
  

  

Abstract— Stroke is one of the most significant non-
communicable diseases in the world with approximately 15 
million people experiencing a new or recurrent stroke each 
year. More than half of stroke survivors have some degree 
of permanent sensorimotor impairment that requires 
specialized physical rehabilitation. Wearable technologies are a 
cost-effective means by which to monitor and provide feedback 
about sensorimotor function across the different phases of 
stroke recovery, with data-driven insights used to improve 
clinical decision-making and care experiences. In this paper, we 
describe the redesign of a single inertial measurement unit 
(IMU) sensor system (i.e., the T’ena sensor), and evaluate the 
ability of the sensor to accurately measure movement 
kinematics during the performance of common post-stroke 
motor task. Results indicate high to very high agreement and 
correlation values between the T’ena sensor and the gold-
standard motion capture system, regardless of kinematic 
parameter. In sum, the described T’ena sensor is capable of 
accurately measuring upper limb movement kinematics, using 
only a single sensor. The adoption of portable and low-cost 
devices have the ability to make a substantial impact for the 
millions of persons who exhibit motor impairments after a 
stroke. 
 

I. INTRODUCTION 

After a stroke, 65% of individuals suffer from upper limb 
motor impairments [1], such as weakness (hemiparesis), 
complete paralysis (hemiplegia), proprioceptive deficits, 
disordered movement organization, decreased range of 
motion, and impaired force generation. In addition to the 
substantial limitations in the ability to perform functional 
tasks, stroke survivors exhibit a reduced capacity for 
independent living and economic self-sufficiency [2]. Post-
stroke arm dysfunction is a key target of stroke rehabilitation 
protocols, with conventional rehabilitation strategies 
incorporating repetitive motor or task practice to facilitate 
neuroplasticity and brain reorganization that drives functional 
motor recovery [3]. However, this mode of rehabilitation 
requires frequent in-person interactions with therapists that 
can last for several months, which invariably places a 
significant burden on rural and remote communities that 
struggle with a shortage of specialized health professionals 
crucial to the delivery of rehabilitative services [4].  
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Fortunately, advances in digital health [5] and wearable 
sensor technology [6] can alleviate the extant barriers to 
healthcare access and infrastructure that rural communities 
face. Inertial measurement units (IMUs) are low-cost portable 
devices that can precisely and quantitatively measure 
movement kinematics, which enable clinicians to identify 
pathological movement, characterize disease state, and track 
recovery progress [7-11]. For example, [11] utilized a 
commercially available four-IMU sensor system (Noraxon, 
USA Inc.) to evaluate post-stroke upper limb kinematics 
during the finger-to-nose task. Results of that study 
demonstrated that sub-acute stroke patients’ clinical 
assessment scores (evaluated by the Fugl-Meyer Assessment 
of Upper Extremity [uFMA]) were highly correlated with 
mean velocity (r = 0.85), peak velocity (r  = 0.81), and 
moderately the number of movement units (r = -0.65). While 
the results of that study were promising, the determination of 
upper extremity kinematic information required multiple 
sensors and custom written software scripts. Thus, while 
there are many benefits to using currently available 
commercial IMU systems, their costs (associated in large part 
due to the necessity of multiple IMUs) and technical 
knowledge requirements limit their application to rural 
communities and decentralized environments (i.e., 
community centers or patient’s home).  

Our research group have capitalized on developments in 
IMU hardware technology and signal processing techniques 
to develop a low-cost rehabilitation system that uses a single 
IMU and advanced signal-processing algorithms to record 
limb movements and derive kinematic metrics that are 
meaningful to both clinicians and patients [7-8]. The validity 
of the sensor was recently compared to a gold standard 
optoelectronic motion capture system [8], with results 
indicating strong positive correlations and agreement with the 
gold standard reference system (i.e., optoelectric Vicon 
motion capture system), regardless of task or kinematic 
parameter. The sensitivity of the sensor was then tested in 
patients with acquired brain injury (i.e., stroke, traumatic 
brain injury) [8], with results demonstrating that the sensor 
could accurately discriminate between different arm 
impairment level. Specifically, uFMA scores were 
significantly correlated with movement time, movement 
smoothness, mean velocity, and peak velocity. 

While the sensor system proved to be a useful tool in the 
evaluation of sensorimotor dysfunction, the system consisted 
of cumbersome breakout modules and a portable battery bank 
that yielded a total volume of 242,748 mm3 and weight of 
450 g (Fig 1A). As such, while limb kinematics could be 
accurately measured using the sensor, substantial changes 
needed to be made to improve the weight and robustness of 

Design and Evaluation of an IMU Sensor-based System for the 
Rehabilitation of Upper Limb Motor Dysfunction  

Bao Tran, Xiaorong Zhang, IEEE Member, Amir Modan, and Charmayne M.L. Hughes, IEEE 
Member 

20
22

 9
th

 IE
EE

 R
AS

/E
M

BS
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
fo

r B
io

m
ed

ic
al

 R
ob

ot
ic

s a
nd

 B
io

m
ec

ha
tr

on
ic

s (
Bi

oR
ob

) |
 9

78
-1

-6
65

4-
58

49
-8

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

BI
O

RO
B5

26
89

.2
02

2.
99

25
54

9

Authorized licensed use limited to: San Francisco State Univ. Downloaded on March 31,2023 at 19:36:15 UTC from IEEE Xplore.  Restrictions apply. 



  

A 

 

 B 
Fig. 1. Original sensor (A: top) and redesigned T’ena sensor (B: 
bottom) placed on a participant’s wrist. 

the system before initiating clinical trials in decentralized 
locations. As such, the aim of the present study was to 
redesign the system into a single printed circuit board (PCB) 
and lithium-ion (li-ion) battery. In doing so, a more 
lightweight and robust commercial version of the sensor 
(hereafter referred to as the T’ena sensor) can be deployed to 
decentralized environments, such as community centers or 
patients’ homes.  

To this end, participants performed an object 
manipulation task taken from the Action Research Arm Test 
(ARAT) [13], while data was simultaneously collected by the 
T’ena sensor and the Vicon motion capture system. Results 
of this study will provide a better understanding of the 
validity and reliability of a single IMU-based sensor system 
to accurately measuring movement kinematics. 

 

II. METHODS 

A. Hardware and Firmware Design of the T’ena Sensor 
1) Original Design 

 The original IMU sensor prototype (Fig. 1A) was 
comprised of a Tiva C Series TM4C123G microcontroller 
LaunchPad, a GY-91 MPU-9250 sensor breakout, an HC-05 
Bluetooth breakout, and a portable USB power bank. The 
three breakout boards were encased in a 3D printed polylactic 
acid (PLA) filament enclosure (83H x 59W x 39D mm) that 
had a build thickness of 0.25 mm. The sensor was powered 
by a 2600 mAh USB portable battery (29H x 21W x 85D 
mm) that was affixed to the top of the enclosure. For the 
firmware design, raw accelerometer and gyroscope data 
collected from the GY-91 sensor were read by the 
microcontroller using an Inter-Integrated Circuit (I2C) 
interface. Data was then transmitted to the HC-05 Bluetooth 
module via Universal Asynchronous Receiver-Transmitter 
(UART) interface whenever a new data sample was 
collected. More details about the original sensor design can 
be found in [7]. 

2) Design of the T’ena Sensor 
The redesigned T’ena sensor system (Fig. 1B) consists of 

three main components: an ESP32-WROOM32D 
microcontroller module (Espressif), an ICM20689 IMU 
sensor (Invensense), and a 400 mAh li-ion battery 
(Sparkfun). The ESP32-WROOM32D module was chosen 
for its low cost (single unit cost of $6.825), small size, and 
the integration of an on-board Bluetooth module. The 
ICM20689 IMU sensor was selected because of its low cost 
(single unit cost of $6.09) and similarity to the original MPU-
9250 IMU sensor, which is now an end-of-life product. The 
custom PCB was designed to minimize space and reduce 
connection fragility, which was an issue with the original 
sensor due to the use of separate breakout boards. A USB-C 
connector was integrated into the system and custom circuits 
were developed to charge, program, and monitor the sensor. 
Finally, an easy-to-use touch-on-hold-off push button circuit 
was integrated into the PCB to power the system. The sensor 
enclosure was designed and manufactured using 
stereolithographic (SLA) 3D printing. In contrast to PLA 3D 
printing, SLA uses a laser to cure liquid resin into hardened 
plastic, and has build lines with a thickness of 0.05 mm. As 
such, SLA resin parts have five times the layer resolution of 

acrylonitrile butadiene styrene (ABS) and PLA plastic parts, 
thereby providing crisper and higher-resolution detail. 

In sum, the redesigned sensor system weighed 60 g with 
a total size of 50H x 70W x 20D mm (total volume of 
70,000 mm3). Thus, the weight of the sensor was reduced by 
390 g and the total size by 172,748 mm3. The firmware of 
the sensor was also improved by replacing the I2C-based 
data collection module with a new module that integrates the 
Serial Peripheral Interface (SPI) and a First-In-First-Out 
(FIFO) buffer to achieve higher efficiency and timing 
precision with processing and transmission of bulk 
measurements. 

 

B. Participants 

Ten participants from the San Francisco State University 
campus (mean age = 38.2, SD = 14.9) participated in the 
present study. Based on administration of the Revised 
Edinburgh Handedness Inventory [13], all participants were 
right handed (mean = 93.61, SD = 6.73). The study was 
approved by the San Francisco State University Institutional 
Review Board committee. 
 

C. Tested Systems 
Initial calibration of the IMU occurred at the start of each 

data collection session, and consisted of placing the sensor on 
a flat table until 1,000 data points were captured. During each 
trial, the raw data were sent from the IMU to the 
microcontroller via the SPI communication protocol, and 
then to a custom application on a personal computer via 
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Fig. 2. Representative resultant velocity trajectory for the T’ena sensor (solid blue lines) and the Vicon motion capture system (dashed orange lines). 

classic Bluetooth which saved the incoming data stream in a 
CSV file for later off-line processing. 

Criterion reference kinematic data was collected using an 
eight camera Vicon motion capture system (Bonita 10, 
VICON Motion Systems), with a temporal and spatial 
resolution of 100 Hz and 1 mm, respectively. One 9.5 mm 
reflective markers was attached to the top of the T’ena sensor 
and was used to calculate movement kinematics during task 
performance. 

 

C. Procedure 

After completing the written informed consent forms, the 
participant sat upright in a chair with the sensor placed on the 
participant’s dominant hand. The validity of the T’ena sensor 
to capture movement kinematics was evaluated through the 
performance of a functional task commonly used to evaluate 
post-stroke upper limb function. The Block Task is one of the 
functional activities from the grasp subtest of the Action 
Research Arm Test (ARAT) [12]. In this task, the participant 
started each trial with their hand on the table in a pronated 
palm down orientation. Upon the verbal “go” signal, the 
participant grasped a 5 cm3 block from the table, placed it on 
the a 37 cm high shelf placed 25 cm away from the front 
edge of the table, and then bought their hand back to rest on 
the starting position. Instructions emphasized that the 
participant was to perform the task at a comfortable speed, 
and to grasp the object in such a way that it would not slip 
during the fingers during the object transportation. 

 

D. Data Processing 
For each individual trial, the 3D coordinates of the Vicon 

marker were reconstructed and labeled, and then exported in 
CSV format. Using a custom written MATLAB (The 
MathWorks®, Version R2021a) script, the 3D position data 
of each axis was transformed into movement velocity using 
a first-order central difference technique, with the individual 
vector velocities summed to derive resultant velocity.  

The raw gyroscope and accelerometer values obtained 
from the T’ena sensor were offline processed by a custom 
program written in MATLAB (The MathWorks, Version 
R2021a).  While more details can be found in [8], the data 
sets were trimmed based on a stationary detection threshold 
to exclude stationary sections at the beginning and end of the 
recorded gesture. A Madgwick Attitude Heading Reference 
System (AHRS) filter was used to compute the current IMU 
orientation and transform the data from the local sensor 
frame to the global earth frame. Additionally, 1 g was 
subtracted from the z-axis acceleration to account for 
gravitational acceleration effects. Subsequently, the integral 
of the acceleration signal was calculated to derive velocity 
separately for the three axes. Resultant velocity was then 
calculated by summing the individual vector velocities.  

For each Vicon and T’ena sensor trial, data analysis was 
restricted to the time period between when the hand left the 
starting position (movement onset) to the time period when 
the hand returned to the starting position (movement offset). 
Based on prior literature [7-8], as well as more recent pilot 
testing, it was expected that the resultant velocity profile 
would exhibit three peaks for this particular functional task. 
As such, movement onset and offset were determined using 
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kinematic criterion. Specifically, movement onset was 
determined as the instant when resultant velocity exceeded 
1.5% of the first velocity peak. Movement offset was 
determined as the moment when the velocity trace dropped, 
and remained, below 1.5% of the last peak. 

 
E. Statistical Analysis 

Four kinematic variables were derived based on their 
sensitivity to detect differences in motor dysfunction and use 
in clinical settings [14]: Total movement time (ms), Path 
Length (mm), Peak Velocity of the Placing Phase (mm/s), 
and Peak Velocity of the Return Phase (mm/s). Total 
movement time was defined as the time period from 
movement onset to movement offset. Path Length was 
defined the total displacement of the hand from the beginning 
to the end of the movement.  The Block task can be divided 
into a placing phase and a return phase. The placing phase 
was defined as the time period between when the block was 
lifted from the table to the time the block contacted the shelf 
top. The return phase was defined as the time period between 
when the object contacted the shelf top to when the hand was 
placed on the back on the table. For these two phases, peak 
velocity was calculated by determining the maximal resultant 
speed reached in the given phase.  

For the aforementioned variables, Pearson product 
moment correlation coefficients (r) were calculated to 
quantify the degree to which the T’ena sensor and the gold 
standard Vicon motion capture system were related. 

Additionally, intra class correlation coefficients (ICC 2,1) 
were used to evaluate inter-sensor reliability, using the 
absolute agreement definition between the redesigned sensor 
and the gold standard motion capture system. 

 
 

III. RESULTS 

Overall, 596 trials where obtained with both the T’ena 
sensor and a Vicon motion capture system. As can be seen in 
Fig. 2, the T’ena sensor produced resultant velocity 
trajectories representative of the Block Task [7-8], with 
kinematics that were similar to that captured by the gold-
standard Vicon motion capture system.  Raincloud plots that 
depict the data distribution and summary statistics (i.e., 
median, first quartile, third quartile, minimum, and 
maximum) are shown in Fig 3 (movement time, path length) 
and Fig 4 (peak velocity of the placing phase, peak velocity 
of the return phase). In general, the data was normally 
distributed for the movement time and return phase peak 
velocity, whereas peak velocity of the placing phase, was 
positively skewed, and path length exhibited a bimodal 
distribution. Despite the differences due to kinematic 
parameter, the shape of the distribution (as well as the five 
summary statistics values) were similar for both the T’ena 
sensor and Vicon system.  

 

 

 Fig. 3. Raincloud plots showing the data distribution, and five summary 
statistics for the T’ena sensor (dark grey) and the Vicon motion capture 
system (light grey) for the movement time (top panel) and path length 
metrics (bottom panel). 

 

 Fig. 4. Raincloud plots showing the data distribution, and five summary 
statistics for the T’ena sensor (dark grey) and the Vicon motion capture 
system (light grey) for the peak velocity of the placing phase (top panel) 
and return phase (bottom panel). 
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Fig. 5. Correlation plots between the T’ena sensor and Vicon. A) 
Movement time, B) Path length, C) Peak velocity of the placing phase, 
and D) Peak velocity of the return phase. 

  

 

Examining the relationship and absolute agreement 
between the sensors, it was clear that there was a very high 
level of agreement for all metrics (Fig 5). Pearson product 
moment correlation values were strong/high for the 
movement time variable (r = 0.720), and very strong/very 
high for path length r = 0.962, peak velocity of the placing 
phase (r = 0.939), and peak velocity of the return phase (r = 
0.917), all p’s < 0.05. Intra class correlation coefficients 
showed a similar pattern of results, with the level of absolute 
agreement between the two systems classified as strong for 
the movement time metric (ICC = 0.706), and very strong for 
the path length (ICC = 0.952), peak velocity of the placing 
phase (ICC = 0.920), and peak velocity of the return phase 
(ICC = 0.878). 

 

IV. DISCUSSION 

Conventional physical therapy is a time and labor-
intensive process that is plagued by low patient engagement, 
satisfaction, and adherence. Current technology-based 
solutions involve optoelectric motion capture systems that 
record 3D position of reflective markers and actuated robotic 
devices that generate driving forces to help the patient move 
through space [15-16]. Despite their high accuracy, many of 
these systems have not been commercially successful 
because of their high cost, safety issues, and bulkiness that 
limit their application to decentralized environments (i.e., 
community centers or patient’s home). As such, the aim of 
the present study was to determine the ability of the T’ena 
IMU sensor-based system to reliably and accurately assess 
movement quality and efficiency in physically and 
neurologically healthy adults.  

Statistical analysis indicated high to very high 
correlations (r range = 0.720 – 0.962) and absolute agreement 
values (ICC range = 0.706 – 0.952) between the T’ena sensor 
and reference system, regardless of kinematic metric. Of the 
four measured kinematic metrics, correlations and absolute 
agreement values were the lowest for the movement time 
metric. This is most likely due to the fact that the IMU is less 
sensitive to the very low acceleration movements that occur 
at the start and end of the movement. To correct for this 
issue, future work will involve exploring whether parameter 
tuning of the stationary detection threshold and/or AHRS 
filter algorithm can improve the accuracy of the T’ena sensor 
to detect movement onset and offset. Additionally, we will 
explore whether deep learning algorithms (e.g., convolutional 
neural networks) [17] are better able to improve the accuracy 
of the T’ena sensor by learning the non-dimensional 
relationship from the high-dimensional data collected by the 
T’ena sensor and a reference system.  

Some of the limitations of the study include the 
evaluation of a single post-stroke upper limb ADL, and 
measuring performance in only neurologically healthy 
individuals. The Block Task was selected because it is a 
commonly used functional activity from the Action Research 
Arm Test (ARAT) [12], and was used in our prior work [7-
8]. As such, we were able to compare the qualitatively 
compare the performance of the current T’ena sensor to data 
collected from neurologically healthy individuals [7] and 
acquired brain injured individuals [8] using the original 
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version of the sensor. That said, in future studies, we will 
determine the ability of the T’ena sensor to measure a variety 
of ADL tasks associated with motor impairment and 
disability scales, such as the Motor Assessment Scale (MAS), 
the Melbourne Assessment of Unilateral Upper Limb 
Function, and the Fugl-Meyer Upper Extremity Motor 
Assessment [uFMA]). In addition, while the current iteration 
of the sensor was not tested in post-stroke patients, the 
original iteration was tested in Ethiopian acquired brain 
injured patients (e.g., stroke, traumatic brain injury) [8]. In 
that study, the sensor was found to be sensitive to differences 
in performance-based upper limb impairment. Thus, future 
experimental work will focus on measuring motor 
performance in a heterogeneous sample of post-stroke 
individuals, with sensor metrics compared with values 
obtained from clinical scales. This work will enable us to 
determine the tasks (as well as the level of motor 
impairment), that the T’ena sensor is capable of accurately 
measuring.  

From a technical and commercialization perspective, 
performance metrics (e.g., processing delay, communication 
latency, data loss rate, memory and power consumption) will 
be measured, after which extensive analysis will be done to 
evaluate relations and trade-offs between these performance 
metrics in order to identify optimal settings for the system. 
Concurrently, the T’ena sensor will be integrated into the 
T’ena rehabilitation mobile application [18], after which the 
ability of the system to support recovery for individuals with 
stroke in their home environment will be examined. 

Despite these limitations, the results of the study are 
promising and highlight the potential of the redesigned T’ena 
sensor for decentralized rehabilitation of stroke and other 
neurological (e.g., Huntington’s disease, Traumatic Brain 
Injury) and physical impairments (e.g., work-related 
musculoskeletal injuries). The research described in this 
paper is innovative because it proposes a new home-based 
approach to physical and neurological rehabilitation 
management, which up until now has been conducted in 
specialized clinics. The long-term goal of this work is to 
leverage mobile and wearable technologies to address the 
primary reasons why patients do not remain compliant with 
their plan of care – access and convenience. By facilitating 
the successful establishment of technology-enabled home-
based rehabilitation of persons with motor impairments, the 
T’ena system could lead to a paradigm shift in the way that 
neurological disorders and physical injuries are managed. 
From a broader perspective, context-appropriate low-cost 
technologies can lead to improvements in clinical practice 
and access to care in medically underserved areas (e.g., 
health professional shortage areas [HPSAs] and medically 
underserved areas [MUAs]) or during situations where in-
person medical care is contraindicated (e.g., the COVID-19 
pandemic). 
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