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Abstract

There is a shortage of multiwavelength and spectroscopic follow-up capabilities given the number of transient and
variable astrophysical events discovered through wide-field optical surveys such as the upcoming Vera C. Rubin
Observatory and its associated Legacy Survey of Space and Time. From the haystack of potential science targets,
astronomers must allocate scarce resources to study a selection of needles in real time. Here we present a
variational recurrent autoencoder neural network to encode simulated Rubin Observatory extragalactic transient
events using 1% of the PLAsTiCC data set to train the autoencoder. Our unsupervised method uniquely works with
unlabeled, real-time, multivariate, and aperiodic data. We rank 1,129,184 events based on an anomaly score
estimated using an isolation forest. We find that our pipeline successfully ranks rarer classes of transients as more
anomalous. Using simple cuts in anomaly score and uncertainty, we identify a pure (≈95% pure) sample of rare
transients (i.e., transients other than Type Ia, Type II, and Type Ibc supernovae), including superluminous and pair-
instability supernovae. Finally, our algorithm is able to identify these transients as anomalous well before peak,
enabling real-time follow-up studies in the era of the Rubin Observatory.

Unified Astronomy Thesaurus concepts: Supernovae (1668); Time series analysis (1916); Astrostatistics techniques
(1886); Surveys (1671)

1. Introduction

Wide-field optical surveys such as the Asteroid Terrestrial-
impact Last Alert System (Jedicke et al. 2012), the All-Sky
Automated Survey for SuperNovae (Shappee et al. 2014), the
Panoramic Survey Telescope and Rapid Response System 1
(Pan-STARRS1; Chambers et al. 2016), and the Zwicky
Transient Facility (ZTF; Bellm et al. 2018) have exponentially
increased the discovery rate of new transient events that vary
on day to year timescales. The upcoming Vera C. Rubin
Observatory (Ivezić et al. 2019) and its decade-long Legacy
Survey of Space and Time (LSST) will greatly accelerate this
discovery rate to millions of new transient events annually.
However, a limited fraction (likely 0.1%) of all events can be
followed up with dedicated spectroscopic and multiwavelength
campaigns. Identifying transients worthy of follow-up will be
akin to finding needles in a haystack. Adding to the challenge,
we will need to identify such events quickly to capture events
pre- or near peak to fully optimize the efficiency of follow-up
campaigns.

Over the past few years, there have been several initial
efforts aimed at photometrically classifying transients to build
pure samples of known transient classes (Boone 2019;
Muthukrishna et al. 2019; Pasquet et al. 2019; Gómez et al.
2020; Hosseinzadeh et al. 2020; Villar et al. 2020; Sánchez-
Sáez et al. 2021). However, even the rarest transients known
today, like superluminous supernovae (SLSNe) and tidal
disruption events (TDEs), will be discovered by the thousands

in the era of LSST (e.g., Villar et al. 2018; Bricman &
Gomboc 2020). Detection and classification algorithms sensi-
tive to anomalous transients are essential in order to discover
unexpected and even rarer phenomena.
There is a growing literature on anomaly detection for

astronomy applications. For supernova (SN) light curves,
Pruzhinskaya et al. (2019), Aleo et al. (2020), Martínez-
Galarza et al. (2020), and Ishida et al. (2021) used isolation
forests and active anomaly discovery on archival data sets.
Convolutional autoencoders have recently been used to search
for anomalies and glitches in gravitational-wave time series
(Morawski et al. 2021). In the broader machine-learning
literature, there has been increasing interest in anomaly
detection in real time (Chalapathy & Chawla 2019). Typically,
these works focus on long and well-sampled single-channel
time series with anomalous periods of activity (e.g., Zhang
et al. 2018; Li et al. 2019), although some recent work has
focused on multivariate series (Zhao et al. 2020). Martínez-
Galarza et al. (2020) recently presented a survey of anomaly
detection algorithms for univariate, variable light curves. There
has been limited focus on anomaly detection in irregularly
sampled, aperiodic, multivariate time series. Recently,
Soraisam et al. (2020) presented a real-time method to search
for anomalies in multivariate data, trained and tested on
variable sources. Similarly, Malanchev et al. (2021) presented a
dedicated search for anomalies in the ZTF data stream utilizing
human-engineered features from complete light curves and four
different anomaly detection algorithms.
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In this paper, we focus on out-of-distribution anomalies,
which appear distinct from all other known transients in some
feature space. By taking a completely data-driven approach to
anomaly searches, our algorithm is agnostic to physics and
therefore sensitive to entirely unexpected phenomena. Our
anomaly detection pipeline is based on a variational recurrent
autoencoder neural network (VRAENN) with no physical
priors, and we search the learned encoded space for out-of-
distribution events. The paper is organized as follows. In
Section 2, we review the Photometric LSST Astronomical
Time-Series Classification Challenge (PLAsTiCC) data set
used for training and anomaly detection and the breakdown of
SN-like transients used in this study. In Section 3, we present
our anomaly detection pipeline and the VRAENN architecture.
We discuss our results in Section 4 and conclude in Section 5.

2. Data Set and Preprocessing

In this study, we use PLAsTiCC, a simulation of 3 yr of
Rubin Observatory data that includes over 3.5 million transient
events from 18 unique physical classes, extending to a redshift
of z≈ 1.5 (Allam et al. 2018; Kessler et al. 2019). Each event is
observed across six broadband filters (ugrizY) following the
LSST observing strategy at the time the simulation was
produced. Sample light curves are shown in Figure 1. Along
with the light curves, PLAsTiCC provides metadata including
the redshift, Milky Way reddening, physical parameters used to
generate the model, and a realistic photometric redshift estimate
(see Kessler et al. 2019 for details). For this observing strategy,
each event is observed every few days (in any filter) and
roughly once a week in the same filter.

The PLAsTiCC data set was originally created for a public
data science (Kaggle) competition11 to classify transients. We
repurpose this data set as a training set for anomaly detection in
an LSST-like data stream. Here, anomalous events will be
determined by the metadata (i.e., if the event comes from a rare
astrophysical origin). We remove classes observable only
within the Milky Way (e.g., variable stars) and SNe with fewer
than three detections in any filter within 300 days of peak
brightness. This cut is not necessary, as our algorithm can take
light curves of any length; however, light curves with fewer

points are very unlikely to be selected for detailed follow-up in
reality. We note that extragalactic light curves will be con-
taminated by Galactic astrophysical sources, but it is straightfor-
ward to separate extragalactic events from Galactic events given a
photometric redshift estimate (or more sophisticated methods; e.g.,
Sánchez-Sáez et al. 2021); random associations with unrelated
hosts are not modeled in PLAsTiCC. Additionally, we only utilize
transients from the wide-fast-deep (WFD) survey and remove
events within the deep drilling fields. In total, our data set contains
1,129,184 extragalactic light curves from 13 classes.

1. Normal Type Ia SNe arise from the thermonuclear
explosions of carbon–oxygen white dwarfs. The models
were generated using the standard SALT-II light-curve
models (Guy et al. 2007), conditioned on ≈500 light
curves from the Joint Lightcurve Analysis (Betoule et al.
2014). Type Ia SNe represent 54.2% of our data set. We
consider Type Ia SNe part of the majority classes.

2. Type II SNe12 are the explosions of massive stars that
have retained their hydrogen envelopes. They are often
characterized by long plateaus in their optical light
curves. The models were generated from spectral energy
distribution (SED) templates (Kessler et al. 2010;
Anderson et al. 2014; Galbany et al. 2016; Sako et al.
2018). Type II SNe make up 25.8% of our data set. We
consider Type II SNe part of the majority classes.

3. Type Ibc SNe are core-collapse SNe of stars with stripped
hydrogen (Ib) and helium (Ic) envelopes. The models
were generated using a combination of MOSFiT (Villar
et al. 2017; Guillochon et al. 2018) and SED templates
(Kessler et al. 2010). Type Ibc SNe make up 5.8% of our
sample. We consider Type Ibc SNe part of the majority
classes.

4. Type I SLSNe are luminous, hydrogen-free events thought
to be powered by rapidly spinning, highly magnetized
neutron stars. The SLSN models were produced using
MOSFiT (Nicholl et al. 2017; Guillochon et al. 2018;
Villar et al. 2018). They make up 2.2% of our sample.

Figure 1. Sample grizY light curves of majority SN classes (Types Ia, Ibc, and II). Bold lines represent the 2D GP mean function, with shaded regions representing
68% confidence intervals. Even when entirely missing one or more bands, our method is able to produce reasonable interpolated light curves. Note that the y-axis, the
magnitude used to train the GP, is designed such that the light curve tends to zero as it approaches the survey magnitude limit.

11 https://www.kaggle.com/c/PLAsTiCC-2018

12 In the original version, PLAsTiCC grouped normal Type II and Type IIn
SNe into a single class. We separate these classes due to their distinct physical
origins and unique light curves.
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We consider SLSNe to be members of the minority
classes.

5. Type Iax are irregular Type Ia SNe with typically lower
luminosities and velocities compared to normal Type Ia
SNe (Li et al. 2003). The models were generated using
available data in the Open Supernova Catalog
(Guillochon et al. 2017). Type Iax SNe make up 1.8%
of our data set. We consider Type Iax SNe to be members
of the minority classes.

6. Type IIn SNe12 are core-collapse SNe mainly powered by
the interaction of the SN ejecta with circumstellar
material (CSM). The models were generated using
MOSFiT (Villar et al. 2017; Guillochon et al. 2018; Jiang
et al. 2020). Type IIn SNe make up 1.8% of our sample.
We consider Type IIn SNe to be members of the minority
classes.

7. Type Ia-91bg are fainter, faster, and redder Type Ia SNe
that make up ≈20% of the volumetric Type Ia sample
(Filippenko et al. 1992; Graur et al. 2017) and ≈3% of
the observational sample (Li et al. 2011). The model light
curves are based on the SED templates from Nugent et al.
(2002). Type Ia-91bg SNe make up 1.2% of our sample.
We consider Type Ia-91bg SNe to be members of the
minority classes.

8. The TDEs result from the tidal disruption of stars by
supermassive black holes (SMBHs; Rees 1988). The
TDE models were generated using MOSFiT (Guillochon
et al. 2018; Mockler et al. 2019) and make up 0.6% of our
sample. We consider TDEs to be members of the
minority classes.

9. The Ca-rich transients (CARTs) are intermediate-lumin-
osity transients whose spectra appear rich in calcium
(Kasliwal et al. 2012). CARTs are modeled using
MOSFiT, assuming they are powered by the radioactive
decay of 56Ni. We note that this is the same model used to
generate Type Ibc SNe but with a distinct parameter
space. CARTs make up 0.31% of our sample. We
consider CARTs to be members of the minority classes.

10. Intermediate-luminosity optical transients (ILOTs) are
transients that are brighter than novae but less luminous
than SNe (Kasliwal 2012). In this case, we assume that
ILOTs arise from CSM interaction with low-energy
eruptions (or explosions) of massive stars. The ILOTs
have been modeled using MOSFiT (Guillochon et al.
2017; Villar et al. 2017; Jiang et al. 2020) and represent
0.08% of our sample. We consider ILOTs to be members
of the minority classes.

11. Pair-instability SNe (PISNe) are the explosions of low-
metallicity massive stars (MZAMS∼ 130–260 Me) that
reach core temperatures high enough to form electron–
positron pairs (Kasen et al. 2011). Compared to normal
core-collapse SNe, PISNe have high kinetic energies and
larger ejecta masses. The PISNe are modeled using
MOSFiT, assuming that they are powered by the
radioactive decay of 56Ni. The PISNe make up 0.07%
of our sample. We consider PISNe to be members of the
minority classes.

12. Kilonovae (KNe) arise from the formation of radioactive
rapid neutron capture elements in binary neutron star (and
potentially neutron star–black hole) mergers. The models
are based on theoretical calculations (Kasen et al. 2017).
There are only two KNe in our sample. The KNe are dim

and short-lived, making them nearly impossible for LSST
to discover in the WFD strategy explored here. We
consider KNe to be members of the minority classes.

13. Active galactic nuclei (AGN) refer generally to galaxies
with active SMBHs from accreting gas. The AGN have a
wide range of observed behavior, although they typically
vary on timescales of weeks to years at the 10% level.
The AGN variability is modeled using a damped random
walk as described in MacLeod et al. (2011). The AGN
make up 6.3% of our data set. We note that AGN are the
only class that is likely not representative of the true
LSST data stream; AGN will be much more numerous,
with likely millions in the complete sample. Many bright
AGN (which are those represented in PLAsTiCC) will be
identified within the first year of LSST; however,
transient bright flares will be of interest to the community
(Graham et al. 2017). Because AGN are distinct from
SN-like transients, we consider their effects separately in
the Appendix.

The breakdown of the various classes is shown in Figure 2.
The observational rates of each class are a combination of the
volumetric rates (intrinsic rarity) and observational effects (e.g.,
luminosity function, duration). The breakdown used here is
designed to match what is empirically expected from a wide-
field survey such as LSST (see, e.g., Perley et al. 2020; Villar
et al. 2020). We note that this LSST cadence simulation detects
just two KNe that pass our cuts in the simulated observations,
highlighting the need for target-of-opportunity observations to
better capture these rare events.
We define Type Ia, Type II, and Type Ibc SNe as the

majority classes because together they make up the bulk of the
data set (≈86%). We consider all other classes (excluding
AGN) to be minority classes, with fractions of 2% of the
sample.
We preprocess the data as follows. Following Villar et al.

(2020), we scale the light-curve magnitudes such that zero
corresponds to the magnitude limit. This is to aid the Gaussian
process (GP) interpolation (which will tend toward zero before
and after the SN). We correct the light curve of each event for

Figure 2. Breakdown of the various transient classes used in this study. Note
that AGN are likely highly underrepresented compared to the true breakdown
in the LSST data stream; however, AGN are exceptional in their light-curve
properties and may be identified early in the survey. The parenthetical numbers
associated with each class represent the percentage breakdown. There are a
total of two KNe in our sample.
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time dilation and convert to absolute magnitudes based on the
provided photo-z values (see Villar et al. 2020 for details). The
photo-z values are based on host galaxy association and use a
color-matched nearest-neighbor method presented in Graham
et al. (2018). This method is trained on a realistic sample of
galaxies that would have spectroscopic redshifts available.
About 17% of the redshift estimates are outliers, defined as
|ztrue− zphot|/(1+ zphot)> 3σIQR by Kessler et al. (2019),
where σIQR is the typical error for galaxies near ztrue. We
make no cuts on redshift uncertainty; instead, we account for
redshift uncertainties via a simple Monte Carlo method
discussed in Section 3. We caution that our method relies on
these host photo-z estimates. Hostless transients will therefore
be excluded from detection.

We additionally correct the light curves for Galactic
reddening, as outlined in Villar et al. (2020). Finally, we
temporally shift each event such that the observed time of peak
brightness (in any filter) is considered t= 0. This means that as
new data are taken during an event’s rise, the time of peak
luminosity will continue to shift until the true peak luminosity
has been observed or the event dims. For example, if a transient
first peaks in the g band 10 days postexplosion and then
reaches a brighter luminosity in the r band at 15 days
postexplosion, the peak used by the neural network will be at
15 days postexplosion; this is independent of the bolometric
peak luminosity. We find that this prescription of phase
(versus, for example, time since first detection) leads to better
performance in the autoencoder.

2.1. Interpolation Using GPs as Preprocessing

The PLAsTiCC light curves are irregularly sampled across
time and filters, with no more than one filter observed at any
given time. For the architecture discussed below, we require a
flux and error estimate for each filter at every observation time.
To produce this information, we use a 2D GP to interpolate the
light curve over time and filter, with a multivariate Gaussian
(MVG) kernel described by
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where f represents the six (ugrizY) filters; lt and lf are the
characteristic correlation length scales in time and filter,
respectively; and d( fi, fj) is the Wasserstein-1 distance between
each filter’s normalized throughput, which we optimize to each
specific light curve. This choice in the distance metric loosely
measures the similarity between two distributions. Mathema-
tically, we treat each filter as a density function in wavelength.
This distance metric is minimized when filters overlap and
simplifies to a difference between central wavelengths in the
limit of infinitely narrow passbands.

The GP interpolation both accounts for and produces error
estimates for each flux measurement. The choice of a Gaussian
kernel is physically well motivated in this case; in the Arnett
model, an SN light curve is loosely described as the
convolution between an input luminosity function and a
Gaussian filter whose width is set by a diffusion timescale
(Arnett 1982). Furthermore, without using a 2D GP (i.e., if the
filters were not correlated), events that were unobserved in a
given passband would be filled with the mean function (the

limiting magnitude in our case). The 2D GP is therefore
necessarily to produce reasonable light curves. Flux uncertain-
ties are utilized in both the encoding method and anomaly
scoring steps of our algorithm (see Section 3) in order to make
our algorithm robust to low-confidence outliers. Finally, we
note that during testing, we implemented a similar (though less
physically motivated) interpolation scheme in Villar et al.
(2020) and found that the interpolation methods led to visually
similar light curves. The data used in that work, the Pan-
STARRS1 Medium Deep Survey, have a similar cadence to the
light curves explored here. We also note that a similar method
has already been applied to PLAsTiCC data for classification
(Boone 2019). Because this preprocessing is similarly
employed on all light curves, we do not have reason to expect
this step to significantly bias the results, even if the GP-
interpolated light curves differ from the ground truth.
We implement the GP preprocessing using sklearn,

optimizing the Gaussian width for each light curve indepen-
dently via the minimize function from scipy, which uses
the Broyden–Fletcher–Goldfarb–Shanno optimization algo-
rithm (Fletcher 1986). We assume flat logarithmic priors over
the wavelength (10−3

–104.5Å) and temporal GP widths
(10−6

–104 days). Sample light curves are shown in Figure 1.
Even in cases of poorly sampled light curves or light curves in
which a band is completely missing, the GP produces
reasonable flux and error estimates across all filters.
We note that our GP utilizes the complete light curve for

interpolation. In reality, only the light curve up to the most
recent observation will be available in real time. One may be
concerned that because our GP has been conditioned on the
entire light curve, it has more information than what will be
available for real-time usage. This likely has no effect on our
results, as each observation heavily anchors the GP prediction
(see Figure 1), and the learned GP kernel sizes are similar to
our priors (see, e.g., Villar et al. 2020 for typical SN values).

3. VRAENN: Architecture, Training, and Anomaly
Detection

Following preprocessing of the training set, our anomaly
detection pipeline includes two steps. First, we learn an
encoded form of each light curve by training a VRAENN on
the full data set. Then, we use an isolation forest to rank each
light curve’s encoded form by an anomaly score. We utilize a
simple Monte Carlo to estimate the uncertainty on this score. In
this section, we describe the VRAENN architecture, the
training process, the isolation forest, and our error estimation
method. Our code, along with all chosen hyperparameters of
our model, is available via Github.13

Broadly speaking, a variational autoencoder is a probabilistic
model used to encode high-dimensional data (Kingma &
Welling 2013). Standard autoencoders simultaneously train an
encoder and a decoder to learn a low-dimensional representa-
tion of the data set. However, the learned latent space is not
guaranteed to be continuous (e.g., the same SN class may
separate into several clusters in latent space), which is a
beneficial property when searching for anomalies. Variational
autoencoders solve this problem by learning smooth and
continuous latent space by design.
Our novel VRAENN architecture is well suited to the problem

of searching for unknown, anomalous transients. While more

13 https://github.com/villrv/vraenn
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traditional feature extraction via model fitting (e.g., Villar et al.
2019; Hosseinzadeh et al. 2020) or using predefined quantities
(Boone 2019) has been successful for classification, dozens of
features are required. We want to avoid searching for anomalous
events in high-dimensional data, in which distance metrics are
more challenging to meaningfully define (Liu et al. 2012).
Additionally, the VRAENN architecture is built without any
physical models, meaning that it is sensitive to new and
unexpected physical processes, which are observationally distinct
from known transients.

The architecture specifically used here has three additional
benefits: (i) the ability to handle unevenly sampled light curves
across time using recurrent neurons, (ii) the ability to produce
extrapolated and interpolated light curves, and (iii) an
insensitivity to noisy data and spurious outliers due to the
variational architecture and error estimation.

Rather than using a static vector as a bottleneck, our
VRAENN learns a distribution of encoding vectors. In
particular, the encoding layer consists of two vectors: one that
represents the mean of an MVG and one that represents its
diagonal covariance matrix. For each SN passed into the
VRAENN, we randomly select an encoding from the MVG
defined by this learned mean and variance. The “variational”
aspect of our architecture refers to this process of learning a
distribution of encodings rather than a singular encoding. This
is helpful in generating a smooth encoding space in which most
events will cluster, allowing us to more easily pick out
anomalous events. We emphasize that although the latent space
is more well behaved, we do not claim that this space is
interpretable. Villar et al. (2020) presented a similar method
and compared the learned latent space to a number of hand-
engineered features to highlight how such latent spaces can be
correlated to observable properties.

The VRAENN architecture, based on the model presented in
Villar et al. (2020), uses recurrent neurons to read in the GP
light curve and estimated errors and encodes this light curve as
a vector. This is achieved by encoding the light curve into a
series of smaller matrices until the information reaches a small
bottleneck layer of size 1× 10. This is an unoptimized choice
of size, although Villar et al. (2020) found a similar result after
a hyperparameter search of a similar architecture. This layer is
known as the encoded layer, and the layers preceding it are
known as the “encoder.” Each of these layers uses gated
recurrent unit (GRU) neurons with a combination of hyperbolic
tangent, sigmoid, relu, and linear activation functions. The
GRU is a memory-efficient version of the long short-term
memory, the standard for recurrent neural networks (Cho et al.
2014).

Before being passed into the second half of the autoencoder
(the “decoder”), the encoded layer is repeated N times, with
each time appended as a phase relative to maximum light. This
can be thought of as evaluating an SN model at specific times,
where the model is specified by 10 free parameters, with an
11th parameter specifying the time. The unique repeat layer of
our architecture allows us to evaluate the light curve at times
not included in the real data, i.e., interpolating and extrapolat-
ing the light curve if desired (although this feature is not used
in this work).

The decoder then produces the light curves at the N times
specified in the repeat layers. As with the encoder, the decoder
uses GRU neurons with hyperbolic tangent activation functions.
Figure 3 illustrates our full pipeline, including a schematic of the

neural network architecture used. The VRAENN is optimized
using a loss function combining the log of the weighed mean
squared error and the standard Kullback–Leibler divergence
(which measured how well our MVG represents our latent
variable space):
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We minimize the loss function using the Adam optimizer
(Kingma & Ba 2014) with standard learning parameters
α= 10−4, β1= 0.9, and β2= 0.999 for 1000 epochs using
Keras (Chollet 2015) with a TensorFlow back end (Abadi et al.
2016). We train our VRAENN on 1% of the sample (12,159
events), reflecting (for example) the small data set that will be
available within months of LSST coming online. The full
model takes roughly 20 hr to train on a standard CPU. We note
that once trained, our algorithm takes less than a second per
object to encode the light curve, pass it through the VRAENN
encoder, and calculate the associated anomaly score and
uncertainty (assuming 10 random draws for error estimation).
A sampled subspace of our encoding vectors is shown in

Figure 4. The majority of events cluster near zero, with
anomalous events (like SLSNe) forming a cloud outside of the
main distribution.

3.1. Scoring Anomalies with an Isolation Forest

Once our VRAENN is trained, we can encode any
PLAsTiCC light curve, partial or complete, as a 1× 10 vector.
We then pass these encodings into an isolation forest (Liu et al.
2012). The isolation forest works by generating a series of
decision trees over a random subset of attributes. Each tree
recursively splits the set. Out-of-distribution anomalous events
will be isolated with very few splits, while an average event
will cluster with similar events, even after many splits. The
number of splits is inversely related to an anomaly score. For
the sake of interpretability, we then convert this raw score to a
percentile. We use sklearn to implement the isolation forest
using 1000 base estimators.
We identify several sources of possible error in the anomaly

score.

1. Flux uncertainty due to Poisson noise. This is provided
by PLAsTiCC as a standard deviation for each flux
measurement.

2. Uncertainty in the flux estimates from the GP, which is
also estimated by the GP.

3. Photometric redshift error, reported as a standard
deviation. This affects the entirety of the light curve as
both an overall multiplicative flux term and a time
dilation adjustment.

4. Model uncertainty from the neural network converting
the light curve into an encoded vector.

We account for the first three using a simple Monte Carlo
method. For each transient, we generate 10 light curves that
have photo-z and flux values drawn from Gaussian distribu-
tions described by the reported mean and errors. We do not
account for noise from the neural network itself, which could
be accomplished via an ensemble of networks. We find that, in
general, the error estimated from this method is sufficient to
eliminate anomalous events arising from poor data quality and
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incorrect photo-z estimates by making a cut on the anomaly
score uncertainty.

We show how the anomaly score uncertainty changes as a
function of both time and number of data points in Figure 5.
We first examine how the error changes as a function of
number of observations. The error grows until the light curve

Figure 3. Summary of our anomaly detection pipeline. (1) We interpolate each ugrizY light curve using a 2D GP. (2) We train the variational recurrent autoencoder in
an unsupervised manner. Light curves are represented as a time series, in which each epoch is represented by 13 features: six flux values, six estimated error values,
and one time. This time series (consisting of N points) is encoded. The encoding layer is repeated N times, each time appended with the associated time value. We use
this network to encode each light curve. (3)We use an isolation forest to assign an anomaly score for each light curve using the encoded vectors. The isolation forest is
represented here in one subspace of the encoded space, with anomalous events highlighted as purple stars.

Figure 4. Scatter plot of representative encoding space for various classes.
Events with high anomaly scores are shown as stars. Most events cluster near
the origin, while more anomalous classes are seen as clouds outside the main
distribution. The anomalous Type Ia SNe are those with incorrect photo-z
estimates.

Figure 5. Time evolution of the relative anomaly score error for a
representative subsample of our test set. In the upper panel, relative errors
are low before peak luminosity and subsequently rise; however, the lower panel
reveals that the relative error drops with an increased number of data points.
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reaches ≈three observations and then decreases. The error is
initially small because the autoencoder, with limited informa-
tion, returns the mean encoding vector from the training set
(i.e., only one number is needed to encode a single
observation). These light curves are not flagged as anomalous.
However, once the light curve reaches a sufficient number of
data points, the fractional uncertainty follows the expected
trend of decreasing with increasing number of observations.
When translated into fractional error versus time, the fractional
error rises near peak (where most light curves have few data
points) and declines at late times.

Finally, we additionally test utilizing the reconstruction loss
(the mean square error of the VRAENN model versus the GP-
interpolated light curve) of the autoencoder as an input feature.
We find similar results as those discussed in the following
section and the Appendix (i.e., anomalous samples dominated
by SLSNe and AGN).

4. Results and Discussion

Our anomaly classification algorithm generates a ranked list
of anomalous events given the full data set. We are interested in
which events the anomaly detection pipeline ranks highly, but
we are also interested in understanding when and why an event
becomes anomalous.

We first explore the anomaly scores of the full test set. In
Figure 6, we show the cumulative distribution function (CDF)
for each class in our set. Even for events that would not be
labeled as anomalous by our pipeline, the anomaly score
distribution matches expectations. Type Ia–like SNe (including
91bg and Iax) are the least anomalous, on average. Type Ibc
SNe and TDEs are largely distributed evenly across scores,
with a slight tail at the upper end. While Type II SNe are, on
average, more anomalous, only a small fraction have high
anomaly scores. CARTs and Type IIn SNe are also more
anomalous, on average. The PISNe, SLSNe, ILOTs, and AGN
most drastically cluster at the high end of the anomaly scores,
indicating that they are the most likely to be classified as
anomalies with our algorithm. Only two KNe were in our sample;
both had moderately high anomaly scores around the 80th

percentile. Reassuringly, the events that prefer higher anomaly
scores do not cluster in any obvious section of observational
phase space (e.g., luminosity or duration), implying that our
VRAENN has picked up on more fundamental features.
In practice, we will be limited to a small fraction (∼0.1%) of the

LSST transients for follow-up. We therefore investigate several
thresholds on the anomaly scores and uncertainties to search for
anomalous events. The results presented here are summarized as
histograms of anomaly sample breakdown and abundances in
Figure 7. In short, our anomaly sample is pure, with 10%
contamination from majority (Type Ia, Ibc, and II SNe) classes.
The anomaly sample significantly overrepresents minority classes.
Many of the nonanomalous transients (e.g., Type Ia SNe)

with high anomaly scores have fractional uncertainties on the
anomaly scores of σA/A 0.1 (due to large uncertainties on
photo-z estimates). We first make a strict cut on the full sample,
looking only at events in the top 90th, 95th, and 99th
percentiles of the anomaly scores and with σA/A< 0.01.
Within these cuts, we find that SLSNe make up a majority of
the remaining sample. For the 95th percentile cutoff, the
anomalous SLSNe that pass our cut make up ≈5% of the
original sample. In contrast, just 0.03% of the original input
sample for Type Ia and Type II SNe remain in our 95th
percentile anomaly score cutoff. In other words, our 95th
percentile cutoff removed 95% of the SLSN sample but
99.97% of the Type Ia and Type II SN samples (leading to
SLSNe being overrepresented in the anomalous sample by a
factor of about 4.5). Similarly, PISNe make up a small fraction
(≈1%) of our anomalous sample, but we retain ≈5% of the
original sample in the 95th percentile cutoff. The results are
similar for higher percentiles, with an even larger bias toward the
more anomalous classes. This is highlighted as an abundance
measurement in Figure 7.
We then explore a higher cutoff in the anomaly score

fractional error, keeping events with σA/A< 4× 10−4 (a
threshold chosen by hand to maximize the ratio of rare events,
shown in the rightmost column of Figure 7). Even without cuts
on the anomaly score itself, SLSNe dominate the sample,
followed by PISNe and Type Ia–like SNe.
Noting that stringent cuts in the anomaly score uncertainty

lead to pure samples of minority classes, we investigate if
incorrect photo-z estimates are responsible for false-positive
detection of anomalous events in majority classes. We find that
removing events with |zphot− ztrue|/ztrue> 2 does improve the
purity of anomalous samples for cuts with A> 99% and 99.9%,
although it has a lesser effect for the A> 95% cut. For all cuts,
we find that removing events with incorrect photo-z estimates
drastically decrease the number of Type Ia SNe that pass our
anomaly thresholds. For example, in the A> 95% sample, the
sample fraction of Type Ia SNe drops from ≈10% to ≈3%.
Reducing the number of outlier photo-z estimates in LSST will
likely substantially improve the purity of our anomaly sample.
We investigate why some Type Ia SNe are within the most

anomalous events even with stringent cuts on the anomaly score
and uncertainty. All of the events that pass our 99% cutoff for the
anomaly score have catastrophically incorrect photo-z values.
Specifically, we find that these events are typically injected at
relatively low redshifts (ztrue 0.05) yet have reported photo-
metric redshifts zphot≈ 2 with small reported uncertainties—
again highlighting the need for reliable photo-z estimates.
Our anomaly detection algorithm is biased toward bright

events, which begs the question, Is our algorithm making a

Figure 6. The CDF of the anomaly score for various classes of transients. The
PISNe, SLSNe, ILOTs, KNe, and AGN are clustered toward the high end of
the anomaly score.
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trivial cutoff on luminosity to search for anomalies? We test
this hypothesis by making a simple baseline comparison. We
rank each event by peak luminosity (in any filter), rise time
(time from first detection to peak flux), and decay time (time
from peak to final detection), excluding AGN. Such a baseline
requires the full light curve and is therefore not an entirely fair
comparison to our proposed model. If we keep the top 1% of
the brightest events (neglecting timescales), 50% of the sample
is made up of Type Ia SNe, and only ≈4% are SLSNe. We can
further make a cut on the photometric redshift uncertainties.
Even with extremely aggressive cuts (σz/z< 0.05) that remove
99.99% of the sample, only ≈10% of the sample are SLSNe.
The plurality, ≈40%, are Type Ia SNe. Next, we include
timescale cuts in our baseline. We keep transients within the
bottom 10 and top 10 percentiles for the luminosity and rise
and decay timescales; we find that more stringent cuts remove
nearly all of the sample. In this case, we find that the plurality
of the sample are Type Ia SNe (27%), with Type II and Ibc SNe
and SLSNe each making up the next highest fractions, all at
≈15%. Given these results, our proposed algorithm is
seemingly learning more complex features beyond peak flux
(e.g., timescales) and performs better than simple filters alone.

4.1. Anomaly Detection in Live Streaming Data

Our analysis thus far has focused on the full light curves, rather
than real-time follow-up. We next turn to how the anomaly scores
evolve over time for a representative subsample of ≈103 SNe. As
shown in Figure 5, most events are identified near peak
luminosity (t≈ 0). We focus on how anomaly scores vary for
the majority classes versus the minority classes. Events from the
minority classes are much more likely to be triggered as
anomalous before peak. In our representative sample, ≈60% of

Type Ia/Ibc/II SNe identified as anomalous are first marked as
such after peak magnitude. Type Ia and Type Ibc SNe are
typically flagged just around peak, while Type II SNe are flagged,
on average, about a week postpeak. In contrast, ≈65% of
anomalies from minority classes are identified as anomalous
before peak. They are flagged, on average, about 1 week before
peak. However, short-lived anomalous transients (such as ILOTs
and CARTs) are flagged around or postpeak. We visualize our
findings for a representative sample of transients in Figure 8. The
background histogram of the vector plot in Figure 8 shows the
overall density of the anomaly scores over time. Most curves have
just a few points around t= 0 and low anomaly scores. The
arrows show that the anomaly scores typically rise before peak but
plateau after peak. This implies that, on average, the scores are
steady postpeak.
Finally, we investigate whether light curves often begin as

anomalous and then drop to less anomalous over time. For this
test, we use a 99th percentile cutoff in the anomaly score. We
show a selection of representative anomaly curves over time in
Figure 8; in this figure, gray curves are SNe that never reach the
anomaly threshold, blue curves are members of the minority
classes that reach the anomaly threshold, and orange curves are
members of the majority classes that reach the anomaly threshold.
Light blue/orange curves represent members of the minority/
majority classes that reach the anomaly threshold but drop below
threshold before the end of the event. In contrast, dark curves are
those that remain anomalous until the end of the event. We find
that about 7% of events reach this threshold at least once (with, by
definition, 1% remaining anomalous by the final observation). As
previously mentioned, we find that members of the minority
classes are typically flagged as anomalous before peak, while
members of the majority classes are flagged after peak; this is
regardless of whether or not those events drop below the anomaly

Figure 7. Top row: breakdown of anomalous events, given the cuts listed in each panel. The top number represents the anomaly percentile threshold, while σA/A
refers to the anomaly score fractional error threshold. The rightmost panel shows optimized cuts on the anomaly score and uncertainty to minimize contamination from
majority classes. Overwhelmingly, SLSNe make up the majority of our anomaly sample. Bottom row: relative abundance of the anomaly samples shown in the top
row. Each panel shows the “abundance” (ratio between the number of “anomalous” events in each class and the expected number based on input fraction). The
minority classes are heavily overrepresented, while the majority classes are underrepresented.
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threshold by the final observation. The fact that the minority
classes are flagged before peak is useful in practice, as we are
much more likely to follow events caught before peak luminosity.

5. Conclusions

We presented an anomaly detection pipeline for SN-like
transients in an LSST-like filtered data stream. We repurpose
the PLAsTiCC data set to train and test our algorithm, allowing
us to analyze how, why, and when events are tagged as
anomalous. Our key results are as follows.

1. We present a novel VRAENN architecture that encodes
SN-like light curves in real time into a low-dimension
vector. We train this neural network on 1% of 1,129,184
events from the PLAsTiCC data set.

2. We pair this neural network with an isolation forest to
assign every transient an anomaly score. We use a Monte
Carlo method to estimate our uncertainty on this score.

3. We examine the efficacy of our algorithm through a
series of percentile and uncertainty cuts. We find that our
algorithm is successful in identifying anomalous classes,
especially luminous events.

4. We find that our algorithm is often limited by the
photometric redshift estimate. Catastrophically incorrect
redshift estimates of Type Ia SNe are especially challen-
ging to remove from our anomaly samples.

5. We find that members of minority classes (i.e., SNe that
are not Type Ia, Type Ibc, or Type II) are likely to be
identified before peak luminosity. In contrast, erroneously
flagged members of the majority classes are more likely
to be flagged postpeak.

Much is left to be done to sufficiently prepare for the deluge of
data that will come in the new era of the Rubin Observatory. An
algorithm like the one presented here must be integrated into Rubin

Observatory Alert Brokers, such as ANTARES (Matheson et al.
2021) and Alerce (Förster et al. 2021). These brokers will ingest the
life LSST alert packets, run user-defined filters such as ours, and
provide the community with a tagged and curated data stream.
Importantly, this work must be tested on real data with an active
follow-up campaign to validate the proposed method and better
understand real false positives. Furthermore, it is possible to use the
anomaly score designed here in classification methods to increase
the purity of rare transient samples at the cost of completeness.
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insightful conversations and comments on this work. We
additionally thank an anonymous referee for constructive
feedback that improved the quality of this manuscript. V.A.V.
is supported by the Simons Foundation through a Simons Junior
Fellowship (No. 718240). The Berger Time Domain group at
Harvard is supported in part by NSF and NASA grants, as well
as the NSF under Cooperative Agreement PHY-2019786 (the
NSF AI Institute for Artificial Intelligence and Fundamental
Interactions, http://iaifi.org/). This work made use of the
Habanero cluster at Columbia University. This research made
use of the following software packages: numpy (Harris et al.
2020), scipy (Virtanen et al. 2020), jupyter (Kluyver et al.
2016), sklearn (Pedregosa et al. 2011), matplotlib
(Hunter 2007), tensorflow (Abadi et al. 2016), and astropy
(Astropy Collaboration et al. 2018).

Appendix

Here we investigate the AGN included in the PLAsTiCC
simulation. In Figure 9, we show the same anomaly samples
shown in Figure 7 but including AGN. The AGN dominate the
anomaly sample in all cuts. Our algorithm overrepresents AGN
in our anomaly sample at the same rate as SLSNe and PISNe.

Figure 8. Evolution of anomaly scores as a function of time for a representative set of SNe. Left: vector plot showing the flow of anomaly scores over time. Arrows
represent the average gradients of the anomaly scores. Right: anomaly score curves for a representative set of SNe. The green dashed line is the 99th percentile
threshold for the final values (having an anomaly score of A ≈ 0.95). Gray curves are SNe that never cross the anomaly threshold. Blue and orange curves represent
events from the minority and majority classes, respectively. The light orange/blue curves drop below the anomaly threshold before the final observation, while darker
curves remain above the anomaly threshold until the end. The colored vertical dashes above the anomaly curves represent the times at which the anomalous events first
cross the anomaly threshold. Members of the minority class are much more likely to cross this trigger threshold before maximum light, while erroneous anomalies
from the majority classes are triggered after peak luminosity.
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However, this is likely not representative of reality. The
PLAsTiCC AGN are generated via a damped random walk
with a structure function to define the correlation between each
filter, as described in MacLeod et al. (2011). We find that,
among the AGN identified as “anomalous” in this study, all
AGN have at least 20 data points spanning at least 60 days in
duration. These events would very likely be identified as AGN
via other classification methods and removed from our anomaly
data stream. These events are an example of a simple anomaly
detection, in which simple filters would likely also pick them
out as distinct from SNe (see a summary of similar pitfalls in
Wu & Keogh 2020).

Finally, we note that being able to identify AGN in the
LSST data stream is an open problem (Shemmer et al. 2018).
At first glance, our algorithm is seemingly very successful at
identifying AGN; however, these are likely AGN that will be
quickly identified by other means. Future studies will need
to identify extreme outbursts of AGN (not explicitly
simulated by PLAsTiCC) and AGN with substantial dust
extinction (likely not identified in the LSST alert stream
unless they undergo a significant outburst). Searching for
these elusive AGN continues to be an open problem that
requires further development of specialized classification
methods.
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