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Abstract— Stroke isone of the most significant non-
communicable diseases in the world with approximately 15
million people experiencing a new or recurrent stroke each
year. More than half of stroke survivors have some degree
of permanent sensorimotor impairment that requires
specialized physical rehabilitation. Wearable technologies are a
cost-effective means by which to monitor and provide feedback
about sensorimotor function across the different phases of
stroke recovery, with data-driven insights used to improve
clinical decision-making and care experiences. In this paper, we
describe the redesign of a single inertial measurement unit
(IMU) sensor system (i.e., the T’ena sensor), and evaluate the
ability of the sensor to accurately measure movement
kinematics during the performance of common post-stroke
motor task. Results indicate high to very high agreement and
correlation values between the T’ena sensor and the gold-
standard motion capture system, regardless of kinematic
parameter. In sum, the described T’ena sensor is capable of
accurately measuring upper limb movement kinematics, using
only a single sensor. The adoption of portable and low-cost
devices have the ability to make a substantial impact for the
millions of persons who exhibit motor impairments after a
stroke.

I. INTRODUCTION

After a stroke, 65% of individuals suffer from upper limb
motor impairments [1], such as weakness (hemiparesis),
complete paralysis (hemiplegia), proprioceptive deficits,
disordered movement organization, decreased range of
motion, and impaired force generation. In addition to the
substantial limitations in the ability to perform functional
tasks, stroke survivors exhibit a reduced capacity for
independent living and economic self-sufficiency [2]. Post-
stroke arm dysfunction is a key target of stroke rehabilitation
protocols, with conventional rehabilitation strategies
incorporating repetitive motor or task practice to facilitate
neuroplasticity and brain reorganization that drives functional
motor recovery [3]. However, this mode of rehabilitation
requires frequent in-person interactions with therapists that
can last for several months, which invariably places a
significant burden on rural and remote communities that
struggle with a shortage of specialized health professionals
crucial to the delivery of rehabilitative services [4].
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Fortunately, advances in digital health [5] and wearable
sensor technology [6] can alleviate the extant barriers to
healthcare access and infrastructure that rural communities
face. Inertial measurement units (IMUs) are low-cost portable
devices that can precisely and quantitatively measure
movement kinematics, which enable clinicians to identify
pathological movement, characterize disease state, and track
recovery progress [7-11]. For example, [11] utilized a
commercially available four-IMU sensor system (Noraxon,
USA Inc.) to evaluate post-stroke upper limb kinematics
during the finger-to-nose task. Results of that study
demonstrated that sub-acute stroke patients’ clinical
assessment scores (evaluated by the Fugl-Meyer Assessment
of Upper Extremity [uFMA]) were highly correlated with
mean velocity (r = 0.85), peak velocity (» = 0.81), and
moderately the number of movement units (» = -0.65). While
the results of that study were promising, the determination of
upper extremity kinematic information required multiple
sensors and custom written software scripts. Thus, while
there are many benefits to using currently available
commercial IMU systems, their costs (associated in large part
due to the necessity of multiple IMUs) and technical
knowledge requirements limit their application to rural
communities and decentralized environments (i.e.,
community centers or patient’s home).

Our research group have capitalized on developments in
IMU hardware technology and signal processing techniques
to develop a low-cost rehabilitation system that uses a single
IMU and advanced signal-processing algorithms to record
limb movements and derive kinematic metrics that are
meaningful to both clinicians and patients [7-8]. The validity
of the sensor was recently compared to a gold standard
optoelectronic motion capture system [8], with results
indicating strong positive correlations and agreement with the
gold standard reference system (i.e., optoelectric Vicon
motion capture system), regardless of task or kinematic
parameter. The sensitivity of the sensor was then tested in
patients with acquired brain injury (i.e., stroke, traumatic
brain injury) [8], with results demonstrating that the sensor
could accurately discriminate between different arm
impairment level. Specifically, uFMA scores were
significantly correlated with movement time, movement
smoothness, mean velocity, and peak velocity.

While the sensor system proved to be a useful tool in the
evaluation of sensorimotor dysfunction, the system consisted
of cumbersome breakout modules and a portable battery bank
that yielded a total volume of 242,748 mm? and weight of
450 g (Fig 1A). As such, while limb kinematics could be
accurately measured using the sensor, substantial changes
needed to be made to improve the weight and robustness of
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the system before initiating clinical trials in decentralized
locations. As such, the aim of the present study was to
redesign the system into a single printed circuit board (PCB)
and lithium-ion (li-ion) battery. In doing so, a more
lightweight and robust commercial version of the sensor
(hereafter referred to as the T’ena sensor) can be deployed to
decentralized environments, such as community centers or
patients’ homes.

To this end, participants performed an object
manipulation task taken from the Action Research Arm Test
(ARAT) [13], while data was simultaneously collected by the
T’ena sensor and the Vicon motion capture system. Results
of this study will provide a better understanding of the
validity and reliability of a single IMU-based sensor system
to accurately measuring movement kinematics.

II. METHODS

A. Hardware and Firmware Design of the T ena Sensor

1) Original Design

The original IMU sensor prototype (Fig. 1A) was
comprised of a Tiva C Series TM4C123G microcontroller
LaunchPad, a GY-91 MPU-9250 sensor breakout, an HC-05
Bluetooth breakout, and a portable USB power bank. The
three breakout boards were encased in a 3D printed polylactic
acid (PLA) filament enclosure (83H x 59W x 39D mm) that
had a build thickness of 0.25 mm. The sensor was powered
by a 2600 mAh USB portable battery (29H x 21W x 85D
mm) that was affixed to the top of the enclosure. For the
firmware design, raw accelerometer and gyroscope data
collected from the GY-91 sensor were read by the
microcontroller using an Inter-Integrated Circuit (I2C)
interface. Data was then transmitted to the HC-05 Bluetooth
module via Universal Asynchronous Receiver-Transmitter
(UART) interface whenever a new data sample was
collected. More details about the original sensor design can
be found in [7].

2) Design of the T ena Sensor

The redesigned T’ena sensor system (Fig. 1B) consists of
three main  components: an  ESP32-WROOM32D
microcontroller module (Espressif), an ICM20689 IMU
sensor (Invensense), and a 400 mAh li-ion battery
(Sparkfun). The ESP32-WROOM32D module was chosen
for its low cost (single unit cost of $6.825), small size, and
the integration of an on-board Bluetooth module. The
ICM20689 IMU sensor was selected because of its low cost
(single unit cost of $6.09) and similarity to the original MPU-
9250 IMU sensor, which is now an end-of-life product. The
custom PCB was designed to minimize space and reduce
connection fragility, which was an issue with the original
sensor due to the use of separate breakout boards. A USB-C
connector was integrated into the system and custom circuits
were developed to charge, program, and monitor the sensor.
Finally, an easy-to-use touch-on-hold-off push button circuit
was integrated into the PCB to power the system. The sensor
enclosure was designed and manufactured using
stereolithographic (SLA) 3D printing. In contrast to PLA 3D
printing, SLA uses a laser to cure liquid resin into hardened
plastic, and has build lines with a thickness of 0.05 mm. As
such, SLA resin parts have five times the layer resolution of

acrylonitrile butadiene styrene (ABS) and PLA plastic parts,
thereby providing crisper and higher-resolution detail.

In sum, the redesigned sensor system weighed 60 g with
a total size of S50H x 70W x 20D mm (total volume of
70,000 mm?). Thus, the weight of the sensor was reduced by
390 g and the total size by 172,748 mm?. The firmware of
the sensor was also improved by replacing the 12C-based
data collection module with a new module that integrates the
Serial Peripheral Interface (SPI) and a First-In-First-Out
(FIFO) buffer to achieve higher efficiency and timing
precision with processing and transmission of bulk
measurements.

Fig. 1. Original sensor (A: top) and redesigned T’ena sensor (B:
bottom) placed on a participant’s wrist.

B. Participants

Ten participants from the San Francisco State University
campus (mean age = 38.2, SD = 14.9) participated in the
present study. Based on administration of the Revised
Edinburgh Handedness Inventory [13], all participants were
right handed (mean = 93.61, SD = 6.73). The study was
approved by the San Francisco State University Institutional
Review Board committee.

C. Tested Systems

Initial calibration of the IMU occurred at the start of each
data collection session, and consisted of placing the sensor on
a flat table until 1,000 data points were captured. During each
trial, the raw data were sent from the IMU to the
microcontroller via the SPI communication protocol, and
then to a custom application on a personal computer via
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classic Bluetooth which saved the incoming data stream in a
CSV file for later off-line processing.

Criterion reference kinematic data was collected using an
eight camera Vicon motion capture system (Bonita 10,
VICON Motion Systems), with a temporal and spatial
resolution of 100 Hz and 1 mm, respectively. One 9.5 mm
reflective markers was attached to the top of the T’ena sensor
and was used to calculate movement kinematics during task
performance.

C. Procedure

After completing the written informed consent forms, the
participant sat upright in a chair with the sensor placed on the
participant’s dominant hand. The validity of the T’ena sensor
to capture movement kinematics was evaluated through the
performance of a functional task commonly used to evaluate
post-stroke upper limb function. The Block Task is one of the
functional activities from the grasp subtest of the Action
Research Arm Test (ARAT) [12]. In this task, the participant
started each trial with their hand on the table in a pronated
palm down orientation. Upon the verbal “go” signal, the
participant grasped a 5 cm® block from the table, placed it on
the a 37 cm high shelf placed 25 cm away from the front
edge of the table, and then bought their hand back to rest on
the starting position. Instructions emphasized that the
participant was to perform the task at a comfortable speed,
and to grasp the object in such a way that it would not slip
during the fingers during the object transportation.
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D. Data Processing

For each individual trial, the 3D coordinates of the Vicon
marker were reconstructed and labeled, and then exported in
CSV format. Using a custom written MATLAB (The
MathWorks®, Version R2021a) script, the 3D position data
of each axis was transformed into movement velocity using
a first-order central difference technique, with the individual
vector velocities summed to derive resultant velocity.

The raw gyroscope and accelerometer values obtained
from the T’ena sensor were offline processed by a custom
program written in MATLAB (The MathWorks, Version
R2021a). While more details can be found in [8], the data
sets were trimmed based on a stationary detection threshold
to exclude stationary sections at the beginning and end of the
recorded gesture. A Madgwick Attitude Heading Reference
System (AHRS) filter was used to compute the current IMU
orientation and transform the data from the local sensor
frame to the global earth frame. Additionally, 1 g was
subtracted from the z-axis acceleration to account for
gravitational acceleration effects. Subsequently, the integral
of the acceleration signal was calculated to derive velocity
separately for the three axes. Resultant velocity was then
calculated by summing the individual vector velocities.

For each Vicon and T’ena sensor trial, data analysis was
restricted to the time period between when the hand left the
starting position (movement onset) to the time period when
the hand returned to the starting position (movement offset).
Based on prior literature [7-8], as well as more recent pilot
testing, it was expected that the resultant velocity profile
would exhibit three peaks for this particular functional task.
As such, movement onset and offset were determined using
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Fig. 2. Representative resultant velocity trajectory for the T ena sensor (solid blue lines) and the Vicon motion capture system (dashed orange lines).
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kinematic criterion. Specifically, movement onset was
determined as the instant when resultant velocity exceeded
1.5% of the first velocity peak. Movement offset was
determined as the moment when the velocity trace dropped,
and remained, below 1.5% of the last peak.
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Fig. 3. Raincloud plots showing the data distribution, and five summary
statistics for the T’ena sensor (dark grey) and the Vicon motion capture
system (light grey) for the movement time (top panel) and path length
metrics (bottom panel).

E. Statistical Analysis

Four kinematic variables were derived based on their
sensitivity to detect differences in motor dysfunction and use
in clinical settings [14]: Total movement time (ms), Path
Length (mm), Peak Velocity of the Placing Phase (mm/s),
and Peak Velocity of the Return Phase (mm/s). Total
movement time was defined as the time period from
movement onset to movement offset. Path Length was
defined the total displacement of the hand from the beginning
to the end of the movement. The Block task can be divided
into a placing phase and a return phase. The placing phase
was defined as the time period between when the block was
lifted from the table to the time the block contacted the shelf
top. The return phase was defined as the time period between
when the object contacted the shelf top to when the hand was
placed on the back on the table. For these two phases, peak
velocity was calculated by determining the maximal resultant
speed reached in the given phase.

For the aforementioned variables, Pearson product
moment correlation coefficients () were calculated to
quantify the degree to which the T’ena sensor and the gold
standard Vicon motion capture system were related.

Additionally, intra class correlation coefficients (ICC 2,1)
were used to evaluate inter-sensor reliability, using the
absolute agreement definition between the redesigned sensor
and the gold standard motion capture system.
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Fig. 4. Raincloud plots showing the data distribution, and five summary
statistics for the T’ena sensor (dark grey) and the Vicon motion capture
system (light grey) for the peak velocity of the placing phase (top panel)
and return phase (bottom panel).

III. RESULTS

Overall, 596 trials where obtained with both the T’ena
sensor and a Vicon motion capture system. As can be seen in
Fig. 2, the T’ena sensor produced resultant velocity
trajectories representative of the Block Task [7-8], with
kinematics that were similar to that captured by the gold-
standard Vicon motion capture system. Raincloud plots that
depict the data distribution and summary statistics (i.e.,
median, first quartile, third quartile, minimum, and
maximum) are shown in Fig 3 (movement time, path length)
and Fig 4 (peak velocity of the placing phase, peak velocity
of the return phase). In general, the data was normally
distributed for the movement time and return phase peak
velocity, whereas peak velocity of the placing phase, was
positively skewed, and path length exhibited a bimodal
distribution. Despite the differences due to kinematic
parameter, the shape of the distribution (as well as the five
summary statistics values) were similar for both the T’ena
sensor and Vicon system.
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Fig. 5. Correlation plots between the T’ena sensor and Vicon. A)
Movement time, B) Path length, C) Peak velocity of the placing phase,
and D) Peak velocity of the return phase.

Examining the relationship and absolute agreement
between the sensors, it was clear that there was a very high
level of agreement for all metrics (Fig 5). Pearson product
moment correlation values were strong/high for the
movement time variable (» = 0.720), and very strong/very
high for path length » = 0.962, peak velocity of the placing
phase ( = 0.939), and peak velocity of the return phase (r =
0.917), all p’s < 0.05. Intra class correlation coefficients
showed a similar pattern of results, with the level of absolute
agreement between the two systems classified as strong for
the movement time metric (ICC = 0.706), and very strong for
the path length (ICC = 0.952), peak velocity of the placing
phase (ICC = 0.920), and peak velocity of the return phase
(ICC =0.878).

IV. DISCUSSION

Conventional physical therapy is a time and labor-
intensive process that is plagued by low patient engagement,
satisfaction, and adherence. Current technology-based
solutions involve optoelectric motion capture systems that
record 3D position of reflective markers and actuated robotic
devices that generate driving forces to help the patient move
through space [15-16]. Despite their high accuracy, many of
these systems have not been commercially successful
because of their high cost, safety issues, and bulkiness that
limit their application to decentralized environments (i.e.,
community centers or patient’s home). As such, the aim of
the present study was to determine the ability of the T’ena
IMU sensor-based system to reliably and accurately assess
movement quality and efficiency in physically and
neurologically healthy adults.

Statistical ~analysis indicated high to very high
correlations (r range = 0.720 — 0.962) and absolute agreement
values (ICC range = 0.706 — 0.952) between the T’ena sensor
and reference system, regardless of kinematic metric. Of the
four measured kinematic metrics, correlations and absolute
agreement values were the lowest for the movement time
metric. This is most likely due to the fact that the IMU is less
sensitive to the very low acceleration movements that occur
at the start and end of the movement. To correct for this
issue, future work will involve exploring whether parameter
tuning of the stationary detection threshold and/or AHRS
filter algorithm can improve the accuracy of the T’ena sensor
to detect movement onset and offset. Additionally, we will
explore whether deep learning algorithms (e.g., convolutional
neural networks) [17] are better able to improve the accuracy
of the T’ena sensor by learning the non-dimensional
relationship from the high-dimensional data collected by the
T’ena sensor and a reference system.

Some of the limitations of the study include the
evaluation of a single post-stroke upper limb ADL, and
measuring performance in only neurologically healthy
individuals. The Block Task was selected because it is a
commonly used functional activity from the Action Research
Arm Test (ARAT) [12], and was used in our prior work [7-
8]. As such, we were able to compare the qualitatively
compare the performance of the current T’ena sensor to data
collected from neurologically healthy individuals [7] and
acquired brain injured individuals [8] using the original
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version of the sensor. That said, in future studies, we will
determine the ability of the T’ena sensor to measure a variety
of ADL tasks associated with motor impairment and
disability scales, such as the Motor Assessment Scale (MAS),
the Melbourne Assessment of Unilateral Upper Limb
Function, and the Fugl-Meyer Upper Extremity Motor
Assessment [uFMA]). In addition, while the current iteration
of the sensor was not tested in post-stroke patients, the
original iteration was tested in Ethiopian acquired brain
injured patients (e.g., stroke, traumatic brain injury) [8]. In
that study, the sensor was found to be sensitive to differences
in performance-based upper limb impairment. Thus, future
experimental work will focus on measuring motor
performance in a heterogeneous sample of post-stroke
individuals, with sensor metrics compared with values
obtained from clinical scales. This work will enable us to
determine the tasks (as well as the level of motor
impairment), that the T’ena sensor is capable of accurately
measuring.

From a technical and commercialization perspective,
performance metrics (e.g., processing delay, communication
latency, data loss rate, memory and power consumption) will
be measured, after which extensive analysis will be done to
evaluate relations and trade-offs between these performance
metrics in order to identify optimal settings for the system.
Concurrently, the T’ena sensor will be integrated into the
T’ena rehabilitation mobile application [18], after which the
ability of the system to support recovery for individuals with
stroke in their home environment will be examined.

Despite these limitations, the results of the study are
promising and highlight the potential of the redesigned T’ena
sensor for decentralized rehabilitation of stroke and other
neurological (e.g., Huntington’s disease, Traumatic Brain
Injury) and physical impairments (e.g., work-related
musculoskeletal injuries). The research described in this
paper is innovative because it proposes a new home-based
approach to physical and neurological rehabilitation
management, which up until now has been conducted in
specialized clinics. The long-term goal of this work is to
leverage mobile and wearable technologies to address the
primary reasons why patients do not remain compliant with
their plan of care — access and convenience. By facilitating
the successful establishment of technology-enabled home-
based rehabilitation of persons with motor impairments, the
T’ena system could lead to a paradigm shift in the way that
neurological disorders and physical injuries are managed.
From a broader perspective, context-appropriate low-cost
technologies can lead to improvements in clinical practice
and access to care in medically underserved areas (e.g.,
health professional shortage arecas [HPSAs] and medically
underserved areas [MUASs]) or during situations where in-
person medical care is contraindicated (e.g., the COVID-19
pandemic).
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