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Abstract

Explanations for police misconduct often center on a narrow notion of “problem officers,” the
proverbial “bad apples.” Such an individualistic approach not only ignores the larger sys-
temic problems of policing but also takes for granted the group-based nature of police work.
Nearly all of police work is group-based and officers’ formal and informal networks can
impact behavior, including misconduct. In extreme cases, groups of officers (what we refer
to as, “crews”) have even been observed to coordinate their abusive and even criminal
behaviors. This study adopts a social network and machine learning approach to empirically
investigate the presence and impact of officer crews engaging in alleged misconduct in a
major U.S. city: Chicago, IL. Using data on Chicago police officers between 1971 and 2018,
we identify potential crews and analyze their impact on alleged misconduct and violence.
Results detected approximately 160 possible crews, comprised of less than 4% of all Chi-
cago police officers. Officers in these crews were involved in an outsized amount of alleged
and actual misconduct, accounting for approximately 25% of all use of force complaints, city
payouts for civil and criminal litigations, and police-involved shootings. The detected crews
also contributed to racial disparities in arrests and civilian complaints, generating nearly
18% of all complaints filed by Black Chicagoans and 14% of complaints filed by Hispanic
Chicagoans.

Introduction

Police misconduct, abuse, and violence takes a heavy toll on civilians, especially Black and
Latino communities. Although figures on police-involved killings are not without debate,
recent estimates suggest that from 2012 to 2018 police in the U.S. killed approximately 2.8 men
per day, with Black men facing mortality risks from police homicide that are three-times
higher than those faced by white men [1]. The impact of police misconduct and abuse extends
far beyond loss of life and can impact physical and mental health [2, 3]. Furthermore, police
shootings represent only the most extreme and visible form of police abuse. For every shooting
reported in the media, there are thousands of instances of non-lethal use of force, verbal abuse,
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demeaning interactions, and other problematic police behaviors. For example, between 2004
and 2014 police in Chicago fired their weapons at citizens approximately 694 times, deployed
their tasers 3,646 times, and were involved in more than 60,000 other forms of non-lethal
interactions that required some “tactical response” [4]. Although some of these instances may
not constitute “misconduct” under legal statutes, each has a consequence for civilians sub-
jected to force. In addition, such figures likely fail to capture the interactions between civilians
and police-ranging from demoralizing to traumatizing-that generate feelings of mistrust, cyn-
icism, and estrangement further undermining the relationship between the community and
police that is crucial for public safety [5-7].

As the country wrestles with the racialized history and systemic problems of policing, the
development of policy responses is often guided by a narrow focus on the notion of “problem
officers,” the proverbial “bad apples.” While some evidence supports the proposition that a
small portion of officers generate a disproportionate number of citizen complaints and use of
force reports [8, 9], such an individualistic approach ignores not only the larger systemic prob-
lems of policing but also the group-based nature of police work. Officers do not work in a vac-
uum. Much of police work is group-based through assignments to geopolitical districts, units,
precincts, work schedules, or simply being partnered with other officers. Recent research has
begun documenting the group nature of police misconduct and violence. Like deviance more
generally, much of police misconduct is a group behavior related to the informal and formal
networks among officers [10-12]. Police misconduct, including the use of force [13] and
shooting at civilians [14] is correlated with the structure of such networks and officers’ behav-
ior appears to be influenced by the officers with whom they work [11, 15].

The misconduct networks documented in this emerging research by and large refer to
informal networks created by police on the job or through work assignments. But in extreme
cases, groups of officers have even been observed to coordinate their abusive and even criminal
behaviors. The Los Angeles Rampart scandal, for instance, involved over 70 police officers in
the Los Angeles Police Department (LAPD) who were involved in assaults, drug crimes, fabri-
cating evidence, perjury, and, allegedly, murder [16]. During the same time period, four offi-
cers in Oakland known as the “Riders” were accused of actions ranging from filing false
reports to assault, kidnapping, and severely beating civilians with their fists, feet, pepper spray,
and metal clubs [17]. The groups of officers involved in both Rampart and Riders cases were
far more than “bad apples” and, instead, coordinated their actions for the furtherance of their
criminal activities as well as to avoid detection. The Rampart crew developed its own group
symbols, oaths, and language, contributing to the overall sentiment that the involved officers
acted more like a gang than a police unit.

If single officers can have a disproportionate impact on police violence, it stands to reason
that officer “crews,” as we will refer to them in this study, are likely associated with even higher
levels of violence and misconduct. For instance, the officers in the Rampart scandal have been
linked to more than 100 overturned criminal cases and more than 140 civil lawsuits that
resulted in more than $125,000,000 in settlements. Yet virtually nothing is known about how
many such crews exist within departments, how much harm they are responsible for, and how
to detect them. One reason for the elusiveness of these crews—besides their active role at con-
cealing their behavior—is the difficulty of group identification. If one only sees individual
“problem officers,” the rest of a network might seem invisible. Furthermore, it is difficult to
ascertain characteristics of known crews since most of our knowledge of such groups stems
not from individual complaints by civilians but, instead, from whistleblowers and subsequent
internal and external investigations.

This study adopts a social network and machine learning approach to empirically investi-
gate the presence and impact of officer crews engaging in misconduct in a major U.S. city:
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Chicago, IL. Using public data on Chicago police officers between 1971 and 2018, we seek to
identify potential crews and analyze their impact on police misconduct and violence. We
begin by creating a social network using complaint and use of force data and identifying com-
munities of officers within the network using known crews as a performance metric. Using
properties of existing crews known through litigation and investigation, we then develop a
“crew index” to help identify potential crews within the larger departmental network. We con-
clude our analysis by evaluating the impact of the communities detected through our approach
on levels of misconduct and police behavior in the city. While we cannot and do not propose
this analysis to be considered predictive, it serves to be a useful exploratory tool and launch-
ing-off point for future analysis and investigations.

Background

We use the term police misconduct broadly to refer to “illegal or unethical actions or the viola-
tion of individuals’ constitutional rights by police officers in the conduct of their duties” [18].
The most pervasive explanation for police misconduct is that of the “problem officer,” i.e., that
misconduct is the result of some error in judgement or else some character flaw, predisposi-
tion, bias, or lack of self-control on the part of problem officers [19-21]. The policy implication
of such an individualistic framework is straight-forward: find (and do something about) the
problem officers. Several findings emerge from prior research relating to individual officer
traits and characteristics. Female officers are less likely to engage in misconduct, are less likely
to use weapons or cause injury during use of force situations, and receive fewer complaints as
compared to their male peers [22, 23]. Younger and less experienced officers receive more
complaints—including use of force complaints—than older and more experienced officers
[21]. Findings on education are mixed, though mounting evidence suggests that some college
education is associated with lower levels of misconduct [24, 25]. Misconduct also appears to be
associated with anti-social behavior of officers and personality factors such as low self-control
and an “authoritarian personality” [26, 27]. Findings on the association between the race and
ethnicity of an officer and misconduct are somewhat mixed [28]. Some studies suggest that
Black officers receive fewer complaints on average than their white counterparts [29, 30], other
studies have found higher rates of complaints among non-white officers [31], and some
research has found no difference in shootings or use of force between white and non-white
officers [21, 32]. Moreover, some of these individual-level findings are conditioned on contex-
tual factors that can change the interactions police have with citizens, especially high-conflict
interactions [33, 34].

The problem officer approach is frequently criticized for its conception of officers as atom-
ized individuals divorced from the history of policing as an institution and the impact of larger
police organizational culture. Problematic or not, officers are part of a larger hierarchical orga-
nization with its own culture, practices, policies, and history. While officers enact considerable
discretion in individual encounters and interactions, the structure of police organizations
shape some of the most basic police duties and interactions—especially where officers work,
the type of policing they will do, who they police, and with whom they police. Such policies
and structures underscore a fundamental dimension of policing: policing is a group phenome-
non in which officers are influenced by formal and informal networks and structures; history
and organizational culture play a key role in creating and maintaining these sorts of networks
and groups. Individual officers work in organizations, are assigned to districts, shifts, teams,
units, and work particular assignments and beats. These different assignments are staffed from
pools of officers who, as humans do, form ties and social bonds between co-workers. Officers
work with each other on the job. They attend trainings and roll call together. They go through
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the academy and work cases together. And, of course, many form off-the-job friendships and
personal relationships.

These sorts of networks and relationships, both formal and informal, matter. Formal police
organizational networks—supervisors, co-workers, instructors, and so on—provide one of the
first and primary sources of the learning of police norms, rules, and behaviors. But officers learn
social norms informally from their fellow officers as well. Ethnographic research underscores
that one’s fellow officers provide information about work culture, behavioral norms, and pro-
vide positive (or negative) reinforcement of behaviors. For example, Savitz demonstrates how
new police recruits evolve from the rules of behavior taught at the police academy to those mod-
eled by officers already on the job: within a short period of time, new officers’ attitudes became
more permissive to match the views of their departmental colleagues [35]. Likewise, a network
study of police found that informal friendships developed during training can have a more pow-
erful impact on attitudes surrounding race and diversity than formal training protocols [36].

The formation and importance of these sorts of networks is by no means unique to policing.
The field of network science continually demonstrates ways in which the social connections
among individuals impact a range of behaviors from the votes we cast and the things we buy to
our health, happiness, and well-being [37-39]. Social networks themselves, by which we mean
a set of social connections and relationships among a set of actors, are created and maintained
by the interactions among individuals. At the same time, networks are also shaped by extra-
individual forces. In this way, networks provide a meso-level explanation of human behavior
that falls somewhere between the bottom-up theories of atomized individuals and the top-
down theories of organizational culture. Network levels of explanation are also central to theo-
ries of crime and deviance [40, 41]. From street corner violence [42] and school yard bullying
[43] to corruption [44] and human trafficking [45], network science continually demonstrates
that individual deviant behavior is impacted by the networks in which individuals live, work,
and act. Deviance is learned behavior and such learning occurs within peer, work, school, and
neighborhood networks [46].

Studies have increasingly paid attention to the importance of networks on police behavior
[10, 11, 13, 15]. Three key findings have emerged from this research. First, like deviance more
generally, police misconduct appears to be a group phenomenon. In a recent Chicago study,
more than 50 percent of all civilian complaints filed against police listed more than 1 officer
with approximately 15 percent of complaints listing more than 2 officers [10]. Pairings of offi-
cers in the misconduct network are decidedly non-random and alleged misconduct is more
likely to occur between some subsets of officers from a larger pool of possible coworkers, part-
ners, and associates [10].

Second, misconduct does not appear to be evenly distributed within departments. Studies
using data from Chicago found that while the most common number of complaints for an offi-
cer was 1, there was a highly skewed distribution with max of 162 complaints and a standard
deviation of 11.2; furthermore, approximately 17% of all officers were responsible for 50% of
all complaints [8, 10]. Such problem officers within networks are far from isolated individuals
and might, in fact, have an outsized impact on misconduct. Zhao and Papachristos [14] find
that high-complaint generating officers tend to occupy structural positions as “brokers”
between other officers in the network suggesting that some of these problem officers might, in
fact, be the glue that holds misconduct networks together, either by their continued presence
in certain parts of the networks or as police leaders shuffle problem officers around the organi-
zation. What’s more, officers occupying brokerage positions are three-times more likely to
shoot at a civilian, even when that civilian posed no threat to the officer or bystanders [14].

Third, there is some evidence of peer influence of misconduct and use of force within offi-
cer networks where an officer is likely to adopt similar patterns of use of force as their partners
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and peers. For example, Field Training Officers (FTOs) responsible for the “on the job train-
ing” of new recruits exert tremendous influence on behavior; one study found that roughly
one quarter of the variation in new police officers’ allegations of misconduct were attributable
to FTOs [47]. Even informal relationships can influence use of force. A recent Chicago study
by Ouellette et al [13] found that, over time, as more of an individual officer’s peers engage in
use of force behaviors, so too will that focal officer engage in use of force patterns similar to
their peers. While these studies are not direct evidence of contagion in a causal sense, they are
consistent with social learning theories of police misconduct [15] and suggestive of peer
effects.

These network studies show that the idea that misconduct is mainly the result of problem
officers is overly simplistic. Not only do these problem officers exert tremendous influence on
use of force, they are also key factors that influence larger misconduct patterns, perhaps even
being linked to the spread of such behaviors within police departments. More simply put, the
idea that misconduct emerges out of atomized choices of disconnected individuals ignores the
influence of larger structures on officer behavior, especially the key role of peers, working
groups, and networks. A network approach to police violence offers a unique perspective that
can capture both individual variation in behaviors as well as the larger structures which may
impact individual behavior, including formal structures (such as assignments) and informal
relationships (such as those formed through behavior or friendships).

Looking for crews: Social network analysis and community detection

Since its inception, one of network science’s foundational analytic tasks has been the identifi-
cation and analysis of subgrouping within larger networks [47]. Dozens of different analytic
techniques and algorithms exist for detecting subgroupings, cliques, or clusters within larger
networks, all with roughly the same goal of identifying “meaningful” subgrouping of
individuals.

Identifying criminal and deviant cliques is especially difficult since such networks go to
great lengths to avoid detection and conceal their behaviors [41, 44]. The same is likely true of
police crews. To date, most of the information about networks of bad cops comes from whis-
tleblowers or completed investigations known to authorities. Often such cases begin and end
with the few crew members whose behavior became known to investigators or journalists.
Such a focus on singular cases limits our knowledge of the extent of such wrong-doing while
simultaneously reinforcing the “problem officer” narrative. Quite simply: by focusing on
“known cases” we likely underestimate the scale or impact of such crews on police
misconduct.

Our study is guided by past research attempting to identify communities within larger
criminal networks. This area of research often begins with known cases used to detect certain
network or structural signatures that then get expanded to look for subroutines within a
broader network. For example, Calderoni et al. used community detection algorithms to look
for subgroups or “locales” within the Ndrangheta mafia organization in Italy [48]. Based on
data of meetings between participants obtained from the law enforcement operation “Opera-
zione Infinito,” the authors constructed a network and used the modularity-based Louvain
algorithm to partition the network into communities. The study then uses several structural
characteristics of the network to identify likely communities for unlabeled nodes as well as
identify the probable “boss” of each community.

Similarly, Bahulkar et al. employ community detection algorithms and link-prediction algo-
rithms to account for deliberately hidden connections in in two criminal networks, the Ndran-
gheta mafia and a Canadian drug trafficking network [49]. Bahulkar et al. found that while
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link prediction can increase the power of community detection, they do not offer substantial
improvements in cases when the deliberately hidden edges were important for community for-
mation. The study also reinforced the idea that while community detection is often a useful
tool in network science, the existence of prior knowledge, which could include an individual’s
role in a hypothetical community, can greatly improve the results.

While our study extends this prior work, the nature of police organizations requires some
additional considerations. Officers are part of the larger police department and specific units
or assignments, but need not be part of a criminal crew within the larger police organization—
i.e., some officers might be linked to crews through assignment or chance as opposed to active
engagement or association. In some known cases of police misconduct, individual officers
may appear to belong to a crew within the larger network for the sole reason of only working
with a particular subset of officers based on assignment but might not be part of any miscon-
duct or illegal behavior. This presents an empirical challenge as we must then differentiate
detected communities that are simply a byproduct of the larger organizational structure of
policing from subgroups of officers actually engaging in coordinated misconduct or criminal
behavior.

The main objective of the present study is to detect the presence of smaller intentional cop
crews within a larger police organization to (1) determine the frequency of such crews and (2)
the extent such crews contribute to overall patterns of police misconduct. We start by looking
at all patterns of individual and group misconduct but differentiate “crews” based on four cen-
tral criteria which we derive from known cases of misconduct discussed below:

1. Frequency: the officers display high levels of instances of alleged co- misconduct more
generally;

2. Exclusivity: the officers are involved in recurrent co-misconduct within the group, as
opposed to co-misconduct with external officers;

3. Severity: officers in the same crew are engaged in similar types of alleged misconduct activi-
ties as each other (homophily in misconduct patterns); and

4. Cohesion: the group exhibits well-defined membership.

Regardless of individual attributes, officers are more likely to receive complaints when they
are assigned to geographic communities experiencing higher levels of crime in large part since
officers patrolling or assigned to those areas are more likely to have greater contact (in general)
with residents and, thus, greater opportunities for misconduct to occur. While high-crime
areas may have more complaints leading to groups with higher rates of joint misconduct, such
a fact does not mean that the group is not a crew. In fact, the known crews used here appear at
a disproportionately high rate in high-crime areas. As such, the confounding effect of geogra-
phy with frequency is less problematic in our present study, but future research should con-
sider other ways in which the geographic distribution of both crime and policing might impact
police practices and behavior, including the formation of crews such as those studied here.

In the present study we use a unique set of data on all instances of complaints over an
extended period of time for a city with a long history of police misconduct, including several
known high-profile cases of officer crews: Chicago, IL.

Police misconduct in Chicago

The Chicago Police Department (CPD) is the nation’s second largest police department with
more than 13,000 sworn officers and civilian personnel, and an annual operating budget of
more than 1.7 billion dollars [50]. CPD’s history of misconduct, abuse, and corruption follows
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the department throughout its history, with defining moments of CPD involvement in labor
strikes of the late 1800s and early 1900s, the 1919 Race Riot, and a legacy of systematic corruption
throughout the Prohibition Era [51, 52]. CPD’s history of abuse continued in the 1960s with the
world-wide coverage of the 1968 Democratic National Convention, their role in the assassination
of Fred Hampton, and the activities of the Gang Intelligence Unit whose involvement in Cointel-
pro and unconstitutional surveillance of Black and Latino gangs and organizations. The high-lev-
els of misconduct coupled with a lack of effective oversight and accountability continues to this
day. In January 2017, the United States Department of Justice released an expansive report that
documented repeated and frequent instances of excessive use of force, misconduct, and deroga-
tory language and behaviors towards civilians, especially minority civilians [53]. The 2017 report
further revealed that investigations into acts of alleged misconduct were often incomplete and
unfair, in addition to being understaffed and impeded by city policies. The Justice Department
claimed that investigations did not effectively deter future misconduct, nor did CPD or the city
take sufficient steps to prevent officers from concealing acts of misconduct. The report noted that
of the over 30,000 annual complaints against CPD officers, less than 2% are sustained, and the city
does not investigate a majority of the cases they are legally obligated to investigate.

Without a doubt, there are plenty of “problem officers” throughout CPD’s 185 year history.
Our objective is not to point out specific problem officers but, instead, those crews of cops
who actively form groups for the purpose of furthering or concealing their misconduct or ille-
gal behavior. Given the group and partner-oriented nature of policing in Chicago, one of our
foundational analytic tasks is to differentiate group misconduct that is a product of the organi-
zational structure of police (e.g., two officers who receive a complaint merely as a function of
working together) from those instances of more intentional crews. To this end, we develop
and assess our approach based on three known cases of cop crews: The Watts Crew, The Skull-
cap Crew, and The Austin Seven.

Watts crew. For nearly twenty years, Ronald Watts, Kallat Mohammed, and a group of
more than 10 other officers were involved in high levels of misconduct and criminal activity in
and around the Ida B. Wells public housing complex on the South Side of Chicago [54]. Offi-
cers in this “Watts crew” were an integral part of the drug trade in the communities they
policed. They extorted a tax from drug dealers for police protection, targeted the competition
of those dealers under their protection, and would seize the drugs for their own distribution
[54]. Many residents have come forward to recount being framed on drug charges by members
of the Watts crew when they refused to participate in their criminal ends. Since 2012, more
than 80 individuals have had their convictions overturned due to the involvement of these offi-
cers, yet the true impact of the Watts crew could likely be far greater [55]. Supervisors repeat-
edly dismissed allegations against the involved officers and intimidated any officer who sought
to report wrongdoing. In 2012, Watts and Mohammed were apprehended and later convicted
after they attempted to steal money from an FBI undercover agent disguised as a drug courier.
Other officers in the crew have thus far not been criminally charged.

Skullcap crew. In the early 2000s, an investigative journalist detailed the experiences of a
public housing resident who was repeatedly physically, verbally, and sexually assaulted over an
extended period of time by a group of five CPD officers known to the residents as the “Skullcap
Crew” [56]. These five officers are alleged to have committed high levels of misconduct and
brutality against other public housing residents and were involved in many reported instances
of excessive and unwarranted force, sexual abuse and harassment including strip searches,
planting drugs, theft, and false arrest [57]. Altogether, officers who were part of the Skullcap
crew received 138 allegations of misconduct, 39 of which included more than one officer from
the crew. Few of these complaints were sustained or acted upon, and four of the five officers
remain on the force and have even earned departmental commendations.
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Austin-Seven. The Austin-Seven was a group of seven police officers, named for the Aus-
tin neighborhood in their assigned police district, who in the early 1990s were involved in
cases of robbery, extortion, and drug dealing [58]. Similar to the officers in the Watts crew, the
Austin-Seven allegedly collected money from drug dealers in exchange for protection and
used their firearms to assist local drug dealers and gang members in robberies and other vio-
lent crimes. In 1995, the CPD internal affairs department received a tip about the officers and
passed the information along to the FBI, which then conducted a successful undercover opera-
tion posing as drug dealers. The seven officers were charged with 21 separate counts of con-
spiracy to commit robbery and extortion, and illegal use of firearms. Locker searches of several
of the officers revealed drugs as well as evidence that a particular officer was affiliated with a
street gang.

Data

This study relies on several unique sources of data collected through FOIA and litigation
requests by The Invisible Institute, a non-profit journalism company on the South Side of Chi-
cago. The present analysis combines data from seven unique sources relating to complaints of
police misconduct, personnel data, officer assignments, city settlement data, arrest data, use of
force reports, and officers in known crews. This study focuses on the time period from 1971 to
2018, though some of the listed datasets only cover a subset of this time period.

Complaint data

We use data on allegations of misconduct filed against officers of the Chicago Police Depart-
ment to estimate police misconduct activity. From 1971 to 2018 approximately 131,414 allega-
tions of misconduct were filed against 23,444 individual officers. Complaints were filed by
both civilians and fellow officers. During the observation period, the mean number of allega-
tions per officer is 10.2 (min = 1, max = 162, SD = 11.1); the mode of complaints per officer
was 1. Just less than half of all allegations (46.2%) list more than one officer, with an average of
1.8 officers listed on each allegation (min = 1, max = 192, standard deviation = 1.7). The com-
plainant’s race and gender are listed for 32,944 of total complaints (25.1%), the vast majority of
which occur after 2006 due to data limitations.

An allegation of misconduct does not necessarily mean misconduct has occurred. At the
same time, we should not assume that unsustained allegations are necessarily unfounded or in
bad faith [59, 60]. Even if an unfounded allegation does not meet the legal criteria for miscon-
duct, it may still constitute “problematic” behavior that negatively affects public trust and con-
fidence in the police [6]. Despite these limitations, some prior research find that complaints do
in fact capture instances of problematic police behavior and misconduct.[19] A recent study
using these same data finds that despite low levels of substantiation of complaints, a strong
relationship exists between civilian complaints and future civil litigation [8].

Personnel data. We rely on publicly available information on CPD personnel to ascertain
officer gender, race, appointment date, rank, resignation date, and other individual-level infor-
mation. 61.8% of the 32,939 CPD officers listed in the data are white, 22.6% are Black, and
13.50% are Hispanic. The majority of officers (82.9%) are male and 17.1% are female. Person-
nel data were successfully linked to 96.9% of the officers listed in the complaint data, including
10,234 officers who did not receive any allegations.

Officer assignment data. Data on officer assignments allows us to identify the unit of
each officer during their time of appointment at CPD and throughout their career. This dataset
provides each officer’s name, unique identifier, the numerical code of the assigned unit, and
the corresponding date range. This dataset contains 29,918 unique officers and 216 unique
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unit codes. Including reassignments to a previous unit, each officer in this dataset served in an
average of 3.6 units (min = 1, max = 27, standard deviation = 2.8).

Settlements data. We link individual officers to settlement data paid by the City of Chi-
cago in civil cases pertaining to alleged instances of misconduct. This dataset consists of 930
total settlements from 1993 to 2016 (a subset of our total data) and lists 2,350 unique officers.
This data contains information regarding the case number, officer, plaintiff, incident date, and
settlement amount. The average settlement amount was $244,056 (min = $350, max =
$15,000,000, standard deviation = 1,101,618).

Arresting officer data. We link misconduct-committing officers to arresting officer data
in order to identify the number of arrests made by each officer. The data is limited to arrests
made between 2001 and 2018 and consists of 2,507,197 total arrests and includes 17,557
unique officers.

Tactical Response Report (TRR) data. To capture instances of reported use of force, we
rely on Tactical Response Reports (TRR) which all CPD officers are required to complete after
using substantial physical force against a civilian or after a civilian claimed to have been
injured by the police officer. This dataset, which covers the period 2004 to 2016, documents
84,729 separate TRR reports for 47,476 separate events and lists 10,799 unique officers. As a
TRR is self-filed, it is possible that officers are engaged in unreported uses of force.

Known crews officer lists. To obtain a list of the officers who were a part of the four
crews listed above, this study located names of the involved officers from investigative journal-
ists at the Invisible Institute and other newspaper reporting, especially The Chicago Tribune
and The Chicago Sun-Times. The sources together revealed 29 total names, corresponding to
17 officers belonging to the Watts crew, seven officers belonging to the Austin-Seven, and five
officers belonging to the Skullcap crew. It is important to note that the inclusion of these
names is based on a combination of investigations and testimony; there could be more officers
who were involved in these crews who were not listed, and conversely, there could be officers
who were listed who should not have been included. These public cases—especially those that
have already led to legal actions—provide a documented starting point for the existence of
crews, and, as such, also serve as a helpful starting point for community detection algorithms.

Methods

The Northwestern University IRB reviewed this protocol and deemed it "not human research"
(IRB protocol STU00214685).

Network creation

Our analysis proceeds in three stages. The first stage re-creates the co-accusal network of com-
plaints filed against all CPD officers from 1971 to 2018. This network only includes officers
who have received more than one complaint, as officers who have received only one complaint
are presumably not part of crews. In constructing the network, individual officers are treated
as the “nodes” while the “edges” connecting officers are instances of co-accusal on a complaint.
Hence, two officers are linked if they have at least one co-complaint.

Edges are weighted by the number of co-accusals and an inverse fraction corresponding to
the number of officers listed on each complaint to reflect the strength of a tie, especially when
there are fewer officers. This may seem counterintuitive given the focus on communities.
However, community detection algorithms perform better when edges are defined by reduc-
ing noise and increasing the prevalence of meaningful edges. If, for example, there are twenty
officers listed on a complaint, the level of interaction between each of those officers is conceiv-
ably lower than if there were just two officers listed on a complaint.
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As such, if two officers, represented by ‘k’ and 4§ share N complaints, then the edge weight
connecting the two nodes is represented by Eq 1.

, N 1
wikij) = 2ino (1 * Number of officers Listed on C’omplainti) (Eq1)

All edges of a weight less than two are then removed from the network, followed by the
removal of all isolates (nodes with no edges). What remains is a co-accusal network with
11,227 nodes and 26,331 edges. The average degree for a node in this network is 4.69 (min = 1,
max = 60, standard deviation = 6.09), meaning that each officer is connected to an average of
4.69 other officers. The average weighted degree is 19.31 (min = 2.02, max = 568.19, standard
deviation = 31.79), meaning that each edge has an average weight of 4.12 (see also, Appendix
Ain S1 File).

Given the nature of police misconduct, certain acts may not be reported and certain ties
may be deliberately hidden, which could have a possible impact on the network structure and
community detection attempts. While some studies of criminal networks attempt to rectify
this problem by using predictive edge algorithms [49], we choose not to add any non-reported
complaints to err on the side of caution given the sensitive nature of identifying crews of police
officers.

We treat ties in the aggregate, essentially flattening the entire time period, for two reasons.
First, the observed ties themselves are proxies for actual misconduct and likely represent only a
portion of actual misconduct among officers. As a case in point, all of the existence of known
cases we analyze come from whistleblowers not directly misconduct reports themselves. Sec-
ond, data from earlier in our time window are somewhat sparser and dividing the data tempo-
rally would likely entail dropping some of the known examples we use for model calibration.
While treating these data as static takes for granted temporal and historical patterns, supple-
mental analyses that consider parsing the data into discrete time periods found that even parti-
tioning the networks into smaller time frames does not alter our main findings (see S1 File).
The objective of the present study is to establish the ability to possibly identify crews not to
unpack the temporal conditions that give rise to them; future research requiring additional
data and temporal modeling should consider how these crews come to exist or evolve over
time.

Community detection

The second stage of analysis involves community detection within the co-accusal network to
identify highly connected subsets of nodes within a larger network. Such algorithms are used
in a variety of contexts ranging from identifying communities in criminal networks to locating
associations between product preferences [61, 62]. The intuition behind most community
detection algorithms is to identify subgraphs with nodes that are more connected with other
nodes within the subgraph than to nodes outside the subgraph. The present study employs
four different, well-known community detection algorithms to detect clusters of officers
within the larger co-accusal network: the Louvain method, K-Clique Percolation, Label Propa-
gation, and the Clauset-Newman-Moore greedy modularity maximization algorithm (see
Appendix B in S1 File). We selected the Louvain method at a resolution of 0.006 as it signifi-
cantly outperformed the other algorithms in terms of detecting known crews. It is important
to note that with the Louvain algorithm, each officer is assigned to a community. Since not
every officer in the network is truly in a “crew” as we define it, it is necessary to identify which
of these communities are in fact crews of the sort of interest here.
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Crew identification

Perhaps the most difficult and novel component of this study is identifying the likelihood that
each detected community is an actual crew. Complicating matters is the fact that the structure
of crews likely vary. To add in our validation that communities might represent crews, we re-
created the co-accusal networks of the known crews to calibrate our detection. Our analysis
reveals variation in crews in terms of their edge formation and network structure (see Fig 1).
Any attempt to determine crews based solely on structural similarities is therefore limited.
Additionally, as a function of the small sample size of crews, it is impossible to generalize
based solely from these three examples. In other words, our approach attempts a classification
problem without a training set. To account for this problem, we generate a standardized prob-
ability distribution based on a linear combination of variables that are directly and positively
correlated with the likelihood of a community existing as a crew. This probability does not
reflect the probability that the community is a crew, but rather the relative probability when
compared to all other communities. A linear combination was chosen over a multiplicative
product of the variables to eliminate the interaction effect that those variables would have.

We augment detection using structural properties with four variables mentioned above that
are directly correlated to the likelihood that a community is a crew. These variables represent
characteristics of known crews and offer metrics for analysis.

Frequency. To measure high levels of co-accused misconduct, we use the average
weighted degree of a community. An officer’s weighted degree will account for the number of
partners as well as the frequency of co-accused misconduct.

Exclusivity. To measure internal activity of a crew, we use the total number of within-
community complaints (also referred to as “internal complaints”) as well as the number of
within-community complaints per member. As noted by Wachs and Kertész [63], a group’s
exclusivity, with respect to their network structure, is directly proportional to the likelihood
that they exhibit markers of cartel behavior, or crew behavior in this case. Inspired by the z-P
analysis used in Guimera and Amaral [64] and Calderoni et al [48], we use two separate vari-
ables in order to discount any bias towards larger communities.

Severity. Attempts to study known crews as well as public information on crews suggest a
correlation between the types of complaints received and officers in crews. We use an unsuper-
vised clustering algorithm on officer complaint breakdowns to identify different types of offi-
cers with respect to the complaints they receive. To increase the generality of the results,
several complaints were grouped together. Table 1 lists the five types of complaint reductions.
In addition to including the percentage of each of these five types, we also include the total
number of allegations, the percent of received complaints with no other officer listed, the per-
cent of complaints that were sustained, and the percent of complaints that were unfounded or
exonerated.

We employ k-means clustering and test a variety of k-values. The optimal k-value of eight
was chosen through average silhouette score analysis (see Appendix C in S1 File). This

Fig 1. From left to right: Skullcap crew, Watts crew, Austin-Seven crew. Depicted edges are unweighted.

https://doi.org/10.1371/journal.pone.0267217.9001
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Table 1. Typology of complaints used for officer categorization.

Type 1
Use of Force
Illegal Search
False Arrest

Criminal Misconduct

Type 2 Type 3 Type 4 Type 5
Bribery/Official Corruption Racial Profiling Operation/Personnel Violations Drug/Alcohol Abuse
Money/Property Verbal Abuse Lockup Procedures Domestic
First Amendment Supervisory Responsibilities Conduct Unbecoming (Off-Duty)
Traffic
Medical

https://doi.org/10.1371/journal.pone.0267217.t001

provides each officer with a category label from one to eight. Table 2 shows that known crews
feature a disproportionately higher percentage of category four and six officers. As such, cate-
gory four and six officers are collectively referred to as “flagged officers” and will serve as the
metric for measuring officer composition of detected communities. See Appendix D in S1 File
for the average values of clustering variables for each officer category.

Cohesion. Communities show higher cohesion if their existence as a community is vali-
dated by another community detection algorithm with a different methodology. As also noted
by Wachs and Kertész [63], in addition to their exclusivity, a group’s cohesion is directly pro-
portional to the likelihood that they exhibit markers of cartel, or crew, behavior. We use a
label-propagation approach as the verifying algorithm. To obtain a metric for each Louvain
community, we take the most frequent label propagation community ID among the members
and calculate the Jaccard similarity score. If the Louvain algorithm and label-propagation were
to identify the exact same community, the Jaccard similarity score for that community would
be 1.0 and would reflect the increased probability that the community was a crew.

Each of the four metrics—frequency, exclusivity, severity, and cohesion—are standardized
and then placed into a linear equation with equal coefficients. Equal coefficients provide each
variable with the same effect since no other weights can be inferred without additional data.
Future studies may seek to better calibrate these weights to correspond to the relative impor-
tance each component has on the overall probabilistic effect. Eq 2 represents the raw overall
score of each community which is then scaled and standardized between 0 and 1 to act as the
crew probability, as seen in Eq 3. Again, the probability indicates relative probability compared
to other communities, rather than conclusive probabilistic evidence of crew existence. Given
the fact that the index is an equally weighted and standardized linear function of the four com-
ponents, two communities may obtain the same index score in different ways. For example,
one community may have high frequency and exclusivity scores and low severity and cohesion
scores, while another community may have high severity and cohesion scores and low fre-
quency and exclusivity scores, presenting them with similar index values. Furthermore, the
standardizing effect exemplifies the importance of outlying values. For example, if a

Table 2. Officer category breakdown by known crew. All officers column includes officers who also did not receive misconduct allegations.

Officer Category
1

N (|G e W N

All Officers (%) Watts Crew (%) Skullcap Crew (%) Austin Seven Crew (%)
3.06 0 0 0
0.37 0 0 0
5.48 0 0 0
23.81 41.18 0 71.43
30.55 0 0 0
9.42 41.18 100.00 28.57
3.37 0 0 0
23.94 17.65 0 0

https://doi.org/10.1371/journal.pone.0267217.t1002
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community has the highest severity score by a large margin compared to all other communi-

ties, the index function will represent that accordingly. The following represent the quantifica-

tion of the four metrics: frequency (W), exclusivity (T and I), severity (F), and cohesion (J).
Let,

A = set of all officers in network
C = set of all louvain communities (each community is a set of officers)
ny = number of officers in louvain community ‘X’
flagged = set of all flagged officers
L, = label propagation community corresponding to community X

g(X) = Number of complaints listing more than one member of community X

And let,

W= {%ZZWW) VX e c}

X ieX jeA

T={g(X):¥X € C}

n

X

I= {ig(X) VX € C}

F= {;Z Lpgeea(i) : VX € c}

X ieX

XNL
J = | X|:VX€C
X UL,

Note: Vi=j, w(ij) =0
For the sake of notation, let a set followed by a subscript ‘x,” represent the element of that
set corresponding to community x. Then,

W, — T, — I —p F — ], —
x tuW + X tuT+ X :ul+ X /’LF+ ,LL/
O’W O’T ()'I O'F Gl

R(x) = (Eq2)

R - argmin, . (R()
Proenx) = o, - o(R(x)) — argmin, - ((RG2) (Bq3)

Results
Community detection results

The Louvain algorithm identified 2,334 communities. The mean size of a community is 4.81
(min = 1, max = 23, standard deviation = 3.71). The present analyses includes only communi-
ties of a size greater than two to capture groups that might result from more than

PLOS ONE | https://doi.org/10.1371/journal.pone.0267217 May 4, 2022 13/21


https://doi.org/10.1371/journal.pone.0267217

PLOS ONE

Misconduct-committing police crews

Generated Crew Probabilities For Communities >2
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Fig 2. Distribution of crew probabilities for communities of size greater than two. The blue line indicates the cut-
off value of 0.5 and the red region indicates that points that fall in that region were identified as crews.

https://doi.org/10.1371/journal.pone.0267217.9002

administrative partnerships and dyadic misconduct: 1,331 communities (a total 9,272 officers)
had more than two members.

Each of the 1,331 communities were provided with a crew probability. The overall distribu-
tion of probabilities is depicted in Fig 2. A cut-off point of 0.5 was chosen to represent commu-
nities who were likely crews.

There are 160 communities (a total of 1,156 officers) with a crew probability of greater than
or equal to 0.5. Of the 29 officers in known crews in the case studies, 15 were identified as crew
members by this analysis including 12 of 17 Watts crew members, and 3 of 5 Skullcap crew
members; one of the Watts crew members was not part of the co-assusal network due to a lack
of meaningful edges. Detected communities include those that contained the majority of the
Skullcap crew and the Watts crew. No Austin-Seven officers were detected by this analysis.

Descriptive crew properties and activity. The 1,156 officers in crews comprise approxi-
mately 3.43% of all CPD officers in the dataset. The majority of officers in crews (53.8%) are
white men with, on average, 21 years on the job. As compared to officers more generally, offi-
cers found in crews were more likely to be Hispanic and less-likely to be white. Approximately
20% of crew officers were Black. Additionally, officers in crews are on average 9 years younger
than their non-crew peers.

Alleged misconduct activity. The detected crews were mentioned in a disproportionate
number of complaints against CPD officers during the observation period. Officers in crews
were listed on 14.7% of all complaints and 23.8% of all use of force complaints. The accused
misconduct associated with crews also seems to be directed more towards Black as compared
to Hispanic or white civilians. For cases where complainant information (race and gender) are
known, officers in crews are tied to 17.4% of complaints filed by Black males and 16.6% of
complaints filed by Black females. They are also responsible for 14.2% of complaints filed by
Hispanic males, 13.0% of complaints filed by Hispanic females, 11.0% of complaints filed by
white males, and 10.8% of complaints filed by white females. A comparison of the distribution
by crew complaints with the overall complainant distribution shows a noticeable rise in the
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Complainant Breakdown by Officer Type
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Fig 3. Complainant breakdown for all officers and for officers in crews. Differences of means between each race and
gender combination is statistically significant at a 0.1% level, with the exclusion of the difference in means of Hispanic
females which is statistically significant at a 5% level, and the difference in means of Hispanic males which is
statistically insignificant.

https://doi.org/10.1371/journal.pone.0267217.9003

complaints filed by Black individuals, and a noticeable decline in complaints filed by White
individuals (Fig 3).

Officers in crews were also listed as parties on 27.3% of city awards and settlements in civil
settlements between 1993 and 2016. With respect to city payouts on a per officer basis, the
average settlement for an officer in a crew was more than four times as high as their non-crew
peers: officers in crews saw an average settlement of $112,343 whereas the average payout for
an officer not in a crew was only $26,425 (p-value < 0.001). Because high misconduct activity
was incorporated into the model, showing that these officers are responsible for a large portion
of misconduct does not verify any core assumptions that officers in crews are more active.
Rather, it further illustrates the disproportionate and negative impact that officers and crews
had on the city.

Arrest activity. Between 2001 and 2018, a total of 17,558 unique CPD officers made at least
one arrest; officers in crews are listed on 15.2% of all the arrests in the dataset. Expressed as a
ratio, officers in the 160 crews had an arrest rate more than three-times higher than non-crew
officers. One may argue that the similar fraction of misconduct allegations and arrests may
indicate that officers who are dispatched to higher crime areas that lead to higher levels of
activity; however, increased suspect interaction and a high number of arrests could also be
indicative of crew behavior as well. In the case of at least one crew—The Watts Crew—there
have been more than 100 exonerations to date suggesting that these arrest patterns should be
more closely examined to determine if they are, in fact, false arrests.

Tactical response reports. The majority of officers in the detected crews—784 of the 1,156
officers, roughly 67 percent—filed at least one TRR between 2004 and 2016. All together, these
officers in crews filed 10.4% of all TRRs during this time, including 12.5% of all firearm dis-
charges, and 9.7% of all taser discharges. This translates to crew officer involvement in 20.2%
of all firearm discharge incidents. Furthermore, of the 753 TRRs that reported a subject was
shot by the police, 92 were filed by officers in crews. This translates to crew officer involvement
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in 72 of 318 shooting incidents (22.6%). While TRR data was not directly incorporated into
the model, there is likely a strong correlation between the number of received TRRs and
complaints.

Example crews. Even though our statistical approach was guided by validated cases of
crews in Chicago, our results do not necessarily mean that all 160 crews are, in fact, similar to
the Skull Cap, Watts, or Austin Seven crews. There might be qualitative differences between
these validated cases and the crews detected using our statistical approach. Even though we
have erred on the side of conservative estimates, it is possible that the communities we detected
are an artifact of other organizational factors such as unit assignment.

We see the community detection approach advanced here as a first step in identifying
potential crews which lend itself to further research, investigation, and validation. A natural
point of departure is to zoom into communities to better understand how their detection does
or does not align with the sorts of police misconduct and behaviors that might warrant them
being signaled as a crew. In the remainder of this section, we take a more detailed look at three
crews selected randomly from different areas of the probability spectrum described above (one
high, one intermediate, and one low). Given these communities have not been formally inves-
tigated nor have complaints necessarily been sustained, we have anonymized specific details of
events and officers.

Example 1: Community 424 (C424)—Crew probability of 95.094%

C424 consists of five officers and appears to have been most active between 1997 and 2002 in
one police district. In total, these five officers have received 281 total allegations during 214
separate incidents. There are 58 complaints that list more than one member of this commu-
nity. Of these 58 complaints that happened within the crew, 27 were for use of force and 10
were for illegal search. While 40 of the complaints were not sustained, one complaint involving
multiple crew members which alleged criminal misconduct was sustained. Officers of C424
are listed on four city settlements, for a total of $142,500. Officers in this crew have appeared
in the media several times in connection with these allegations; one officer of this crew later
faced a conviction relating to illegal activities while still an officer.

Example 2: Community 15 (C15)—Crew probability of 73.212%

C15 consists of 12 officers and appears to have been most active between 2011 and 2013 in a
single police District. In total, these 12 officers have received 269 total allegations during 170
separate incidents. There are 61 complaints that list more than one member of this community
on same complaint. Of these 61 complaints, 16 were for use of force and 23 were for illegal
search. Fourteen of these complaints within the crew were not sustained, yet 37 were dismissed
because the complainant never signed an affidavit. Nearly all the complaints with complete
information (53 of the 54 complaints) were filed by Black complainants, including 34 by Black
men. Officers of C15 are listed on eight city settlements, for a total of $1,716,130. In two docu-
mented instances, members of this crew were caught telling other officers to turn off their
body cameras during police raids or other interactions with civilians.

Example 3: Community 413 (C413)—Crew probability of 53.707%

C413 consists of 6 officers who were most active between 2001 and 2006 in and around a pub-
lic housing project. Many former residents of the housing projects made allegations of officers
subjecting Black males to strip searches and have led to a lawsuit filed by tenants for improper
or false arrests. Six of the officers in this crew have received 185 total allegations during 136
separate incidents. There are 25 complaints that list more than one member of this community
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on the same incident. Of these 25 within crew complaints, 8 were for use of force and 11 were
for illegal search. 18 of the complaints were not sustained and no internal complaint was sus-
tained. Officers of C413 are listed on three city settlements, for a total of $26,125. Much like
the above communities, officers in C413, specifically one officer, have appeared in several
high-profile complaints cases. In one instance, several officers in C413 were named on a com-
plaint with multiple allegations including the illegal detention and abuse of an individual ille-
gally taken from their home; this instance included threatening the civilian with a dangerous
non-police issued weapon. In an instance a few years later, another officer in C413 was sued
for the abuse of a protester.

Conclusion

Policy debate surrounding police violence and misconduct often centers on “problem officers,”
the proverbial “bad apples,” whose levels and types of misconduct result from some error in judg-
ment, character flaw, predisposition, bias, or lack of self-control. Yet, police departments across
the country have also experienced instances in which groups of officers coalesce into cliques or
small groups with the explicit intention of engaging in misconduct, including outright criminal
behavior, and the concealment of such activity. The extent of such “crews,” as we refer to them, is
largely unknown, often only coming to light by the way of whistleblowers or investigative journal-
ists. Using a unique set of data on the Chicago Police Department and known cases of crews, this
study employed community detection algorithms to determine the existence of possible crews
and the extent of their misconduct behavior. The methods advanced here identified 160 officer
crews in CPD, consisting of 1,156 officers. Despite comprising less than 4% of all Chicago police
officers, these crews were involved in oversized amounts of police violence and misconduct. Our
estimates suggest that these crews were responsible for approximately a quarter of all use of force
complaints, city payouts, and police shootings, as well as a disproportionate amount of the com-
plaints generated by and arrests of Black and Hispanic civilians.

Our approach and the methods are intended as a way to detect the existence of possible
crews within a large police agency. While the present data do not permit us to predict future
crews, identify causal links, or unpack the conditions under which such crews form or evolve,
our results demonstrate that identified crews generate massive disparities in criminal justice
outcomes and police misconduct. Importantly, our approach is not intended to (nor should it)
assess the actual culpability of officers involved in reported instances of wrongdoing. Thus,
while our analyses are intended as a jumping off point for the identification of possible police
misconduct, actual legal investigation and inspection would be required to determine if such
groupings constitute crews such as those that have previously come to light.

Our study is not without limitations. First and foremost, police misconduct is underre-
ported and, as known cases have demonstrated, crews often go to great lengths to conceal their
behaviors. The data we use are derived from complaints filed by civilians which, while they
report on behavior deemed problematic, might not always capture actual misconduct. While
prior research suggests a correlation between complaints and actual misconduct, future
research would do well to investigate additional cases of verified misconduct behaviors. Over-
all, this suggests that we likely underestimate actual misconduct.

Second, the lack of training data (i.e., known crews) presents a limitation on the generaliz-
ability of these findings. Our approach was based on three crews that were “caught,” and it is
possible that these three crews are fundamentally different from others which is what led to
their detection-i.e., they somehow represent “failed” crews. While steps were taken to address
this concern, future research should consider expanding the sorts of crews or cases that help
inform community detection. Another limitation from the lack of training data is the proposal
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of an equally weighted index function. Calculating non-equal weights or perhaps even a non-
linear specification of the function could be a valuable source of future research.

Third, our study’s focus on the detection of crews confirms their presence but does not
answer questions pertaining to the emergence or evolution of such crews over time. In this
sense, our study is an important exploratory step. Future research might consider adding addi-
tional data to those examined here to unpack the dynamics of these networks over time. Such
an analysis might also open up unique historical moments which impacted policing behaviors
and practices. Additionally, as future known crews are uncovered, advanced temporal analysis,
such as partitioning data into separate time periods for separate analysis, may become feasible.

Finally, our analyses serves as a jumping off point with respect to the types of observed
behaviors (those reported in the form of complaints) highlighting the need for targeted further
investigation. Specific areas of investigation may be needed into the types of alleged miscon-
duct, the linking of these crews to other problematic police behaviors (e.g., sexual assault, theft,
drug trafficking, etc.), the role of “adjacent” officers, the formation of such crews, as well as the
variance of behavior by policing assignments, geography, and contexts (e.g., gang units, patrol,
assignment to public housing, etc.). Unfortunately, any attempt at advanced classification is
also hindered by data constraints regarding the limited information of each complaint. For
example, it is almost a certainty that not every use of force complaint is of the same severity,
and without more detailed information regarding the content of the allegations, performing
type classification would be ineffective.

The impact of identifying crews in the Chicago Police Department, like the one led by Ron-
ald Watts for over a decade, extends far beyond the numbers. Past victims and future victims,
as well as entire communities and departments are all impacted by the effects of such severe
acts of police misconduct. While identifying these crews is certainly not a solution for police
misconduct, it can certainly be an impactful place to start identifying key sources of harm.
Nearly all the instances of crews cited here, not to mention similar cases in Los Angeles, Oak-
land, New York, and other cities across this country—were brought to light only through whis-
tle blowers, missteps by rogue officers, journalists, or victims willing to come forward. The
analysis presented here demonstrates the possibility of systematically using data to identify
networks within a police department that may prove, when investigated, to be criminal crews.
However, even the best efforts at identifying and validating such crews will only go so far with-
out the capacity to fully investigate such cases and, when deemed necessary through due pro-
cess, discipline, dismiss, or otherwise hold accountable the officers involved.
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