

On the hidden temporal dynamics of plant adaptation

Keely E. Brown¹ and Daniel Koenig^{1,2}

Abstract

Adaptation to a wide range of environments is a major driver of plant diversity. It is now possible to catalog millions of potential adaptive genomic differences segregating between environments within a plant species in a single experiment. Understanding which of these changes contributes to adaptive phenotypic divergence between plant populations is a major goal of evolutionary biologists and crop breeders. In this review, we briefly highlight the approaches frequently used to understand the genetic basis of adaptive phenotypes in plants, and we discuss some of the limitations of these methods. We propose that direct observation of the process of adaptation using multigenerational studies and whole genome sequencing is a crucial missing component of recent studies of plant adaptation because it complements several shortcomings of sampling-based techniques.

Addresses

¹ Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
² Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA

Corresponding author: Brown, Keely E. (keelyb@ucr.edu)

Current Opinion in Plant Biology 2022, **70**:102298

This review comes from a themed issue on **Genome studies and molecular genetics (2022)**

Edited by **Eunyoung Chae** and **Daniel Koenig**

For complete overview of the section, please refer the article collection - [Genome studies and molecular genetics \(2022\)](#)

Available online 18 September 2022

<https://doi.org/10.1016/j.pbi.2022.102298>

1369-5266/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (<http://creativecommons.org/licenses/by-nc-nd/4.0/>).

Keywords

Experimental evolution, Multigenerational, Genotype-to-phenotype, Directed evolution, Adaptation, Evolve and resequence, Resurrection study.

Introduction

Plant experimental systems are uniquely suited to the study of environmental adaptation. They are immobile, many can be self-fertilized or cloned to produce identical genotypes across common gardens, and can be collected and stored over long periods of time as seed. Because of these and other advantages, experiments using plants

provided some of the earliest evidence linking phenotypes to environmental adaptation [1,2]. Even before these classic studies, breeders had recognized that yield was often improved when plants were grown in the same location as they had been grown historically [3]. Until recent years, very little was understood about the genetic basis for the traits being selected across environments [4]. Establishing connections between genotype and locally adaptive phenotypes [5,6] is imperative to mediate the impacts of a changing climate on plant agronomic production and ecological diversity [7,8].

Advances in sequencing technology have recently made it possible to affordably sequence hundreds to thousands of genomes from a single species. The major challenge moving forward is to link the millions of genomic differences identified in these projects to adaptive phenotypic differences. Common approaches combine large panels of sequenced genomes from extant individuals with phenotypic, environmental, or geographical data to produce statistical associations that pinpoint genes underlying adaptation (what we refer to throughout as “sampling” approaches, see below for further description). These approaches have been hugely successful in uncovering the mechanism of plant adaptation at the genetic level [9].

However, the study of plants collected from a single time point provides an incomplete picture of the dynamic process of evolution. A necessary complement is to directly track changes in the genetic composition of a population throughout the entire genome across generations [10–12]. In this review, we term these studies multigenerational, where samples are taken at different time points to compare earlier and later generations. Adaptive changes in the genome can be pinpointed by comparing observed allele frequency changes to neutral evolution [13], or by associating genotypic change with an increase in fitness over time [14]. Such studies have already opened a window into the process of evolution across many systems revealing the genetic architecture underlying the evolution of a novel trait [15], the predictability of evolution in response to environmental change [16], and the number of genes that underlie the response to selection [17,18].

Multigenerational studies have long been a staple of plant evolutionary biology, and many of the oldest experimental evolution studies have been conducted in

plants. Hallauer's Tuñón [19], the Illinois long term selection experiment [20], the Buxton Climate Change Impacts Lab [21], the Saclay Divergent Selection Experiments in maize [22], and the Composite Crosses in barley [23] all demonstrated dramatic phenotypic change in response to new environments or artificial selection over decades. Shorter-term studies in plants spanning fewer than ten generations have also shown substantial evolutionary shifts in genotype and phenotype [24,25]. We propose that these classic multigenerational approaches, when combined with modern genome sequencing techniques, will make substantial contributions to our understanding of the link between genotype and adaptive changes in phenotype in plants.

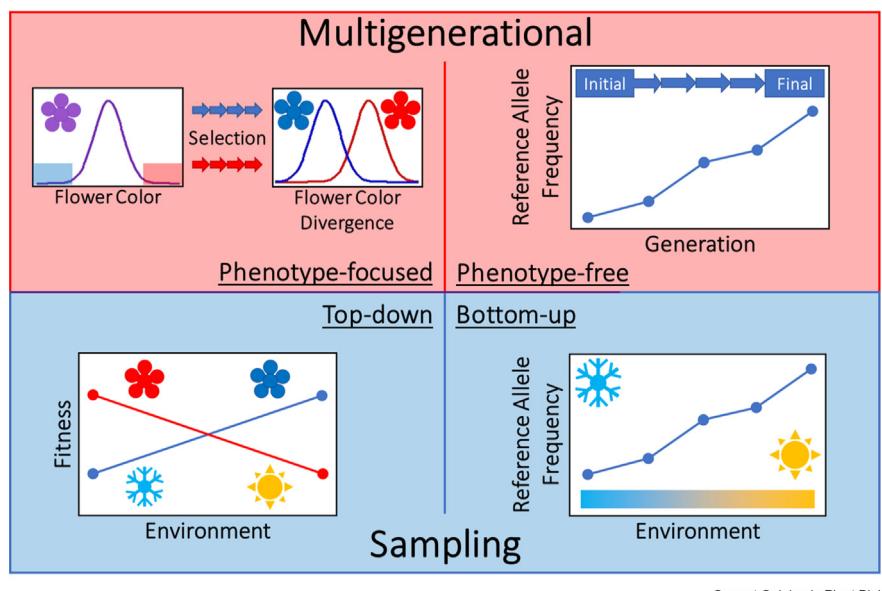
Sampling the genomic differences underlying plant adaptation

Before discussing multigenerational approaches, we will first briefly outline the common “bottom-up” and “top-down” sampling strategies used to link genomic variation to phenotype in plants [9]:

Bottom-up approaches leverage the availability of large numbers of genome sequences within a species to search for the footprint of selection at specific genes (Figure 1, bottom right). They largely rely on the well-supported assumption that individuals or populations are adapted to their current environment [26]. One bottom-up method searches for regions of the genome that show differentiation in allele frequencies larger than predicted by neutral processes between populations collected from different environments. Genes in these regions are candidates for targets of selection [27]. Another bottom-up approach, environmental genome-wide association [28], combines whole genome sequence data with environmental information about the collection site of each of the sequenced samples. By treating each environmental variable as a phenotype in a genome wide association study, genetic changes associated with differences in specific environmental variables are identified. Environmental GWAS have, for example, rediscovered cold tolerance genes [29], and identified climate-associated variants that change mRNA structure [30], both in *Arabidopsis thaliana*.

Top-down studies can measure a number of traits and estimate plant fitness in a diverse set of sequenced samples grown together in one or more common gardens [26]. Loci that contribute to local adaptation are expected to differ in frequency among individuals with high or low fitness in contrasting environments (Figure 1, bottom left). Associations between genotype and proxies for fitness can be tested for every one of the potentially millions of genomic differences that segregate amongst the studied lines. Unlike the phenotype-free bottom-up approaches, these experiments can directly link adaptive phenotypes to fitness estimates.

Using this approach, specifically climate associated loci have been identified in many plant species [31–34].


Both top-down and bottom-up approaches reveal candidate loci that may be involved in adaptation. However, both approaches observe the outcome rather than the process of evolution, which limits our understanding of the genetic variation that contributes to adaptation. Multigenerational experiments complement sampling strategies by directly recording the process of evolution across time. While large, well-designed multigenerational experiments have the potential to provide a great deal of information about the process of adaptation, it is important to note that they suffer from their own set of challenges (Box 1). Below, we discuss two major categories of multigenerational studies: those which directly impose selection on a single or small number of phenotypes (phenotype-focused) and those which use the environment to generate a selective landscape without experimenter-imposed selection (phenotype-free). We argue that by watching evolution in action we can reduce the effort required to assay large numbers of recombinants, mitigate the non-randomness of sampling natural variation, study more complex allelic interactions, explore forces maintaining variation, and uncover the cumulative contribution of small-effect loci.

Genetic change accompanying constant selection on phenotypes of interest

Phenotype-focused multigenerational studies attempt to understand the genetic response to selection on a single trait or suite of traits of interest (Figure 1, top left). In the simplest form, strong divergent selection is imposed by the researcher on a genetically and phenotypically diverse founding population [19,20,35]. The resulting change in genetic composition of the population can then be monitored by calculating allele frequencies in pooled or individual sequenced genomes [36]. Alleles favored in replicate populations are then inferred to be targeted by selection. In the absence of a reference genome, differential gene expression can also be used to identify candidate genes, such as for herbicide resistance [37]. Selection can also be applied in two directions simultaneously. The resulting divergent populations then serve as parents in crosses to generate segregating populations that can be genotyped and used in QTL mapping to provide further evidence of a link between phenotypic change and candidate genomic regions [38–40]. Importantly, because phenotype-focused studies often involve applying selection at the same time as a population is exposed to a naive environment (a laboratory or greenhouse for example), appropriate controls are necessary to account for inadvertent selection for “lab adaptation” [41].

Hallauer's Tuñón featured selection for maize early female flowering time in a temperate environment from

Figure 1

Current Opinion in Plant Biology

Examples of each discussed method for associating genotype with adaptation. Common to all depicted methods is the generation of groups between which allele frequency differences can be compared. Top left: Phenotype-focused multigenerational experiments use researcher-imposed selection on a phenotype to generate groups of individuals with divergent phenotypes. Top right: Phenotype-free multigenerational experiments track allele frequency differences between subsequent generations of a population exposed to a (sometimes naïve) environment. Bottom left: Top-down sampling methods use differences in fitness between groups in a set of common environments to associate phenotypes with adaptation to different conditions. Bottom right: Bottom-up sampling methods use allele frequency differences between populations found in varying environments to find putatively adaptive gradients in frequency.

a starting population composed of tropical-adapted landrace accessions (first citation). In 2019, Wisser et al. found that phenotypic change in this population occurred in two stages; early generations revealed changes in few loci of large effect, while change in later generations accompanied changes in allele frequencies at many initially rare loci [36]. This kind of non-constant path to phenotypic change in a novel environment, coupled with the retention of the vast majority of starting genetic diversity, would be difficult to study in the absence of direct comparison of subsequent generations.

Because multigenerational studies directly compare across generations or selective regimes, they can, given sufficient population sizes, exclude drift and demographic history as major drivers of change, at least to a degree sufficient for inferences of selection. This does not mean that drift does not occur in these populations, but rather that the expected rate of change due to drift can be estimated from simulations using known founding genetic diversity and population size. Substantial phenotypic change in the direction of imposed selection can occur rapidly in fewer generations than expected by drift alone [22], suggesting that selection is strong enough to swamp the effects of drift. Additionally, the rate of phenotypic change is often remarkably constant

regardless of genetic diversity of starting material, only reaching phenotypic plateaus where further change in phenotype is physiologically constrained [42], such as by approaching a lower limit of detectability on oil content in maize kernels [20]. For decades, artificial selection experiments have demonstrated the efficacy of strong selection in changing a wide range of traits across organisms spanning the tree of life [18,43–45]. This ability for researcher imposed selection to consistently change phenotypes suggests another utility of phenotype-based multigenerational studies, the ability to detect the cumulative effects of rare or small effect loci genome-wide.

However, phenotype-focused studies typically apply artificially strong selection under controlled conditions. If study design is not carefully considered, these characteristics can limit the ability to pinpoint causal variation and inform on the process of adaptation. Strong selection acting on standing variation can lead to substantial hitchhiking [46], which can affect power to map the genes that underlie a trait of interest [47] (also see Box 1). Simulating phenotype-based multigenerational studies should be leveraged to inform experimental design to maximize detection of the genetic basis of adaptive changes [48–50]. Particularly important parameters are the effective population size, effective

Box 1. : Caveats.

Identification of causal variation: Using a multigenerational approach to link genotype to phenotype does not inherently decrease the risk of overestimating the contribution of identified loci to phenotypic variation when sample sizes are small (also known as the Beavis effect, [75]). Nor are multigenerational studies inherently better for capturing the contribution of rare alleles, which is a major challenge in association mapping [76]. But, multigenerational studies are amenable to a level of true replication that is hardly possible using sampling methods. Sampling can, of course, tap the potential of naturally-generated replication across environmental clines [77], but a multigenerational study can track parallel changes across replicated populations adapting to the same environment or responding to the same selection from the same initial genetic diversity. Replicated populations increase the probability of capturing a causal rare variant, and can be used to estimate the bias in effect size (when sample sizes are appropriate) [78]. It should be noted that increased replication means more space, time, and money for genotyping, which still does present a challenge for long-lived or large plants, or plants with large genomes. It is true that this could bias the types of species for which replicated multigenerational studies are possible, but those challenges have always limited the types of plants that become model organisms.

Drift: Random chance can cause large changes in allele frequencies independent of selection, in both natural and experimental populations [79,80]. Throughout this review, we have argued that, given strong enough imposed selection and large enough experiments, drift is unlikely to be the primary driver of genetic change in multigenerational studies. However, for many plants, replicated multigenerational studies with thousands of individuals might not be feasible, especially for outcrossing plants where non-random mating might reduce effective population sizes [81]. Despite these challenges, multigenerational studies still have several features that make them amenable to creative methods for distinguishing drift from selection. For one, the expected change under scenarios with drift alone can be simulated in multigenerational studies where population size and genetic diversity are known. We advocate for performing simulations prior to the initiation of a new multigenerational study if the founding source of genetic diversity is known, to estimate the population size necessary to overcome detectable allele frequency changes by drift alone. Additionally, recent modeling frameworks developed by Buffalo and Coop [82] utilize an advantage of multigenerational studies: selection generates autocorrelation between generations in allele frequency changes, while drift does not. Though this framework was developed to account for linked selection in multigenerational studies, it could be employed to assess whether drift is likely obscuring associations.

A somewhat less obvious consequence of drift in the context of multigenerational studies is that genetic variation with the potential to impact fitness-related traits might be lost and unavailable for selection (although perhaps not to the degree one might expect, see the study by Desbiez-Piat et al.[22]). Conceptually, this could manifest similarly to Muller's ratchet [83], and only a small subset of the variation present at the experiment's start might end up causing phenotypic change as a result of selection. This issue can, in part, be mitigated using the same replication strategy discussed above. In replicated experiments, each version of a causal allele will have a probability of fixing equal to its starting frequency under drift alone [84,85]. The problem with losing rare variation is compounded when drift is strong, so a balance between population size and level of replication will depend on available resources, the system, the question, and the assumed underlying trait architecture.

Linked selection: Variation that is linked to causal loci under selection in a multigenerational experiment can decrease the resolution of association mapping [86]. It can also facilitate identification of larger regions with multiple, linked loci each of small effect (sometimes manifested as fractionating QTL [87]). This is not unique to multigenerational studies. However, multigenerational studies, especially those employing strong selection on a diverse starting population, might be prone to exacerbating this effect inadvertently by establishing population structure in the early generations, especially in predominantly selfing species [88]. If forming a new population from multiple intercrosses, we suggest choosing a group of founder varieties that are not themselves structured (i.e. all have similar genetic distances). Linkage can also be mitigated by making many independent crosses among founding varieties so that recombination might serve to narrow regions of trait association. As above, simulations might be useful for predicting the severity of linked selection.

recombination rate, and founding genetic diversity. Strong, constant selection on a single trait in absence of other environmental variability may also be unrealistic in natural populations. It is important that phenotype-focused approaches be complemented by studies of adaptation in more realistic conditions if we wish to understand the process of plant adaptation to the environment more generally.

Genetic and phenotypic change during adaptation to a new environment

Plant adaptation to a natural or agricultural environment involves innumerable potential selective forces. To untangle how plants adapt in a complex environment, we must complement phenotype-focused studies with experiments conducted under more realistic selective environmental conditions (phenotype-free studies). Using similar methods to those described for phenotype-focused studies, genetic and phenotypic

changes of a population in a specific environment can be tracked through time, agnostic of which phenotypes are expected to be involved in adaptation (Figure 1, top right). Importantly, phenotypes of interest (usually fitness-related) can still be measured during the course of these experiments, though they are not themselves consciously selected by experimenters. Change in the environment often occurs either when a representative sample from an existing population is transplanted [51], or when a newly formed population representing species-wide genetic diversity is established in an unfamiliar location [52]. The new environment could refer to a location with new presumed selective forces [53], a new source of biotic interactions [54,55], or an artificial environment that might mirror a future abiotic climate [56]. Adaptive change can be identified by mapping variation across generations to change in phenotypes, or by genome scans for signatures of selection, like divergence between early and late

generations [57]. Because these differences are measured over many generations, even small allelic effects can accumulate over time to generate substantial phenotypic shifts in the population.

The Buxton Climate Change Impacts Laboratory, an example of an artificial environment, was used by Ravenscroft et al. [56] to quantify genetic divergence after 15 years of exposure to combinations of heat and drought. They found evidence for selection and genetic change that can be further investigated to find candidate genes responsible for climate adaptation. Replicating this type of experiment across many artificial environments representing a variety of climate projections could lead to more robust predictions about plant adaptation, and would not be possible by sampling current environments alone.

In plants, a typical phenotype-free experiment is conducted by comparing stored material, like seed, to descendants some time later after a population has evolved [58]. This resurrection study strategy is appealing when the goal is to predict future species ranges using current local adaptation. Resurrection experiments take advantage of the fact that even in the absence of direct modification, the natural environment is constantly changing [59]. More importantly, it is already changing in the direction that it will continue to change, making conservation or crop improvement applications immediately interpretable [60]. Using common gardens to compare multiple populations subjected to similar changes in climate, resurrection experiments can also detect parallel changes in phenotype [61]. As seen in phenotype focused studies, detectable change can even occur in a relatively short time frame; for example, just 3 generations is enough to develop genetic and phenotypic differentiation in common bean [24]. Given enough generations, further recombination may also occur in the experimental population. Even in predominantly selfing species, new recombinants representing additional combinations of genotypes beyond the initially established population will be generated in sufficiently large studies [62].

Direct observation of evolution in a resurrection design has many experimental advantages over the inference based strategies employed using single time point, extant population samples. The most obvious is that the environmental conditions in an evolution experiment can be measured and directly correlated with phenotypic or genetic change, mitigating the influence of unknown historical environmental factors that may have impacted genetic differences between extant populations. If the population is appropriately large, genetic drift can also be excluded as a driver of population evolution (though, see **Box 1** for caveats about this assumption).

By watching evolution happen, either concurrently or in retrospect, phenotype-free multigenerational studies have one huge advantage over sampling large numbers of extant populations: we can study strategies for adaptation that failed in nature [63]. Sampling will always involve a nonrandom set of the possible combinations of genetic diversity. Drift, demographic history, and selection limit the types and combinations of alleles that we can evaluate with extant material. By allowing genotypes to fail, multigenerational studies increase possible genetic variance and the range of resultant possible measured phenotypes. By increasing phenotypic variance, we have more power to connect genotype to phenotype, because we sample more of the total fitness landscape accessible only through combinations of genotypes that would be unrealistic in natural populations, such as cytonuclear incompatibilities (see the study by Pereira et al. [64] for an example in a copepod, but the principal is the same for plants). Intercrosses also generate segregants carrying combinations of alleles that do not exist in natural populations suitable for estimating the contribution of multilocus allelic interactions to local adaptation, although this approach is better suited to selfers since such combinations might take a prohibitively long time to fix given high outcrossing rates.

Linear change over time toward a maximum, as with artificial selection (see above), is only part of understanding adaptation. The same location can vary dramatically through time, for example in severity of pathogen pressure or yearly precipitation. As a result, the fitness advantage of particular alleles may also vary. Maintenance of genetic variation by selection, either through spatial or temporal fluctuations in selective pressure or phenotypic tradeoffs, is termed balancing selection [65]. It is critical that we identify the genetic targets of balancing selection, as previously maintained standing genetic variation might serve as a new mutation-free target of directional selection for adaptation to a changing climate [66,67]. Unfortunately, population genetic signatures of balancing selection, such as skewed allele frequency distributions [68], have multiple interpretations, such as demographic history changes, and are suggestive at best. Even if we assume the footprint of balancing selection is authentic at a locus, the specific form of selection (such as frequency-dependent selection, heterozygote advantage, temporally fluctuating selection, etc.) and the selected phenotype are usually unclear (resistance genes are a notable exception, built on an extensive body of research, for example [69]). With multigenerational studies, one can associate fluctuations in the environment with fluctuations in allele frequencies and phenotype to more directly infer long-term adaptive polymorphism [70]. Breeding or conservation efforts can then make informed decisions about where genetic diversity should be maintained, or whether the effects of

climate change can predict favoring fixation of one allele over another.

Conclusions

Identification of genes that underlie adaptation is one of the grand challenges of ecological and evolutionary genetics. However, as pointed out many years ago [9], in the absence of direct observation of the evolutionary process, the role of alleles in adaptation remains putative. In this review, we advocate for combining multigenerational evolution studies with other strategies for mapping genotype to adaptive phenotype in plants, especially sampling-based approaches (see introduction). In addition to the discussed benefits, it is necessary to use varied methods, because they sometimes provide different answers. Vigouroux et al. [71] found selection for an early flowering allele at the PHYC locus in pearl millet by sampling varieties grown by local subsistence and smallholder farming practices in Niger between 1976 and 2003, during which time flowering time was correlated with rainfall. This provides a smaller target for climate change motivated breeding targeted specifically to improvement of yield in this region than the 22 flowering time QTL identified using a more traditional RIL approach in the same species [72]. Additionally, by combining multigenerational evolution experiments with multiple environment trials, it is possible to associate environmental differences with divergence in complex polygenic traits. We can disentangle divergent selection from change that is consistent across environments [73]. Finally, combining multigenerational studies for which environmental data is available with common gardens is necessary to address genetic changes responsible for adaptation to climate change that decouples previously correlated external cues like temperature and day length [74]. A genome sequencing-assisted return to long-term evolution experiments in plants will supplement current sampling-based approaches for identifying the basis of local adaptation, and better predict evolution driven by environmental change, including both biotic and abiotic factors.

Disclosure statement

Given their role as Guest Editor, Daniel Koenig had no involvement in the peer-review of this article and has no access to information regarding its peer-review. Full responsibility for the editorial process for this article was delegated to Eunyoung Chae.

Funding

K.E.B was supported by National Science Foundation PRFB (IOS-1907061). D.K. acknowledges funding from BARD Fund Research Project (IS-5393-21), NSF CAREER Award (IOS-2046256), and USDANIFA Hatch Project (CA-R-BPS-5154-H).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this article.

Acknowledgments

We would like to thank all members of the Koenig and Seymour labs at UCR for their support. We would also like to thank Dr. Eunyoung Chae and three anonymous reviewers for their thoughtful treatment of the manuscript and helpful comments.

References

Papers of particular interest, published within the period of review, have been highlighted as:

- * of special interest
- ** of outstanding interest
- 1. Clausen J, Keck DD, Hiesey WM: **Experimental studies on the nature of species. III. Environresponses of climatic races of Achillea** [cited 19 Oct 2021]. Available: <https://www.cabdirect.org/cabdirect/abstract/19491603367>.
- 2. Harlan HV, Martini ML: **The effect of natural selection in a mixture of barley varieties**. *J Agric Res* 1938;57. <http://naldc.nal.usda.gov/download/IND43969091/PDF>; 1938.
- 3. Harlan HV: **Cultivation and utilization of barley/**. *sidalc.net*. Report No.: 04; USDA, FOLLETO 1193. Available: <http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=COLPOS.xis&method=post&formato=2&cantidad=1&expresion=mfn=031535>.
- 4. Cortinovis G, Di Vittori V, Bellucci E, Bitocchi E, Papa R: **Adaptation to novel environments during crop diversification**. *Curr Opin Plant Biol* 2020, **56**:203–217. 4.
- 5. James JK, Hamilton JA: **Mixing it up: the role of hybridization in forest management and conservation under climate change**. *For Trees Livelihoods* 2017, **8**:237. 5.
- 6. Varshney RK, Singh VK, Kumar A, Powell W, Sorrells ME: **Can genomics deliver climate-change ready crops?** *Curr Opin Plant Biol* 2018, **45**:205–211. 6.
- 7. Santillán D, Iglesias A, La Jeunesse I, Garrote L, Sotes V: **Vineyards in transition: a global assessment of the adaptation needs of grape producing regions under climate change**. *Sci Total Environ* 2019, **657**:839–852. 7.
- 8. Xie W, Xiong W, Pan J, Ali T, Cui Q, Guan D, et al.: **Decreases in global beer supply due to extreme drought and heat**. *Nat Plants* 2018, **4**:964–973. 8.
- 9. Barrett RDH, Hoekstra HE: **Molecular spandrels: tests of adaptation at the genetic level**. *Nat Rev Genet* 2011, **12**:767–780. 9.
- 10. Mitchell N, Whitney KD: **Can plants evolve to meet a changing climate? The potential of field experimental evolution studies**. *Am J Bot* 2018, **105**:1613–1616. 10.
- 11. Barrick JE, Lenski RE: **Genome dynamics during experimental evolution**. *Nat Rev Genet* 2013, **14**:827–839. 11.
- 12. Kawecki TJ, Lenski RE, Ebert D, Hollis B, Olivieri I, Whitlock MC: **Experimental evolution**. *Trends Ecol Evol* 2012, **27**:547–560. 12.
- 13. Venkataram S, Dunn B, Li Y, Agarwala A, Chang J, Ebel ER, et al.: **Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast**. *Cell* 2016, **166**:1585–1596. e22.13.
- 14. Long A, Liti G, Luptak A, Tenaillon O: **Elucidating the molecular architecture of adaptation via evolve and resequence experiments**. *Nat Rev Genet* 2015, **16**:567–582. 14.
- 15. Blount ZD, Barrick JE, Davidson CJ, Lenski RE: **Genomic analysis of a key innovation in an experimental Escherichia coli population**. *Nature* 2012, **489**:513–518. 15.

16. Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, *et al.*: **The molecular diversity of adaptive convergence.** *Science* 2012, **335**: 457–461. 16.

17. Burke MK, Dunham JP, Shahrestani P, Thornton KR, Rose MR, Long AD: **Genome-wide analysis of a long-term evolution experiment with *Drosophila*.** *Nature* 2010, **467**:587–590. 17.

18. Zan Y, Sheng Z, Lillie M, Rönnegård L, Honaker CF, Siegel PB, *et al.*: **Artificial selection response due to polygenic adaptation from a multilocus, multiallelic genetic architecture.** *Mol Biol Evol* 2017, **34**:2678–2689. 18.

19. Teixeira JEC, Weldekitan T, de Leon N, Flint-Garcia S, Holland JB, Lauter N, *et al.*: **Hallauer's Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize.** *Heredity* 2015, **114**:229–240. 19.

20. Dudley JW, Lambert RJ: **100 generations of selection for oil and protein in corn.** *Plant Breed Rev* 2004. <https://agris.fao.org/agris-search/search.do?recordID=US201301007063>; 2004.

21. Grime JP, Brown VK, Thompson K, Masters GJ, Hillier SH, Clarke IP, *et al.*: **The response of two contrasting limestone grasslands to simulated climate change.** *Science* 2000, **289**: 762–765. 21.

22. Desbiez-Piat A, Le Rouzic A, Tenaillon MI, Dillmann C: **Interplay between extreme drift and selection intensities favors the fixation of beneficial mutations in selfing maize populations.** *Genetics* 2021;219, <https://doi.org/10.1093/genetics/iyab12322>.

23. Harlan HV, Martini ML: **A composite hybrid mixture.** *Agron J* 1929, **21**:487. 23.

24. Klaedtke SM, Caproni L, Klauck J, de la Grandville P, Dutarte M, Stassart PM, *et al.*: **Short-term local adaptation of historical common bean (*Phaseolus vulgaris* L.) varieties and implications for in situ management of bean diversity.** *Int J Mol Sci* 2017;18, <https://doi.org/10.3390/ijms1803049324>.

25. Ramos SE, Schiestl FP: **Rapid plant evolution driven by the interaction of pollination and herbivory.** *Science* 2019, **364**: 193–196. 25.

26. Lortie CJ, Hierro JL: **A synthesis of local adaptation to climate through reciprocal common gardens.** *J Ecol* 2021, <https://doi.org/10.1111/1365-2745.1366426>.

27. Haasl RJ, Payseur BA: **Fifteen years of genomewide scans for selection: trends, lessons and unaddressed genetic sources of complication.** *Mol Ecol* 2016, **25**:5–23. 27.

28. Korte A, Farlow A: **The advantages and limitations of trait analysis with GWAS: a review.** *Plant Methods* 2013, **9**:1–9. 28.

29. Ferrero-Serrano Á, Assmann SM: **Phenotypic and genome-wide association with the local environment of *Arabidopsis*.** *Nat Ecol Evol* 2019, **3**:274–285. 29.

30. Ferrero-Serrano Á, Sylvia MM, Forstmeier PC, Olson AJ, Ware D, Bevilacqua PC, *et al.*: **Experimental demonstration and pan-structure prediction of climate-associated riboSNitches in *Arabidopsis*.** *Genome Biol* 2022, **23**:101. 30.

31. Exposito-Alonso M: **500 genomes field experiment team, burbano HA, Bossdorf O, Nielsen R, Weigel D. Publisher correction: natural selection on the *Arabidopsis thaliana* genome in present and future climates.** *Nature* 2019, **574**: E16.31.

32. Lovell JT, MacQueen AH, Mamidi S, Bonnette J, Jenkins J, Napier JD, *et al.*: **Genomic mechanisms of climate adaptation in polyploid bioenergy switchgrass.** *Nature* 2021, **590**:438–444. 32.

33. Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, *et al.*: **Genome-wide association mapping in *Arabidopsis* identifies previously known flowering time and pathogen resistance genes.** *PLoS Genet* 2005, **1**:e60. 33.

34. Fustier M-A, Martínez-Ainsworth NE, Aguirre-Liguori JA, Venon A, Corti H, Roussellet A, *et al.*: **Common gardens in teosintes reveal the establishment of a syndrome of adaptation to altitude.** *PLoS Genet* 2019, **15**:e1008512. 34.

35. Kelly JK: **Testing the rare-alleles model of quantitative variation by artificial selection.** *Genetica* 2008, **132**:187–198. 35.

36. Wissner RJ, Fang Z, Holland JB, Teixeira JEC, Dougherty J, ** Weldekitan T, *et al.*: **The genomic basis for short-term evolution of environmental adaptation in maize.** *Genetics* 2019, **213**:1479–1494.

Focused on the long-term evolution experiment with directional selection in maize, Hallauer's Tusón, the authors describe the genetic basis of phenotypic change. The work on this experiment is an exemplary way to bring modern genomics to existing material.

37. Leslie T, Baucom RS: **De novo assembly and annotation of the transcriptome of the agricultural weed *Ipomoea purpurea* uncovers gene expression changes associated with herbicide resistance.** *G3: Genes, Genomes, Genetics* 2014, **4**: 2035–2047. 37.

38. Lee YW. In *Genetics analysis of standing variation for floral morphology and fitness components in a natural population of *Mimulus guttatus* (common monkeyflower)*. Edited by Willis JH, Rausher M, Duke University; 2009. <https://www.proquest.com/dissertations-theses/genetics-analysis-standing-variation-floral/docview/304880104/se-2>.

39. Yang X, Li J: **High-oil maize genomics.** In *The Maize Genome*. Edited by Bennetzen J, Flint-Garcia S, Hirsch C, Tuberrosa R, Cham: Springer International Publishing; 2018:305–317. 39.

40. Laurie CC, Chasalow SD, LeDeaux JR, McCarroll R, Bush D, Hauge B, *et al.*: **The genetic architecture of response to long-term artificial selection for oil concentration in the maize kernel.** *Genetics* 2004, **168**:2141–2155. 40.

41. Orozco-terWengel P, Kapun M, Nolte V, Kofler R, Flatt T, Schlötterer C: **Adaptation of *Drosophila* to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles.** *Mol Ecol* 2012, **21**:4931–4941. 41.

42. Lorant A, Ross-Ibarra J, Tenaillon M: **Genomics of long- and short-term adaptation in maize and teosintes.** *Methods Mol Biol* 2020, **2090**:289–311. 42.

43. Kotrschal A, Szorkovszky A, Herbert-Read J, Bloch NI, Romensky M, Buechel SD, *et al.*: **Rapid evolution of coordinated and collective movement in response to artificial selection.** *Sci Adv* 2020;6, <https://doi.org/10.1126/sciadv.aba314843>.

44. Konishi K, Matsumura K, Sakuno W, Miyatake T: **Death feigning as an adaptive anti-predator behaviour: further evidence for its evolution from artificial selection and natural populations.** *J Evol Biol* 2020, **33**:1120–1128. 44.

45. Beissinger TM, Hirsch CN, Vaillancourt B, Deshpande S, Barry K, Buell CR, *et al.*: **A genome-wide scan for evidence of selection in a maize population under long-term artificial selection for ear number.** *Genetics* 2014, **196**:829–840. 45.

46. Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD: **Selection under domestication: evidence for a sweep in the rice waxy genomic region.** *Genetics* 2006, **173**: 975–983. 46.

47. Otte KA, Schlötterer C: **Detecting selected haplotype blocks in evolve and resequence experiments.** *Mol Ecol Resour* 2021, **21**:93–109. 47.

48. Lou RN, Therkildsen NO, Messer PW: **The effects of quantitative trait architecture on detection power in short-term artificial selection experiments.** *G3: Genes, Genomes, Genetics* 2020, **10**:3213–3227.

The authors provide a theoretical exploration of the conditions that maximize ability to find causal loci using an Evolve and Resequence experimental design with truncating selection on a trait. Interestingly, they find it best to gradually increase the strength of selection through the experiment, a conclusion that has implications for long-term experiments that rely on changes in the natural environment as well.

49. Barghi N, Schlötterer C: **Distinct patterns of selective sweep and polygenic adaptation in evolve and resequence studies.** *Genome Biol Evol* 2020, **12**:890–904. 49.

50. Vlachos C, Kofler R: **Optimizing the power to identify the genetic basis of complex traits with evolve and resequence studies.** *Mol Biol Evol* 2019, **36**:2890–2905.

dsThe authors provide a model for estimating power of QTL detection based on differences in underlying genomic architecture. Because it is customizable, this model framework will be useful for determining the

number of generations required for Evolve and Resequence experiments, a useful tool for longer-lived plants.50.

51. Anderson JT, Jameel MI, Geber MA: **Selection favors adaptive plasticity in a long-term reciprocal transplant experiment.** *Evolution* 2021, **75**:1711–1726. 51.
52. Thépot S, Restoux G, Goldringer I, Hospital F, Gouache D, Mackay I, *et al.*: **Efficiently tracking selection in a multi-parental population: the case of earliness in wheat.** *Genetics* 2015, **199**:609–623. 52.
53. Danquah EY, Barrett JA: **Evidence of natural selection for disease resistance in Composite Cross Five (CCV) of barley.** *Genetica* 2002, **115**:195–203. 53.
54. Roscher C, Schumacher J, Baade J, Wilcke W, Gleixner G, Weisser WW, *et al.*: **The role of biodiversity for element cycling and trophic interactions: an experimental approach in a grassland community.** *Basic Appl Ecol* 2004, **5**:107–121. 54.
55. van Moorsel SJ, Schmid MW, Wagemaker NCAM, van Gurp T, ** Schmid B, Vergeer P: **Evidence for rapid evolution in a grassland biodiversity experiment.** *Mol Ecol* 2019, **28**: 4097–4117.

The authors characterize genetic divergence of populations of several plant species grown for eleven years in either monoculture or mixed plots. We would like to highlight this paper as an example of long-term evolution where the new environment differs in explicitly measured biotic interaction potential.

56. Ravenscroft CH, Whitlock R, Fridley JD: **Rapid genetic divergence in response to 15 years of simulated climate change.** *Global Change Biol* 2015, **21**:4165–4176. 56.
57. Valencia-Montoya WA, Flaven E, Pouzadoux J, Imbert E, Cheptou P-O: **Rapid divergent evolution of an annual plant across a latitudinal gradient revealed by seed resurrection.** *Evolution* 2021, <https://doi.org/10.1111/evo.1436457>.
58. Franks SJ, Hamann E, Weis AE: **Using the resurrection approach to understand contemporary evolution in changing environments.** *Evol Appl* 2018, **11**:17–28. 58.
59. Franks SJ, Kane NC, O'Hara NB, Tittes S, Rest JS: **Rapid genome-wide evolution in *Brassica rapa* populations following drought revealed by sequencing of ancestral and descendant gene pools.** *Mol Ecol* 2016, **25**:3622–3631. 59.
60. Parmesan C, Hanley ME: **Plants and climate change: complexities and surprises.** *Ann Bot* 2015, **116**:849–864. 60.
61. Kooyers NJ, Morioka KA, Colicchio JM, Clark KS, Donofrio A, Estill SK, *et al.*: **Population responses to a historic drought across the range of the common monkeyflower (*Mimulus guttatus*).** *Am J Bot* 2021, **108**:284–296.

Authors demonstrate trait evolution in yellow monkeyflower after a severe multi-year drought by resurrection. Though they collect data from only before and after the drought, we would like to draw attention to the use of change in the natural environment (which is always happening) as the selective force.

62. Kahler AL, Clegg MT, Allard RW: **Evolutionary changes in the mating system of an experimental population of barley (*Hordeum vulgare* L.).** *Proc Natl Acad Sci U S A* 1975, **72**:943–946. 62.
63. Kelly M: **Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes.** *Philos Trans R Soc Lond B Biol Sci* 2019, **374**:20180176. 63.
64. Pereira RJ, Lima TG, Pierce-Ward NT, Chao L, Burton RS: **Recovery from hybrid breakdown reveals a complex genetic architecture of mitochondrial incompatibilities.** *Mol Ecol* 2021, **30**:6403–6416. 64.
65. Charlesworth D: **Balancing selection and its effects on sequences in nearby genome regions.** *PLoS Genet* 2006, **2**:e64. 65.
66. Zhu S, Chen J, Zhao J, Comes HP, Li P, Fu C, *et al.*: **Genomic insights on the contribution of balancing selection and local adaptation to the long-term survival of a widespread living fossil tree, *Cercidiphyllum japonicum*.** *New Phytol* 2020, **228**: 1674–1689. 66.
67. Brown KE, Kelly JK: **Antagonistic pleiotropy can maintain fitness variation in annual plants.** *J Evol Biol* 2018, **31**:46–56. 67.

68. Tajima F: **Statistical method for testing the neutral mutation hypothesis by DNA polymorphism.** *Genetics* 1989, **123**:585–595. 68.
69. Mauricio R, Stahl EA, Korves T, Tian D, Kreitman M, Bergelson J: **Natural selection for polymorphism in the disease resistance gene *Rps2* of *Arabidopsis thaliana*.** *Genetics* 2003, **163**: 735–746. 69.
70. Bergland AO, Behrman EL, O'Brien KR, Schmidt PS, Petrov DA: **Genomic evidence of rapid and stable adaptive oscillations over seasonal time scales in *Drosophila*.** *PLoS Genet* 2014, **10**:e1004775. 70.
71. Vigouroux Y, Mariac C, De Mita S, Pham J-L, Gérard B, Kapran I, *et al.*: **Selection for earlier flowering crop associated with climatic variations in the Sahel.** *PLoS One* 2011, **6**:e19563. 71.
72. Kumar S, Hash CT, Nepolean T, Satyavathi CT, Singh G, Mahendrakar MD, *et al.*: **Mapping QTLs controlling flowering time and important agronomic traits in pearl millet.** *Front Plant Sci* 2017, **8**:1731. 72.
73. Rhoné B, Vitalis R, Goldringer I, Bonnin I: **Evolution of flowering time in experimental wheat populations: a comprehensive approach to detect genetic signatures of natural selection.** *Evolution* 2010, **64**:2110–2125. 73.
74. Wadgymar SM, Ogilvie JE, Inouye DW, Weis AE, Anderson JT: **Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment.** *New Phytol* 2018, **218**:517–529. 74.
75. Beavis WD: **QTL analyses: power, precision, and accuracy, pp. 145–162.** In *Molecular Dissection of Complex Traits*. Edited by Paterson AH, New York: CRC Press; 1998:75.
76. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, *et al.*: **Association mapping: critical considerations shift from genotyping to experimental design.** *Plant Cell* 2009, **21**: 2194–2202. 76.
77. Kooyers NJ, Greenlee AB, Colicchio JM, Oh M, Blackman BK: **Replicate altitudinal clines reveal that evolutionary flexibility underlies adaptation to drought stress in annual *Mimulus guttatus*.** *New Phytol* 2015, **206**:152–165. 77.
78. Xu S: **Theoretical basis of the Beavis effect.** *Genetics* 2003, **165**:2259–2268. 78.
79. Heffernan JM, Wahl LM: **The effects of genetic drift in experimental evolution.** *Theor Popul Biol* 2002, **62**:349–356. 79.
80. Chen N, Juric I, Cosgrove EJ, Bowman R, Fitzpatrick JW, Schoech SJ, *et al.*: **Allele frequency dynamics in a pedigree natural population.** *Proc Natl Acad Sci U S A* 2019, **116**: 2158–2164. 80.
81. Caballero A, Hill WG: **Effective size of nonrandom mating populations.** *Genetics* 1992, **130**:909–916. 81.
82. Buffalo V, Coop G: **The linked selection signature of rapid adaptation in temporal genomic data.** *Genetics* 2019, **213**: 1007–1045. 82.
83. Ruan Y, Wang H, Zhang L, Wen H, Wu C-I: **Sex, fitness decline and recombination – Muller's ratchet vs. Ohta's ratchet.** *bioRxiv* 2020, <https://doi.org/10.1101/2020.08.06.24071383>.
84. Waxman D: **A unified treatment of the probability of fixation when population size and the strength of selection change over time.** *Genetics* 2011, **188**:907–913. 84.
85. Kimura M: **Stochastic processes and distribution of gene frequencies under natural selection.** *Cold Spring Harbor Symp Quant Biol* 1955, **20**:33–53. 85.
86. Tibbs Cortes L, Zhang Z, Yu J: **Status and prospects of genome-wide association studies in plants.** *Plant Genome* 2021, **14**:e20077. 86.
87. Studer AJ, Doebley JF: **Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1.** *Genetics* 2011, **188**:673–681. 87.
88. Hartfield M, Glémén S: **Hitchhiking of deleterious alleles and the cost of adaptation in partially selfing species.** *Genetics* 2014, **196**:281–293. 88.