
Physics Letters B 840 (2023) 137850

Contents lists available at ScienceDirect

Physics Letters B

journal homepage: www.elsevier.com/locate/physletb

Deep learning detection and classification of gravitational waves from 

neutron star-black hole mergers

Richard Qiu a,b,c, Plamen G. Krastev d,e,∗, Kiranjyot Gill a,e, Edo Berger a,e

a Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA
b Department of Physics, Harvard University, 17 Oxford Street Cambridge, MA 02138, USA
c John A. Paulson School of Engineering and Applied Sciences, Harvard University, 150 Western Ave, Allston, MA 02134, USA
d Faculty of Arts and Sciences Research Computing, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
e The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 30 October 2022
Received in revised form 6 March 2023
Accepted 15 March 2023
Available online 16 March 2023
Editor: B. Balantekin

The Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer Collaborations 
have now detected all three classes of compact binary mergers: binary black hole (BBH), binary 
neutron star (BNS), and neutron star-black hole (NSBH). For coalescences involving neutron stars, the 
simultaneous observation of gravitational and electromagnetic radiation produced by an event, has 
broader potential to enhance our understanding of these events, and also to probe the equation of state 
(EOS) of dense matter. However, electromagnetic follow-up to gravitational wave (GW) events requires 
rapid real-time detection and classification of GW signals, and conventional detection approaches are 
computationally prohibitive for the anticipated rate of detection of next-generation GW detectors. In this 
work, we present the first deep learning based results of classification of GW signals from NSBH mergers 
in real LIGO data. We show for the first time that a deep neural network can successfully distinguish all 
three classes of compact binary mergers and separate them from detector noise. Specifically, we train a 
convolutional neural network (CNN) on ∼ 500, 000 data samples of real LIGO noise with injected BBH, 
BNS, and NSBH GW signals, and we show that our network has high sensitivity and accuracy. Most 
importantly, we successfully recover the two confirmed NSBH events to-date (GW191219 and GW200115) 
and the two confirmed BNS mergers to-date (GW170817 and GW190425), together with ∼ 90% of all 
BBH candidate events from the third Gravitational Wave Transient Catalog, GWTC-3. These results are an 
important step towards low-latency real-time GW detection, enabling multi-messenger astronomy.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.
1. Introduction

The first gravitational wave (GW) detection on 2015 September 
14 [1] by the advanced Laser Interferometer Gravitational-Wave 
Observatory (LIGO) and Virgo Collaboration [2,3] ushered in a new 
era of GW Astrophysics. During the first (O1) and second (O2) ob-
serving runs the LIGO and Virgo collaborations reported eleven GW 
signals [4] from compact binary mergers, which included ten bi-
nary black-hole (BBH) events and one clear binary neutron star 
(BNS) merger, GW170817 [5]. The observation of GW170817 in 
both gravitational and electromagnetic (EM) radiation inaugurated 
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the field of Multi-Messenger Astrophysics (MMA), which uses GWs, 
EM radiation, cosmic rays, and neutrinos to provide complimentary 
information about the astrophysical processes and environments 
of the sources [5,6]. The third observing run (O3) was split into 
two parts, O3a and O3b, and led to the detection of over 70 new 
GW events, including one additional BNS merger [7] and for the 
first time, two NSBH mergers [8,9]. Thus, including the candidates 
from O3, the recently released third Gravitational-Wave Transient 
Catalog (GWTC-3) contains over 90 events that include all config-
urations of compact object mergers [9].

During the upcoming fourth observing run (O4), scheduled to 
commence in March 2023, and subsequent runs, the detection 
rates are expected to substantially increase with the greater in-
strument sensitivity [10,11]. Moreover, with the advent of next-
generation GW detectors in the next decade (Einstein Telescope 
and Cosmic Explorer [12–14]), it is anticipated that millions of 
events will be detected per year, probing compact object mergers 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/). Funded by 

https://doi.org/10.1016/j.physletb.2023.137850
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2023.137850&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:rqiu@college.harvard.edu
mailto:plamenlrastev@fas.harvard.edu
mailto:kiranjyot.gill@cfa.harvard.edu
mailto:eberger@cfa.harvard.edu
https://doi.org/10.1016/j.physletb.2023.137850
http://creativecommons.org/licenses/by/4.0/


R. Qiu, P.G. Krastev, K. Gill et al. Physics Letters B 840 (2023) 137850
across the bulk of cosmic history. With the rapid increase in de-
tection rate, the data analysis capabilities and techniques will have 
to grow and adapt.

At present, the detection of GW signals from compact binary 
mergers is primarily achieved using conventional matched-filtering 
methods that rely on large banks of pre-calculated waveform tem-
plates [9,15,16]. Each template is a unique combination of a wave-
form model and source parameters, such as binary component 
masses and/or spins [17]. To generate a signal-to-noise ratio (SNR) 
time series, these methods take an inner product between the 
detector data and each template in the bank. However, the vast pa-
rameter space covered by the template bank due to the unknown 
source parameters, makes these approaches computationally chal-
lenging and expensive. As the rate of GW detections increases, 
unexpected events with unique physical properties will be ob-
served more frequently in the future. Considering additional effects 
such as eccentricity, precession, and higher order models requires 
millions of waveform templates to cover the parameter space of 
all potential signals [18–20], making these methods computation-
ally prohibitive. This is especially the case for GW events involv-
ing neutron stars, where the prompt follow-up of electromagnetic 
(EM) counterparts is crucial. As a result, there is a critical need 
for more efficient detection and classification algorithms that can 
overcome the limitations of conventional matched-filtering meth-
ods [9,15,16].

In recent times, there has been an upsurge in the applica-
tion of Deep Learning (DL) approaches [21] in various scientific 
and technical arenas, to expedite research that would otherwise 
be computationally demanding and to catalyze scientific discovery 
[22]. With the aid of GPU computing, these techniques have shown 
exceptional performance in tasks like image recognition [23] and 
natural language processing [24]. Furthermore, DL has emerged as 
a new tool in engineering and scientific applications, supplement-
ing traditional High Performance Computing (HPC), and has led to 
the evolution of a new field called Scientific Machine Learning [25]. 
In recent years, there has been a growing interest in applying DL 
techniques in the field of GW astrophysics (see e.g., Refs. [26–28]). 
Specifically, the use of Convolutional Neural Network (CNN) algo-
rithms [29] has been pioneered, and has shown promising results 
in detecting simulated signals from BBH collisions embedded in 
Gaussian noise with performance that is comparable or even bet-
ter than that of conventional matched-filtering methods [15,30]. As 
a result, a growing number of research groups have begun to apply 
DL algorithms to detect GW BBH events, both in simulated Gaus-
sian noise and realistic LIGO data (see e.g., Refs. [31–40]). These 
exciting developments demonstrate the potential of DL approaches 
to transform the field of GW astrophysics and to enhance our un-
derstanding of the Universe.

In our previous work we applied, for the first time, a DL ap-
proach to detect GW signals from BNS mergers, embedded in both 
simulated Gaussian noise [41] and real LIGO data [42], and dis-
tinguish them from detector noise and BBH signals. In our later 
work [42] we applied a CNN to successfully recover and classify all 
eleven GW events from the first public catalog, GWTC-1 [4].

In this article, we extend our detection/classification deep neu-
ral network to include the NSBH event category. This allows us 
to address the detection and classification of GW signals from all 
compact binary coalescence (CBC) configurations consistently in a 
unified DL framework. We show for the first time that a neural 
network can be used to detect GW signals from NSBH mergers 
embedded in highly non-stationary, non-Gaussian noise. Most im-
portantly, we demonstrate that our DL approach is able to recover 
all real GW events involving neutron stars to date – the two BNS 
(GW170817 and GW190425) and the two NSBH (GW191219 and 
GW200115) mergers. These results are an important step towards 
real-time detection of gravitational waves from BNS and NSBH 
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mergers, enabling prompt follow-up of EM counterparts of these 
important GW transients and multi-messenger astrophysics.

2. Methods

Following Krastev [41] and Krastev et al. [42], we construct a 
large data-set of templates of real LIGO noise with injected simu-
lated BBH, BNS, and NSBH waveform signals. Then, we train a CNN 
to discriminate between these three classes and noise and evalu-
ate its performance on new, unseen injections, as well as on real 
GW events from GWTC-3 [9].

2.1. Dataset construction

We obtained real LIGO data from the LIGO and Virgo Gravita-
tional Wave Open Science Center [43]. Specifically, we used O2 and 
O3b data from the LIGO Livingston detector (L1) sampled at 4096 
Hz which does not contain known GW events and hardware injec-
tions.

To simulate GW CBC signals, we use the LIGO Algorithm Library 
Suite (LALSuite) [44] to generate BBH, BNS, and NSBH waveforms. 
In particular, we used the SEOBNRv4 [17], TaylorF2 [45], and 
SEOBNRv4_ROM_NRTidalv2_NSBH [46] time domain approxi-
mants to generate BBH, BNS, and NSBH waveforms, respectively. 
For BBH waveforms, we uniformly sample component masses be-
tween 2 and 95 M� with a maximum mass ratio m1/m2 ≤ 10. For 
BNS waveforms, we sample component masses uniformly between 
1 and 2 M� . Finally, for NSBH waveforms, we sample NS compo-
nent masses uniformly between 1 and 2 M� and BH component 
masses uniformly between 2 and 35 M� .

For all waveforms, we assume both components have zero spin 
and the binary system has zero eccentricity. For BNS and NSBH 
waveforms, we use the APR equation of state [47] to obtain the 
contribution from the tidal deformability parameter � of the com-
ponent neutron star(s); for calculating �, see, e.g., Refs. [48] and 
[49]. We sample waveforms at 4096 Hz for 4 seconds, which we 
have found is sufficient for achieving strong discrimination be-
tween each represented CBC class, and for recovering real GW 
signals from all CBC configurations. The shorter templates also help 
to reduce the memory requirements during the neural network 
training. Both the data and the simulated signals are whitened 
separately with power spectral density (PSD) computed directly 
from the raw GW strain data by Welch’s method [50]. Whiten-
ing of data is an operation of rescaling the noise contribution at 
each frequency to have equal power [15]. Because whitening is 
a linear procedure, whitening both parts individually is equiva-
lent to whitening their sum. Subsequently, we position the peak 
of the waveform uniformly at random between 3.7 and 3.9 s in 
the template to make the training process robust to moderate time 
translations in the signal. We scale the injected waveform ampli-
tude to achieve a particular signal-to-noise ratio (SNR), defined as 
[15]:

ρ2
opt = 4

∞∫

fmin

∣∣∣h̃( f )
∣∣∣2

Sn( f )
df , (1)

where h̃ is the frequency domain representation of the GW strain, 
Sn( f ) is the single-sided detector noise PSD, and fmin is the fre-
quency of the GW signal at the start of the sample time series. 
From an astrophysical perspective, rescaling the waveform is equiv-
alent to varying the source distance from the detector.

We generate 480,000 templates for training, 16,000 templates 
for validation, and 1,600,000 templates for testing, all of which are 
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Fig. 1. The distribution from which we sample training signal-to-noise ratios. We 
emphasize low SNR events in our training set to improve model generalization per-
formance to other low SNR events.

disjoint. Each dataset is approximately 1/4 noise with no event 
waveform, 1/4 noise + BBH signal, 1/4 noise + BNS signal, and 1/4
noise + NSBH signal. For validation, we sample SNRs uniformly be-
tween 5 and 20. For testing, we sample SNRs uniformly between 
1 and 20. And for training, to emphasize low SNR detections, we 
sample SNRs between 4 and 20 using a truncated triangular dis-
tribution with lower limit 3, mode 5, and upper limit 27.5 SNR; 
see Fig. 1. We find empirically that this distribution of SNRs for 
training improves our sensitivity, accuracy, and ability to recover 
confirmed events from the LIGO catalog.

2.2. Neural network architecture and training

To choose a CNN architecture, we performed Bayesian hyperpa-
rameter optimization over architecture choices and learning rates. 
The final optimized architecture contained 4 convolutional blocks 
followed by 2 dense hidden layers and a softmax output. Each 
convolutional block contains 3 convolutional layers, each followed 
by a ReLU activation and a batch normalization layer and the en-
tire block ends with a max pooling layer. The filter sizes within a 
given convolutional block are the same and chosen to be 16, 8, 8, 
and 8 for each respective convolutional block in the network. Each 
max pooling layer has filter size 4. The number of filters within 
a given convolutional block is also constant, and chosen to be 32, 
64, 128, and 256. The dense hidden layers have widths 128 and 
64. The final softmax output corresponds to the number of pre-
dicted classes, 4. The model has 3,441,380 parameters in total. A 
schematic diagram showing the architecture is provided in Fig. 2.

We built and trained our CNN models using TensorFlow 2.9 
[51]. We performed hyperparameter optimization and experiment 
tracking with Weights and Biases [52]. To train the models, we 
used the Adam [53] optimizer with AMSgrad [54]. Following hy-
perparameter optimization, we used α = 3.986 × 10−3 as an ini-
tial learning rate, Adam β1 = 0.1888, Adam β2 = 0.9537, Adam 
ε = 1.4975 × 10−3, and with a batch size of 256. We used sparse 
categorical cross-entropy as a loss function and trained with a 
training budget of 50 epochs. Our final model is taken from the 
epoch with the lowest validation loss. We also use linear learning 
rate decay, decaying α by a factor of 0.1 over the first 30 epochs 
of training. We trained our model using 4 NVidia A100 GPUs with 
a data-parallel strategy.

3. Results

We evaluate the performance of our model over a large 
testing dataset of synthetic GW event injections, described in 
subsection 2.1. We also evaluate the performance of our model 
on real GW events using the GWTC-3 catalog [9]. This extended 
catalog includes the two BNS events (GW170817 and GW190425) 
and the two NSBH events (GW191219 and GW200115). Finally, we 
compare the performance of the trained DL model with models 
3

Fig. 2. Schematic diagram of our neural network architecture. All 1D convolution 
layers within a given convolutional block have the same number of filters. Our 
model contains 3,441,380 parameters.

from our previous works [41,42] that do not include the NSBH 
event class.

3.1. Synthetic event detection

Following the same strategy as in our previous works [41,42], 
we first consider the receiver operating characteristic (ROC) curves 
for each type of GW signal at a fixed SNR. To determine the ROC 
curve for a given type of CBC, we calculate the probability of each 
event in our test dataset being classified as that event type. A 
ROC curve then displays the proportion of true positives against 
the proportion of false positives parameterized as a function of the 
probability threshold to classify a given signal as an event. We cal-
culate the ROC curves with the Python scikit-learn library (https://
scikit -learn .org), which constructs empirical ROC curves. An em-
pirical ROC curve shows the relationship between the true alarm 
probability (TAP) and the false alarm probability (FAP) for various 
threshold values. Each point on the curve corresponds to a differ-
ent threshold value. In order to compare different ranking statis-
tics, we can fix the FAP and choose the statistic with the highest 

https://scikit-learn.org
https://scikit-learn.org
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Fig. 3. Receiver operating characteristic curves for all three CBC configurations at 
fixed signal-to-noise ratios, showing true positive rate and false positive rate, pa-
rameterized as a function of detection probability threshold. Note that axes are both 
shown in logarithmic scale.

Fig. 4. Sensitivity curves of the demonstrating the true positive rate at fixed signal-
to-noise ratios and false positive rates for simulated BBH, BNS, and NSBH signals 
embedded in real LIGO noise. At ρopt ≥ 13, all signals are detected and correctly 
classified.

TAP (sensitivity) at that FAP. This allows us to assess which statis-
tic performs better overall. We varied the optimal SNR from 1 to 
20 in integer steps of 1, and the trained model was applied to in-
puts with approximately equal fractions of each GW signal class 
(Noise, BBH Signal, BNS Signal, NSBH Signal).

We show the ROC curves calculated on our synthetic dataset 
in Fig. 3 for all three event classes at SNRs of 6, 8, and 10. These 
curves show that our model is most sensitive to BBH events, fol-
lowed by NSBH events, and least sensitive to BNS events. We also 
find that our model is more sensitive to both BBH and BNS events 
than those presented in [41,42]. Note that since the TAP is a func-
tion of the FAP, it also reaches a maximal sensitivity for signals 
with lower optimal SNR at a higher FAP.

We also examined the detection sensitivity of the classifier as 
a function of the SNR at a fixed FAP, shown in Fig. 4. Similar to 
ROC curves, we consider the fraction of true positives compared to 
false positives for all three CBC classes. However, we now plot the 
portion of true positives as a function of SNR at several representa-
tive FAPs (0.1, 0.01, and 0.001). These sensitivity curves represent 
the ability of the detection CNN to identify and classify GW signals 
from all three CBC event configurations (BBH, BNS, and NSBH). The 
4

lowest FAP used in our analysis translates to a false alarm rate 
(FAR) of 0.1% or an estimated FAR of ∼ 103 per month.1 The FAR 
can be decreased by applying the classifier independently to mul-
tiple GW detectors and enforcing coincidence [26,58,59], and also 
by checking the consistency of the estimated GW source parame-
ters. As before, we observe that our model is the most sensitive 
to BBH signals, followed by NSBH signals, and finally BNS signals. 
At a FAP of 0.001, our model saturates the sensitivity curves for 
BBH events at ρopt ≥ 8, for NSBH events at ρopt ≥ 10, and for BNS 
events at ρopt ≥ 13. In summary, all curves saturate (at 1) for op-
timal SNR ≥ 13, which implies that all signals are always detected. 
Again, we note that, for BBH and BNS signals, our model is more 
sensitive than the models presented in our previous work [41,42].

3.2. Recovering real GW events

To evaluate the applicability of our model beyond synthetic 
data, we apply our CNN to real GW strain data containing all 
events in the GWTC-1 [4], GWTC-2 [55], and GWTC-3 [9] catalogs, 
which include 82 BBH mergers, 2 BNS mergers, and 2 NSBH merg-
ers. We obtained GW strain data for these events from the LIGO 
GWOSC through the catalogs provided by PyCBC [60], and prepro-
cessed them following the procedure described in subsection 2.1. 
For events where multiple detectors were online, we selected the 
event data from the detector with the highest single-detector SNR.

In Fig. 5, we shown results for all events from the GWTC-1 cat-
alogue, as well as the two BNS mergers, the two confirmed NSBH 
merger signals, and two potential NSBH candidates. For brevity, 
in the Figure we omit results for the remaining BBH events from 
the GWTC-2 and GWTC-3 catalogs. The trained model recovers and 
classifies successfully all BNS and NSBH events, and 64 of the 72 
BBH events (counting GW190814 and GW200210_092254 as BBH) 
across both catalogs. Most importantly, we show for the first time 
that a deep neural network can identify real GW signals from the 
NSBH CBC class.

As shown in the Figure, our model successfully identifies all 
merger events involving neutron stars (BNS and NSBH) to date and 
distinguish them from BBH events and detector noise with very 
high confidence. This result is particularly important in the context 
of the next generation GW detectors where, due to the very high 
rate of detections, it will be critical to promptly identify events for 
EM follow-up. Moreover, the results summarized in Fig. 5 illustrate 
for the first time that GWs from all CBC classes can be detected 
and classified consistently in a unified DL based framework.

Of the misclassified events, three are from the GWTC-2 cata-
log (O3a run) and five are from the GWTC-3 catalog (O3b run). 
These are summarized in Table 1. Of these events, we note that 
GW190426_152155 is an exceptional event with a large FAR, and 
eventually demoted to a marginal candidate in a follow-up anal-
ysis [56]. GW190814 has an inferred secondary component mass 
of ∼ 2.6M� and it is possible that the merger is a NSBH rather 
than a BBH [57]. It is noteworthy that our DL model identi-
fies GW190814 as a NSBH event, despite both components falling 
within the BBH mass range of [2 − 95]M� . The total mass of the 
GW190924_021846 BBH merger is merely 13.9 M� , making it the 
BBH coalescence with the lowest mass, and this particular attribute 
may have led to its erroneous classification as a NSBH merger. 
Moreover, during the occurrence of GW190924_021846, a moder-
ate glitch was observed, and it was among the signals marked for 
glitch removal [61], which could have also caused its misclassifica-
tion.

1 To estimate the FAR, overlapping time-series segments of duration 0.2 s are 
used to match the length of the interval in which the signal peak varies. The FAR is 
calculated from the FAP, which is then converted to false alarms per month.
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Fig. 5. Detection of GWTC-1 events with our deep neural network. We also include BNS and NSBH (candidate) mergers from GWTC-2 and GWTC-3: GW170817 and GW190425 
(BNS event from GWTC-2), GW191219 (NSBH event from GWTC-3), GW200105 (NSBH marginal candidate from GWTC-3), GW200115 (NSBH event from GWTC-3), and 
GW200210 (BBH or NSBH candidate event from GWTC-3). We show the probability of each event class predicted by our neural network for each GW event. The LIGO/Virgo 
inferred secondary mass for GW200210 is 2.83+0.47

−0.42, which is out of distribution for both our BNS and NSBH training datasets. Note that these probabilities are shown in 
logarithmic scale.
Of the misclassified events from O3b, we note that the inferred 
secondary component mass in the case of GW200210_092254 is 
2.83+0.47

−0.42 M� , which puts the full 90% credible interval outside 
the neutron star mass distributions of our training datasets, which 
have neutron star masses up to 2 M�. As shown in Fig. 5, even 
though the masses of both binary components of GW200210 fall 
within the BBH mass range of our training datasets, our DL model 
cannot accurately classify this system into any specific event class 
– it only misclassifies it as a BNS event with a confidence level of 
35%. Finally, we note that all remaining misclassified events from 
5

O3b are BBH merger signals with maximum (across all detection 
pipelines) single detector SNR < 7.0, and as such are below the 
maximal sensitivity SNR range of our trained model for BBH sig-
nals (see Fig. 4). Thus, it is not surprising that these specific events 
were misclassified.

3.3. Comparison with other DL models

The DL algorithm presented in this work could be most read-
ily compared with the methods developed in Refs. [15,30,31] as 
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Table 1
Events of interest or misclassified events in the GWTC-2 and GWTC-3 catalogs. Ref. [55] does not report 
individual detector SNRs and thus GWTC-2 events (GW190426_152155, GW190814, and GW190924_021846) 
are missing this data. We note that in follow-up analysis, GW190426_152155 is reclassified as a marginal 
event [56]. LIGO/Virgo analysis finds that GW190814 is likely a BBH merger though a NSBH merger is also 
possible [57]; interestingly, our pipeline classifies GW190814 as a NSBH event. All misclassified BBH merger 
signals in GWTC-3 have single detector SNRs ρ < 7.0. Finally, the LIGO/Virgo inferred second component mass 
of 2.83+0.47

−0.42 M� for GW200210_092254 is out-of-distribution for our BNS and NSBH training datasets, which 
have NS masses up to 2 M�. Although both binary component masses of this system are within the BBH 
mass range of our training datasets, the DL model cannot confidently classify it into any specific event class. 
See text for details.
Event LIGO/Virgo Inferred CNN Inferred Maximum Single- Detector

Event Type Event Type Detector SNR

GW190426_152155 BBH Noise — —
GW190814 BBH/NSBH NSBH — —
GW190924_021846 BBH NSBH — —
GW191103_012549 BBH Noise 6.9 LIGO Livingston
GW191126_115259 BBH Noise 6.2 LIGO Livingston
GW200208_222617 BBH Noise 6.0 LIGO Livingston
GW200210_092254 BBH/NSBH BNS 8.0 LIGO Livingston
GW200306_093714 BBH Noise 6.1 LIGO Livingston
they are all employ 1-D CNNs to detect BBH GW signals embedded 
in both Gaussian and real LIGO noise. In particular, the sensitivity 
curves for the BBH signals shown in Fig. 4 are very similar to the 
ones reported in these works. The major difference with the DL al-
gorithms presented in these works is that our algorithm includes 
also the classification of BNS and NSBH GW signals embedded in 
real detector noise.

Very recently, Schäfer et al. [40] reported results from the first 
ML GW search mock data challenge (MLGWSC-1), including results 
from three algorithms based on the CNN architecture: MFCNN [33], 
CNN-Conic [15,38], and TPI FSU Jena [39]. The CNN architecture 
employed by our DL algorithm compares most closely with the al-
gorithms of CNN-Conic and TPI FSU Jena as they both are based on 
Ref. [15]. The major difference is that these algorithms are specif-
ically trained to detect BBH GW signals, and subsequently applied 
to data streams from two detectors. On the other hand, our algo-
rithm is designed and trained to detect and classify all CBC event 
types (BBH, BNS, and NSBH) in a consistent DL framework, but cur-
rently still operates on a single-detector data. In order to robustly 
compare the performance of our DL approach to that of the algo-
rithms from Ref. [40], our DL algorithm needs to be tested on the 
datasets from MLGWSC-1. However, this is beyond the scope of the 
current work, and it is left for following articles.

We also compared the performance of the current DL model 
with models from our previous works [41,42], which did not in-
clude the NSBH event class in the training datasets. Previous mod-
els that lacked the NSBH classification performed very poorly on 
test data containing injected NSBH signals where most signals 
were misclassified as detector noise, or BBH signals. Additionally, 
the models from our previous works failed on data containing 
real NSBH events (GW191219, GW200105 and GW200115). The 
NSBH events were misclassified as BBH signals (GW191219 and 
GW200105) and noise (GW200115) respectively.

In comparison, our current DL model trained on a dataset con-
taining the NSBH GW event type improves dramatically the per-
formance on test data with injected simulated NSBH signals. As 
seen in Fig. 4, our model identifies 100% of the injected NSBH sig-
nals with SNR ≥ 13 in our test dataset. Moreover, the DL model 
trained on data containing NSBH templates is able to successfully 
recover real NSBH events (see Fig. 5). The presented results indi-
cate a significant enhancement in the performance of the current 
model as compared to the previous models which did not include 
the NSBH GW event class. These results highlight the significance 
of the current study, particularly in the context of the precise iden-
tification of GW signals arising from CBC events involving neutron 
6

stars, where timely observation of the EM counterpart is of utmost 
importance.

4. Discussion and conclusion

We have demonstrated for the first time that a deep learning 
algorithm can detect and distinguish GW signals from NSBH merg-
ers in real advanced LIGO data. We have shown that our model 
achieves high sensitivity on simulated injections of all three CBC 
classes. Critically, we have also applied the trained neural network 
to GW events in the GWTC-1, GWTC-2, and GWTC-3 catalogs, and 
we have shown that our model can recover all high-confidence 
BNS and NSBH events in these catalogs, as well as 74 of the 82 
BBH events; the misclassified BBH signals are all of low SNR. These 
results are an important step towards a deep learning approach 
to real-time GW detection from multi-messenger sources, where 
rapid electromagnetic follow-up is critical.

To further improve fidelity in realistic contexts, upcoming work 
will need to extend these deep learning algorithms to include re-
alistic glitches and synthesize multiple detector data streams. The 
results in this work are also fundamental for real-time parame-
ter estimation, where accurate and reliable classification is impor-
tant. These DL based approaches can be extended to enable rapid 
parameter estimation, and employ Bayesian networks to quantify 
model uncertainty.
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