremicus*)
318 demonstrated significantly heavier relative foregut masses compared to the other species. The
319 foregut chambers of omnivorous rodents seem to play a role in food storage prior to the material
320 moving into the glandular and acidic stomach (Gärtner and Pfaff, 1979). A previous comparative
321 study hypothesized that the enlarged foregut of another species, *Acomys spinosissimus*, may
322 assist with temporary food storage to assist with foraging in arid habitats (Perrin and Curtis,
323 1980). Interestingly, cheek pouches are often used for food storage, and are more common in
324 arid southwestern North America (Vander Wall and Dittel, 2021), the natural habitat of *P.*
325 *eremicus*, though this species lacks cheek pouches. Thus, while it remains speculative, the
326 enlarged foregut of southwestern *Peromyscus* species could play a role in temporary food
327 storage, analogous to the enlarged cheek pouches in many other granivorous rodent species in
328 these areas.

329 We also found that activities of a digestive peptidase (APN) showed interspecific
330 variation, while there were no significant differences in maltase or sucrase activities across
331 species. It has been previously shown that diet influences digestive enzyme activities in
332 vertebrates over short-term time scales. For example, *Peromyscus leucopus* increases intestinal
333 APN activities when fed increased dietary protein (Wang et al., 2019). The same phenotypic
334 flexibility is also present in numerous avian species (Afik et al., 1995; Caviedes-Vidal et al.,
335 2000; del Rio et al., 1995; Sabat et al., 1998). However, the interspecific differences that we
336 observed between *P. leucopus*, *P. maniculatus*, and *P. californicus*, represent evolved
337 differences in constitutive activity under controlled conditions, independent from the

338 consequences of variation in dietary composition. We might predict APN activities to be higher
339 in species that typically consumer higher protein diets. Interestingly, comparative studies using
340 individuals collected from the wild on phyllostomid bats (Schondube et al., 2001), minnows
341 (German et al., 2010), and passerine birds (Kohl et al., 2011) each point to evolutionary
342 relationships between an animals' natural diets and the activities of disaccharidases, but not APN
343 activities. These trends are often explained by the essential need all animals have for dietary
344 protein, and that enzyme levels may be regulated simply to ensure protein needs are met at a
345 baseline level (Kohl et al., 2011). Thus, differences in constitutive APN activities across species
346 may be somewhat idiosyncratic and represent the notion of "good enough", as opposed to the
347 notion of optimal evolutionary matching between functional demands and physiological
348 capacities (Dudley and Gans, 1991; Garland Jr, 1998).

349 While we did control the animals' environment and diet to isolate evolved differences
350 across species, we cannot know whether our study treatments were truly equivalent for all
351 species. In other words, the environmental conditions that the mice experienced throughout our
352 study may have been a better representation of the wild environments for some species than for
353 others. Even though one of our goals was to begin disentangling phenotypic plasticity from
354 genetics in *Peromyscus*, it is impossible to quantify the extent to which plasticity may have
355 influenced our results. Further, while we speculate some ecological interpretations of these data,
356 it has previously been argued that species which appear to exhibit phenotypic specializations in
357 morphology or physiology may, in actuality, be ecological generalists that consume preferred
358 food items when available but maintain specialized phenotypes to be able to feed on unpreferred
359 resources when needed (Robinson and Wilson, 1998). In the context of this study, our equal
360 conditions could be phenotypic equalizers, but they also potentially make species differences

361 more evident, highlighting the difficulty of understanding the relative influence of phenotypic
362 plasticity versus constitutively evolved differences in digestive morphology and physiology.
363 Ideally, further studies will continue to build on our existing knowledge of *Peromyscus* natural
364 history in the wild, along with captive studies under a variety of standardized conditions to
365 understand the roles of phenotypic flexibility and evolved, genetic control of gut morphology
366 and physiology.

367 Regardless, our results along with previous research suggest *Peromyscus* may be useful
368 as a future model to study the genetic underpinnings of gut morphology. Understanding the
369 molecular and genetic basis for morphological diversity is of interest to evolutionary biologists
370 (Rebeiz et al., 2015), and has largely focused on external morphological traits. To date, a handful
371 of genome-wide association studies have established a foundational understanding of genomic
372 regions that are important for determining gut morphology and physiology. Nearly all of these
373 studies, however, have focused on farmed animals, namely pigs, chickens, and other livestock
374 animals (Cao et al., 2020; Li et al., 2018; Lu et al., 2014; Mabelebele et al., 2014; Moreira et al.,
375 2019; Zhu et al., 2019). For example, one study found that a ~170 Mb region on the GGA1 gene
376 is important for small intestine length determination in chickens, and that small intestine length
377 demonstrated good SNP-based heritability (Li et al., 2018). However, livestock have experienced
378 extensive artificial selection towards increased growth and production, and so the genomic
379 regions identified in these species may be very different from those genomic changes yielding
380 interspecific differences across species. *Peromyscus* mice are among the most abundant and
381 well-studied of all small mammal species in North America (Bedford and Hoekstra, 2015), with
382 the ability for some species to hybridize (Weber et al., 2013), and for the relative ease of raising
383 them in laboratory settings. Thus, *Peromyscus* species represent a biologically promising and

384 logistically feasible system in which to study the underlying genetic mechanisms leading to these
385 interspecies differences in gut anatomy. However, we encourage the development of other rodent
386 and animal systems to address similar questions.

387 Our understanding of the nuanced evolution associated with digestive morphology and
388 physiology among closely related species occupying similar niches is limited. Previous literature
389 has not robustly disentangled genetics from environmental impacts on these systems. In this
390 study, we found phylogenetic signals in relative foregut mass and small intestine length, as well
391 as relative foregut and small intestine mass as a proportion of total gut mass. We also highlight
392 several closely related species with marked differences in gut morphology. Our results build on
393 our limited understanding of the specific ways that the environment and genome can interact to
394 determine animal phenotypes, and highlight *Peromyscus* as a promising system for future studies
395 in the realm of comparative morphology, physiology, and the genetic architectures that underlie
396 environmental specialization across species.

397

398 **Acknowledgements:** We are grateful to Dr. Denise Dearing and Dr. Seth Bordenstein for
399 sharing resources and animal space to accommodate this project. We are also thankful to Joshua
400 Brinkerhoff for assistance with animal dissections and to Karen Peralta Martínez for her helpful
401 feedback on the manuscript.

402

403 **Funding:** This work was supported by the National Science Foundation [IOS-1942587].

404

405

406

407 **REFERENCES**

408 Adedeji, T.G., Fasanmade, A., Olapade-Olaopa, E., 2019. Multigenerational effects of dietary
409 macronutrient intake on the metabolic phenotype of male Wistar rats. *Nutrition* 58, 125-133.

410 Afik, D., Vidal, E.C., Martinez del Rio, C., Karasov, W.H., 1995. Dietary modulation of intestinal
411 hydrolytic enzymes in yellow-rumped warblers. *American Journal of Physiology-Regulatory,*
412 *Integrative and Comparative Physiology* 269, R413-R420.

413 Bedford, N.L., Hoekstra, H.E., 2015. The natural history of model organisms: *Peromyscus* mice
414 as a model for studying natural variation. *Elife* 4, e06813.

415 Bendesky, A., Kwon, Y.-M., Lassance, J.-M., Lewarch, C.L., Yao, S., Peterson, B.K., He, M.X.,
416 Dulac, C., Hoekstra, H.E., 2017. The genetic basis of parental care evolution in monogamous
417 mice. *Nature* 544, 434-439.

418 Boettiger, C., Coop, G., Ralph, P., 2012. Is your phylogeny informative? Measuring the power of
419 comparative methods. *Evolution: International Journal of Organic Evolution* 66, 2240-2251.

420 Brooks, A.W., Kohl, K.D., Brucker, R.M., van Opstal, E.J., Bordenstein, S.R., 2016.
421 *Phylosymbiosis: relationships and functional effects of microbial communities across host*
422 *evolutionary history. PLoS biology* 14, e2000225.

423 Cahalane, V.H., 1939. Mammals of the Chiricahua Mountains, Cochise County, Arizona.
424 *Journal of Mammalogy* 20, 418-440.

425 Cant, J.P., McBride, B.W., Croom Jr, W.J., 1996. The regulation of intestinal metabolism and its
426 impact on whole animal energetics. *Journal of animal science* 74, 2541-2553.

427 Cao, X., Wang, Y., Shu, D., Qu, H., Luo, C., Hu, X., 2020. Food intake-related genes in chicken
428 determined through combinatorial genome-wide association study and transcriptome analysis.
429 *Animal Genetics* 51, 741-751.

430 Caviedes-Vidal, E., Afik, D., del Rio, C.M., Karasov, W.H., 2000. Dietary modulation of intestinal
431 enzymes of the house sparrow (*Passer domesticus*): testing an adaptive hypothesis.
432 *Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology* 125, 11-
433 24.

434 Cork, S.J., 1994. Digestive constraints on dietary scope in small and moderately-small
435 mammals: how much do we really understand?

436 del Rio, C.M., Brugger, K.E., Rios, J.L., Vergara, M.E., Witmer, M., 1995. An experimental and
437 comparative study of dietary modulation of intestinal enzymes in European starlings (*Sturnus*
438 *vulgaris*). *Physiological Zoology* 68, 490-511.

439 Dewsbury, D.A., Baumgardner, D.J., Evans, R.L., Webster, D.G., 1980. Sexual dimorphism for
440 body mass in 13 taxa of muroid rodents under laboratory conditions. *Journal of Mammalogy* 61,
441 146-149.

442 Dudley, R., Gans, C., 1991. A critique of symmorphosis and optimality models in physiology.
443 *Physiological Zoology* 64, 627-637.

444 Duque-Correa, M.J., Codron, D., Meloro, C., McGrosky, A., Schiffmann, C., Edwards, M.S.,
445 Clauss, M., 2021. Mammalian intestinal allometry, phylogeny, trophic level and climate.
446 *Proceedings of the Royal Society B* 288, 20202888.

447 Everett, J.B., 1985. Mechanisms of community establishment in secondary successions.
448 University of Virginia.

449 Garland Jr, T., 1998. 3.2 Conceptual and methodological issues in testing the predictions of
450 symmorphosis. *Principles of animal design: The optimization and symmorphosis debate*, 40.

451 Gärtner, K., Pfaff, J., 1979. The forestomach in rats and mice, a food store without bacterial
452 protein digestion. *Zentralblatt für Veterinärmedizin Reihe A* 26, 530-541.

453 Gentry, J.B., Smith, M.H., 1968. Food habits and burrow associates of *Peromyscus polionotus*.
454 *Journal of Mammalogy* 49, 562-565.

455 German, D.P., Nagle, B.C., Villeda, J.M., Ruiz, A.M., Thomson, A.W., Contreras Balderas, S.,
456 Evans, D.H., 2010. Evolution of herbivory in a carnivorous clade of minnows (Teleostei):

457 Cyprinidae): effects on gut size and digestive physiology. *Physiological and Biochemical*
458 *Zoology* 83, 1-18.

459 Gorman, M.L., Corp, N., Speakman, J.R., 1997. Apparent absorption efficiency and gut
460 morphometry of wood mice, *Apodemus sylvaticus*, from two distinct populations with different
461 diets. *Physiological zoology* 70, 610-614.

462 Green, D.A., Millar, J.S., 1987. Changes in gut dimensions and capacity of *Peromyscus*
463 *maniculatus* relative to diet quality and energy needs. *Canadian Journal of Zoology* 65, 2159-
464 2162.

465 Griffen, B.D., Mosblack, H., 2011. Predicting diet and consumption rate differences between
466 and within species using gut ecomorphology. *Journal of Animal Ecology* 80, 854-863.

467 Grinnell, J., Orr, R.T., 1934. Systematic review of the californicus group of the rodent genus
468 *Peromyscus*. *Journal of Mammalogy* 15, 210-220.

469 Gross, J.E., Wang, Z., Wunder, B.A., 1985. Effects of food quality and energy needs: changes
470 in gut morphology and capacity of *Microtus ochrogaster*. *Journal of Mammalogy* 66, 661-667.

471 Hall, E., Kelson, K.R., 1959. *The mammals of North America*. 2 Vols. Ronald Press.

472 Hamilton, W., 1941. The food of small forest mammals in eastern United States. *Journal of*
473 *Mammalogy* 22, 250-263.

474 Havighorst, A., Kaza, V., Kiaris, H., 2019. The *Peromyscus* Genetic Stock Center, The
475 *Biological Resources of Model Organisms*. CRC Press, 183-196.

476 Hoppe, M.I., Meloro, C., Edwards, M.S., Codron, D., Clauss, M., Duque-Correa, M.J., 2021.
477 Less need for differentiation? Intestinal length of reptiles as compared to mammals. *PLoS one*
478 16, e0253182.

479 Hume, I., 1994. Gut morphology, body size and digestive performance in rodents. The digestive
480 system in mammals: food, form and function, 315-323.

481 Kamler, J.F., Pennock, D.S., 2004. Microhabitat selection of *Peromyscus leucopus* and *P.*
482 *maniculatus* in mid-successional vegetation. *Transactions of the Kansas Academy of Science*
483 107, 89-92.

484 Karasov, W.H., Douglas, A.E., 2013. Comparative digestive physiology. *Comprehensive*
485 *Physiology* 3, 741.

486 King, J., 1968. Biology of *Peromyscus* (Rodentia). Special Publication# 2, The American Society
487 of Mammalogist. Allen Press, Lawrence, KS.

488 Kohl, K.D., Brzék, P., Caviedes-Vidal, E., Karasov, W.H., 2011. Pancreatic and intestinal
489 carbohydrases are matched to dietary starch level in wild passerine birds. *Physiological and*
490 *Biochemical Zoology* 84, 195-203.

491 Kohl, K.D., Miller, A.W., Marvin, J.E., Mackie, R., Dearing, M.D., 2014. Herbivorous rodents (N
492 *eotoma* spp.) harbour abundant and active foregut microbiota. *Environmental Microbiology* 16,
493 2869-2878.

494 Koteja, P., 1996. Limits to the energy budget in a rodent, *Peromyscus maniculatus*: does gut
495 capacity set the limit? *Physiological Zoology* 69, 994-1020.

496 Kotrschal, A., Szidat, S., Taborsky, B., 2014. Developmental plasticity of growth and digestive
497 efficiency in dependence of early-life food availability. *Functional Ecology* 28, 878-885.

498 Langer, P., Clauss, M., 2018. Morphological adaptation of the eutherian gastrointestinal tract to
499 diet. *Vertebrate Zoology* 68, 237-252.

500 Lavin, S.R., Karasov, W.H., Ives, A.R., Middleton, K.M., Garland Jr, T., 2008. Morphometrics of
501 the avian small intestine compared with that of nonflying mammals: a phylogenetic approach.
502 *Physiological and biochemical zoology* 81, 526-550.

503 Lawlor, T.E., 1982. *The mammals of north america*. JSTOR.

504 Li, S., Wang, X., Qu, L., Dou, T., Ma, M., Shen, M., Guo, J., Hu, Y., Wang, K., 2018. Genome-
505 wide association studies for small intestine length in an F2 population of chickens. *Italian*
506 *Journal of Animal Science* 17, 294-300.

507 Lu, D., Li, Q., Wu, Z., Shang, S., Liu, S., Wen, X., Li, Z., Wu, F., Li, N., 2014. High-level
508 recombinant human lysozyme expressed in milk of transgenic pigs can inhibit the growth of
509 *Escherichia coli* in the duodenum and influence intestinal morphology of sucking pigs. *PLoS*
510 One 9, e89130.

511 Mabelebele, M., Ng'ambi, J., Norris, D., Ginindza, M., 2014. Comparison of gastrointestinal tract
512 and pH values of digestive organs of Ross 308 broiler and indigenous Venda chickens fed the
513 same diet.

514 Meserve, P.L., 1976. Food relationships of a rodent fauna in a California coastal sage scrub
515 community. *Journal of Mammalogy* 57, 300-319.

516 Moreira, G.C.M., Salvian, M., Boschiero, C., Cesar, A.S.M., Reecy, J.M., Godoy, T.F., Ledur,
517 M.C., Garrick, D., Mourão, G.B., Coutinho, L.L., 2019. Genome-wide association scan for QTL
518 and their positional candidate genes associated with internal organ traits in chickens. *BMC*
519 *genomics* 20, 1-15.

520 Moyers, J.E., 1996. Food habits of Gulf Coast subspecies of beach mice (*Peromyscus*
521 *polionotus* spp.). Auburn University.

522 Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., Thuiller, W.,
523 2012. How to measure and test phylogenetic signal. *Methods in Ecology and Evolution* 3, 743-
524 756.

525 Mykles, D.L., Ghalambor, C.K., Stillman, J.H., Tomanek, L., 2010. Grand challenges in
526 comparative physiology: integration across disciplines and across levels of biological
527 organization. *Integrative and comparative biology* 50, 6-16.

528 Naya, D.E., Feijoo, M., Lessa, E.P., Pardiñas, U.F., Teta, P., Tomasco, I.H., Valdez, L., D'elía,
529 G., 2014. Digestive morphology of two species of *Abrothrix* (Rodentia, Cricetidae): comparison
530 of populations from contrasting environments. *Journal of Mammalogy* 95, 1222-1229.

531 Ng, S.-F., Lin, R.C., Laybutt, D.R., Barres, R., Owens, J.A., Morris, M.J., 2010. Chronic high-fat
532 diet in fathers programs β -cell dysfunction in female rat offspring. *Nature* 467, 963-966.

533 O'Grady, S.P., Morando, M., Avila, L., Dearing, M.D., 2005. Correlating diet and digestive tract
534 specialization: examples from the lizard family Liolaemidae. *Zoology* 108, 201-210.

535 Orme, C., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., Pearse, W., 2012.
536 Comparative analysis of phylogenetics and evolution in R. R package version 0.4.

537 Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N., Pearse, W., 2013. The
538 caper package: comparative analysis of phylogenetics and evolution in R. R package version 5,
539 1-36.

540 Perrin, M., Curtis, B., 1980. Comparative morphology of the digestive system of 19 species of
541 Southern African myomorph rodents in relation to diet and evolution. *African Zoology* 15, 22-33.

542 Rebeiz, M., Patel, N.H., Hinman, V.F., 2015. Unraveling the tangled skein: the evolution of
543 transcriptional regulatory networks in development. *Annual review of genomics and human*
544 *genetics* 16, 103-131.

545 Robinson, B.W., Wilson, D.S., 1998. Optimal foraging, specialization, and a solution to Liem's
546 paradox. *The American Naturalist* 151, 223-235.

547 Sabat, P., Novoa, F., Bozinovic, F., Martínez del Rio, C., 1998. Dietary flexibility and intestinal
548 plasticity in birds: a field and laboratory study. *Physiological Zoology* 71, 226-236.

549 Schmidly, D.J., Bradley, R.D., 2016. *The mammals of Texas*. University of Texas Press.

550 Schondube, J.E., Herrera-M, L.G., del Rio, C.M., 2001. Diet and the evolution of digestion and
551 renal function in phyllostomid bats. *Zoology* 104, 59-73.

552 Smith, M.H., 1971. Food as a limiting factor in the population ecology of *Peromyscus polionotus*
553 (Wagner). *Annales Zoologici Fennici*. JSTOR, 109-112.

554 Spinks, A., Perrin, M., 1995. The digestive tract of *Macroscelides proboscideus* and the effects
555 of diet quality on gut dimensions. *African Zoology* 30, 33-36.

556 Stevens, C.E., Hume, I.D., 2004. *Comparative physiology of the vertebrate digestive system*.
557 Cambridge University Press.

558 Swanson, M.E., Franklin, J.F., Beschta, R.L., Crisafulli, C.M., DellaSala, D.A., Hutto, R.L.,
559 Lindenmayer, D.B., Swanson, F.J., 2011. The forgotten stage of forest succession: early-
560 successional ecosystems on forest sites. *Frontiers in Ecology and the Environment* 9, 117-125.
561 Vander Wall, S.B., Dittel, J.W., 2021. The geographical distribution of rodent granivory and
562 cheek pouches across North America. *Journal of Biogeography* 48, 2708-2714.
563 Veal, R., Caire, W., 1979. *Peromyscus eremicus*. Mammalian species, 1-6.
564 Wagner, C.E., McIntyre, P.B., Buels, K.S., Gilbert, D.M., Michel, E., 2009. Diet predicts intestine
565 length in Lake Tanganyika's cichlid fishes. *Functional Ecology* 23, 1122-1131.
566 Wang, D.-H., Pei, Y.-X., Yang, J.-C., Wang, Z.-W., 2003. Digestive tract morphology and food
567 habits in six species of rodents. *FOLIA ZOOLOGICA-PRAHA* 52, 51-56.
568 Wang, L., Caviedes-Vidal, E., Karasov, W.H., 2019. Diet composition modulates intestinal
569 hydrolytic enzymes in white-footed mice (*Peromyscus leucopus*). *Journal of Mammalogy* 100,
570 1512-1521.
571 Weber, J.N., Peterson, B.K., Hoekstra, H.E., 2013. Discrete genetic modules are responsible for
572 complex burrow evolution in *Peromyscus* mice. *Nature* 493, 402-405.
573 Whitaker, J.O., 1980. The Audubon society field guide to North American mammals.
574 Woodall, P.F., 1987. Digestive tract dimensions and body mass of elephant shrews
575 (*Macroscelididae*) and the effects of season and habitat.
576 Zhu, F., Cheng, S.-R., Yang, Y.-z., Hao, J.-P., Yang, F.-X., Hou, Z.-C., 2019. Genome-wide
577 association study of growth and feeding traits in pekin ducks. *Frontiers in genetics* 10, 702.
578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595 Table 1. Natural history and niche information of our five *Peromyscus* species

Species (Latin name; English name)	Documented Range	Habitat	Diet	Notable Characteristics	References
<i>P. polionotus</i> ; oldfield mouse or beach mouse	Southeastern US	Open sandy areas or dunes in coastal areas; pine-hardwood forests with scant understory	Seeds and grains; opportunistic carnivores	Early succession species; Smallest species in the genus (body mass of 10-15 g)	(Dewsbury et al., 1980; Gentry and Smith, 1968; Moyers, 1996; Smith, 1971)
<i>P. maniculatus</i> ; deer mouse	Abundant throughout all of North America	Preferences vary depending on subspecies, mainly grasslands	Generalists; arthropods, nuts, seeds, fruits, and fungi	Most abundant mammal in North America	(Hall and Kelson, 1959; King, 1968; Lawlor, 1982; Meserve, 1976; Whitaker, 1980)
<i>P. leucopus</i> ; white-footed mouse	Eastern half of the US	Brushy fields, rocky woodlands, habitats with canopies and woody debris	Insects and arthropods, seasonal consumption of seeds and fruit		(Hamilton, 1941; Kamler and Pennock, 2004)
<i>P. eremicus</i> ; cactus mouse	Southwestern US, north central Mexico	Deserts, rocky and sandy substrates, arid environments	Shrub fruit, seeds, flowers, opportunistic and seasonal	Likely acquires water by consuming succulents; Estivates during	(Cahalane, 1939; Dewsbury et al., 1980; Meserve,

			consumption of insects	driest months to save water	1976; Schmidly and Bradley, 2016; Veal and Caire, 1979);
<i>P. californicus</i> ; California mouse	South of the San Francisco Bay and west of California's deserts	Chaparral and oak woodland, mesic laurel forests, redwood forests	Specialist on shrub fruits, seeds, flowers, particularly of California laurel	Largest <i>Peromyscus</i> species in the USA (body mass 33 – 54 g)	(Grinnell and Orr, 1934; Meserve, 1976)

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616 FIGURE LEGENDS

617

618

619 Figure 1. Phylogenetic relationships of our five focal *Peromyscus* species, from (Brooks et al.,
620 2016).

621

622

623 Figure 2. Masses of different gut sections across *Peromyscus* species. Graphs depict least square
624 means (to control for body mass) \pm standard error. One-way analysis of covariance (ANCOVA)
625 was used to determine statistical differences across species and relationships with body mass.
626 Letters above points denote statistical significance within a gut region across rodent species,
627 based on a Tukey's post-hoc test. Species not sharing letters are significantly different from one
628 another.

629

630 Figure 3. Relative masses of different sections of the gut as percentages of total gut mass. One-
631 way analysis of variance (ANOVA) was used to determine statistical differences across species.
632 Error bars represent standard error of the mean. Letters inside colored regions denote statistical
633 significance within a gut region across rodent species, based on a Tukey's post-hoc test. Species
634 not sharing letters are significantly different from one another.

635

636 Figure 4. Relative lengths and surface areas of the small and large intestines across *Peromyscus*
637 species. Graphs depict least square means (to control for body mass) \pm standard error. One-way
638 analysis of covariance (ANCOVA) was used to determine statistical differences across species
639 and relationships with body mass. Letters above points denote statistical significance within a gut
640 region across rodent species, based on a Tukey's post-hoc test. Species not sharing letters are
641 significantly different from one another.

642

643 Figure 5. Activities of maltase and aminopeptidase-N across *Peromyscus* species. Graphs depict
644 means \pm standard error. One-way analysis of variance (ANOVA) was used to determine
645 statistical differences across species. Letters above points denote statistical significance within a
646 gut region across rodent species, based on a Tukey's post-hoc test. Species not sharing letters are
647 significantly different from one another.

648

649

650