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Infinite variance in Monte Carlo sampling of lattice field theories
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In Monte Carlo calculations of expectation values in lattice quantum field theories, the stochastic
variance of the sampling procedure that is used defines the precision of the calculation for a fixed number of
samples. If the variance of an estimator of a particular quantity is formally infinite, or in practice very large
compared to the square of the mean, then that quantity can not be reliably estimated using the given
sampling procedure. There are multiple scenarios in which this occurs, including in Lattice Quantum
Chromodynamics, and a particularly simple example is given by the Gross-Neveu model where
Monte Carlo calculations involve the introduction of auxiliary bosonic variables through a Hubbard-
Stratonovich (HS) transformation. Here, it is shown that the variances of HS estimators for classes of
operators involving fermion fields are divergent in this model and an even simpler zero-dimensional
analogue. To correctly estimate these observables, two alternative sampling methods are proposed and

numerically investigated.
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I. INTRODUCTION

Quantum field theories (QFTs) at strong coupling are
interesting in many contexts in particle, nuclear, and con-
densed matter physics, but in many cases can only be
quantitatively investigated using numerical approaches. One
such approach involves discretizing the theory on a space-
time lattice with a Euclidean metric. The functional integrals
corresponding to measurable quantities can then be approxi-
mated using an importance sampling Monte Carlo method.
In such a calculation, the probability of sampling a given
configuration of the field degrees of freedom is determined
by the Euclidean action and, depending on the parameters in
the action, it is possible that field configurations enter with
probability weights arbitrarily close to zero. If this is the
case, certain random variables (observables corresponding to
field operators) will have arbitrary large (infinite) variance.
As will be discussed below, quantities with infinite variance
in standard sampling algorithms occur in phenomenologi-
cally relevant theories such as Quantum Chromodynamics
(QCD) due to zero-modes of the lattice Dirac operator as
well as in other contexts. A particularly clear example is
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provided by correlation functions constructed from large
numbers of fermion fields as will be the focus of this work."

In applying Monte Carlo methods to QFTs, the Central
Limit Theorem (CLT) is used to construct confidence
intervals for the expectation value (mean) of the random
variable from the corresponding variance over the samples.
However, a random variable with infinite variance does not
satisfy the conditions for the CLT and the sample variance of
such a random variable is not meaningful because it does
not converge to a particular value with increasing sample
size. Moreover, the CLT is valid only in the limit that the
sample size approaches infinity and hence similar deficien-
cies will appear for random variables with finite but very
large variances compared to squares of their means. Despite
these issues, there are physically interesting quantities in
QCD and other field theories that formally have finite mean
but infinite variance under standard sampling methods.
To address these cases, alternative sampling schemes are
required for reliable Monte Carlo estimates.

In this work, two methods will be introduced to address
specific occurrences of infinite variance. The first method is
applicable in the context of fermionic lattice field theories
that are typically approached using the (continuous)
Hubbard-Stratonovich (HS) transformation such as theories
whose actions involve powers of fermion bilinear operators.
A class of discrete HS transformations is introduced which
generate discrete auxiliary bosonic variables. The variance

'Observables with infinite variances in fermionic theories have
been analyzed using a different approach in Ref. [1].
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of an estimator constructed from these discrete bosonic
variables will then be manifestly finite although it may be
still very large compared to the square of its mean. This
discrete sampling scheme is investigated in a toy model and
in the 2D Gross-Neveu (GN) model. While the approach is
seen to be useful in some contexts, it becomes impractical
in the limit of large spacetime volumes in its current
implementation. The second method that is considered is
a sequential reweighting procedure that is suitable for
analysis of non-negative stochastic variables. With this
method, the mean of a such a non-negative bosonic variable
with infinite variance can be written as a product of the
means of the several non-negative random variables each
having finite variance. This approach is also investigated in
the toy model and in the 2D GN model but can be applied in
more complicated theories.

The structure of this work is as follows. In Sec. II, the way
in which random variables with infinite variances arise in
lattice calculations of field theories such as QCD is outlined
as a motivation for subsequent studies of related phenomena
in simple models. In Sec. III, the main statistical concepts
that are used in our analysis are introduced and interpreted.
In Sec. IV, simple models are introduced that cleanly exhibit
the features that lead to observables with infinite variance. In
Sec. V, a novel discrete Hubbard-Stratonovich transform is
presented that provides estimators with manifestly finite
variance. This method is tested for the toy models intro-
duced in Sec. IV. In Sec. VI, a new reweighting method that
can be applied to non-negative stochastic variables is also
introduced and this method is then tested for the toy model
introduced in Sec. IV. Finally, Sec. VII summarizes the
results of this work and provides an outlook for future
directions of investigation. A number of important statistical
results that support our main analysis are proven in
Appendix A while Appendices B and C present further
technical details.

II. INFINITE VARIANCE IN EUCLIDEAN
FIELD THEORY

One can construct illustrative examples of infinite
variance in phenomenologically relevant theories such as
lattice QCD. In this case, the partition function is given by:

where U represents the gauge field and ¥ and ¥ represent
the fermions. Here S[U] is the bosonic part of the action of
lattice QCD, D[U] is the Np x Np Dirac matrix, the
determinant of which arises from integration of the fermion

degrees of freedom, and opy is the spectrum of D[U]
which accounts for multiplicities of the eigenvalues. It is
assumed that the Dirac matrix D[U] is diagonalizable for
each U and can be expressed as

D[U| = QyAy Q. (2)

where Ay is a diagonal matrix consisting of eigenvalues
A% € opjy) of D[U], and Qy is not necessarily unitary. With

this definition, the columns 1157) of Qy and the rows (wg))T

of Q7' are the right and left eigenvectors of D[U],
respectively, and satisfy

S w0, = 5.
S hwi); = 6. (3)

where a and b label the eigenvalues and i and j index the
components of the corresponding eigenvectors. It must be
noted that one can permute and (independently) scale the
columns of Qy; freely. Furthermore, O, can not generically

be chosen continuously in U and consequently the quan-

tities A7, 1)5}1), and wgf) depend implicitly on the choice of

Qy. In terms of these quantities, the components of the
inverse of the Dirac operator for field U can be expressed as:

D[], = i%(v%?»(w%?))j. 4

a=1

For certain values of the couplings that define the theory,
there may be an ‘“exceptional configuration”, that is a
bosonic field configuration U* such that, for simplicity,
strictly one of the eigenvalues, 4" € op(y+), vanishes. In
what follows, the corresponding left and right eigenvectors
of U* will be denoted by (w*)” and v*, respectively. If such
exceptional configurations exist, it can be seen that the
standard estimators of physical quantities, such as fermion
propagators, diverge. To illustrate this, consider a fermion
field bilinear denoted as

Vz!j = lPile (5)

and choose a particular combination of these bilinears
weighted by the left and right eigenvectors at the excep-
tional configuration

0= ij‘ vV (6)
ij

After the fermions are integrated out, for each sample size
Ny, a standard estimator for the expectation value of V! ;ina
Monte Carlo calculation is
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where U, for r € {1,...,Ng} are assumed to be independ-
ently and identically generated samples. The corresponding
estimator for O is

. 1 N,
O, = - 2 wiv; 2 D7 Uil (8)
ij =1

The mean of Oy is given as:

/ D[U]e~SV det(D Zw*v*p . (9)

As one of the eigenvalues, 1%, for the field configuration U*
vanishes, the integration measure in Eq. (9) is such that U*
will have vanishing probability of being sampled and
consequently the singularity due to D~'[U*]; ; will not
cause the expectation value to diverge.

Nevertheless, configurations in a neighborhood2 of U™,
which will be sampled with a very small frequency
governed by det D[U], will make large individual contri-
butions to the sample mean but the expectation value will
remain finite as det{U]D~'[U];; is polynomial in U.
To examine var(@N ) we consider Ny = 1 for simplicity,

noting that Var((’)NS) = Vaf(ONS—1) The variance® of

O, is
var(O /D Je=SIUl det D[U]|O,[U] = (O))*. (10)
Since O,[U*] = (A*)™' by construction and it was

assumed that 4* = 0 is the only vanishing eigenvalue of
D[U"), the variance of O is divergent as (1*)2 det[U]
is divergent. It must be stressed that, in an actual
Monte Carlo calculation, exceptional configurations will
not be sampled so the sample variance will remain finite
for any finite sample size, but will not be bounded from
above as the sample size increases.

The above example of a single fermion propagator
illustrates the way in which infinite variance manifests
but is not of physical relevance. However, correlation
functions involving hadrons and nuclei in a theory such
as QCD involve many propagators that arise from products
of k fermion bilinears. In this context, it is useful to
consider the more general product

2Precisely, for every € > 0, one can find a neighborhood A of
U* such that supyey det D[U] < €

“For fermionic systems, the square of an observable is not an
observable in general. Therefore in this work, “variance” always
refers to the variance of an estimator.

k

= HV}”J", (11)
1

n=

k
Vi

where {i} = {i|,...,i;} and {j} = {Jji,....jx} label the
fermions that enter in an ordered manner. A family of
estimators for V’{‘i} 0 analogous to Eq. (7) for each Ny is

ZZ I_ID1 l]()’ (12)

t=1 neSs; n=

7k
ViNstin Gy =

unless {i} and {;} contain repeated indices in which case
V’fi} W= 0 due to the anticommutativity of fermions.

Here, S is the symmetric permutation group of order £,
and s, is the sign of permutation z. Again choosing
Ng =1, one observes:

Vi = D5 Hvlwn (13)

€Sy n=1

If Ny > 1 eigenvalues of D[U*] vanish, then it suffices to
focus on a product of N, fermion bilinears:

No Np

HZ vl (14)

s=11i,j=

where N is the size of the Dirac matrix and (w} ); and (v});
are the left and right eigenvectors of D[U*], respectively,

with vanishing eigenvalues A} = 0, for s € {1, ..., Ny }. For
the estimator
A -1
Ry =D 55 ) H DUy (1)
€Sy, 1#FFiNg s=1
J1#-- #/NO

where the first sum is over permutations z in the symmetric
group Sy, . Using the same arguments as for @1, it can be
shown that 7A2N0 has infinite variance.

The above arguments illustrate how infinite variances of
estimators of physically relevant quantities can arise in
Monte Carlo calculations of theories including lattice QCD.
We note that, the situation is exacerbated in quenched
QCD, where the fermion determinant is taken to be unity,
or in partially quenched or mixed action QCD, where the
Dirac operators entering the measure and the observables
are different. In these cases, fermionic observables can have
infinite expectation values. Since the fermion action is
different in the measure and in defining observables, similar
concerns will arise in partially quenched or mixed-action
QCD. Without knowing that an observable in such a theory
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is free of the problem illustrated above," standard sampling
methods result in estimates of observables whose statistical
behaviors are not governed by the CLT at any sample size
and are unreliable.

III. STATISTICAL SAMPLING

In this section, important results for stochastic variables
that will be needed in the following analysis are introduced.
A review of the relevant aspects of probability theory and
proofs of the results presented here are provided in
Appendix A.

A. A natural indicator of infinite variance

For a sequence of independent and identically distributed
(i.i.d.) random variables {X,}, a sequence of random
variables {s,} can be defined such that s, =
LS (X, —X,)* where X, =1%"" X, Each s, is
an unbiased estimator of the variance of X, when it is
finite. The n — oo behavior of s, provides empirical
evidence as to whether the system has a finite variance
or not. In particular:

(i) Let {X,} be a sequence of i.i.d. random variables
with finite variance o2. Then as n — o, s, - 62,
where the notation “almost surely” (a.s.) is defined
in Appendix A.

(i) Let{X,} to be a sequence of i.i.d. random variables
with finite mean x and infinite variance. Then, for
any given 0 > 0, the number of random variables s,
that satisfies s, > ¢ is infinite a.s.

The former statement follows from the Strong Law of
Large Numbers, while the latter statement is proven in
Appendix A as Theorem 1.

B. Empirical bias of the sample average for finite
systems with exceptional configurations

In systems that contain exceptional configurations, the
convergence of the sample mean to the mean is slow and it is
not straightforward to estimate uncertainties as the sample
variance does not converge. These issues resurface as
empirical biases in systems with finite configuration spaces
with configurations that are sufficiently infrequently
sampled. To explore this, let £ be a finite sample space
with |Q| elements. To this space, we associate the c-algebra
F =29 that is the set of subsets of Q, and a family of
probability distributions P: F — [0, 1] for z € (0, 1]. Here,
t corresponds to a parameter describing the system from
which the samples are drawn such as a coupling constant or
amass. For a finite system, the knowledge of P/({w}) for all
® € Q completely determines P': F — [0, 1] through the
requirement P'(A € F) = > <4 P'({w}). Therefore, it is

4 . .
For example, the massive overlap Dirac operator does not
have zero eigenvalues.

enough to consider P'({w}) and for brevity we define
P'(w) = P'({w}). In the following, it is assumed that P’ is
continuous in the sense that P'(w) is a continuous function
of tforr € (0, 1] for all @ € Q and that X’ is a non-negative
random variable which is continuous in 7 in the same sense.
Furthermore, the set of exceptional configurations is defined
as E C Q such that lim,_, P'(w) =0 and lim,_, P'(w)
X'(w) # Oforallw € E. Anelement w € E is referred to as
an exceptional configuration and it should be noted that this
definition depends on the choice of X implicitly.

The mean of X', py:, can be written as a sum of
contributions from the exceptional configurations and
contributions from the nonexceptional configurations:

pxe = Y POX (@) = iy s (16)

weQ

where

U = ZP’(a))X’(a)),ﬂfp = Zpt(m)xf(a)), (17)

w€eE w€E*

and E¢ = Q\E.

For a Monte Carlo estimate of the mean py: with a fixed
sample size Ng, the contribution from the exceptional
configurations will be missing for ¢ sufficiently close to
0, resulting in a “gap” denoted by Ay = lim,_ uS,. That
is, denoting the actual mean of the observable by
Uy = lim,_ pxr, the sample mean will underestimate this
value by Ay for ensembles that are large but not sufficiently
large that the CLT applies, as will be discussed below.

Consider the product space QVs corresponding to the
set of all ensembles of size Ny, that is every element
Vsl € Qs will correspond to a sequence of elements
from Q: w!Nsl = {a)[lNS], s
which should be interpreted as the ensemble average
for each ensemble can be defined by )_(fvs(a)[’vf]) =
S X (@),

Now let pp;, (1) = min,ep P'(@) and  pp, (1) =
min,ege P'(w). As t—0, p&. (1)—>0  while
P (1) » 0. Therefore, for small enough 7 one will have
Pl (D] < [poin(D)]7!. The Weak Law of Large
Numbers (see Appendix A) implies that for
Ng > [pe(0)]™", Xy, ~ux with very high probability.
However, for [p4: (1) < Ny < [pon (D], Xy, =
ux — Ay with very high probability.

For practical purposes, these results can be summarized
by saying that for small 7, with very high probability, X},
first approaches to uy — Ay and then eventually converges
to py as Ny is further increased. The above statements are
made precise and proven as Theorem 2 in Appendix A. It
should be noted that if E includes more than one element,

a)%VS] }. A new random variable
N
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Ny, Ny,

FIG. 1. The expected dependence on the number of samples of
an observable with two exceptional configurations under a
particular sampling scheme. The discontinuities at N; and
N,, correspond to the first time that the first and second
exceptional configurations are sampled and these values can
be arbitrarily large (> 10® in examples below).

Xy . may demonstrate a series of plateaus before eventually
converging to py. Figure 1 schematically demonstrates the
expected behavior.

C. Nonasymptotic estimators

While the CLT is of utmost importance in statistical
analysis, it is only valid asymptotically and for random
variables with finite variance (see Appendix A). Therefore,
the CLT is not applicable when dealing with random
variables with infinite variance and the standard methods
of estimation can not be utilized. Similar issues are also
expected for a random variable with finite variance that has
infinite variance in a certain limit, as such a variable is
expected to be extremely non-Gaussian and require imprac-
tically large sample sizes for the CLT to apply.

To address these situations, nonasymptotic estimators
are important, and in this work the Median of Means
(MoM) estimator will be used. The MoM is an estimator
for which one is able to define confidence intervals which
are also valid for random variables with infinite variance.
After including the possibility of autocorrelations between
samples, the MoM estimator can be defined as follows.
Let {f,,...,ix} be the means of the random variable X
on each of K independent batches of B samples of X
obtained from the same stationary (thermalized) discrete
time process. Then the median of means estimator
Pnviom = median({f, ..., ix}). Confidence intervals can
be defined using

27 B X
prob s = ol > 20228 ) <t g

where py is the expectation value of X, oy be the standard
deviation of X, and 7, x (B) is the integrated autocorrelation

time of the discrete time process.5 Further details and a
proof of the above relation are provided in Appendix B.

IV. SIMPLE EXAMPLES WITH
INFINITE VARIANCE

In this section, two simple models are introduced and
exemplar correlation functions are investigated to illustrate
the problem of infinite variance in Monte Carlo sampling.
Numerical explorations of these models are presented in
Secs. V and VI below.

A. Toy model

The first model considered is a zero dimensional
(Euclidean) theory of 2N/ interacting fermions represented
= (¥1,.... Pov,)" and ¥ = (¥}, ..., Ppy,) where P,

and ¥, are independent Grassmannian variables. The
Lagrangian of this toy model is defined as

L=mPy - g (P9)2, (19)
where it is assumed that g is positive. As shown in Ref. [2],
positivity of ¢ is required for the unitarity of realistic
theories with four fermion interaction.

The partition function of this theory coupled to
(Grassmannian) sources # and # is given by:

2N,

’7 }7 /H (d¥, d‘{’ o~ PYH(PY) + ¥+ P (20)

To calculate quantities derived from this partition function,
one needs to remove the quartic term so that the
Grassmannian integrations can be performed exactly. The
standard way to do this is to introduce an auxiliary field
through a (continuous) Hubbard-Stratonovich transforma-
tion [3,4]. It is straightforward to see that up to a multipli-
cative constant, the partition function is equivalent to

2N,

Zn.q) = / dq,’z/Hd‘Pd‘I’

—(m-+\/9¢) ‘{"P+n‘1’+‘1’17

(1)

where ¢ is a real-valued scalar field. The fermions can now
be integrated exactly, leading to

Z[ﬂ’ ;‘7] = /oo d¢e—%¢2+ﬁ—m+]\/§¢”(m + \/§¢)2Nf. (22)
—o0
Here, the Boltzmann weight

T x(B) is defined in the Appendix B.

094506-5



CAGIN YUNUS and WILLIAM DETMOLD

PHYS. REV. D 106, 094506 (2022)

P() < e (m + \/gp) 2 (23)

is common to the partition functions and all correlation
functions derived from it and therefore acts as the probability
weight in importance-sampling Monte Carlo calculations.

Now suppose that one is interested in calculating the
expectation value of the observable

o=]]vY (24)

which is determined by

1 (140 0 )
© =g (Mawar )20 - @9
Using the auxiliary field, this is given by
(o) — LAPP@) 0+ /)
JdeP(9)
[ dgpe™" 26)

" [dpeH (m /5N

which is clearly finite.

Difficulties arise if this quantity is naively estimated
through a Monte Carlo calculation. The standard estimator
for this expectation is

N ~
Z O¢hn). (27)
where Ny is the sample size and

O(p) = (m+ /g¢) s (28)
is the representation of the observable in terms of the
auxiliary field. This quantity has a singularity at ¢p* = — %.
While one will never sample this point because P(¢*) = 0,
with sufficiently many samples one will sample nearby
points and they will cause large fluctuations in the
estimation of the observable. In fact, the variance of this
estimator is divergent, as the second moment (and all

higher moments) of the bosonic operator O diverges:

J dpP($)(m + /gep)

2 _
o= [ doP(@)
_ Jdde™ (m + \/gp) N
[ dpe=" (m + \/gp)*Nr
= 0. (29)

B. Gross-Neveu model

To further explore the ideas introduced above, it is
useful to consider the N 4-flavor Gross-Neveu (GN) model
[2] which resembles QCD in a number of ways. In
particular, it is asymptotically free and exhibits chiral
symmetry breaking.6

Here, the Gross-Neveu model is defined in two dimen-
sions on a discretized lattice geometry with Wilson fermions
[5]. Consider a rectangular lattice, described by the points
{(s,0)]l <s<L,1<t<T} where s, t, L and T are
positive integers and lattice units are assumed throughout.
Periodic (antiperiodic) boundary conditions are imple-
mented in space (time). In this work, two-dimensional
Dirac matrices are defined as

0 1 30
71 <1 0>‘ (30)

_(1 o>
"=\o 1)

Denoting the masses by m; and the coupling constant by g,
the partition function of the GN model is given by

Z= / <S1;Edl/_/idl//i(svt))
x exp{ > wils. 0K

+§;<Szil:v7i(s, Dyi(s, t)>2}’ (31)

where, 1 <i < N, and

(s, t;8, 1 )y(s', 1)

Ki(s’ L S/, t/) = 112><2 ((2 + mi)és.s’ét,t’
1
- 5 (5s,s’+15t,t’ + 53’,s’—15t.t’
+ 5s.s’5f,t’+l + 5s.s’6t,t’—l)>

1
+= yO(és',s’(St.t’+1 - 5&,5’5t.t’—1)

2

1
+ E 71 (5s,s’+151,t’ - 5s,s’—lém’)' (32)

In the current work, Ny = 2 flavors of fermions are used
everywhere with m; = m, = m. By utilizing a Hubbard-
Stratonovich transformation, the exponential in Eq. (31) can
be made bilinear in the fermion fields as in Sec. IVA.
Indeed, the toy model in Sec. IVA is an approximation to

%The version of the model introduced here has a discrete chiral
symmetry but it is simple to modify the action to obtain a theory
with a continuous chiral symmetry [2].
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the Gross-Neveu model in which the kinetic terms in the
action are ignored.’

The set of exceptional configurations in the GN model is
more complicated than in the toy model discussed in the
previous subsection. In particular, the exceptional configu-
rations will correspond to a union of surfaces of codimen-
sion 1 (and higher). For L x T =2 x 2, the set of the
exceptional configurations can be found algebraically by
solving the characteristic equation of the Dirac operator for
a given set of parameters and is composed of two and three
dimensional surfaces in the four-dimensional field-space.
For larger lattice geometries, determination of these surfaces
can in principle be performed numerically.

V. DISCRETE HUBBARD-STRATONOVICH
TRANSFORMATION

The failure of sampling for some quantities with the
standard HS transformation is tied to the continuous values
taken by the auxiliary field, necessitating the existence of
exceptional configurations in the models of the previous
section. To avoid this, a family of discrete HS sampling
schemes is introduced in this section and their utility in
ameliorating the infinite variance problem is investigated
numerically.

As introduced above, the continuous Hubbard-
Stratonovich transformation is given by
e’ / due 2"+, (33)
\/ 2n

This expression is valid for all commuting variables y.
However, if y is constructed out of fermion bilinears as in the
models in Sec. IV, Eq. (33) need only be satisfied up to terms
O(x*Nr) (where Ny is the number of fermions for the
theories that have spinor dimension 2) since higher powers
of y vanish identically.

To find additional solutions, solutions of

e’ = Zwaegﬂl (34)

aeA

are required, where the index a takes values in a finite index
set A that is to be determined. The weights, w,, are required
to be non-negative to have a probabilistic representation
and the £, are required to be real to avoid a sign problem. y
is assumed to satisfy y*Vr*! = 0.

After a change of variables y — iy, solving the above
equation is equivalent to solving

e = Zwaei‘fﬂ + OV, (35)

In this approximation, Grassmannian variables at different
sites are decoupled from each other and the GN model reduces to
independent products of the toy model on each site.

where y is considered as a real variable. That is, the above
equation may be interpreted as the equality of the two real
power series in y up to the 2N ¢th order in y. The series on
the left and right sides of the above equation can be viewed
as the characteristic functions® of two probability densities
in a conjugate variable £, where these densities are

Pi(§) == (36)
and

=) wab(E- &), (37)

respectively. Equation (34) can thus be rephrased as finding
a polynomial f(£) of degree at most 2N, that satisfies

1 0 122
- -3¢
Ner / e p (o

Written in this form, the {&,} and {w,} can be found
through the method of Gaussian quadrature. Denoting the
Hermite polynomials by

= Zwaf(éa)- (38)

& e
e ¢

He, (&) = (—1)"e¥ (39)

the Ny + 1 roots of Hey 1 (&) give the &, and the w, are
constructed as

Nyl
w, = 5
" ey, () Fey, )

(40)

as shown in Appendix C.

Having defined the sets {&,} and {w,}, a Monte Carlo
calculation can be performed for a Euclidean field theory as
follows. Assume that the theory has a partition function:

z— [ D
where {a, f} correspond to all fermion indices except the
spacetime location x = (s, 1) and C,; is a complex matrix.

=S[UI+PED[U] sy >+2E Cop¥re)? , (41)

If Ca/j‘P‘“Px is a sum of k fermion bilinears, then

(Cop®2W)*! will vanish. Then, the partition function
can be expressed as:
Z= / Dla]D[U

D[\Plif]Hwaxe—S[UH‘PD[U]WZ,fMCaﬁli’;"v.’: ’

(42)

$The characteristic function of a random variable X is defined

as (&) = ().
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where Dla] =[], >_, <4 and A indexes the set of roots of
Hey- ;. Note that N can be chosen to be any integer greater
than k.

After integrating over the fermion fields, one obtains:

Z= / Dla|D[U]e™SW det(D'[U. a)) [ [wa,. (43)

X

where D'[U, a, ., is given as

D/[U’ a}mx;a’,x’ = D[U]mx;a’,x’ + Ca(l'ftlx(sx,x" (44)

Consequently, one can perform a Monte Carlo calculation
using e~V det(D'[U, a]) [, w,, as the probability weight.

The family of discrete HS transformations introduced
here generalizes the transformation first proposed by Hirsch
[6] and used extensively in the context of Quantum
Monte Carlo simulations [7,8]. The form used in that work
is equivalent to the Ny =1 case of the transformation
introduced above.

A. Discrete sampling vs. continuous sampling
for the toy model

In this section, the toy model discussed in Sec. I'V is used
to compare estimators based on discrete HS transforma-
tions to each other and to the standard estimator based on
the continuous HS transformation. The operator O =
leivlf P.¥, in Eq. (24) combines fermion bilinears for
each type of fermion in the model and provides a concrete
example on which to focus. Ny =2 will be used in
numerical studies.

The behavior of the different estimators is determined by
the model parameters m and g in Eq. (19). The behavior of
the continuous estimator has been discussed above. For
the discrete HS-based estimators, the choice of m, g and the
order N of the Hermite polynomial He, control the
magnitude and probability of the least probable configura-
tion. The roots and the corresponding weights for the first
few Hermite polynomials are given in Table I.

For the continuous HS estimator, Eq. (27), samples are
generated through the Metropolis-Hastings algorithm with
the standard normal distribution chosen as the proposal
distribution. Discrete HS estimators are constructed for Hey
where N € {3,...,9} with samples drawn through the
Metropolis-Hastings algorithm with the weights given in
Eq. (40) chosen as the proposal probabilities. For each
sampling scheme, a total of Ng = 10® samples are created
for m € {1.03,1.43,1.53,1.63,1.73,1.83,1.83,2.03,2.43}
and for g = 1.0. Autocorrelations are measured using the
procedure of Ref. [9] and accounted for in the analysis.

In what follows, the numerical data are analyzed in N, =
10? steps by adding 10° samples at each step. Precisely, at
the step k, the samples that are included are the set

{1,...,k-10°}. For each step the data is analyzed

TABLE 1. Roots and weights of the N € {2,3,4} sampling
schemes. Corresponding results for larger values of NV are given in
Appendix C.

N Roots 5((,'” Weights wim
-1 1/2
2 1 1?2
3 -3 1/6
0 2/3
V3 1/6

-/3+6 1/12(3 —/6)

A V3-6 1/12(3 +/6)

V3 -6 1/12(3 + v/6)

3+6 1/12(3 - V/6)

disregarding the samples not included and all metrics,
including the autocorrelation times, are calculating inde-
pendently for each step.

In order to compare methods, the behaviors of the mean
and the standard deviation of the continuous and discrete
HS estimators are considered as a function of the sample
size. Figure 2 shows this comparison for Hey for N €
{3,...,9} at m = 1.73 and g = 1.0. These couplings are
chosen such that the exceptional point ¢* = —m/,/g is
very close to one of the configurations in the He; estimator

(= —v/3). As can be seen from the behavior of the mean,
most of the discrete HS estimators rapidly converge to the
exactly calculable value that is used to normalize the
Monte-Carlo results. However, the continuous HS estima-
tor shows significant jumps as the number of samples
increases that occur whenever a sample sufficiently close to
¢* = —1.73 is chosen, as expected from the general argu-
ments in Sec. III. Note that the binning of results in steps of
N, = 10° has a smoothing effect on the mean; unbinned
results show more frequent and larger jumps. The He;
discrete sampling rapidly converges, but is biased even for
10% samples. The Heg estimator also samples configura-
tions close to ¢* (but not as close as for He;) and
correspondingly individual samples of these points signifi-
cantly modify the mean, leading to the discontinuous jumps
shown in the figure. The logarithm of the standard
deviation shows the expected 1/,/Ng behavior for most
of the discrete HS estimators, however the continuous HS
estimator, and to some extent the Heg estimator, exhibits
nonasymptotic scaling arising from samples close to ¢p*. As
the number of samples increases, the continuous HS
estimator will sample configurations arbitrarily close to
¢* and the nonasymptotic behavior will persist indefinitely:
the mean is not guaranteed to converge to the true value for
any finite sample set and the variance will not monoton-
ically decrease. This behavior is anticipated by Theorem 1
in Appendix A which shows that the large jumps observed
in the variance will never cease.
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FIG. 2. (a) shows the ratio of the sample mean of O in Eq. (24)
to its exact value vs. sample size for m = 1.73, g = 1.0 and
Ny =2 with various sampling schemes for the toy model.
(b) shows the standard deviation of O, std(©), as a function
of the sample size for the same parameters.

The behavior seen for the He; and Heg estimators is in
line with expectations given the configurations that are
sampled and their respective probabilities. Heg has a root
t ~ —1.63652 that is close to the exceptional configuration
¢* = —1.73, and consequently the Heg results show many
jumps. This root of Heg is sampled with a probability p ~
3 x 1077 and is thus sampled about 30 times for a sample
size of Ng=10% Supporting this expectation, it is
observed that the first jump emerges around N N% with
the subsequent jumps are less marked. For He; discrete
sampling, the variance is apparently behaving asymptoti-
cally, falling as 1/Ny, despite the empirical bias observed
in the mean. For this sampling, the root f, = —v/3 is
sampled with probability p ~ 1073, Since this root has not
been chosen in the Ny = 10% samples used in Fig. 2, the
mean is significantly underestimated. For N, > 10'3, the
sample mean will begin to converge to the true value and
the variance will exhibit jumps (as seen for Heg). For
Ng> 103, 1, = —/3 will be sampled representatively

and the mean will converge to the correct value and the
variance will decrease asymptotically. While for this case
the empirical bias would be observed with a very high
probability if the same numerical experiments were
repeated, it is not strictly a bias. With a very low probability
the mean will be overestimated enormously making the
estimator unbiased.

As this particular example shows, in the case of random
variables with very large variance, asymptotic scaling of the
variance is no guarantee of correctness. If the model
parameters m and g are chosen such that the exceptional
configuration is one of the roots of a given discrete HS
sampling, the corresponding configuration will never be
sampled, just as in the case of continuous HS sampling.
Under these circumstances, the variance will decrease as
1/Ng but the mean will be biased.

In Fig. 3, the mean and standard deviation of the same
observable are studied for the He; discrete HS sampling
from g = 1.0 and for a range of values of m € [1.03,2.43].

1.2
— m=1.03
11 — m=1.43
— m=1.53
—— m=1.63
o8 — m=173
1.0 — m=183
— m=1.93
— m=2.03
0.9 — m=2.43
10° 10° 107 10
Ns
(@)
1072
— m=1.03
M — m=1.43
N
— m=1.53
’6 N — m=1.63
= — m=173
S -
10-4 — m=1.93
— m=2.03
— m=243
10° 108 107 10
Ns
(b)
FIG. 3. (a) shows the ratio of the sample mean of O in Eq. (24)

to the exact value vs. sample size for various m for g = 1.0 and
Ny = 2. The He; discrete sampling scheme is used. (b) shows
the standard deviation of O as a function of the sample size for the
same parameters.
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As can be seen, for masses such that the exceptional
value ¢* = -m/,/g is not close to one of the roots

t, € {—\/§ 0, \/§} the calculations converge quickly to
the correct value as the number of samples is increased and
display the expected asymptotic 1/Ng scaling of the

variance. However as ¢* moves closer to the root at ¢, =

—+/3 from either above (m = 1.63) or below (m = 1.83),
the convergence to the true value is much slower and large
jumps are seen in the variance each time this root is
sampled. For m = 1.73, the results apparently converge
rapidly with 1/Ny scaling, but to an incorrect result at this
number of samples (as in the previous figure).

In fact, using the CLT, a sample size satisfying the
conditions for N(5,¢) in Eq. (A6) can be found. For
the current problem, N(J, €) is a lower bound, such that
for all N > N(8,¢) there is a range of mass values
m(N) <m <m,(N) where m;(N) <+/3 <m,(N) such
that P(|Oy — (u — A)| < 8) > 1 —e. To obtain a concrete
value, we choose € = 3 x 1077 corresponding to 5 stan-
dard deviations for the standard normal distribution. Then,
N(8, €) can be chosen as (l% O (1 -9))* L~ 2 where
and ®(x) is the cumulative distribution function of the
standard normal distribution. For = 0.01, N(8,¢) =
6 x 10° satisfies the required conditions.

To further investigate how the He; discrete sampling
behaves as the exceptional point of the theory moves
towards one of the roots, the convergence of the sample
average normalized to the true value is studied for g = 1.0
and m € {1.73,1.76,1.79, 1.82}. In this simple toy model,
the expected deviation of the sample mean arises from the
contribution of just one root that is the least probable and is
straightforward to determine. Figure 4 presents the results
and shows that as the exceptional point approaches a root,
the number of samples needed to remove the empirical bias

r= is ratio of the deviation ¢ to the biased mean u — A

2.5
2.0
— m=173
_ — m=176
o2 — m=179
1.5 — m=182
1.0 l&«

10° 106 107 10
Ns

FIG. 4. The figure shows how (normalized) sample average

moves over from 1 —% to 1 as m deviates from m = /3.

10—2.5
—
:|: 10730 —— Cont.
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2
0n

10733

10° 106 107 10
Ns

FIG. 5. Standard deviation of Q(1, 1) vs. the sample size for a

2 x 2 lattice, with m = 1.73, g = 1.0 and N, = 2 using the He;
discrete sampling scheme for the Gross-Neveu model.

increases, scaling approximately as the inverse probability
of the least probable root.

B. Discrete sampling for the Gross-Neveu model

In this section, the effects of infinite variance are
investigated in the context of the GN model. Calculations
are undertaken for Ny =2 flavors of fermions and for
various values of the fermion mass, m, and coupling, g. For
alattice of size L x T using the Hey discrete sampling there
are N'T possible configurations. As concrete examples,
lattices of extent L = T € {2, ..., 8} are investigated using
the continuous and discrete He; sampling schemes. For
L =T = 2, Fig. 5 shows the sample size dependence of the
logarithm of the standard deviation of the observable

o(s.0) =[] [T ¥es.0¥s(s.1), (45)
i=1 6=1.]

where the second product is over the fermion spin compo-
nents. This quantity is evaluated at a single site, chosen to be
(s,1) = (1,1), and is constructed from all spin and flavor
components of the fermion field at that site.” While the slope
converges to —0.5 for the discrete sampling scheme, the
standard deviation of the continuous scheme exhibits large
jumps over the entire Ng = 10® samples.

Figure 6 displays results for the same quantities calcu-
lated using a larger lattice of extent L = 7 = 8. It is clear
that over the same range of sample sizes, even the discrete
sampling scheme does not conclusively show the variance
decreasing as 1/Nj.

The lack of convergence seen for the larger lattice can be
understood by considering the spectrum of the logarithm of

’Due to the spin-flavor symmetry of the model, this quantity
involves a single eigenvalue entering with multiplicity 2N . By
translational symmetry, Q(s, ) is identical for any site.
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FIG. 6. Standard deviation of O = Q(1, 1) vs. the sample size
for the 8 x 8 lattice, with m = 1.73, g = 1.0 and Ny = 2 using
the He; discrete sampling scheme for the Gross-Neveu model.

Q(1,1). Figure 7 shows this spectrum on each configura-
tion as a function of the logarithm of the probabilities of the
configurations for L x L lattices with L € {2, 3,4} (since
the number of configurations grows exponentially with L,
results for L > 4 are not shown). As can be seen in each
case, there are a significant number of rare but important
configurations. As L increases, the number of these
configurations increases rapidly.

The operator Q(1, 1) is explicitly constructed such that
for the continuous HS sampling scheme P(¢*) =0 and
Q(gb*) = oo for at least one exceptional configuration ¢*
while [ 4 P($)Q(¢) < oo [here, Q is the HS representation

of Q(1,1) after fermions are integrated out]. Since

P(¢) x e 22 det[D()], (46)

it follows that for |¢p| < o0, P(¢p*) = 0 occurs only when
the determinant vanishes.

For a valid discrete sampling scheme, ¢* will not be
in the domain of the discrete variable £&. However for £ close

to ¢,
P(&) o« w(&) det[D(£)] (47)

will be small since w(¢&) > 0 and the determinant has the
same functional dependence on either the continuous or
discrete HS field. Similarly, Q(f) will be large for & near ¢*
as both the continuous and discrete HS transforms result in
the same functional form for Q after the fermion fields are
integrated out. As a consequence of this behavior, con-
figurations of smaller and smaller probabilities contribute
larger and larger amounts to Q(1, 1). From Fig. 7, it is clear
that this issue is exacerbated for larger lattices, Since the set
of exceptional configurations grows with volume, the
number of nearby configurations in discrete HS sampling
with small probability and large contribution to Q(1,1)

o
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FIG. 7. The values of Q(1,1) vs. the probabilities of the

configurations for (a) 2 x2, (b) 3x 3, and (c) 4 x4 lattice
geometries with Ny =2, m = -1.5, \/g=2.0 and the He;
discrete sampling scheme for the GN model. For (b) and (c),
the data are binned in units of one decade on both axes and the
radius of the plot symbol indicates the number of samples in a
given bin.

grows rapidly. While the discrete sampling scheme Q(1, 1)
has finite variance, in practice one needs to have a sample
size on the order of the inverse of the smallest probability
to obtain a reliable estimate of (Q(1,1)). The smallest
probability for a lattice with volume V and number of
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FIG. 8. The absolute values of the values of condensate vs.

the probabilities of the configurations for the L =4 lattice
with Ny =2, m=-15, \/g=2.0 and the He; sampling
scheme for the GN model. Binning is performed by partitioning
both axes in intervals of length 1. The radius of the plot
symbol corresponding to a given bin is equal to 1+ logg
(number of samples in the bin). The gray markers are the same
as those in Fig. 7(c) and are shown here for comparison.

degrees of freedom per site ¢ has an upper bound ~O(c~")
although the smallest probabilities will typically be much
smaller. Consequently for observables that have formally
infinite variance, one needs to have a sample size that is
greater than O(c") to properly estimate the mean.

As a comparison, Fig. 8 shows the logarithm of the
absolute value of an observable with finite variance, namely

O - % S (s, 9 (s, 1) (48)

s.Li,o

for L=4, Ny =2, m=-15, \/g=2.0 using the Hes
sampling scheme. In terms of the auxiliary variable, &, after
integrating out the fermions, this operator will take a form
&= O,y (£), s0 that (O) = 3, P(£)O, (&). The notation
a.v. indicates the “absolute value of the condensate” which
refers to the random variable & — |0, , (&)|. Note that this
definition depends on the particular auxiliary variable
chosen. In contrast to Q(1, 1), O only involves one fermion
bilinear in each term in the sum and is thus less singular
around exceptional configurations; although for small
probabilities log O ~ —log(prob), this growth is not as
severe as in the case of Q(1, 1). This is made clear in Fig. 9
which compares the behavior of O and Q(1,1) directly.
While the behavior of observables with infinite variance in
regions of low probability is controlled by the exceptional
configurations, the more general structure of the log-count
plots above is specific to the particular observable.

C. Summary

The discrete sampling schemes that have been proposed
have manifestly finite variance provided the roots in the

30
10 ;
102 ‘s
b,
1010 ‘0..
° %0,
_ ° ° =0(1,1
5 © e S, 0 0=o1)
= 10 ;'.-.0,{ 0 0=0
10—10 {
by
8,
1020 R .. °
4
107 1073 1072° 107  10°
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FIG. 9. Comparison of the spectra of Q(1,1) and O. For each
observable, the probabilities of the configurations that correspond
to a given observable range [as in Figs. 7(c) and 8 respectively]
are summed over and provides the probability of finding an
observable in the given range.

scheme do not contain an exceptional configuration. In the
case where the roots do contain an exceptional configu-
ration, the variance is still finite; however, the sample mean
will be biased due to the missing contribution of the
exceptional configuration to the mean. These discrete
sampling schemes are effective for calculating observables
for small lattice volumes and provide interesting testing
grounds for investigation of the fundamental issues of
infinite variance. However for quantities with infinite, or
very large, variance under a continuous HS sampling, the
discrete sampling schemes do not practically overcome the
issues of large variance for large volumes.

VI. REWEIGHTING

In this section, a method for sampling non-negative
observables with infinite variance is proposed that con-
structs the target observable through a series of discrete
reweighting steps or through a continuous reweighting
procedure. In each case, samplings are performed using
probability measures that incorporate part of the observable.

A. Discrete reweighting

Consider an un-normalized probability distribution P(x)
and an observable 7 (x) that is non-negative everywhere.
The expectation value

2P(x)

with the standard estimator for this quantity is given by

.1
T = FS;T(X,.), (50)
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where the x; are sampled with respect to the probability
weight P(x).

As in the previous sections, the variance of the standard
estimator is not well defined if the second moment of 7°
under the un-normalized probability weight P(x) is infinite.
To surmount this problem, a set of un-normalized proba-
bility weights P(x)

Py(x) = P(x)T (x)", (51)
are introduced with Py(x) = P(x). Since 7 (x) is non-
negative, this forms a probability distribution for real s. We
denote the expectation value of an observable with respect
to Py(x) by (-),. It is straightforward to see that:

=

() = [T ).

xr
N

(52)

‘
Il
=}

where N is a positive integer.

Based on the breakup in Eq. (52), an alternative
estimator of (7) can be defined as follows. Consider a
set of N configurations such that x, is sampled with respect

to P: and denote the set by x = (xo, ..., xy_; ). Let xh =

(xék>, x%{zl) for k € {1,...,N,} be ii.d. sets of con-
figurations. In terms of these sets, a valid estimator is
given by

T, .. xW)] = — Ty, (53)

where the total number of samples is Ng = N x N,. It is
easy to check that this estimator is unbiased. Except in

pathological cases, the random variables 7 (x,)¥, where x,
are sampled with respect to P- (x), will have finite variance
forr € {0, ..., N — 1} for large enough N (each quantity is
less singular near an exceptional configuration than the
original observable). If this is the case, then the estimator
T will also have finite variance.

Figure 10 presents results for Q(1, 1) defined in Eq. (45)
for the Gross-Neveu model on a L = 2 lattice using this
discrete reweighting sampling scheme, Eq. (53). For
comparison with Sec. VB, Fig. 10 also presents the
corresponding results for the L = § lattice. Note that the
exact result for the latter case is not shown as calculating it
with the He, discrete sampling scheme requires the gen-
eration of n% configurations. Figure 11 presents the results
for the standard deviation of the estimator Q(1, 1). It must
be noted that in Fig. 5, the median of the means method is
applied to the estimator defined in Eq. (53) while in Fig. 11,
Eq. (53) is used directly as appropriate for comparison with
the results for the continuous and discrete Hubbard-
Stratonovich sampling schemes presented in Figs. 5 and 6.

B. Continuous reweighting

There is a natural extension of this sequential reweight-
ing method to a continuous version of the procedure. To
arrive at this version, note that

(P) = (P'=),(P*) (54)

for any s € [0, 1] and positive observable P as long as Z, =
(P*), is finite. Z, is naturally interpreted as the partition
function for the probability weight P (x) = P(x)P(x)*.
Since the left-hand side of this equation is s-independent,
one obtains

d I-s
0=—((P7)Z,). (55)

This differential equation is straightforward to solve, noting
that Z;'Z, = (logP), and (log(P°)), = 0. Therefore,
under the assumption that Z; and (log P), are both finite
for s € [0, 1], one finds that

(P) = exp ( A " ds(log 73>A,> . (56)

Utilizing Gauss-Legendre quadrature and Eq. (56), an
estimator for log(P) can be defined. Let N be a positive
integer. Then an integral of the form [ dsf(s) can be
approximated by > ¥
1% are determined by the roots, z;, of the Nth Legendre
polynomial and the corresponding weights, w;, associated
with Gauss-Legendre quadrature.lo Defining the set of
configurations x = (x1, ..., xy) where x; is sampled with
respect to P (x), let x® fork € {1,...,N,} bei.i.d. sets of
configurations. Then the following is an estimator for
log(P):

cif(s;), where ¢; = 1w, and s; =

__ 1 X N
log(P)[xV), ..., x(N)] = — Zc,logP M), (57)

S k=1 i=1

where Ng = N x N, is the total number of samples divided
evenly between each of the N Gauss-Legendre quadrature
points.

As a very simple demonstration of this method, consider
a one-dimensional example of the standard normal distri-
bution P(x) = %ﬂe‘xz/ 2 and observables P,(x) = eP*
for real p < % The expectation values of these observables

are given by (P,) = 11—2p and the variances by

10If f(x) is a polynomial of degree at most 2N — 1, then
JA f(x)dx = >,y wif(x;) where {x;} are the roots of the Nth
Legendre polynomial Py (x) and w; W.
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FIG. 10. Estimations of the mean of Q(1, 1) obtained with the median of means estimator applied to Eq. (53) for various step numbers
and total sample sizes for the Gross-Neveu model for the L = 2 (left) and L = 8 (right) lattice extent, and for m = —1.5, and /g = 2.0.
In the top row, (a) and (c), the step size N = 10 is fixed while in the bottom row, (b) and (d), the total sample size N; = 1048576 = 2%
is fixed and step sizes are chosen to be 2% for k € {1, ..., 10}. For L = 2, the red line shows the exact value obtained from explicit
summation over all possible configurations of the discrete sampling scheme. The error bars at each sample size show a confidence level

of 0.9973.
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geometries with m = 1.73, g = 1.0, Ny = 2 and the step size N = 10.
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P

FIG. 12. Estimates of log(P,,) obtained with the median of the
means estimator applied to Eq. (57) as a function of 1/p for
N = 1000 nodes and N, = 1000 samples per node in the Gauss-
Legendre sampling. The blue line shows the exact values. “Basic”
corresponds to the results obtained where the random variables
for each distribution P, are obtained through the Metropolis
algorithm with P, being the proposal distribution. “Improved”
corresponds to the results where the random variables are drawn
from the distribution P, directly. Error bars show a statistical
confidence level of ¢/ = 0.9973.

var(P,) = (11_—221:7— Vijf). The variance diverges for p > { and

the expectation value diverges for p > %
To calculate log(P,,) using Eq. (57) and Gauss-Legendre
quadrature, a proposal distribution for each s; is required.

A simple and straightforward choice is to use Py(x) =

\/#2—7[ ¢ for all 5;. The data labeled as “basic” in Fig. 12 is

generated in this context. For 1/p = 3 this provides an

accurate estimate that agrees with the exact value within

uncertainties. However for a fixed sample size per Gauss-

Legendre node, the estimates deviate from the exact value
1

as p approaches 5. A possible cause of this is that for

p= % — ¢, the probability weight is proportional to e
for s =1 and important contributions will be due to
lx] < \/i; Therefore, more and more samples will be needed

as € — 0 and the “basic” method suffers from an overlap
problem. To improve the algorithm in this simple example,
one can also directly sample for P, which are normal
distributions. Results generated in this latter context are
labeled as “improved” in Fig. 12, and are seen to agree
perfectly with the exact results for all p. Systematic errors
due to the finite number of nodes are negligible compared
to the statistical errors in both cases.

To test this method on a more realistic System, estimates

of log Q(1, 1) for the Gross-Neveu model on the L = 2 and
L = 8 lattices with m = —1.5, \/g=2.0 and Ny =2 are
presented in Fig. 13. For L =2, the exact value is
reproduced within uncertainties while for L = 8, results

from continuous reweighting agree with those from discrete
reweighting.

VII. CONCLUSIONS

Large statistical variance in Monte Carlo sampling
severely limits the precision with which many important
quantities in quantum field theories can be determined. In
this work, quantities that have formally infinite variance
under standard sampling schemes have been considered. In
the context of fermionic theories, a family of discrete
sampling schemes has been presented that surmounts the
issue of infinite variance. Nevertheless, the variances in
these schemes can be very large (compared to their means
squared) and hence sampling maybe inefficient. An alter-
nate sampling scheme has also been developed which can
be applied to any non-negative random variable that can be
sampled with the Monte Carlo method. While the method
has been proposed in order to estimate observables with
infinite variances, it is likely to be effective for non-negative
random variables that have finite but large noise to signal
ratios. There are potentially interesting connections of the
investigations presented here to the large time-separation
behavior of two-point correlation functions for quantities
that possess global charges, such as for baryons and nuclei
in QCD, that will be explored in subsequent work.
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APPENDIX A: REVIEW OF THE BASIC
PROBABILITY THEORY

The standard method of estimating an observable
(a random variable) is based on the Central Limit
Theorem. We therefore begin by reviewing the background
for the Central Limit Theorem. We refer to Ref. [10] for
further details.

A probability space is a triplet (2, F, P) where:

(1) Q is the sample space.

(i) F is the space of events and is required to be a

o-algebra.

(iii) P: F — [0, 1] is the probability measure.

Every element @ in the sample space Q is called an
outcome. An event A € F is said to occur if w is the
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FIG. 13. Estimates of log(Q(1, 1)), for the Gross-Neveu model on L = 2 (left column) and L = 8 (right column) lattice extents with

m = —15,,/g=2.0and N; = 2, obtained with the median of means estimator applied to Eq. (57) for N = 10',10?, 10° nodes with

sample size per node Nggpy = 10° fixed in the top row, (a) and (c), and for Nggpy = 10, 10%, 10° sample sizes per nodes with the
number of nodes N = 100 fixed in the bottom row, (b) and (d). Error bars show a confidence level of ¢/ = 0.9973. In the L = 2 case, the
red line shows the exact value obtained from explicit summation over all possible configurations of the discrete sampling scheme.

outcome and w € A. F is required to be a o-algebra which
means that

i) @.QeF.

(i) A € F implies A® € F where A° is the complement

of A.

(iii) If A;5; € F is a countable sequence of elements of
F it follows that U5 A; € F.

The probability measure P is required to satisfy:

i) P(@)=0.

() P(Q)=1.

(iii) If A;5; € F is a countable sequence of pairwise
disjoint elements of F it follows that P(U;»; A;) =
2iz1 P(Ay).

It must be noted that in general one can not choose
F =22 the set of all subsets of Q. Therefore, the choice
of F is essential and elements of F are said to be
measurable.

A random variable X: Q — R is a real valued function
on the sample space such that foralla € R, X~'(Ag,) € F

where Bp is the Borel o-algebra on R, the smallest''
o-algebra containing all open subsets of R. An equivalent
condition is X~!((—c0,a]) € F for all a € R. This con-
dition allows one to define another probability distribution
Px on the real line through the formula Py((a,b]) =
P(X7!'((=00,b)])) = P(X~!((—00,da])). By the celebrated
Carathéodory’s extension theorem Py can be extended to
the Bp. If A € Br, Px(A) should be interpreted as the
probability that X takes value in A. We further define the
cumulative distribution function Fy(t) = Px((—o0,1])
which gives the probability that X < r.

For a stochastic physical system represented by the
probability space (Q,F, P), one can consider the space
of repeated outcomes denoted by Q® = [ [ €, associated
with the o-algebra F*, the smallest o-algebra containing

""Smallest o-algebra containing a given set of sets is defined as
the intersection of all o-algebras that contains the given set of sets
which can be shown to be a o-algebra.
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[, A; where only finitely many of A; € F are different
than Q. An element w® € Q% is given by w*® =
{w,w,,---} where w; € Q for all i € NT. Then, Q%
can be identified with the set of of all samples of the
physical system with infinite sample size. By
Kolmogorov’s Extension Theorem, there exists a unique
probability measure P* on F* such that P®([[2, A;) =
[1; P(A;) if only finitely many of A; € F are different
that Q. Given a random variable X on (Q,F,P), we
define the random variable X, on (Q®,F%, P%®) by
Xy (0®) = X(w,).

For our purposes, there are three important types of
convergence for random variables. One says that a
sequence of random variables X, converges to a random
variable X

(i) almost surely/everywhere'” if P(X, — X) = 1. It is

denoted by X,,an.

(ii) in probability if for every ¢ > 0, P(|X,—X|>¢€) — 0.
It is denoted by X,ZAX.

(iii) in distribution if Fy converges pointwise to F at
every continuity point of Fy. It is denoted by

X, 5 X.
These three different types of convergence imply each other
in the sense that

p

N ANLY (A1)

Three of the most important results of the probability
theory are the Strong Law of the Large Numbers (SLLN),
The Weak Law of Large Numbers (WLLN), and the
Central Limit Theorem (CLT).

Strong Law of Large Numbers Let {X,,} be a sequence of
identically and independently distributed random variables
with the finite mean E[X,,] = u. If one defines the sample
mean X,5; = 1% X, it follows that:

X, S (A2)

An important consequence of the SLLN is the Weak Law of
Large Numbers.

Weak Law of Large Numbers Let {X,,} be a sequence of
identically and independently distributed random variables
with the finite mean E[X,,] = u. If one defines the sample

mean X, =137 | X, forn > 1,itfollows that for any e > 0:

Al/im P(|Xy—u| <e)=1. (A3)

Although the SLLN says any sequence of sample means
will eventually converge to the mean, in practice it does not
say anything about how close a sample mean is to the mean
for a given sample size N. A similar statement also applies

2To be precise, there is a set A € F such that for all w € A,
lim,_ , X, (w) = X(w) and P(A) = 1.Itis possible that the set of
all elements w € Q satisfying X,,(w) — X(w) is not measurable,
but this distinction is not relevant for our discussion.

to the WLLN. On the other hand, the CLT gives a measure
of how close the sample mean is to the mean.

Central Limit Theorem Let {X,} be a sequence of
identically and independently distributed random variables
with the finite mean E[X;]=p and finite variance

E[X?] — E[X,]> = 6% 1t then follows that v/n(X, —/,t)—d)
N(0,6°) where N (u,6?) denotes the normal distribution
with mean u and variance ¢°.

It follows that for large enough n, \/n(X,, —pu) * N (0,6?).
Therefore, it follows that X, ~ N (x, "72) Although one can
derive a similar expression for the estimation of ¢ in the case
E[X]] < oo, it is usually enough to estimate o> by the
(unbiased) estimator s, = 1= >"" | (X; — X,)2.

Let {X,} to be an i.i.d. sequence of random variables
with finite variance ¢®. Application of the SLLN to {X,}
and {X2} immediately implies that s,~>c>.

1. Theorems under infinite variance

Two theorems are particularly important for analysis of
random variables with infinite variance.

Theorem 1. Let X, 5, to be a sequence of independent
and identically distributed random variables with finite
mean p and infinite variance. Then, for any given L > 0,
the number of the random variables s,, that satisfies s, > L
is infinite almost surely.

We need a bit preparation before we can prove Theorem 1.

Lemma 1. (Second Borel-Cantelli) Let {E,} to a
sequence of independent events. If 3°, P(E,) = oo then'’
P(limsupE,) = 1.

Lemma 2. Let Z be a non-negative random variable
with infinite mean. Then, for any given L >0, > %,
P({Z>nL}) = .

Proof.

<L inP({nL <Z<((n+1)L})

+LiP({nL <Z<(n+1)L})
n=0

= zoo:nP({nL <Z<(n+1)L})+L. (A4)

“Here, lim sup E,,= Ny>1YUpmsy E,, and is equal to the set of all
outcomes w such that w € E; for infinitely many E,. Therefore,
P(limsup E,,) can be interpreted as the probability that infinitely
many events E; happens.
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It follows that » %, nP({nL <Z < (n+1)L}) = .
Then:

© = inP({nL <Z<((n+1)L})

(AS)

|

Corollary 1. Let {Z,} to be a sequence of independent
and identically distributed non-negative random variables
with infinite mean. Then, for any given L > 0, the number
of the random variables Z,, that satisfies Z,, > nL is infinite
almost surely.

Proof. We define the events E, = {w:Z,(w) > nL}.
The corollary then follows from Lemma 2 and the second
Borel-Cantelli lemma. =

Proof of Theorem 1. We first define the random
variable sj, = 15> (X; —p)* for n > 2. Next, we are
going to show that, almost surely, infinitely many elements
of the sequence {s}} satisfy s, > L. Let T, = (X,, — u)*.
Then, Corollary 1 applies and there are infinitely many 7,
that satisfy 7', > nL. Let n, > 2 for k > 1 be an increasing
sequence that satisfies 7,, > n; L. Then for each k > 1, we

>-LT, >L.Let Qy; be the set of outcomes

have s},
such that {s}, > L} is satisfied for infinitely many n. We
showed that P(Qy ;) = 1.

We now show that a similar statement holds for
s, =31 (X; - X,)*. By the SLLN, there is a set of
outcomes Qg_,, such that lim,_, X, (@) = u for all w €
Qg ., and P(Qg ) =1 1Let Q =Qu3 NQ_,.
Choose an arbitrary @ € ;. Since Q; C Qy 5;, there is
an infinite sequence {n; > 2} such that s;, (w) > 3L. As
X, converges to uin Q; C Qg _,, the sequence {n; } has an
infinite  subsequence {m; >2} that also satisfies
X (@) =l < L. As 5,(0) = 5,(0) =25 (X, (@) — ),
it follows that smk > 2: 3. Sinceforn >22n—-3>n—1
is satisfied, s}, > L is valid for all m,. The theorem is

proved if we can show P(Qy) = 1. To see this note that
P(Q,) =1 & P(Q\Q) = 0. The latter follows from the
following relation. P(Q\Q) = P(2 N (QS 5, U Q; _)ﬂ)) <
PQNQS )+ PQNQS)=0. -

Let Q be a finite sample space associated with the
o-algebra F = 22 the set of all subsets of Q, and a family
of probability distributions P': F — [0, 1] for ¢ € (0, 1].
We assume that P’ is continuous in the sense that P/(w) is a

continuous function of 7 for z € (0, 1] for all w € Q. We
consider a non-negative random variable X’ which is
continuous in ¢ in the same sense. We further assume that
there is a set E C Q such that lim,_yP'(w) =0 and
lim,_o P'(w)X'(w) # 0 for all w € E.
Theorem 2. Let §, ¢ > 0. There is an integer N (5, ¢)
such that for all N > N(§, ¢):
3 t t
P_{%P (1Xy -

(u-A)|<8)>1-e  (A6)

Proof of Theorem 2. We first define another probability
measure on Q that we will denote by P°. P? is defined by
P’(w) = lim,_o P'(w) for all ® € Q. We also define X°
similarly: X°(w) = lim,_( X'(w). Effectively, this defini-
tion ignores exceptional configurations. It follows that,
expectation value of X° is y — A:

Uyo = ZPO(a))XO @

WwEQ
=) P(@)X(0)+ Y Po)X(0)

w€eE w€E(Q\E)

Z hmP‘ NimX' ()
t—0 =0

we(Q\E)

= hm Z P'(w
we (Q\E)

=pu—A. (A7)

Now given 8, ¢ > 0, by the WLLN there is an integer
N(6,¢€) such that for all N > N(8,¢€):

P(XY = (u-A)| <8) > 1—e. (A8)

Now we consider (E®)", the set of ensembles of sample
size N that does not include any exceptional configurations
where ECQ\E. For P°, exceptional configurations can
be ignored and therefore QN = (E°)V effectively so it
follows that:

PO(XY — (4 — A)| <)
= P(IX - (u— A)] < 80" € (E°))

=lmP/(|X}, - (4 - A)| < 5™ € (E9)Y). (A9

Now we make the following observation. Let ((E®)V)¢ C
QN be the subset of QVs that includes at least one element
from E, the set of the exceptional configurations. The
probability of ((E€)V)® occurs is a polynomial in the
variables {P'(w):w € E} with the constant term is vanish-
ing. Since lim,_ P'(w) = 0 for all w € E, we have:
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limP(((E%)")%) = 0

hrrOlP’((EC)N) =1. (A10)
1=
Now we complete the proof of Theorem 2 by combining Egs. (A9) and (A10):
limP!(|XY = (= A)| < 8) = lmP' (1K) — (1 = A)| < 3o € (B%)V)P/(" € (E9)Y)
11— —
+1mP!([X)y = (u = A)[ < 8l € ((E°)")°)P( € ((E)Y)°)
11—
= limP'(|X}, — (4 = A)] < dlo” € (E°)Y)
1=
= P(IX} — (u=4)| < 6)
>1-e (A11)
|
APPENDIX B: MEDIAN OF MEANS 1 [&E
S | = e | 2 Var,) + 23 Con(x,. X,
In this section we will prove Eq. (18) for the median of B |~ =
means by modifying the arguments given in Ref. [11] to
include correlations between samples. Consider a random - i Bo? +2 Z Z Cov(X,,.X,) ]
variable X with mean py. Given an € > 0, we aim to find a B> | =1 nemt1
lower bound for the probability that |dyom — px| < e,
where fiyoy s defined in Sec. III C. If there are K batches - iz Bo? + 26> Z Z Ty(n— m)]
of size B, for this to happen less than % of the batch means B =1 ne=m+1
fi; must be outside the range (uy — €, uy + €). Let us define 1 B-1
the indicator random variables I; for i=1,...,K. I, =— Bo? + 207 Z — 1)x(t )]
defined to be 1 if J; € (u—e,u+¢€) and O otherwise. B =
Consequently: 2
gl
Prob(|fivem — p| < € >Prob< Z[ < > (B1) 52
= EZTX,int(B)’ (BS)

Since the batches are independent, we can use Hoeffding’s
inequality ([10]):

1 & 1 )
Prob <}izlli < 5) > | — ¢ 2KG-EIL])?, (B2)

where the first indicator function /; is chosen for con-
venience. Now we define /i, to be the standard deviation of
X and use Chebyshev’s inequality ([10]) to obtain:

1 1
E[1] 3737 Prob(|f, —u| > €)
1 o}
>———. B3
T2 ¢ (B3)
By choosing ¢ = 26, we obtain:
Prob(|imom — 4| < 201) 2 1 — e, (B4)

To estimate o, we note that ji; = %Zle X,,. Then one

obtains:

where we have defined the autocorrelation function
I'y(r) = ﬁCov(X Xn ) and the integrated autocorrela-
tion time 7y i (B) = 1+ > 271 (1 — £)T'x(¢) [The sequence
{X,} is assumed to be statlonary, I'y(#) is independent
of n.]. Equation (18) then follows by combining above
inequality with (B4).

APPENDIX C: GAUSS-HERMITE QUADRATURE
The polynomials He, (&) are defined by:

dn
LAt

He,(¢) = (-1 o (€1

and have the properties:
1 122

—— [ dée2* ¢"He,(§) =0 forO0<m <n, (C2

= [ dee e, 0 )

1 122
— —¢ =
\/ﬂ/ dée Hem (g)Hen (5) n!5nm7 (C3)
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H,(&) =&+ (C4)

Consider a polynomial f(&) of degree at most 2n — 1. We
can then write
f(&) = q(§He, (&) + r(8). (C5)

where both ¢(¢) and r(£) have degree at most n — 1. By
Eq. (C2) one has:

-&/2 —
5z | et Pame @ =0, (o)
and therefore one obtains:
1 12 1 1£2
- —¢ - —¢
o= [ dee¥re) = o [aze e, ()

As r(€) is a polynomial of degree at most n — 1, it is
determined by its values at n points. Let us choose

these points {f(a”)|a =1,...n} as the roots of He, (&) =
no(E- fg,")). Then we have:

Z faHé: Sb

l<b<n

1 He, (&)
= . C8
I e (@
This allows us to express Eq. (C7) as:
1 1 1
I d —7‘5 — -
\/E/ ge r(§> Za:r(éa) Hb:/:a (ga - )
1 _1g He (5)
—— [ dée ¥ . C9
g m/ e @
After defining w, as:
1 12 He, 5)
= % C10
e [1psa(€a = &) \/ﬂ/ E-¢,’ (C10)

one can use f(£,) = q(&,)He,(&,)+ (&) =r(&,) to

obtain:
1 12
— e =\ _
= / dee 1) = Y owaf G- (€11

Moreover, if g(£) is a polynomial of degree at most n:

1 _1» He, (&)
dée = .
Hb;éa( gb m/ 5 éa q(g) q(éa)wa
(C12)
To see that consider g(&) =&" for m < n. Using the
identity
En = Er A (E—E)(E FETE g e
(C13)
and Eq. (C2), we see that
1 _1» He, (&)
d 26 m _ gm Cl4
TG, v e —am @

for m < n, from which (C12) follows. Now choosing
q(&) = He,_;(¢) and using Egs. (C2) and (C4), the left-
hand side of Eq. (C12) becomes:

1 1 / 12
dée He,_,(é)He,_(£). (C15
s Co =) var 1(§)He,_1(£).  (C15)

Using Eq. (C3), this leads to:

(n-1)
w, = , Cl16
He:’l (Zja)Hen—l (éa) ( )
where w, satisfies the normalization:

D wa=1. (C17)

a

A table of the weights and roots corresponding to the
Hermite polynomials used in this work is provided in
Table II
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TABLE II. Non-negative roots and weights for the first few Hermite polynomials. For every positive root, there is

a negative root with the same magnitude and weight.

Roots 55,”) Weights w[(;')
1 1/2
3 0 2/3
V3 1/6
A 36 1/12(3 +1/6)
3+6 1/12(3 - V6)
0 0.5333333333
5 1.3556261800 0.2220759220
2.8569700139 0.0112574113
0.6167065902 0.4088284696
6 1.8891758778 0.0886157460
3.3242574336 0.0025557844
0 0.4571428571
7 1.1544053947 0.2401231786
2.3667594107 0.0307571240
3.7504397177 0.0005482689
0.5390798114 0.3730122577
3 1.6365190424 0.1172399077
2.8024858613 0.0096352201
4.1445471861 0.0001126145
0 0.4063492063
1.0232556638 0.2440975029
9 2.0768479787 0.0499164068
3.2054290029 0.0027891413
4.5127458634 0.0000223458
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