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The negative consequences of inbreeding have led animal biologists to assume
that mate choice is generally biased against relatives. However, inbreeding
avoidance is highly variable and by no means the rule across animal taxa. Even
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Inbreeding avoidance is not ubiquitous
Animal researchers often assume that inbreeding avoidance (IA) (see Glossary) – that is, a
preference for unrelated partners before, during, or after mating – is the norm [1]. This stems
largely from observing inbreeding depression (ID), or reduced fitness of inbred offspring, in
humans and beyond [2]. If mating with close relatives incurs a substantial fitness cost, selection
is expected to favor mechanisms for avoiding such matings [3].

However, two new meta-analyses [4,5] suggest that IA in mate choice is relatively uncommon.
Correcting for publication bias across 139 studies, de Boer and colleagues [4] found no overall
evidence for IA, with several studies even suggesting sexual preferences for close relatives
[5–11]. Subsequently, Pike et al. [12] argued that IA is common when there is ID and relatives
often interact as breeding adults. Unless both of these conditions are satisfied, choosers tend
to show no preference for non-kin, and may even choose kin as mates.

However, even when inbreeding is costly and close relatives interact, many animals still fail to
show IA (Table 1) – the so-called 'inbreeding paradox' [13–16]. Several recent studies failed
to detect an effect of kinship on mate choice [17–20], or even to show mating preferences for
kin [21,22], even when relatives encounter each other and show ID [13,14,23].

We argue that the inbreeding paradox stems from weak or variable selection for IA at any one
stage of mate choice, operating against constraints imposed by kin selection and selection
against outbreeding depression. In particular, the evolution of IA is constrained by selection
promoting mechanisms for self-similar association, specifically conspecific mate preference
(CMP) and nonsexual kin affiliation.

Weak and variable selection for IA
As suggested by Pike et al. [12], IA should evolve only when encounters between adults result in
ID. When there is such selection against mating with relatives, it may operate at different stages of
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Glossary
Conspecific mate preference (CMP):
mating preference for members of
one's own species.
Domain-specific antipathy: an
aversive response to a trait in a specific
context.
Heterotypic mating: mating with a
phenotypically dissimilar or distinct
individual to oneself.
Hierarchical preferences: a
preference in which one stimulus is
effective only if values of another stimulus
are within a given range.
Homotypic mating: mating with an
individual phenotypically similar to
oneself.
Inbreedingavoidance (IA): nonrandom
mate choice for unrelated individuals
before, during, or after mating.
Inbreeding depression (ID): the
fitness reduction of offspring that are
products of matings between related
individuals.
Inbreeding paradox: the
co-occurrence of ID and the absence
(presence) of evolved traits for IA
(preference).
Inclusive fitness: the proportion of
alleles in a population directly passed
down by an individual and indirectly
passed down via relatives.
Kin affiliation: biased spatial and
temporal proximity with related
individuals.
Kin recognition: the ability to
discriminate biological relatives from
unrelated individuals.
Kin selection: selection resulting from
the combined fitness effects of relatives.
Outbreeding depression: the fitness
reduction of offspring that are products
of matings between two genetically
distant individuals.
Peak shift: a behavioral response bias
that occurs after discrimination learning
wherein individuals respond toward
extreme values of a stimulus.
Phenotype matching: a mechanism
for identifying individuals based on the
correlation between genetic and
phenotypic similarity.
mate choice (Figure 1A) in ways that relax selection for behavioral IA before mating. There are
three main factors that weaken selection for IA at any one stage:

1. Inbreeding is not always costly. The overall genetic consequences of mating with close relatives
should be negative: inbreeding increases the genetic homozygosity of offspring, thereby expos-
ing deleterious recessive alleles and reducing intragenomic diversity [2]. As de Boer et al. [4] and
others have pointed out [24–27], ID is often taken as a given [4], and its negative consequences
are assumed to inevitably select for IA. However, the magnitude of ID depends on a population's
history of selection [28]. For example, prior inbreeding can function to expose deleterious alleles
to selection, reducing their frequencies within contemporary populations (i.e., ‘purging’), and thus
reducing costs associated with inbreeding and relaxing selection for IA [26,29].

Another reason why inbreeding is not always costly is that its costs can be offset by phenotypic
and indirect genetic benefits of mating with relatives [24–27] via kin selection. Inbreeding
increases inclusive fitness because parents are more related to inbred relative to outbred
offspring, thus a greater proportion of parents’ alleles are transmitted [1,24,25]. Further, kin selec-
tion may favor preferences for relatives, as suggested in cichlids (Pelvicachromis taeniatus)
[30], by reducing sexual conflict over parental investment [31]. Increased investment in inbred
offspring can counterbalance the harmful effects of inbreeding [14,31,32], and may be facilitated
by cooperative parental care among relatives. Nonsexual cooperation among kin may thus
weaken selection for IA.

Although inbreeding may be costly, the alternative can be worse. More generally, preferences
for unrelated mates mean that choosers may incur fitness loss not only from outbreeding
with conspecifics [33–35] but also from hybridization [36]. Thus, selection for IA may also be
weakened if it is more costly to mate with a heterospecific than it is to mate with a close relative.

2. No opportunity to mate with relatives. Weakened selection for IA can also result from sex-
biased dispersal [37], environmental sex determination [38], sequential hermaphroditism [39],
skewing offspring sex ratio [40], and sexual dimorphism in life history (e.g., sex differences in mat-
uration time) [41], all of which can reduce inbreeding without behavioral mechanisms (Figure 1A).
If breeding relatives do not interact, there should be little to no selection for or against ‘active’ IA.

3. IA can occur before, during, or after mating. IA can occur at any stage of mate choice; even if
close relatives fail to avoid mating, IA can occur through biased gamete transfer, fertilization, and
embryo retention [42,43]. However, redundant IA mechanisms across the process of mate choice
may be costly, and selection may favor IA at one particular stage rather than another [26,43].

Theory suggests that the evolution of IA hinges on more than the genetic costs of ID. Rather, it
depends on dynamic cost–benefits: the potential advantages of inbreeding and the costs of
rejecting relatives as mates [25–27]. For example, if there is a net fitness benefit to inbreeding,
selection will favor mating with kin. Therefore, the spectrum of selection on inbreeding and
outbreeding suggests that so-called inbreeding strategies [25], of which IA is a special case,
may vary across different stages of mate choice.

Constraints on IA mechanisms
Selection for ‘active’ IA requires a mechanism that biases against sexual interactions with kin at
some stage of mate choice. Like other mate-choice mechanisms, IA is shaped by selective pres-
sures within and outside the context of mating [44,45]. Constraints on mate-choice mechanisms
may make IA challenging to achieve, for two primary reasons. First, sexual reproduction requires
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Table 1. IA and CMP across animal taxa with demonstrated ID

Major taxon Species Evidence for
inbreeding
depression

Pre-mating
IA

Post-mating
IA

Pre-mating
CMP

Post-mating
CMP

Refs

Insecta Bicyclus anynana (African butterfly) [76] No – Yes – [19,76,77]

Insecta Drosophila melanogaster (fruit fly) [78] No No Yes – [78–81]

Insecta Callosobruchus chinensis (bean weevil) [82] No Yes No – [82–84]

Insecta Gryllus bimaculatus (two-spotted cricket) [85] Yes Yes Yes Yes [85–89]

Teleostei Poecilia reticulata (Trinidadian guppy) [90] Yes Yes No opportunity No opportunity [90,91]

Teleostei Gasterosteus aculeatus (Three-spined
stickleback)

[92] Yes – Yes – [92–94]

Aves Ficedula albicollis (collared flycatcher) [95] No – Yes – [60,95,96]

Aves Melospiza melodia (song sparrow) [16] No – Yes – [16,97,98]

Aves Notiomystis cincta (hihi) [99] – Yes No opportunity No opportunity [99,100]

Aves Passer domesticus (House sparrow) [101] No – – No [101,102]

Aves Taeniopygia guttata (Australian zebra finch) [103] No – Yes – [8,103,104]

Mammalia Homo sapiens (modern human) [105] Yes – No opportunity No opportunity [11,105]

Mammalia Ovis canadensis (bighorn sheep) [106] No – No opportunity No opportunity [106]

Mammalia Microtus ochrogaster (prairie vole) [107] Yes – Yes – [107–109]

Mammalia Mus musculus (house mouse) [110] No Yes Yes – [110–113]

Mammalia Lycaon pictus (African wild dog) [114] Yes – No opportunity No opportunity [114]

Studies were taken from those included in recent meta-analyses [4,12] that met three criteria: (i) evidence of ID; (ii) tested, before or after mating, for IA; and (iii) either tested
for CMP, or assumed to be under relaxed selection to recognize conspecifics because they do not currently coexist with any congeneric species (‘No opportunity’). These
included five studies [96,97,100,101,106] that were filtered from [4] because they were observational.
Dash indicates that no studies could be found.

Trends in Ecology & Evolution
coordination between individuals who share genetic ancestry. Second, nonsexual cooperation
often involves proximity and affiliative behaviors among close kin. IA, by contrast, requires an
individual to avoid one specific affiliative behavior (mating) with individuals who are similar, familiar,
and safe.

CMP promotes homotypic mating
Inbreeding and outbreeding depression, including hybrid inviability, are special cases of genetic
(in)compatibility [3], whereby offspring fitness depends on interactions between the genomic con-
tribution of the two parents [45,46]. Thus, both CMP and IA involve accepting compatible mates
and particularly rejecting incompatible ones.

The minimum and universally necessary mechanism for compatible sexual reproduction is a
molecular interaction at the egg–sperm interface. From this cellular interaction to sophisticated
multimodal communication, signal-receiver coevolution generates systems, including CMP,
whereby affiliative interactions, mating, and ultimately fertilization are biased towards self-similar
individuals (homotypic mating) [47] (Figure 1B).

Numerous mechanisms favor cues for self-similar, conspecific sexual partners, from sensory filters
at the earliest stages of mate choice [48], to integration of multimodal signals in the brain [49],
through the egg–sperm interface and beyond [3]. The most studied cues involved in conspecific
mate recognition are often low-dimensional and vary little within a species, such as color
differences [50], acoustic frequency differences [51], or chemical ratios [52,53]. If there
are substantial differences between these cues and other stimuli in the environment, as in humans
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Figure 1. Selection, inbreeding avoidance (IA), and conspecific mate preference (CMP). Inbreeding and
outbreeding both have variable costs and benefits. Both can be avoided through processes that make it unlikely tha
sexually mature adults will encounter each other. When individuals are faced with mating decisions, they may show biases

(Figure legend continued at the bottom of the next page.
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and hihi (Notiomystis cincta), where no closely related species exist (Table 1), a single filter –
whether a membrane receptor molecule, an auditory tuning curve, or categorical perception –

can discriminate homotypic from heterotypic stimuli (Figure 2).

A single filter can generate sexual selection within conspecifics if some trait values are more
attractive than others; alternatively, choosers may be very permissive (within conspecifics
and well beyond) if the cost of a mistaken mating is low (Figure 2A). But even Australian jewel
beetles (Julodimorpha bakewelli) mating to death with beer bottles [54] are doing so within
bounded stimulus parameters. Preferences for bounded homotypic stimuli are genetically and
phenotypically correlated with species-typical signals or cues present in choosers or in opposite-
sex relatives, and these cues can be used to identify potential mates via phenotype matching
[55]. In addition, early learning [56], whereby individuals prefer cues learned from parents or siblings,
provides a powerful mechanism for genetic coupling and codivergence of homotypic traits and
preferences.

The problem is harder when homotypic and heterotypic courters resemble each other and the
cost of a mistaken mating is high [57]. Therefore, selection against heterospecific mating often
yields peak shift, whereby choosers prefer cues displaced away from a stimulus to be avoided
(Figure 2B). Peak shift occurs in contexts ranging from learned sexual preferences [58] to reproduc-
tive character displacement over evolutionary time [3,59] and can result in divergent preferences
between sympatric and allopatric populations (e.g., [60,61]). For example, choosers may choose
less attractive, conspecific courters when the risk of hybridization is high despite lower fitness
benefits [57]. If traits overlap, a single filter cannot include all conspecifics without including
some heterospecifics, nor vice versa (Figure 2B). Selection therefore favors the evolution of
receivers who integrate responses to multiple cues [62] along multiple stages of mate choice,
pre- and post-mating.

IA: heterotypic mating within a homotypic envelope
In contrast to CMP, IA requires a mechanism that promotes heterotypic mating, in other words,
rejecting not just a subset of homotypic individuals but also those most like oneself (Box 1). IA,
therefore, requires sexual rejection of individuals that are too self-similar or too familiar (Figure 2C),
conflicting with and constrained by selection favoring homotypic mating (Figure 2A). And it must
coexist with a mechanism, however broad, for CMPs (Figure 2B).

Whether IA occurs through communication between individuals or gametes, it automatically
requires additional processes beyond those involved in accepting a conspecific signal
(Fig. 2B,C), because close relatives express conspecific cues. Within the envelope of CMP,
then, how can one choose a compatible mate with respect to the genetic consequences of
inbreeding (Box 1)?
against relatives or heterospecifics before, during, and after mating. (A) The evolution of IA: (1) female (light brown) mates with
a close relative (dark brown). Inbreeding can be beneficial due to kin-selected benefits and/or low overall costs associated
with inbreeding resulting in little selection for IA. (2) Breeding adults may never encounter relatives; however, when they do
and it is costly, selection favors IA at the (3) pre- and/or (4) post-mating stage (blue, unrelated sperm is preferred over the
more distal orange, related sperm). (B) The evolution of CMP: female (light brown) mates with heterospecific male (striped).
(1) Outbreeding can be beneficial because, for example, it introduces novel alleles. Notably, inbreeding and outbreeding
exist on a continuum, with heterospecific mating at the extreme end of outbreeding. Under conditions where hybridization
is beneficial, selection for CMP is expected to be weakened. (2) Homotypic mating may occur simply because breeding
adults never encounter heterospecifics or genetically distant individuals: for example, through host plant or microhabitat
preference. (3) When heterospecifics encounter each other and outbreeding is costly, CMP evolves at the pre-mating
(striped males are heterospecifics) and/or (4) post-mating stage (orange, conspecific sperm is preferred over
heterospecific sperm). Figure was created with BioRender.
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Figure 2. Selection on mate-choice
mechanisms when inbreeding is
costly. (A) Chooser preferences
(arbitrary units) for conspecific color. In
the absence of similar heterospecific
signals, preferences may be directional
(solid line) or permissive (dashed line)
among conspecifics. (B) When mating
with heterospecifics is costly, selection
favors narrower preferences (solid
black line) or peak shift away from
heterospecifics (dashed line). (C) Chooser
preferences among conspecifics for a
variable trait: call frequency. Squiggly
arrows represent ‘stepping into’ another
dimension of courter traits. If inbreeding is
costly, selection should favor avoidance of
trait values present in relatives (solid line).
In this example, there is a hierarchical
interaction between preference for
conspecific color signals and preference
for acoustic signals of unrelated
conspecifics; only choosers with
acceptable color traits are evaluated
for call frequency. In this example,
evaluation is sequential but could
happen simultaneously or in reverse.
Figure was created with BioRender.
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For CMPs, phenotype matching and early learning shape sexual preferences for self-similar indi-
viduals; in the context of IA, they shape sexual avoidance of self-similar individuals. For example,
self-incompatibility alleles in angiosperms reject the most self-similar genotypes, limiting the most
intense form of inbreeding [64]. The t allele system in mice also reduces inbreeding: female mice
carrying the recessive-lethal t locus avoid tmales, a case of heterotypic mating [65]. Importantly,
heterotypic mating with respect to one cue must occur alongside homotypic mating with respect
to another, at all stages of mate choice. Examples are conspecific pollen precedence [66] or
pollinator-mediated pre-mating barriers [67] co-occurring with self-incompatibility in flowering
plants, or conspecific sperm precedence [66] and pre-mating preferences [68] co-occurring
with self-avoidance in mammals. Therefore, we expect that IA and CMP might have overlapping
mechanisms but address different sets of partner cues.

The critical difference between IA and CMP is that while CMP cues are under stabilizing or direc-
tional selection for homotypic mating [69], successful IA requires avoiding kin without rejecting
conspecifics altogether. IA, therefore, relies on cues that are variable within a population and
therefore distinct in unrelated individuals (Figure 2). For example, the vertebrate major histocom-
patibility complex (MHC) of immune proteins is a popular candidate for linking genes under diver-
sifying selection to olfactory cues used to identify kin and reject related mates [70], likely through
6 Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx
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Box 1. Are there trade-offs between IA and CMP?

IA requires sexual rejection of individuals that are too self-similar or too familiar, in direct conflict with selection favoring
homotypic mating (Figure 2A in main text). And it requires avoidance of activities that lead to mating, in direct conflict with
selection favoring affiliative behaviors with kin (Figure 2B in main text). This means that preferences for heterotypic or novel
phenotypes may invariably go checked by preferences for self-similar individuals. How might CMP and IA interact?

Often, CMP is the foremost of a set of hierarchical preferences, whereby sexual cues are filtered by a set of criteria
before further evaluation [51]. For example, in túngara frogs (Engystomops pustulosus), females share species-typical
preferences for time-frequency characteristics of the ‘whine’ call, rejecting males with atypical whines [49]. Among appro-
priately whining males, however, females are permissive: adding almost any detectable acoustic ornament makes a call
more attractive. Females fail to avoid relatives based on acoustic cues [63], as expected if females share permissive
preferences bounded by CMP.

Table 1 (in main text) lists systems with measured ID and studies of both IA and CMP from recent meta-analyses [4,12].
Only 16 species meet all three criteria, and only 11 of these have direct tests of assortative mating. Only one species with
demonstrated ID (two-spotted crickets) has been tested for both IA and CMP both before and after mating. Of five species
tested for IA at multiple stages of mate choice, two showed IA at both stages, one failed to show IA at either stage, and two
showed IA in one but not the other. The data summarized in Table 1 (in main text), therefore, suggest that just examining
one mate-choice stage may underestimate total IA.

It is suggestive that of the eight species with pre-mating preferences for conspecifics (Table 1 in main text), five showed no
evidence of IA when tested. This is noteworthy given publication bias against negative results on IA [4]. Even species with
robust mate-choicemechanisms in one context, therefore, may often fail to express them in another. Unraveling any trade-
offs between IA and CMP requires many more studies of both tasks across mate-choice stages in the same populations.

Trends in Ecology & Evolution
effects of host MHC haplotype on the scent-producing microbiome [71]. Therefore, selection for
genetic compatibility may be a widespread driver of multimodal and multidimensional complexity
in sexual communication because antagonistic fitness benefits are expected to favor distinct
traits in different sensory modalities for IA versus CMP.

IA, kin recognition, and domain-specific antipathy
As noted above, preference for dissimilar phenotypes is bounded by CMP, whether selecting
conspecific mates is easy or difficult. If choosers simply make decisions based on novelty versus
familiarity, or similarity versus dissimilarity, this will invariably lead to some combination of kin
mating, heterospecific mating, and rejecting suitable conspecifics. Many organisms, however,
have mechanisms that label close kin differently from other conspecifics: kin recognition.

Discriminating among individuals by kinship, like CMP, is accomplished by behaving differently
towards individuals with a self-similar trait or individuals or stimuli experienced early in life [72].
Kin recognition is more commonly studied not in the context of individuals avoiding kin, but
cooperating with them. And importantly, avoidance of related individuals is useful mainly in one
specific social context: sex.

In addition to the problem of sexual compatibility, there is, therefore, the additional problem of
decoupling sexual from nonsexual behavior with close social partners. Kin selection often favors
affiliative interactions between relatives, including care of young, with gametic exchange as the
noteworthy exception. Indeed, individuals often spend more time close to relatives than nonrela-
tives, including intimate activities such as food sharing, preening, and genital sniffing [73–75]
characteristic of sexual courtship when directed at non-kin. Indeed, kin may show courtship-
like behavior toward relatives during ontogeny but later form stable pair bonds only with nonrela-
tives [74]. Successful IA around kin requires domain-specific antipathy: aversion to kin, limited
to contexts that increase the risk of mating. Therefore, naively measuring proceptive or affiliative
behaviors as proxies for sexual preferences may complicate measures of IA.
Trends in Ecology & Evolution, Month 2022, Vol. xx, No. xx 7
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Outstanding questions
Does post-mating IA evolve more
readily because of the constraints im-
posed by kin affiliation? We expect
that post-mating IA evolves more read-
ily due to the benefits of physical prox-
imity to kin and the complexity of pre-
mating IA. Molecular post-mating,
rather than pre-mating mechanisms
of IA, is the norm rather than the ex-
ception in flowering plants and is per-
haps the same for animals.

Does selection on hybrids facilitate or
inhibit IA? IA should evolve most
readily when the fitness conse-
quences of potential hybridization
are zero (e.g., when closely related
species are absent) or positive
(e.g., heterosis with incompletely iso-
lated lineages). These patterns would
be most easily observed by comparing
the strength of IA across populations
along an allopatry gradient.

Does the trade-off between IA and
CMP explain the evolution of multivari-
ate sexual communication? The bal-
ance between IA and CMP provides a
plausible mechanism for the ‘multiple
messages’ hypothesis. Restricting
mates to individuals who fall outside
the parameters of a variable cue for
kin recognition, and within those of
conspecifics, may provide a ubiquitous
explanation for one aspect of signal
complexity.
Concluding remarks: IA, mate-choice mechanisms, and sexual evolution
The conventional wisdom surrounding IA is largely incorrect. Not only is there no overall evidence
for IA among animals [4,12], but patterns of IA across species and sexes fail to conform to our
assumptions. Inbreeding is usually costly, but selection for IA may be weak if related individuals
rarely encounter each other as breeding adults (Figure 1A). The mechanistic challenges of IA –

swimming upstream, as it were, against CMP and kin affiliation – may favor sexual dimorphism
in dispersal or maturation schedules that minimize the need to make decisions; however, ‘active’
IA can occur at any stage of mating. Experimental studies often focus on isolating a specific stage
of mate choice at the expense of understanding how stages of mate choicemight interact to drive
mating outcomes. For example, multiply mated female red jungle fowl (Gallus gallus) discriminate
against related sperm under natural mating conditions; however, this effect disappears with arti-
ficial insemination, suggesting that it is triggered by total chooser–courter interaction across
stages of mate choice [115]. It may be premature to generalize about how constraints on IA
operate across stages of mate choice (see Outstanding questions).

Further, decisions to avoid inbreeding may be especially challenging when individuals encounter
heterospecifics with whom they may mate. IA mechanisms – phenotype matching and early learning
used to avoid relatives or prefer nonrelatives – all have in common that they should increase the risk of
preferring heterospecific traits in opposition to preferences for self-similar conspecifics. Like inbreed-
ing, hybridization can have advantages that are dependent on time and space [116], but both gener-
ally have negative consequences. Choosers may be faced with a dilemma: to inbreed or to hybridize.
Selection favoring CMP may act to relax IA, even when inbreeding is costly, because choosing a
heterospecific is worse (see Outstanding questions). This may resolve the 'inbreeding paradox'. Con-
versely, hybridization may be facilitated by IA mechanisms favoring novelty and dissimilarity. It would
be instructive to see more systems where chooser preferences are assayed before and after mating
across a broad array of contexts, particularly in species that occur across gradients of hybridization
and inbreeding risk (see Outstanding questions).

The challenge of rejecting distasteful sexual signals of relatives while retaining sexual preferences
for unrelated conspecifics is compounded by the widespread benefits of kin affiliation. This
means that avoiding relatives must be domain-specific: antipathy for relatives in a sexual context
but not in a nonsexual one. Multiple cues conveying ‘multiple messages’ [62] for integration by
receivers may be necessary to effectively avoid inbreeding (see Outstanding questions).

Research on mate-choice mechanisms could be more extensive as well as more intensive. We
need more studies of CMP and IA in the same systems across diverse taxa. The studies in
Table 1 show the usual bias towards vertebrates and a few tractable insects [117], omitting
hermaphrodites, broadcast spawners, and many other taxa that could be used to test predic-
tions about inbreeding and hybridization. Choosing compatible mates is among the most impor-
tant decisions an individual can make. To avoid sexual interactions with relatives, individuals may
need to navigate a narrow course shaped by selection for social decisions in other contexts.
Constraints on IA mechanisms imposed by CMP and kin affiliation may have far-ranging conse-
quences across the life cycle, from dispersal to parental care to mate choice.
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