:' frontiers ‘ Frontiers in Bioengineering and Biotechnology

ORIGINAL RESEARCH
published: 27 June 2022
doi: 10.3389/fbice.2022.918617

OPEN ACCESS

Edited by:

Li L,

Georgia Southern University,
United States

Reviewed by:

Michael Fréhlich,

University of Kaiserslautern, Germany
Roberto Bernasconi,

Politecnico di Milano, Italy

*Correspondence:
Charmayne Mary Lee Hughes
cmhughes@sfsu.edu

Specialty section:

This article was submitted to
Biomechanics,

a section of the journal
Frontiers in Bioengineering and
Biotechnology

Received: 12 April 2022
Accepted: 09 June 2022
Published: 27 June 2022

Citation:

Hughes CML, Tran B, Modan A and
Zhang X (2022) Accuracy and Validity
of a Single Inertial Measurement Unit-
Based System to Determine Upper
Limb Kinematics for Medically
Underserved Populations.

Front. Bioeng. Biotechnol. 10:918617.
doi: 10.3389/fbice.2022.918617

®

Check for
updates

Accuracy and Validity of a Single
Inertial Measurement Unit-Based
System to Determine Upper Limb
Kinematics for Medically Underserved
Populations

Charmayne Mary Lee Hughes "?*, Bao Tran®, Amir Modan® and Xiaorong Zhang®

"NeuroTech Lab, Health Equity Institute, San Francisco State University, San Francisco, CA, United States, Department of
Kinesiology, San Francisco State University, San Francisco, CA, United States, 3School of Engineering, San Francisco State
University, San Francisco, CA, United States

Stroke is one of the leading causes of death and disability worldwide, with a
disproportionate burden represented by low- and middle-income countries (LMICs). To
improve post-stroke outcomes in LMICs, researchers have sought to leverage emerging
technologies that overcome traditional barriers associated with stroke management. One
such technology, inertial measurement units (IMUs), exhibit great potential as a low-cost,
portable means to evaluate and monitor patient progress during decentralized
rehabilitation protocols. As such, the aim of the present study was to determine the
ability of a low-cost single IMU sensor-based wearable system (named the T ena sensor) to
reliably and accurately assess movement quality and efficiency in physically and
neurologically healthy adults. Upper limb movement kinematics measured by the T’ena
sensor were compared to the gold standard reference system during three functional
tasks, and root mean square errors, Pearson’s correlation coefficients, intraclass
correlation coefficients, and the Bland Altman method were used to compare
kinematic variables of interest between the two systems for absolute accuracy and
equivalency. The T'ena sensor and the gold standard reference system were
significantly correlated for all tasks and measures (r range = 0.648—0.947), although
less so for the Finger to Nose task (r range = 0.648—0.894). Results demonstrate that
single IMU systems are a valid, reliable, and objective method by which to measure
movement kinematics during functional tasks. Context-appropriate enabling technologies
specifically designed to address barriers to quality health services in LMICs can accelerate
progress towards the United Nations Sustainable Development Goal 3.

Keywords: low-and middle-income countries, stroke, rehabilitation, inertial measurement unit, kinematics

INTRODUCTION

According to the most recent estimates, stroke is currently the second leading cause of death (11.6%
of total deaths) and the third leading cause of disability [5.7% of total disability-adjusted life-years
(DALYs)] (GBD 2019 Stroke Collaborators, 2021). While stroke is a major public health issue with
an increasing global economic and social burden, there are apparent variations in the geographic
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distribution of stroke burden (Feigin et al., 2022). Although
stroke-related DALYs in high-income countries have decreased
from 16.4 million to 13.1 million in the years between 2009 and
2019, that number has increased from 75.1 million to 111.0
million for low- and lower-middle income countries (LMICs)
during the same time period (Feigin et al., 2022).

When comparing stroke-related deaths and disability based on
World Bank income level, it has been reported that individuals
residing in low-income countries are 3.6 times more likely to die
from a stroke or complications, and have 3.7 times higher rate of
stroke-related DALYs, when compared to individuals from high-
income countries (HICs, GBD 2019 Stroke Collaborators, 2021).
In addition, individuals from LMICs often exhibit poorer
outcomes (Langhorne et al, 2018). For example, the
INTERSTROKE study examined patient outcomes across 32
countries, and reported that individuals from LMICs were
more likely to have severe or very severe strokes (52 vs. 20%)
and reduced level of consciousness (54 vs. 7%) compared to their
counterparts from HICs. In addition, stroke outcomes were worse
for patients in LMICs, who exhibited both poorer survival (88 vs.
98%) and survival without severe disability scores (78 vs. 90%)
than individuals in HICs.

Generally, individuals with stroke have impaired sensorimotor
(Mahak et al., 2018; Baye et al., 2020) and psychological function
(Miranda et al., 2018), limitations performing daily activities
(Teasell et al., 2020), unanticipated financial burdens (Kaur
et al., 2014), and reduced quality of life (Akosile et al., 2013).
For example, Mahak et al. (2018) examined stroke outcomes in
Chandigarh India, and reported that 63.6% of patients exhibited
hemiparesis, 25.7% exhibiting difficulties performing activities of
daily living (ADLs), 45.5% exhibiting difficulties in performing
social activities, and 23.6% exhibiting hemiplegia. Another study
conducted in Johannesburg South Africa reported that 43% of
stroke patients had no or minimal reintegration into their
community, and expressed particular difficulties returning to
work and taking on responsibilities with their extended
families (Maleka, Kusambiza-Kiingi, & Ntsiea, 2017).

Recovery from stroke often requires physical therapy aimed at
improving upper limb functioning and reducing long-term
disability (Pollock et al., 2014). Overall, there is evidence
suggesting that physical rehabilitation strategies incorporating
repetitive motor practice can facilitate neuroplasticity and brain
reorganization (Veerbeek et al,, 2014). However, this mode of
rehabilitation requires frequent one-on-one interactions with
therapists that can last for several months, and place a
significant burden on nations with a shortage of trained health
professionals crucial to the delivery of rehabilitation services.
Individuals residing in LMICs may have to travel long distances
to access the same services that residents from HICs can more
easily access, which places a substantial burden on patients living
in these countries, especially for individuals with low incomes, no
paid time off from their jobs, physical limitations, or without
access to personal transportation.

It has rightfully been suggested that the toll of stroke in LMICs
can be reduced by multidisciplinary research and capacity-
building, the development and promotion of evidence-based
stroke prevention and intervention services, and enhancing

Validity of a Single Sensor to Determine Kinematics

stroke awareness among the general population (Akinyemi
et al,, 2021). Unfortunately, even if such transformations were
to begin this year, it would take decades to close the stroke burden
gap. Because the current stroke burden in LMICs necessitates
urgent measures to improve post-stroke outcomes, researchers
have sought to leverage emerging technologies that can help
LMICs take advantage of new technologies that overcome
traditional barriers associated with stroke management
(Sureshkumar et al, 2016; Sarfo et al, 2018), while also
skipping inefficient or more expensive healthcare methods
(Jakab et al., 2018). Mobile technologies have shown some
promise in the decentralized physical rehabilitation of stroke
patients residing in LMICs. For example, Sarfo et al. (2018) used
the 9zest Stroke Rehabilitation App to deliver a 12 week stroke
exercise program to Ghanaian stroke patients in their home
environment. Compared to baseline, participants exhibited
lower functional impairment at both 1 month and 3 month
follow-up. In addition, although 60% of patients reported
major challenges with internet connectivity and the stability of
the audiovisual stream, 60% of participants reported excellent
satisfaction with the mobile health enabled intervention, and all
participants reported they would use the system in the future.

Another enabling technology are inertial measurement units
(IMUs) that exhibit great potential as a low-cost, portable means
to evaluate and monitor patient progress during decentralized
rehabilitation protocols (Parrington et al., 2021). IMUs have been
shown to accurately measure motor function and provide
information regarding the different motor components that
contribute to task performance, (e.g, movement accuracy,
efficiency, precision, smoothness) (Hughes et al, 2019a;
Schwarz et al., 2019), with kinematic variables obtained by
IMU-based system correlating with standard clinical
assessments (Hughes et al,, 2019b; Oubre et al, 2020; Chen
et al,, 2021). For example, Hughes et al. (2019a), Hughes et al.
(2019b) developed a low-cost IMU-based wearable sensor
specifically designed for medically underserved populations.
The validity of the sensor was recently compared to a gold
standard optoelectronic motion capture system (Hughes et al.,
2019a), with results indicating strong positive correlations and
agreement with the reference system across three tasks used to
measure post-stroke arm function and impairment. The
sensitivity of the sensor was then tested in Ethiopian acquired
brain injured patients (Hughes et al., 2019b), with results
demonstrating that the sensor is capable of deriving
movement kinematics (e.g., movement time, movement
smoothness, and peak velocity) that can discriminate between
arm impairment levels, as measured by the Fugl-Meyer Upper
Extremity Motor Assessment.

While the sensor proved to be a valid and sensitive measure of
kinematic analysis, changes needed to be made to the sensor system
to reduce the weight and improve the robustness of the system (Tran
et al,, 2022). The microcontroller, IMU, and power source were
upgraded and then integrated into a single printed circuit board
(PCB). These hardware modifications resulted in firmware upgrades,
specifically, the original Inter-Integrated Circuit (I°C) synchronous
communication protocol was upgraded to Serial Peripheral Interface
(SPI) and the IMU’s internal First-In-First-Out (FIFO) buffer was
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FIGURE 1 | Appearance of the T’ena IMU sensor-based system and
approximate mounted position.

enabled. Together, these firmware changes allowed for higher
efficiency and timing precision with processing and transmission
of bulk measurements. Given the considerable hardware and
firmware changes, it is essential that the sensor system undergoes
the revalidation process prior to clinical validation and product
commercialization. As such, the aim of the present study was to
determine the ability of the redesigned IMU sensor-based system
(hereafter referred to as the T’ena sensor) to reliably and accurately
assess movement quality and efficiency in physically and
neurologically healthy adults. Upper limb movement kinematics
measured by the T’ena sensor were compared to the gold standard
criterion measure during three functional tasks.

MATERIALS AND METHODS

Participants

Ten participants from the San Francisco State University campus
(mean age = 27.4, SD = 5.3) participated in the present study.
Based on administration of the Revised Edinburgh Handedness
Inventory (Dragovic, 2004) which ranks handedness in a battery
of common tasks on a scale ranging from -1 (strongly left-
handed) to 1 (strongly right-handed), all participants were right
handed (mean = 88.7, SD = 7.5). None of the participants had any
history of physical or neurological conditions that might interfere
with their ability to perform activities of daily living. All
participants gave their written informed consent, and the
experimental procedures were approved by the San Francisco
State University Institutional Review Board committee.

Instrumentation

Kinematic data were simultaneously obtained with an IMU sensor-
based T’ena system placed on the participant’s wrist (Figure 1) and
an eight-camera Bonita 10 Vicon optoelectric motion capture system
(VICON Motion Systems Ltd., UK). The Vicon system was used as
the gold standard reference system, which tracked the three-
dimensional position of a 9.5mm reflective marker attached to
the top of the T°ena sensor, and has a temporal and spatial resolution
of 100 Hz and 1 mm, respectively.

Validity of a Single Sensor to Determine Kinematics

The T’ena sensor consists of a custom printed circuit board
(PCB) that incorporates an ESP32-WROOM?32D microcontroller
module (Espressif), an ICM20689 IMU sensor (Invensense), and
a USB-C connector powered by a 400 mAh lithium-ion battery.
The PCB is housed in a stereolithographic (SLA) 3D printed
plastic enclosure with dimensions of 50 mm x 7 mm x 20 mm
and a total weight of 60 g. The T’ena sensor firmware uses Serial
Peripheral Interface (SPI) and a First-In-First-Out (FIFO) buffer
to achieve higher efficiency and timing precision with processing
and transmission of bulk measurements (Tran et al., 2022). The
raw three-axis accelerometer and gyroscope data from the T’ena
sensor were used to derive upper limb movement kinematics.
Initial calibration of the sensor occurs at the start of each data
collection session, and consisted of placing the sensor on a flat
table until 1,000 data points were captured. The sampling
frequency of the raw data is 100 Hz. During each trial, the raw
data were sent from the sensor to the microcontroller via the SPI
communication protocol, and then to a custom application on a
personal computer via classic Bluetooth which saved the
incoming data stream in a CSV file for later off-line processing.

Tasks and Procedure

Kinematic analysis was evaluated through the performance of
three tasks commonly used to evaluate post-stroke upper limb
function. The Block task is from the grasp subtest of the Action
Research Arm Test (Lyle, 1981) and requires the participant grasp
a 5cm’ block from the table, place it on the top of a 37-cm-high
shelf placed 25 cm away from the proximal edge of the table, and
then bring their hand back to rest on the table. The Drink task is
from the grip subtest of the Frenchay Arm Test (Heller et al,
1987), and requires participants pick up a soda can, bring the can
to their mouth and pantomime taking a sip of the beverage,
placing the can on the table, and bringing the hand back to the
start position on the table. The Finger to Nose task is from the
coordination/speed subtest of the Fugl-Meyer Assessment (Fugl-
Meyer et al.,, 1975), and requires participants bring the tip of the
index finger from the side of their body to their nose, and then
bring their hand back to against the side of their body. For all
trials, participants were instructed to perform the movements at a
natural manner at a comfortable speed. Trials performed in a
manner that did not coincide with the instructions (e.g., moving
prior to verbal start command, placing the object to the wrong
target) were repeated immediately.

The order in which the tasks were performed, and the hand
used to perform each task, were blocked and counterbalanced
across the participants. Participants performed each task 50 times
with each hand (dominant, non-dominant), yielding a total of
100 trials. After twenty trials, participants were given a two-
minute rest period. The entire experiment lasted approximately
45 min.

Data Processing

Using Vicon Nexus 2.12 software, the 3D marker position of the
reflective marker was reconstructed, and filtered using a Woltring
filter, and exported in the CSV file format. Using a custom written
MATLAB (The MathWorks®, Version R2021a) scripts, the 3D
position data of each axis was transformed into movement
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velocity using a first-order central difference technique, with the
individual vector velocities then summed to derive resultant
velocity for each trial.

The raw gyroscope and accelerometer values obtained from
the T’ena sensor were processed using proprietary sensor fusion
and filtering algorithms written in MATLAB (The MathWorks,
Version R2021a). While more details can be found in Hughes
et al,, 2019, data from each trial were trimmed based on a
stationary detection threshold that determines the stationary
sections of the beginning and end of the recorded trial, and
then excludes the stationary sections from further analysis.
Subsequently, the current orientation of the T’ena sensor is
calculated using an Attitude Heading Reference System
(AHRS) filter, and then transformed from the local sensor
coordinate frame to the global (ground) earth frame. To
account for gravitational acceleration effects, 1g was
subtracted from the z-axis acceleration, after which velocity for
the three axes was derived by taking the integral of the
acceleration signals.

Given that the tasks involved all three axes, the individual
vector velocities was summed to derive resultant velocity.
Movement onset and offset were determined using kinematic
criterion, with movement onset calculated as the first instance in
the time series when resultant velocity exceeded 1.5% of the first
velocity peak, and movement offset calculated as the instance in
the time series when the resultant velocity trace dropped, and
remained, below 1.5% of the last peak.

The calculation of the kinematic variables was performed on
the time series between movement onset and movement offset.
Total movement time was defined as the time period from
movement onset to movement offset. Path Length was defined
as the total displacement of the hand from the beginning to the
end of the movement. In addition, we calculated the peak velocity
of the two prominent phases of each task. For the Block task
(Figure 2A), the lift phase was defined as the time period between
when the block was lifted from the table to the time the block
contacted the shelf top. The lower phase was defined as the time
period between when the object contacted the shelf top to when
the hand was placed on the back on the table. For the Drink task
(Figure 2B), it was expected that there would be four peaks in the
resultant velocity profile. The lift phase was defined as the time
period between when the soda can was grasped to when the soda
can reached the participant’s mouth. The lower phase was defined
as the time period between when the can left the participant’s
mouth to when the can was placed back on the table. For the
Finger to Nose task (Figure 2C), two peaks were expected in the
resultant velocity time series. The lift phase was defined as the
time period between when the hand left the side of the body to
when the finger reached the participant’s nose. The lower phase
was defined as the time period between when the finger left the
participant’s nose to when the hand was placed back to the side of
the body.

Statistical Analysis

First, statistical analysis of the continuous time series data was
performed in order to determine the similarity in resultant
velocity trajectories between the two systems throughout the

Validity of a Single Sensor to Determine Kinematics

TABLE 1 | Root mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R?) of the T’ena system to the ground-truth Vicon
motion capture system.

RMSE MAE R?
Block 1.47 2.26 0.891
Drink 1.24 1.00 0.834
Finger to Nose 2.70 213 0.734

RMSE, root mean square error; MAE, mean absolute error; R?, coefficient of
determination.

task. This was achieved using the regression metrics root
mean square error (RMSE), mean absolute error (MAE), and
coefficient of determination (R?). Smaller RMSE and MAE values,
and larger R® values, indicate higher model precision, indicative
of similar spatial trajectories and strong agreement between
devices.

Second, statistical analysis was conducted on the: Total
Movement Time (ms), Path Length (mm), Peak Velocity of
the First Phase (mm/s), and Peak Velocity of the Second
Phase (mm/s). For these variables, Pearson product moment
correlation coefficients (r) were calculated to quantify the
degree to which the T°ena sensor and the gold standard Vicon
motion capture system are related. Rowntree (1981) conventions
were used to interpret coefficients, with values < 0.20 classified as
very weak, values between 0.20-0.40 classified as weak, values
between 0.40-0.70 classified as moderate, values between
0.70-0.90 as strong, and values > 0.90 as very strong.
Intraclass correlation coefficients (ICC 2, 1) were used to
evaluate inter-sensor reliability, using the absolute agreement
definition between the T’ena sensor and the reference system
(Kim, 2013). The strength of the relationship was determined
using Evans (1996) empirical classifications, in which values
lower than 0.20 are considered very weak, values between
0.20-0.39 are considered weak, values between 0.40-0.59 are
considered moderate, values between 0.60-0.79 are considered
strong, and values between 0.80-1.0 are considered very strong.
In addition to the ICC, the level of agreement between the two
systems was calculated using the Bland-Altman method,
separately for each variable (Bland and Altman, 1986).
Accordingly, differences between the two systems were plotted
against the mean of the two devices, thereby providing an
indication of potential systemic bias between the devices
(i.e., mean bias). The level of significance was set to 0.05, and
all statistical analysis was performed using the R environment
(RStudio version 1.4.1103, RStudio, Boston, MA).

RESULTS

Overall, 3,000 trials were simultaneously obtained by the T’ena
sensor and a Vicon motion capture system (10 participants x 2
hands x 3 tasks x 50 trials). As can be seen in Figures 2A-C, the
T’ena sensor produced resultant velocity trajectories that were
similar to that captured by the gold-standard Vicon motion
capture system. The similarity in kinematic waveforms was
confirmed by the regression metrics RMSE, MAE and R’
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TABLE 2 | Kinematic metrics, correlations, intraclass correlations, and Bland-Altman analysis indicating bias and limits of agreement between the T'ena sensor and Vicon

motion capture system.

Vicon Mean (SD) T’ena Mean (SD) ICC(2,1) Pearson’sr Mean Lower Upper
difference limit of limit of
agreement agreement
Block
Movement Time 2,5698.10 (327.47) 2,638.05 (333.53) 0.836 (0.808-0.860)* 0.842* -40.49 —403.90 322.88
Path Length 1,174.89 (143.43)  1,197.60 (155.29) 0.932 (0.883-0.956)* 0.947* -23.58 -122.09 74.92
Lift Phase Peak 11.19 (1.45) 11.10 (1.45) 0.887 (0.871-0.900)* 0.888* 0.09 -1.25 1.44
Velocity
Lower Phase Peak 10.84 (1.27) 11.53 (1.53) 0.773 (0.769-0.901)* 0.882* -0.69 -2.11 0.73
Velocity
Drink
Movement Time 3,683.15 (368.39)  3,761.05 (340.77) 0.809 (0.729-0.860)* 0.846* —77.89 —492.89 337.10
Path Length 1,068.43 (139.47)  1,117.74 (165.69) 0.675 (0.555-0.756)* 0.721* -49.31 -278.00 179.39
Lift Phase Peak 7.30 (1.70) 6.96 (1.16) 0.852 (0.710-0.912)* 0.891* 0.34 -0.83 1.51
Velocity
Lower Phase Peak 7.31 (1.70) 6.50 (1.23) 0.702 (0.259-0.853)* 0.845* 0.80 -1.02 2.62
Velocity
Finger to Nose
Movement Time 2,604.07 (349.42) 2,543.15 (333.80) 0.719 (0.672-0.758)* 0.731* 60.29 —431.17 553.00
Path Length 1,058.28 (103.31)  1,105.43 (208.74) 0.496 (0.420-0.561)* 0.648* -47.15 -364.86 270.57
Lift Phase Peak 11.56 (1.85) 12.77 (2.01) 0.717 (-0.007-0.895)* 0.894* -1.21 -3.01 0.59
Velocity
Lower Phase Peak 8.90 (1.58) 9.46 (2.11) 0.530 (0.209-0.687)* 0.680* -0.56 -3.74 2.63
Velocity

* refers to statistical significance < 0.05.

values between the predicted and true velocity profile (Table 1).
Considering all tasks, the RMSE, MAE, and R’ values ranged
from 1.24 to 2.70, 1.00 to 2.26, and 0.734 to 0.891 respectively.

Mean (SD) values estimated by the T’ena sensor and Vicon
system is provided in Table 2. Overall, strong to very strong
agreements (based on Rowntree, 1981 conventions) were
observed for all metrics across the Block task with Pearson
product moment correlation coefficient (r) values of
0.842-0.947. Correlation coefficients were also high for all
Drink task metrics (r = 0.845-0.891) except path length (r =
0.721). The lowest correlations between devices was found for the
Finger to Nose task (r = 0.648-0.894), with strong correlations
found for movement time (r = 0.731) and lift phase peak velocity
(r = 0.894), and moderate correlations for path length (r = 0.648)
and lower phase peak velocity (r = 0.680).

Inter-sensor reliability values (ICC 2, 1) are presented in
column 4 of Table 2. Regarding all tasks and metrics, the data
obtained by the T’ena system were associated with the data
obtained by VICON (ICC = 0.496-0.932). Inter-sensor
reliability for the Block task yielded very strong ICCs for all
metrics (ICC = 0.836-0.932) except lower phase peak velocity
(ICC = 0.773). For the Drink Task, very strong ICC values were
found for movement time and lift phase peak velocity (ICC =
0.809 and 0.852), and strong ICC values were found for path
length and lower phase peak velocity (ICCs = 0.675 and 0.702).
The lowest reliability was found for the Finger to Nose task, with
moderate ICCs observed for path length and lower phase peak
velocity (ICCs = 0.496 and 0.530) and strong ICCs for movement
time and lift phase peak velocity (ICCs = 0.719 and 0.717).

Bland Altman analysis was conducted to evaluate the limits
of agreement between the T’ena sensor and Vicon data for all

tasks and kinematic metrics (see Supplementary Material and
Table 2 columns 6-8). Mean differences between the two
methods of measurement (i.e., the bias) indicated whether
the T’ena sensor was overestimating (positive bias) or
underestimating (negative bias) behavior compared with
kinematics obtained from the Vicon system. The Bland
Altman  analysis revealed that the Tena sensor
underestimated movement time for the Block (mean
difference = —40.49) and Drink tasks (mean difference =
—77.89 ms), but overestimated movement time for the Finger
to Nose task (mean difference = 60.29 ms). The path length data
displayed underestimation biases for all three tasks, with lower
mean difference for the Block task (-23.58 mm) compared to
the Drink and Finger to Nose tasks (-49.31 mm and
—47.15 mm). The Bland Altman analysis for first phase peak
velocity (mean difference = —1.21 and 0.34) and second phase
peak velocity (mean difference = —0.69 and 0.80) revealed a high
level of agreement between actual peak velocity obtained by the
Vicon system and peak velocity calculated by the T’ena sensor
across all three tasks.

DISCUSSION

The aim of the present study was to determine the ability of the
T’ena IMU sensor-based system to reliably and accurately
assess movement quality and efficiency in three ADL tasks
commonly used to evaluate post-stroke upper limb function.
Analysis of the resultant velocity profile demonstrated
excellent correspondence between the T’ena system and the
ground-truth Vicon motion capture system was strong, with
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strong to very strong validity values across all tasks and
metrics. Moreover, the RMSE, MAE, and R® values obtained
in the current study are congruent and similar to prior studies
that have recorded movement kinematics using wearable
systems with multiple IMUs (e.g., Cho et al., 2018; Teulfl
et al., 2019). Taken together, these results indicate that the
T’ena system was capable of reliably measuring movement
kinematics in clinically relevant movements. The implications
of these results for the transition of this technology from the
research lab to the marketplace to the «clinic are
discussed below.

The largest differences between T’ena IMU sensor-based system
and the Vicon motion capture system derived movement kinematics
were observed for the Nose to Finger task, which exhibited larger
RMSE and lower R’ values than the Block and Glass tasks. In
addition, kinematic metrics of the Finger to Nose task yielded lower
Pearson’s r values than the other tested tasks. Bland-Altman analysis
revealed that these differences were largely systematic in nature with
movement time values derived from the T’ena system that were
60 ms longer than those derived from the ground-truth Vicon
system. The difference in movement time is likely a result of the
required end posture of the tasks. For the Block and Glass tasks, the
hand was to be placed back on the table at the end of the task,
whereas participants ended the task by bringing their hand back to
the side of the body for the Nose to Finger task. In the former two
tasks, the firm surface serves to brake the movement and minimizes
small changes in Vicon marker displacement upon contact with the
table (Figures 2A,B). In contrast, because there is some compliance
in the thigh structure (e.g., skin, adipose tissue), the hand rebounds
against the thigh at the end of the movement, which is evident as a
small velocity curve at the end of the movement (Figure 2C). In light
of these findings, it would seem sensible to verify the calculation of
movement offset by synchronizing both the Vicon and T’ena
systems with a mechanical target switch that can send a 5 v
pulse to the Vicon system when the hand leaves and contacts the
target.

Aligning with previous studies (Hughes et al., 2019a; Hughes
et al., 2019b), we have shown promising validity for movement
kinematics detected using single IMU-based systems. Although
increasing the number of IMUs would allow for the calculation of
kinematics across multiple joints, it would also increase the cost
of the system as well as its usability as a decentralized
rehabilitation tool. For example, donning and doffing wearable
sensors might be challenging for patients with poor distal arm
function or high spasticity. While inconvenient for physically
abled individuals, such experiences have a greater impact for
people with neurological and physical disabilities in that it can
reduce motivation and engagement with the device, as well as
commitment to their rehabilitation protocol.

Further Research

The Tena sensor provides more objective measurements of
movement kinematics than conventional clinical assessments,
which  clinicians can use to administer individualized
rehabilitation protocols as well as adjust therapy plans depending
on patient progress. While a useful tool for any rehabilitation
professional, the ability to use clinically relevant information

Validity of a Single Sensor to Determine Kinematics

about movement quality and efficiency is especially helpful for
rehabilitation clinicians with limited knowledge and experience
treating patients with stroke or other physical or neurological
disorders. On the basis of this study, there are three key areas to
consider for future development of the T’ena sensor system.

First, given that the focus was on revalidating the T’ena sensor
after the considerable changes to the hardware and firmware of
the system, the current study included only neurologically and
physically healthy individuals. The next step in this work is to
examine the ability of the Tena sensor to discriminate between
arm impairment in varying pathological populations, and to
determine the extent to which the sensor-based metrics
correlate to validated condition-specific assessment scales.

Second, as we expand our validation work, efforts will be
focused on determining the types of tasks that the T’ena sensor
can accurately quantify. In this study we have shown reduced
performance of the T’ena algorithm to derive accurate
movement kinematics during the Finger to Nose task, and
will explore whether we can increase the accuracy of the signal
processing algorithm by tuning the parameters used to detect
stationary states and IMU orientation, as well as exploring
whether deep learning models trained using the ground truth
motion capture data can improve the ability of the T’ena
sensor to accurately measure movement kinematics. In
addition, due to the fact IMU-based systems often suffer
from errors that accumulate over time (Geiger et al., 2008),
we will first focus on shorter duration tasks from clinically
validated measures (e.g., “turning the key in lock” from the
Wolf Motor Function test, “shoulder abduction” from the
Fugl-Meyer Assessment Upper Extremity) before turning
our attention to longer duration (e.g., the 6-minute Walk
test, cf. Storm et al., 2020) and repetitive actions (e.g., the
Box and Blocks test, cf. Mathiowetz et al., 1985) that will likely
not yield accurate enough metrics using the current algorithm.

Third, the T’ena sensor will be incorporated into a tele-
rehabilitation application that runs on the Android platform
(Hughes et al., 2019c), after which participatory iterative
design approaches will be used to develop a robust system that
can be used in medically unserved areas. As a research group, we
are particularly interested in supporting the provision of
rehabilitative care for persons living in countries exhibiting
fragile and conflict-affected settings where the destruction of
transportation and infrastructure, emigration of healthcare
workers, and financing of health systems lead to a substantial
degradation in the ability to deliver in-person health services
(Bornemisza et al., 2010). According to the most recent data from
The World Bank, Data (2022), there are 39 countries and
territories that are affected by violent conflict or institutional
and social fragility. Of these fragile and conflict-affected
countries, 50% are classified as having low-income economies,
and 31.6% are classified as having lower-middle-income
economies (The World Bank, Data, 2022), which together
account for 880 million people, or 11.10% of the world’s
population. That said, technology-enabled solutions that are
well-planned and consider the context-specific barriers (e.g.,
geographical accessibility, public acceptability of services,
adequacy of infrastructure, attacks on healthcare facilities) can
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make a significant impact on the health needs of the target
population (Saleh et al., 2018; Bowsher et al., 2021).

CONCLUSION

The purpose of the current experiment was to ascertain whether
the T’ena sensor can reliably and accurately assess movement
quality and efficiency in physically and neurologically healthy
adults. Overall, the results indicated that the T’ena sensor and the
gold standard motion capture system were significantly
correlated for all tasks and measures (r range = 0.648-0.947),
with RMSE, MAE, and R’ values ranging from 1.24 to 2.70, 1.00
to 2.26, and 0.734 to 0.891 respectively. Taken together, the
research presented indicates that the T’ena single IMU sensor
system is a valid and objective method by which to measure
movement kinematics during functional tasks. Context-
appropriate enabling technologies specifically designed to
address barriers to quality health services in LMICs (such as
the T’ena system) can promote high-quality rehabilitative
services for individuals living in vulnerable settings and
medically underserved areas while also accelerating progress
towards the United Nations Sustainable Development Goal 3.
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