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In Monte Carlo calculations of expectation values in lattice quantum field theories, the stochastic
variance of the sampling procedure that is used defines the precision of the calculation for a fixed number of
samples. If the variance of an estimator of a particular quantity is formally infinite, or in practice very large
compared to the square of the mean, then that quantity can not be reliably estimated using the given
sampling procedure. There are multiple scenarios in which this occurs, including in Lattice Quantum
Chromodynamics, and a particularly simple example is given by the Gross-Neveu model where
Monte Carlo calculations involve the introduction of auxiliary bosonic variables through a Hubbard-
Stratonovich (HS) transformation. Here, it is shown that the variances of HS estimators for classes of
operators involving fermion fields are divergent in this model and an even simpler zero-dimensional
analogue. To correctly estimate these observables, two alternative sampling methods are proposed and
numerically investigated.
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I. INTRODUCTION

Quantum field theories (QFTs) at strong coupling are
interesting in many contexts in particle, nuclear, and con-
densed matter physics, but in many cases can only be
quantitatively investigated using numerical approaches. One
such approach involves discretizing the theory on a space-
time lattice with a Euclidean metric. The functional integrals
corresponding to measurable quantities can then be approxi-
mated using an importance sampling Monte Carlo method.
In such a calculation, the probability of sampling a given
configuration of the field degrees of freedom is determined
by the Euclidean action and, depending on the parameters in
the action, it is possible that field configurations enter with
probability weights arbitrarily close to zero. If this is the
case, certain random variables (observables corresponding to
field operators) will have arbitrary large (infinite) variance.
As will be discussed below, quantities with infinite variance
in standard sampling algorithms occur in phenomenologi-
cally relevant theories such as Quantum Chromodynamics
(QCD) due to zero-modes of the lattice Dirac operator as
well as in other contexts. A particularly clear example is

provided by correlation functions constructed from large
numbers of fermion fields as will be the focus of this work.1

In applying Monte Carlo methods to QFTs, the Central
Limit Theorem (CLT) is used to construct confidence
intervals for the expectation value (mean) of the random
variable from the corresponding variance over the samples.
However, a random variable with infinite variance does not
satisfy the conditions for the CLTand the sample variance of
such a random variable is not meaningful because it does
not converge to a particular value with increasing sample
size. Moreover, the CLT is valid only in the limit that the
sample size approaches infinity and hence similar deficien-
cies will appear for random variables with finite but very
large variances compared to squares of their means. Despite
these issues, there are physically interesting quantities in
QCD and other field theories that formally have finite mean
but infinite variance under standard sampling methods.
To address these cases, alternative sampling schemes are
required for reliable Monte Carlo estimates.
In this work, two methods will be introduced to address

specific occurrences of infinite variance. The first method is
applicable in the context of fermionic lattice field theories
that are typically approached using the (continuous)
Hubbard-Stratonovich (HS) transformation such as theories
whose actions involve powers of fermion bilinear operators.
A class of discrete HS transformations is introduced which
generate discrete auxiliary bosonic variables. The variance
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1Observables with infinite variances in fermionic theories have
been analyzed using a different approach in Ref. [1].
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of an estimator constructed from these discrete bosonic
variables will then be manifestly finite although it may be
still very large compared to the square of its mean. This
discrete sampling scheme is investigated in a toy model and
in the 2D Gross-Neveu (GN) model. While the approach is
seen to be useful in some contexts, it becomes impractical
in the limit of large spacetime volumes in its current
implementation. The second method that is considered is
a sequential reweighting procedure that is suitable for
analysis of non-negative stochastic variables. With this
method, the mean of a such a non-negative bosonic variable
with infinite variance can be written as a product of the
means of the several non-negative random variables each
having finite variance. This approach is also investigated in
the toy model and in the 2D GNmodel but can be applied in
more complicated theories.
The structure of this work is as follows. In Sec. II, theway

in which random variables with infinite variances arise in
lattice calculations of field theories such as QCD is outlined
as a motivation for subsequent studies of related phenomena
in simple models. In Sec. III, the main statistical concepts
that are used in our analysis are introduced and interpreted.
In Sec. IV, simple models are introduced that cleanly exhibit
the features that lead to observables with infinite variance. In
Sec. V, a novel discrete Hubbard-Stratonovich transform is
presented that provides estimators with manifestly finite
variance. This method is tested for the toy models intro-
duced in Sec. IV. In Sec. VI, a new reweighting method that
can be applied to non-negative stochastic variables is also
introduced and this method is then tested for the toy model
introduced in Sec. IV. Finally, Sec. VII summarizes the
results of this work and provides an outlook for future
directions of investigation. A number of important statistical
results that support our main analysis are proven in
Appendix A while Appendices B and C present further
technical details.

II. INFINITE VARIANCE IN EUCLIDEAN
FIELD THEORY

One can construct illustrative examples of infinite
variance in phenomenologically relevant theories such as
lattice QCD. In this case, the partition function is given by:

Z ¼
Z

D½U�D½ΨΨ̄�e−S½U�−Ψ̄D½U�Ψ

¼
Z

D½U�e−S½U� detðD½U�Þ

¼
Z

D½U�e−S½U� Y
λ∈σD½U�

λ; ð1Þ

where U represents the gauge field and Ψ and Ψ̄ represent
the fermions. Here S½U� is the bosonic part of the action of
lattice QCD, D½U� is the ND × ND Dirac matrix, the
determinant of which arises from integration of the fermion

degrees of freedom, and σD½U� is the spectrum of D½U�
which accounts for multiplicities of the eigenvalues. It is
assumed that the Dirac matrix D½U� is diagonalizable for
each U and can be expressed as

D½U� ¼ QUΛUQ−1
U ; ð2Þ

where ΛU is a diagonal matrix consisting of eigenvalues
λa ∈ σD½U� ofD½U�, andQU is not necessarily unitary. With

this definition, the columns vðaÞU ofQU and the rows ðwðaÞ
U ÞT

of Q−1
U are the right and left eigenvectors of D½U�,

respectively, and satisfy

X
i

ðwðaÞ
U ÞiðvðbÞU Þi ¼ δab;

X
a

ðvðaÞU ÞiðwðaÞ
U Þj ¼ δij; ð3Þ

where a and b label the eigenvalues and i and j index the
components of the corresponding eigenvectors. It must be
noted that one can permute and (independently) scale the
columns of QU freely. Furthermore, QU can not generically
be chosen continuously in U and consequently the quan-

tities λaU, v
ðaÞ
U , and wðaÞ

U depend implicitly on the choice of
QU. In terms of these quantities, the components of the
inverse of the Dirac operator for fieldU can be expressed as:

D−1½U�ij ¼
XND

a¼1

1

λaU
ðvðaÞU ÞiðwðaÞ

U Þj: ð4Þ

For certain values of the couplings that define the theory,
there may be an “exceptional configuration”, that is a
bosonic field configuration U� such that, for simplicity,
strictly one of the eigenvalues, λ� ∈ σD½U��, vanishes. In
what follows, the corresponding left and right eigenvectors
of U� will be denoted by ðw�ÞT and v�, respectively. If such
exceptional configurations exist, it can be seen that the
standard estimators of physical quantities, such as fermion
propagators, diverge. To illustrate this, consider a fermion
field bilinear denoted as

V1
ij ¼ Ψ̄iΨj ð5Þ

and choose a particular combination of these bilinears
weighted by the left and right eigenvectors at the excep-
tional configuration

O ¼
X
i;j

w�
i v

�
jV

1
ij: ð6Þ

After the fermions are integrated out, for each sample size
NS, a standard estimator for the expectation value of V1

ij in a
Monte Carlo calculation is
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V̂1
ij ¼

1

NS

XNS

t¼1

D−1½Ut�ij; ð7Þ

where Ut for t ∈ f1;…; NSg are assumed to be independ-
ently and identically generated samples. The corresponding
estimator for O is

ÔNS
¼ 1

NS

X
i;j

w�
i v

�
j

XNs

t¼1

D−1½Ut�ij: ð8Þ

The mean of ÔNS
is given as:

hÔNS
i ¼ 1

Z

Z
D½U�e−S½U� detðD½U�Þ

X
i;j

w�
i v

�
jD

−1½U�ij: ð9Þ

As one of the eigenvalues, λ�, for the field configuration U�
vanishes, the integration measure in Eq. (9) is such that U�
will have vanishing probability of being sampled and
consequently the singularity due to D−1½U��ij will not
cause the expectation value to diverge.
Nevertheless, configurations in a neighborhood2 of U⋆,

which will be sampled with a very small frequency
governed by detD½U�, will make large individual contri-
butions to the sample mean but the expectation value will
remain finite as det½U�D−1½U�ij is polynomial in U.

To examine varðÔNS
Þ we consider NS ¼ 1 for simplicity,

noting that varðÔNS
Þ ¼ 1

NS
varðÔNS¼1Þ. The variance3 of

Ô1 is

varðÔ1Þ ¼
Z

D½U�e−S½U� detD½U�jÔ1½U� − hÔ1ij2: ð10Þ

Since Ô1½U�� ¼ ðλ�Þ−1 by construction and it was
assumed that λ� ¼ 0 is the only vanishing eigenvalue of
D½U��, the variance of Ô1 is divergent as ðλ�Þ−2 det½U��
is divergent. It must be stressed that, in an actual
Monte Carlo calculation, exceptional configurations will
not be sampled so the sample variance will remain finite
for any finite sample size, but will not be bounded from
above as the sample size increases.
The above example of a single fermion propagator

illustrates the way in which infinite variance manifests
but is not of physical relevance. However, correlation
functions involving hadrons and nuclei in a theory such
as QCD involve many propagators that arise from products
of k fermion bilinears. In this context, it is useful to
consider the more general product

Vk
fig;fjg ¼

Yk
n¼1

V1
in;jn

; ð11Þ

where fig≡ fi1;…; ikg and fjg ¼ fj1;…; jkg label the
fermions that enter in an ordered manner. A family of
estimators for Vk

fig;fjg analogous to Eq. (7) for each NS is

V̂k
NS;fig;fjg ¼

1

NS

XNS

t¼1

X
π∈Sk

sπ
Yk
n¼1

D−1½Ut�in;jπðnÞ ; ð12Þ

unless fig and fjg contain repeated indices in which case
V̂k
fig;fjg ¼ 0 due to the anticommutativity of fermions.

Here, Sk is the symmetric permutation group of order k,
and sπ is the sign of permutation π. Again choosing
NS ¼ 1, one observes:

V̂k
1;fig;fjg ¼

X
π∈Sk

sπ
Yk
n¼1

V̂1
1;in;jπðnÞ : ð13Þ

If N0 > 1 eigenvalues of D½U⋆� vanish, then it suffices to
focus on a product of N0 fermion bilinears:

RN0
¼

YN0

s¼1

XND

i;j¼1

ðw⋆
s Þiðv⋆s ÞjV1

i;j; ð14Þ

whereND is the size of the Dirac matrix and ðw⋆
s Þi and ðv⋆s Þj

are the left and right eigenvectors of D½U⋆�, respectively,
with vanishing eigenvalues λ⋆s ¼ 0, for s ∈ f1;…; N0g. For
the estimator

R̂N0
¼

X
π∈SN0

sπ
X

i1≠…≠iN0
j1≠…≠jN0

YN0

s¼1

ðw�
sÞisðv�sÞjsD−1½U1�is;jπðsÞ ; ð15Þ

where the first sum is over permutations π in the symmetric
group SN0

. Using the same arguments as for Ô1, it can be

shown that R̂N0
has infinite variance.

The above arguments illustrate how infinite variances of
estimators of physically relevant quantities can arise in
Monte Carlo calculations of theories including lattice QCD.
We note that, the situation is exacerbated in quenched
QCD, where the fermion determinant is taken to be unity,
or in partially quenched or mixed action QCD, where the
Dirac operators entering the measure and the observables
are different. In these cases, fermionic observables can have
infinite expectation values. Since the fermion action is
different in the measure and in defining observables, similar
concerns will arise in partially quenched or mixed-action
QCD. Without knowing that an observable in such a theory

2Precisely, for every ϵ > 0, one can find a neighborhood N of
U� such that supU∈N detD½U� < ϵ.

3For fermionic systems, the square of an observable is not an
observable in general. Therefore in this work, “variance” always
refers to the variance of an estimator.
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is free of the problem illustrated above,4 standard sampling
methods result in estimates of observables whose statistical
behaviors are not governed by the CLT at any sample size
and are unreliable.

III. STATISTICAL SAMPLING

In this section, important results for stochastic variables
that will be needed in the following analysis are introduced.
A review of the relevant aspects of probability theory and
proofs of the results presented here are provided in
Appendix A.

A. A natural indicator of infinite variance

For a sequence of independent and identically distributed
(i.i.d.) random variables fXng, a sequence of random
variables fsng can be defined such that sn ¼
1

n−1
P

n
i¼1ðXi − X̄nÞ2 where X̄n ¼ 1

n

P
n
i¼1 Xi. Each sn is

an unbiased estimator of the variance of X̄n when it is
finite. The n → ∞ behavior of sn provides empirical
evidence as to whether the system has a finite variance
or not. In particular:

(i) Let fXng be a sequence of i.i.d. random variables

with finite variance σ2. Then as n → ∞, sn →
a:s:

σ2,
where the notation “almost surely” (a.s.) is defined
in Appendix A.

(ii) Let fXng to be a sequence of i.i.d. random variables
with finite mean μ and infinite variance. Then, for
any given δ > 0, the number of random variables sn
that satisfies sn > δ is infinite a.s.

The former statement follows from the Strong Law of
Large Numbers, while the latter statement is proven in
Appendix A as Theorem 1.

B. Empirical bias of the sample average for finite
systems with exceptional configurations

In systems that contain exceptional configurations, the
convergence of the sample mean to the mean is slow and it is
not straightforward to estimate uncertainties as the sample
variance does not converge. These issues resurface as
empirical biases in systems with finite configuration spaces
with configurations that are sufficiently infrequently
sampled. To explore this, let Ω be a finite sample space
with jΩj elements. To this space, we associate the σ-algebra
F ¼ 2Ω that is the set of subsets of Ω, and a family of
probability distributions Pt∶ F → ½0; 1� for t ∈ ð0; 1�. Here,
t corresponds to a parameter describing the system from
which the samples are drawn such as a coupling constant or
a mass. For a finite system, the knowledge ofPtðfωgÞ for all
ω ∈ Ω completely determines Pt∶ F → ½0; 1� through the
requirement PtðA ∈ F Þ ¼ P

ω∈A P
tðfωgÞ. Therefore, it is

enough to consider PtðfωgÞ and for brevity we define
PtðωÞ≡ PtðfωgÞ. In the following, it is assumed that Pt is
continuous in the sense that PtðωÞ is a continuous function
of t for t ∈ ð0; 1� for all ω ∈ Ω and that Xt is a non-negative
random variable which is continuous in t in the same sense.
Furthermore, the set of exceptional configurations is defined
as E ⊂ Ω such that limt→0 PtðωÞ ¼ 0 and limt→0 PtðωÞ
XtðωÞ ≠ 0 for all ω ∈ E. An elementω ∈ E is referred to as
an exceptional configuration and it should be noted that this
definition depends on the choice of X implicitly.
The mean of Xt, μXt , can be written as a sum of

contributions from the exceptional configurations and
contributions from the nonexceptional configurations:

μXt ¼
X
ω∈Ω

PtðωÞXtðωÞ ¼ μeXt þ μeXt ; ð16Þ

where

μeXt ¼
X
ω∈E

PtðωÞXtðωÞ; μeXt ¼
X
ω∈Ec

PtðωÞXtðωÞ; ð17Þ

and Ec ¼ ΩnE.
For a Monte Carlo estimate of the mean μXt with a fixed

sample size NS, the contribution from the exceptional
configurations will be missing for t sufficiently close to
0, resulting in a “gap” denoted by ΔX ≡ limt→0 μ

e
Xt. That

is, denoting the actual mean of the observable by
μX ≡ limt→0 μXt , the sample mean will underestimate this
value by ΔX for ensembles that are large but not sufficiently
large that the CLT applies, as will be discussed below.
Consider the product space ΩNS corresponding to the

set of all ensembles of size NS, that is every element
ω½NS� ∈ ΩNS will correspond to a sequence of elements

from Ω: ω½NS� ¼ fω½NS�
1 ;…;ω½NS�

NS
g. A new random variable

which should be interpreted as the ensemble average
for each ensemble can be defined by X̄t

NS
ðω½NS�Þ ¼

1
NS

PNS
i¼1 X

tðω½NS�
i Þ.

Now let pe
minðtÞ ¼ minω∈E PtðωÞ and pe

minðtÞ ¼
minω∈Ec PtðωÞ. As t → 0, pe

minðtÞ → 0 while
pe
minðtÞ ↛ 0. Therefore, for small enough t one will have

½pe
minðtÞ�−1 ≪ ½pe

minðtÞ�−1. The Weak Law of Large
Numbers (see Appendix A) implies that for
NS ≫ ½pe

minðtÞ�−1, X̄NS
≃ μX with very high probability.

However, for ½pe
minðtÞ�−1 ≪ NS ≪ ½pe

minðtÞ�−1, X̄NS
≃

μX − ΔX with very high probability.
For practical purposes, these results can be summarized

by saying that for small t, with very high probability, X̄t
NS

first approaches to μX − ΔX and then eventually converges
to μX as NS is further increased. The above statements are
made precise and proven as Theorem 2 in Appendix A. It
should be noted that if E includes more than one element,

4For example, the massive overlap Dirac operator does not
have zero eigenvalues.
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X̄NS
may demonstrate a series of plateaus before eventually

converging to μX. Figure 1 schematically demonstrates the
expected behavior.

C. Nonasymptotic estimators

While the CLT is of utmost importance in statistical
analysis, it is only valid asymptotically and for random
variables with finite variance (see Appendix A). Therefore,
the CLT is not applicable when dealing with random
variables with infinite variance and the standard methods
of estimation can not be utilized. Similar issues are also
expected for a random variable with finite variance that has
infinite variance in a certain limit, as such a variable is
expected to be extremely non-Gaussian and require imprac-
tically large sample sizes for the CLT to apply.
To address these situations, nonasymptotic estimators

are important, and in this work the Median of Means
(MoM) estimator will be used. The MoM is an estimator
for which one is able to define confidence intervals which
are also valid for random variables with infinite variance.
After including the possibility of autocorrelations between
samples, the MoM estimator can be defined as follows.
Let fμ̂1;…; μ̂Kg be the means of the random variable X
on each of K independent batches of B samples of X
obtained from the same stationary (thermalized) discrete
time process. Then the median of means estimator
μ̂MoM ¼ medianðfμ̂1;…; μ̂KgÞ. Confidence intervals can
be defined using

Prob

�
jμX − μ̂MoMj > 2σX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2τint;XðBÞ

B

r �
≤ e−

K
8 ; ð18Þ

where μX is the expectation value of X, σX be the standard
deviation ofX, and τint;XðBÞ is the integrated autocorrelation

time of the discrete time process.5 Further details and a
proof of the above relation are provided in Appendix B.

IV. SIMPLE EXAMPLES WITH
INFINITE VARIANCE

In this section, two simple models are introduced and
exemplar correlation functions are investigated to illustrate
the problem of infinite variance in Monte Carlo sampling.
Numerical explorations of these models are presented in
Secs. V and VI below.

A. Toy model

The first model considered is a zero dimensional
(Euclidean) theory of 2Nf interacting fermions represented
by Ψ ¼ ðΨ1;…;Ψ2Nf

ÞT and Ψ̄ ¼ ðΨ̄1;…; Ψ̄2Nf
Þ where Ψi

and Ψ̄i are independent Grassmannian variables. The
Lagrangian of this toy model is defined as

L ¼ mΨ̄Ψ −
g
2
ðΨ̄ΨÞ2; ð19Þ

where it is assumed that g is positive. As shown in Ref. [2],
positivity of g is required for the unitarity of realistic
theories with four fermion interaction.
The partition function of this theory coupled to

(Grassmannian) sources η̄ and η is given by:

Z½η; η̄� ¼
Z Y2Nf

i¼1

ðdΨidΨ̄iÞe−mΨ̄Ψþg
2
ðΨ̄ΨÞ2þη̄ΨþΨ̄η: ð20Þ

To calculate quantities derived from this partition function,
one needs to remove the quartic term so that the
Grassmannian integrations can be performed exactly. The
standard way to do this is to introduce an auxiliary field
through a (continuous) Hubbard-Stratonovich transforma-
tion [3,4]. It is straightforward to see that up to a multipli-
cative constant, the partition function is equivalent to

Z½η; η̄� ¼
Z

∞

−∞
dϕ

Z Y2Nf

i¼1

ðdΨidΨ̄iÞe−1
2
ϕ2−ðmþ ffiffi

g
p

ϕÞΨ̄Ψþη̄ΨþΨ̄η;

ð21Þ

where ϕ is a real-valued scalar field. The fermions can now
be integrated exactly, leading to

Z½η; η̄� ¼
Z

∞

−∞
dϕe−

1
2
ϕ2þη̄ 1

mþ ffiffi
g

p
ϕηðmþ ffiffiffi

g
p

ϕÞ2Nf : ð22Þ

Here, the Boltzmann weight

FIG. 1. The expected dependence on the number of samples of
an observable with two exceptional configurations under a
particular sampling scheme. The discontinuities at NJ1 and
NJ2 correspond to the first time that the first and second
exceptional configurations are sampled and these values can
be arbitrarily large (> 108 in examples below).

5τint;XðBÞ is defined in the Appendix B.

INFINITE VARIANCE IN MONTE CARLO SAMPLING OF … PHYS. REV. D 106, 094506 (2022)

094506-5



PðϕÞ ∝ e−
1
2
ϕ2ðmþ ffiffiffi

g
p

ϕÞ2Nf ð23Þ

is common to the partition functions and all correlation
functions derived from it and therefore acts as the probability
weight in importance-sampling Monte Carlo calculations.
Now suppose that one is interested in calculating the

expectation value of the observable

O ¼
Y2Nf

i¼1

Ψ̄iΨi ð24Þ

which is determined by

hOi ¼ 1

Z½0; 0�
�Y2Nf

i¼1

∂

∂ηi

∂

∂η̄i

�
Z½η; η̄�

����
η;η̄¼0

: ð25Þ

Using the auxiliary field, this is given by

hOi ¼
R
dϕPðϕÞðmþ ffiffiffi

g
p

ϕÞ−2NfR
dϕPðϕÞ

¼
R
dϕe−

1
2
ϕ2R

dϕe−
1
2
ϕ2ðmþ ffiffiffi

g
p

ϕÞ2Nf
; ð26Þ

which is clearly finite.
Difficulties arise if this quantity is naively estimated

through a Monte Carlo calculation. The standard estimator
for this expectation is

Ô ¼ 1

NS

XNS

n¼1

ÕðϕnÞ; ð27Þ

where NS is the sample size and

ÕðϕÞ ¼ ðmþ ffiffiffi
g

p
ϕÞ−2Nf ð28Þ

is the representation of the observable in terms of the
auxiliary field. This quantity has a singularity at ϕ� ¼ − mffiffi

g
p .

While one will never sample this point because Pðϕ�Þ ¼ 0,
with sufficiently many samples one will sample nearby
points and they will cause large fluctuations in the
estimation of the observable. In fact, the variance of this
estimator is divergent, as the second moment (and all
higher moments) of the bosonic operator Õ diverges:

hO2ðϕÞi ¼
R
dϕPðϕÞðmþ ffiffiffi

g
p

ϕÞ−4NfR
dϕPðϕÞ

¼
R
dϕe−

1
2
ϕ2ðmþ ffiffiffi

g
p

ϕÞ−2NfR
dϕe−

1
2
ϕ2ðmþ ffiffiffi

g
p

ϕÞ2Nf

¼ ∞: ð29Þ

B. Gross-Neveu model

To further explore the ideas introduced above, it is
useful to consider the Nf-flavor Gross-Neveu (GN) model
[2] which resembles QCD in a number of ways. In
particular, it is asymptotically free and exhibits chiral
symmetry breaking.6

Here, the Gross-Neveu model is defined in two dimen-
sions on a discretized lattice geometry withWilson fermions
[5]. Consider a rectangular lattice, described by the points
fðs; tÞj1 ≤ s ≤ L; 1 ≤ t ≤ Tg where s, t, L and T are
positive integers and lattice units are assumed throughout.
Periodic (antiperiodic) boundary conditions are imple-
mented in space (time). In this work, two-dimensional
Dirac matrices are defined as

γ0 ¼
�
1 0

0 −1

�
; γ1 ¼

�
0 1

1 0

�
: ð30Þ

Denoting the masses by mi and the coupling constant by g,
the partition function of the GN model is given by

Z ¼
Z �Y

s;t;i

dψ̄ idψ iðs; tÞ
�

× exp

�
−
X
s;t;i

ψ̄ iðs; tÞKiðs; t; s0; t0Þψ iðs0; t0Þ

þ g
2

X
s;t

�X
i

ψ̄ iðs; tÞψ iðs; tÞ
�

2
�
; ð31Þ

where, 1 ≤ i ≤ Nf and

Kiðs; t; s0; t0Þ ¼ 12×2

�
ð2þmiÞδs;s0δt;t0

−
1

2
ðδs;s0þ1δt;t0 þ δs;s0−1δt;t0

þ δs;s0δt;t0þ1 þ δs;s0δt;t0−1Þ
�

þ 1

2
γ0ðδs;s0δt;t0þ1 − δs;s0δt;t0−1Þ

þ 1

2
γ1ðδs;s0þ1δt;t0 − δs;s0−1δt;t0 Þ: ð32Þ

In the current work, Nf ¼ 2 flavors of fermions are used
everywhere with m1 ¼ m2 ¼ m. By utilizing a Hubbard-
Stratonovich transformation, the exponential in Eq. (31) can
be made bilinear in the fermion fields as in Sec. IVA.
Indeed, the toy model in Sec. IVA is an approximation to

6The version of the model introduced here has a discrete chiral
symmetry but it is simple to modify the action to obtain a theory
with a continuous chiral symmetry [2].
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the Gross-Neveu model in which the kinetic terms in the
action are ignored.7

The set of exceptional configurations in the GN model is
more complicated than in the toy model discussed in the
previous subsection. In particular, the exceptional configu-
rations will correspond to a union of surfaces of codimen-
sion 1 (and higher). For L × T ¼ 2 × 2, the set of the
exceptional configurations can be found algebraically by
solving the characteristic equation of the Dirac operator for
a given set of parameters and is composed of two and three
dimensional surfaces in the four-dimensional field-space.
For larger lattice geometries, determination of these surfaces
can in principle be performed numerically.

V. DISCRETE HUBBARD-STRATONOVICH
TRANSFORMATION

The failure of sampling for some quantities with the
standard HS transformation is tied to the continuous values
taken by the auxiliary field, necessitating the existence of
exceptional configurations in the models of the previous
section. To avoid this, a family of discrete HS sampling
schemes is introduced in this section and their utility in
ameliorating the infinite variance problem is investigated
numerically.
As introduced above, the continuous Hubbard-

Stratonovich transformation is given by

e
1
2
χ2 ¼ 1ffiffiffiffiffiffi

2π
p

Z
∞

−∞
due−

1
2
u2þuχ : ð33Þ

This expression is valid for all commuting variables χ.
However, if χ is constructed out of fermion bilinears as in the
models in Sec. IV, Eq. (33) need only be satisfied up to terms
Oðχ2NfÞ (where Nf is the number of fermions for the
theories that have spinor dimension 2) since higher powers
of χ vanish identically.
To find additional solutions, solutions of

e
1
2
χ2 ¼

X
a∈A

waeξaχ ð34Þ

are required, where the index a takes values in a finite index
setA that is to be determined. The weights, wa, are required
to be non-negative to have a probabilistic representation
and the ξa are required to be real to avoid a sign problem. χ
is assumed to satisfy χ2Nfþ1 ¼ 0.
After a change of variables χ → iχ, solving the above

equation is equivalent to solving

e−
1
2
χ2 ¼

X
a

waeiξaχ þOðχ2Nfþ1Þ; ð35Þ

where χ is considered as a real variable. That is, the above
equation may be interpreted as the equality of the two real
power series in χ up to the 2Nfth order in χ. The series on
the left and right sides of the above equation can be viewed
as the characteristic functions8 of two probability densities
in a conjugate variable ξ, where these densities are

P1ðξÞ ¼
1ffiffiffiffiffiffi
2π

p e−
1
2
ξ2 ð36Þ

and

P2ðξÞ ¼
X
a

waδðξ − ξaÞ; ð37Þ

respectively. Equation (34) can thus be rephrased as finding
a polynomial fðξÞ of degree at most 2Nf that satisfies

1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dξe−

1
2
ξ2fðξÞ ¼

X
a

wafðξaÞ: ð38Þ

Written in this form, the fξag and fwag can be found
through the method of Gaussian quadrature. Denoting the
Hermite polynomials by

HenðξÞ ¼ ð−1Þne1
2
ξ2 dn

dξn
e−

1
2
ξ2 ; ð39Þ

the Nf þ 1 roots of HeNfþ1ðξÞ give the ξa and the wa are
constructed as

wa ¼
Nf!

He0Nfþ1ðξaÞHeNf
ðξaÞ

; ð40Þ

as shown in Appendix C.
Having defined the sets fξag and fwag, a Monte Carlo

calculation can be performed for a Euclidean field theory as
follows. Assume that the theory has a partition function:

Z¼
Z

D½U�D½ΨΨ̄�e−S½U�þΨ̄α
xD½U�αx;βyΨβ

yþ1
2

P
x
ðCαβΨ̄α

xΨ
β
xÞ2 ; ð41Þ

where fα; βg correspond to all fermion indices except the
spacetime location x ¼ ðs; tÞ and Cαβ is a complex matrix.

If CαβΨ̄α
xΨ

β
x is a sum of k fermion bilinears, then

ðCαβΨ̄α
xΨ

β
xÞkþ1 will vanish. Then, the partition function

can be expressed as:

Z¼
Z

D½a�D½U�D½ΨΨ̄�
Y
x

waxe
−S½U�þΨ̄D½U�Ψþ

P
x
ξaxCαβΨ̄α

xΨ
β
x ;

ð42Þ
7In this approximation, Grassmannian variables at different

sites are decoupled from each other and the GN model reduces to
independent products of the toy model on each site.

8The characteristic function of a random variable X is defined
as ϕðξÞ ¼ heiξXi.
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where D½a�≡Q
x

P
ax∈A and A indexes the set of roots of

HeN>k. Note that N can be chosen to be any integer greater
than k.
After integrating over the fermion fields, one obtains:

Z ¼
Z

D½a�D½U�e−S½U� detðD0½U; a�Þ
Y
x

wax; ð43Þ

where D0½U; a�α;x;α0;x0 is given as

D0½U; a�α;x;α0;x0 ¼ D½U�α;x;α0;x0 þ Cαα0ξaxδx;x0 : ð44Þ

Consequently, one can perform a Monte Carlo calculation
using e−S½U� detðD0½U; a�ÞQx wax as the probability weight.
The family of discrete HS transformations introduced

here generalizes the transformation first proposed by Hirsch
[6] and used extensively in the context of Quantum
Monte Carlo simulations [7,8]. The form used in that work
is equivalent to the Nf ¼ 1 case of the transformation
introduced above.

A. Discrete sampling vs. continuous sampling
for the toy model

In this section, the toy model discussed in Sec. IV is used
to compare estimators based on discrete HS transforma-
tions to each other and to the standard estimator based on
the continuous HS transformation. The operator O ¼Q2Nf

i¼1 Ψ̄iΨi in Eq. (24) combines fermion bilinears for
each type of fermion in the model and provides a concrete
example on which to focus. Nf ¼ 2 will be used in
numerical studies.
The behavior of the different estimators is determined by

the model parameters m and g in Eq. (19). The behavior of
the continuous estimator has been discussed above. For
the discrete HS-based estimators, the choice of m, g and the
order N of the Hermite polynomial HeN control the
magnitude and probability of the least probable configura-
tion. The roots and the corresponding weights for the first
few Hermite polynomials are given in Table I.
For the continuous HS estimator, Eq. (27), samples are

generated through the Metropolis-Hastings algorithm with
the standard normal distribution chosen as the proposal
distribution. Discrete HS estimators are constructed for HeN
where N ∈ f3;…; 9g with samples drawn through the
Metropolis-Hastings algorithm with the weights given in
Eq. (40) chosen as the proposal probabilities. For each
sampling scheme, a total of NS ¼ 108 samples are created
for m ∈ f1.03;1.43;1.53;1.63;1.73;1.83;1.83;2.03;2.43g
and for g ¼ 1.0. Autocorrelations are measured using the
procedure of Ref. [9] and accounted for in the analysis.
In what follows, the numerical data are analyzed inNp ¼

103 steps by adding 105 samples at each step. Precisely, at
the step k, the samples that are included are the set
f1;…; k · 105g. For each step the data is analyzed

disregarding the samples not included and all metrics,
including the autocorrelation times, are calculating inde-
pendently for each step.
In order to compare methods, the behaviors of the mean

and the standard deviation of the continuous and discrete
HS estimators are considered as a function of the sample
size. Figure 2 shows this comparison for HeN for N ∈
f3;…; 9g at m ¼ 1.73 and g ¼ 1.0. These couplings are
chosen such that the exceptional point ϕ� ¼ −m=

ffiffiffi
g

p
is

very close to one of the configurations in the He3 estimator
(ϕ ¼ −

ffiffiffi
3

p
). As can be seen from the behavior of the mean,

most of the discrete HS estimators rapidly converge to the
exactly calculable value that is used to normalize the
Monte-Carlo results. However, the continuous HS estima-
tor shows significant jumps as the number of samples
increases that occur whenever a sample sufficiently close to
ϕ� ¼ −1.73 is chosen, as expected from the general argu-
ments in Sec. III. Note that the binning of results in steps of
Np ¼ 103 has a smoothing effect on the mean; unbinned
results show more frequent and larger jumps. The He3
discrete sampling rapidly converges, but is biased even for
108 samples. The He8 estimator also samples configura-
tions close to ϕ� (but not as close as for He3) and
correspondingly individual samples of these points signifi-
cantly modify the mean, leading to the discontinuous jumps
shown in the figure. The logarithm of the standard
deviation shows the expected 1=

ffiffiffiffiffiffi
NS

p
behavior for most

of the discrete HS estimators, however the continuous HS
estimator, and to some extent the He8 estimator, exhibits
nonasymptotic scaling arising from samples close to ϕ�. As
the number of samples increases, the continuous HS
estimator will sample configurations arbitrarily close to
ϕ� and the nonasymptotic behavior will persist indefinitely:
the mean is not guaranteed to converge to the true value for
any finite sample set and the variance will not monoton-
ically decrease. This behavior is anticipated by Theorem 1
in Appendix Awhich shows that the large jumps observed
in the variance will never cease.

TABLE I. Roots and weights of the N ∈ f2; 3; 4g sampling
schemes. Corresponding results for larger values ofN are given in
Appendix C.

N Roots ξðnÞa Weights wðnÞ
a

2
−1 1=2
1 1=2

3 −
ffiffiffi
3

p
1=6

0 2=3ffiffiffi
3

p
1=6

4

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ ffiffiffi

6
pp

1=12ð3 − ffiffiffi
6

p Þ
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffi
6

pp
1=12ð3þ ffiffiffi

6
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 −
ffiffiffi
6

pp
1=12ð3þ ffiffiffi

6
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ ffiffiffi
6

pp
1=12ð3 − ffiffiffi

6
p Þ
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The behavior seen for the He3 and He8 estimators is in
line with expectations given the configurations that are
sampled and their respective probabilities. He8 has a root
t ≃ −1.63652 that is close to the exceptional configuration
ϕ� ¼ −1.73, and consequently the He8 results show many
jumps. This root of He8 is sampled with a probability p ≃
3 × 10−7 and is thus sampled about 30 times for a sample
size of NS ¼ 108. Supporting this expectation, it is
observed that the first jump emerges around NS ∼ 1

p with
the subsequent jumps are less marked. For He3 discrete
sampling, the variance is apparently behaving asymptoti-
cally, falling as 1=NS, despite the empirical bias observed
in the mean. For this sampling, the root ta ¼ −

ffiffiffi
3

p
is

sampled with probability p ≃ 10−13. Since this root has not
been chosen in the NS ¼ 108 samples used in Fig. 2, the
mean is significantly underestimated. For Ns ≳ 1013, the
sample mean will begin to converge to the true value and
the variance will exhibit jumps (as seen for He8). For
NS ≫ 1013, ta ¼ −

ffiffiffi
3

p
will be sampled representatively

and the mean will converge to the correct value and the
variance will decrease asymptotically. While for this case
the empirical bias would be observed with a very high
probability if the same numerical experiments were
repeated, it is not strictly a bias. With a very low probability
the mean will be overestimated enormously making the
estimator unbiased.
As this particular example shows, in the case of random

variables with very large variance, asymptotic scaling of the
variance is no guarantee of correctness. If the model
parameters m and g are chosen such that the exceptional
configuration is one of the roots of a given discrete HS
sampling, the corresponding configuration will never be
sampled, just as in the case of continuous HS sampling.
Under these circumstances, the variance will decrease as
1=NS but the mean will be biased.
In Fig. 3, the mean and standard deviation of the same

observable are studied for the He3 discrete HS sampling
from g ¼ 1.0 and for a range of values of m ∈ ½1.03; 2.43�.

(a)

(b)

FIG. 3. (a) shows the ratio of the sample mean of O in Eq. (24)
to the exact value vs. sample size for various m for g ¼ 1.0 and
Nf ¼ 2. The He3 discrete sampling scheme is used. (b) shows
the standard deviation ofO as a function of the sample size for the
same parameters.

(a)

(b)

FIG. 2. (a) shows the ratio of the sample mean of O in Eq. (24)
to its exact value vs. sample size for m ¼ 1.73, g ¼ 1.0 and
Nf ¼ 2 with various sampling schemes for the toy model.
(b) shows the standard deviation of O, stdðOÞ, as a function
of the sample size for the same parameters.
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As can be seen, for masses such that the exceptional
value ϕ� ¼ −m=

ffiffiffi
g

p
is not close to one of the roots

ta ∈ f− ffiffiffi
3

p
; 0;

ffiffiffi
3

p g, the calculations converge quickly to
the correct value as the number of samples is increased and
display the expected asymptotic 1=NS scaling of the
variance. However as ϕ� moves closer to the root at ta ¼
−

ffiffiffi
3

p
from either above (m ¼ 1.63) or below (m ¼ 1.83),

the convergence to the true value is much slower and large
jumps are seen in the variance each time this root is
sampled. For m ¼ 1.73, the results apparently converge
rapidly with 1=NS scaling, but to an incorrect result at this
number of samples (as in the previous figure).
In fact, using the CLT, a sample size satisfying the

conditions for Nðδ; ϵÞ in Eq. (A6) can be found. For
the current problem, Nðδ; ϵÞ is a lower bound, such that
for all N ≥ Nðδ; ϵÞ there is a range of mass values
mlðNÞ ≤ m ≤ muðNÞ where mlðNÞ < ffiffiffi

3
p

< muðNÞ such
that PðjÔN − ðμ − ΔÞj ≤ δÞ ≥ 1 − ϵ. To obtain a concrete
value, we choose ϵ ¼ 3 × 10−7 corresponding to 5 stan-
dard deviations for the standard normal distribution. Then,
Nðδ; ϵÞ can be chosen as ð σX0μ−ΔΦ

−1ð1 − ϵ
2
ÞÞ2 1

r2 ≈
59.07
r2 where

r ¼ δ
μ−Δ is ratio of the deviation δ to the biased mean μ − Δ

and ΦðxÞ is the cumulative distribution function of the
standard normal distribution. For r ¼ 0.01, Nðδ; ϵÞ ¼
6 × 105 satisfies the required conditions.
To further investigate how the He3 discrete sampling

behaves as the exceptional point of the theory moves
towards one of the roots, the convergence of the sample
average normalized to the true value is studied for g ¼ 1.0
and m ∈ f1.73; 1.76; 1.79; 1.82g. In this simple toy model,
the expected deviation of the sample mean arises from the
contribution of just one root that is the least probable and is
straightforward to determine. Figure 4 presents the results
and shows that as the exceptional point approaches a root,
the number of samples needed to remove the empirical bias

increases, scaling approximately as the inverse probability
of the least probable root.

B. Discrete sampling for the Gross-Neveu model

In this section, the effects of infinite variance are
investigated in the context of the GN model. Calculations
are undertaken for Nf ¼ 2 flavors of fermions and for
various values of the fermion mass, m, and coupling, g. For
a lattice of size L × T using the HeN discrete sampling there
are NLT possible configurations. As concrete examples,
lattices of extent L ¼ T ∈ f2;…; 8g are investigated using
the continuous and discrete He3 sampling schemes. For
L ¼ T ¼ 2, Fig. 5 shows the sample size dependence of the
logarithm of the standard deviation of the observable

Qðs; tÞ ¼
YNf

i¼1

Y
σ¼↑;↓

Ψ̄σ
i ðs; tÞΨσ

i ðs; tÞ; ð45Þ

where the second product is over the fermion spin compo-
nents. This quantity is evaluated at a single site, chosen to be
ðs; tÞ ¼ ð1; 1Þ, and is constructed from all spin and flavor
components of the fermion field at that site.9 While the slope
converges to −0.5 for the discrete sampling scheme, the
standard deviation of the continuous scheme exhibits large
jumps over the entire NS ¼ 108 samples.
Figure 6 displays results for the same quantities calcu-

lated using a larger lattice of extent L ¼ T ¼ 8. It is clear
that over the same range of sample sizes, even the discrete
sampling scheme does not conclusively show the variance
decreasing as 1=NS.
The lack of convergence seen for the larger lattice can be

understood by considering the spectrum of the logarithm of

FIG. 4. The figure shows how (normalized) sample average
moves over from 1 − Δ

μ to 1 as m deviates from m ¼ ffiffiffi
3

p
.

FIG. 5. Standard deviation of Qð1; 1Þ vs. the sample size for a
2 × 2 lattice, with m ¼ 1.73, g ¼ 1.0 and Nf ¼ 2 using the He3
discrete sampling scheme for the Gross-Neveu model.

9Due to the spin-flavor symmetry of the model, this quantity
involves a single eigenvalue entering with multiplicity 2Nf. By
translational symmetry, Qðs; tÞ is identical for any site.
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Qð1; 1Þ. Figure 7 shows this spectrum on each configura-
tion as a function of the logarithm of the probabilities of the
configurations for L × L lattices with L ∈ f2; 3; 4g (since
the number of configurations grows exponentially with L,
results for L > 4 are not shown). As can be seen in each
case, there are a significant number of rare but important
configurations. As L increases, the number of these
configurations increases rapidly.
The operator Qð1; 1Þ is explicitly constructed such that

for the continuous HS sampling scheme Pðϕ�Þ ¼ 0 and
Q̂ðϕ�Þ ¼ ∞ for at least one exceptional configuration ϕ�

while
R
ϕ PðϕÞQ̂ðϕÞ < ∞ [here, Q̂ is the HS representation

of Qð1; 1Þ after fermions are integrated out]. Since

PðϕÞ ∝ e−
1
2

P
x
ϕ2ðxÞ det½DðϕÞ�; ð46Þ

it follows that for jϕj < ∞, Pðϕ�Þ ¼ 0 occurs only when
the determinant vanishes.
For a valid discrete sampling scheme, ϕ� will not be

in the domain of the discrete variable ξ. However for ξ close
to ϕ�,

PðξÞ ∝ wðξÞ det½DðξÞ� ð47Þ

will be small since wðξÞ > 0 and the determinant has the
same functional dependence on either the continuous or
discrete HS field. Similarly, Q̂ðξÞ will be large for ξ near ϕ�
as both the continuous and discrete HS transforms result in
the same functional form for Q̂ after the fermion fields are
integrated out. As a consequence of this behavior, con-
figurations of smaller and smaller probabilities contribute
larger and larger amounts toQð1; 1Þ. From Fig. 7, it is clear
that this issue is exacerbated for larger lattices, Since the set
of exceptional configurations grows with volume, the
number of nearby configurations in discrete HS sampling
with small probability and large contribution to Qð1; 1Þ

grows rapidly. While the discrete sampling schemeQð1; 1Þ
has finite variance, in practice one needs to have a sample
size on the order of the inverse of the smallest probability
to obtain a reliable estimate of hQð1; 1Þi. The smallest
probability for a lattice with volume V and number of

FIG. 6. Standard deviation of O ¼ Qð1; 1Þ vs. the sample size
for the 8 × 8 lattice, with m ¼ 1.73, g ¼ 1.0 and Nf ¼ 2 using
the He3 discrete sampling scheme for the Gross-Neveu model.

(a)

(b)

(c)

FIG. 7. The values of Qð1; 1Þ vs. the probabilities of the
configurations for (a) 2 × 2, (b) 3 × 3, and (c) 4 × 4 lattice
geometries with Nf ¼ 2, m ¼ −1.5, ffiffiffi

g
p ¼ 2.0 and the He3

discrete sampling scheme for the GN model. For (b) and (c),
the data are binned in units of one decade on both axes and the
radius of the plot symbol indicates the number of samples in a
given bin.
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degrees of freedom per site c has an upper bound ∼Oðc−VÞ
although the smallest probabilities will typically be much
smaller. Consequently for observables that have formally
infinite variance, one needs to have a sample size that is
greater than OðcVÞ to properly estimate the mean.
As a comparison, Fig. 8 shows the logarithm of the

absolute value of an observable with finite variance, namely

Ō ¼ 1

L2

X
s;t;i;σ

Ψ̄σ
i ðs; tÞΨσ

i ðs; tÞ ð48Þ

for L ¼ 4, Nf ¼ 2, m ¼ −1.5, ffiffiffi
g

p ¼ 2.0 using the He3
sampling scheme. In terms of the auxiliary variable, ξ, after
integrating out the fermions, this operator will take a form
ξ → Ōa:v:ðξÞ, so that hŌi ¼ P

ξ PðξÞŌa:v:ðξÞ. The notation
a.v. indicates the “absolute value of the condensate” which
refers to the random variable ξ → jŌa:v:ðξÞj. Note that this
definition depends on the particular auxiliary variable
chosen. In contrast toQð1; 1Þ, Ō only involves one fermion
bilinear in each term in the sum and is thus less singular
around exceptional configurations; although for small
probabilities log Ō ∼ − logðprobÞ, this growth is not as
severe as in the case ofQð1; 1Þ. This is made clear in Fig. 9
which compares the behavior of Ō and Qð1; 1Þ directly.
While the behavior of observables with infinite variance in
regions of low probability is controlled by the exceptional
configurations, the more general structure of the log-count
plots above is specific to the particular observable.

C. Summary

The discrete sampling schemes that have been proposed
have manifestly finite variance provided the roots in the

scheme do not contain an exceptional configuration. In the
case where the roots do contain an exceptional configu-
ration, the variance is still finite; however, the sample mean
will be biased due to the missing contribution of the
exceptional configuration to the mean. These discrete
sampling schemes are effective for calculating observables
for small lattice volumes and provide interesting testing
grounds for investigation of the fundamental issues of
infinite variance. However for quantities with infinite, or
very large, variance under a continuous HS sampling, the
discrete sampling schemes do not practically overcome the
issues of large variance for large volumes.

VI. REWEIGHTING

In this section, a method for sampling non-negative
observables with infinite variance is proposed that con-
structs the target observable through a series of discrete
reweighting steps or through a continuous reweighting
procedure. In each case, samplings are performed using
probability measures that incorporate part of the observable.

A. Discrete reweighting

Consider an un-normalized probability distribution PðxÞ
and an observable T ðxÞ that is non-negative everywhere.
The expectation value

hT i ¼
P

xPðxÞOðxÞP
xPðxÞ

; ð49Þ

with the standard estimator for this quantity is given by

T̂ ¼ 1

Ns

XNs

i¼1

T ðxiÞ; ð50Þ

FIG. 8. The absolute values of the values of condensate vs.
the probabilities of the configurations for the L ¼ 4 lattice
with Nf ¼ 2, m ¼ −1.5, ffiffiffi

g
p ¼ 2.0 and the He3 sampling

scheme for the GN model. Binning is performed by partitioning
both axes in intervals of length 1. The radius of the plot
symbol corresponding to a given bin is equal to 1þ log10
ðnumber of samples in the binÞ. The gray markers are the same
as those in Fig. 7(c) and are shown here for comparison.

FIG. 9. Comparison of the spectra of Qð1; 1Þ and Ō. For each
observable, the probabilities of the configurations that correspond
to a given observable range [as in Figs. 7(c) and 8 respectively]
are summed over and provides the probability of finding an
observable in the given range.
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where the xi are sampled with respect to the probability
weight PðxÞ.
As in the previous sections, the variance of the standard

estimator is not well defined if the second moment of T
under the un-normalized probability weight PðxÞ is infinite.
To surmount this problem, a set of un-normalized proba-
bility weights PsðxÞ

PsðxÞ ¼ PðxÞT ðxÞs; ð51Þ

are introduced with P0ðxÞ ¼ PðxÞ. Since T ðxÞ is non-
negative, this forms a probability distribution for real s. We
denote the expectation value of an observable with respect
to PsðxÞ by h·is. It is straightforward to see that:

hT i ¼
YN−1

r¼0

hT ðxÞ1=Ni r
N
; ð52Þ

where N is a positive integer.
Based on the breakup in Eq. (52), an alternative

estimator of hT i can be defined as follows. Consider a
set of N configurations such that xr is sampled with respect

to Pr
N
and denote the set by x≡ ðx0;…; xN−1Þ. Let xðkÞ ≡

ðxðkÞ0 ;…; xðkÞN−1Þ for k ∈ f1;…; Nsg be i.i.d. sets of con-
figurations. In terms of these sets, a valid estimator is
given by

T̃ ½xð1Þ;…;xðNsÞ� ¼ 1

Ns

XNs

k¼1

YN−1

r¼0

T
1
NðxðkÞr Þ; ð53Þ

where the total number of samples is NS ¼ N × Ns. It is
easy to check that this estimator is unbiased. Except in
pathological cases, the random variables T ðxrÞ1

N , where xr
are sampled with respect to Pr

N
ðxÞ, will have finite variance

for r ∈ f0;…; N − 1g for large enough N (each quantity is
less singular near an exceptional configuration than the
original observable). If this is the case, then the estimator
T̃ will also have finite variance.
Figure 10 presents results forQð1; 1Þ defined in Eq. (45)

for the Gross-Neveu model on a L ¼ 2 lattice using this
discrete reweighting sampling scheme, Eq. (53). For
comparison with Sec. V B, Fig. 10 also presents the
corresponding results for the L ¼ 8 lattice. Note that the
exact result for the latter case is not shown as calculating it
with the Hen discrete sampling scheme requires the gen-
eration of n64 configurations. Figure 11 presents the results
for the standard deviation of the estimator Qð1; 1Þ. It must
be noted that in Fig. 5, the median of the means method is
applied to the estimator defined in Eq. (53) while in Fig. 11,
Eq. (53) is used directly as appropriate for comparison with
the results for the continuous and discrete Hubbard-
Stratonovich sampling schemes presented in Figs. 5 and 6.

B. Continuous reweighting

There is a natural extension of this sequential reweight-
ing method to a continuous version of the procedure. To
arrive at this version, note that

hPi ¼ hP1−sishPsi0 ð54Þ

for any s ∈ ½0; 1� and positive observable P as long as Zs ≡
hPsi0 is finite. Zs is naturally interpreted as the partition
function for the probability weight PsðxÞ ¼ PðxÞPðxÞs.
Since the left-hand side of this equation is s-independent,
one obtains

0 ¼ d
ds

ðhP1−sisZsÞ: ð55Þ

This differential equation is straightforward to solve, noting
that Z−1

s Z0
s ¼ hlogPis and hlogðP0Þis ¼ 0. Therefore,

under the assumption that Zs and hlogPis are both finite
for s ∈ ½0; 1�, one finds that

hPi ¼ exp

�Z
1

0

dshlogPis
�
: ð56Þ

Utilizing Gauss-Legendre quadrature and Eq. (56), an
estimator for loghPi can be defined. Let N be a positive
integer. Then an integral of the form

R
1
0 dsfðsÞ can be

approximated by
P

N
i¼1 cifðsiÞ, where ci ¼ 1

2
wi and si ¼

1þzi
2

are determined by the roots, zi, of the Nth Legendre
polynomial and the corresponding weights, wi, associated
with Gauss-Legendre quadrature.10 Defining the set of
configurations x ¼ ðx1;…; xNÞ where xi is sampled with
respect to PsiðxÞ, let xðkÞ for k ∈ f1;…; Nsg be i.i.d. sets of
configurations. Then the following is an estimator for
loghPi:

gloghPi½xð1Þ;…;xðNsÞ� ¼ 1

Ns

XNs

k¼1

XN
i¼1

ci logPðxðkÞi Þ; ð57Þ

where NS ¼ N × Ns is the total number of samples divided
evenly between each of the N Gauss-Legendre quadrature
points.
As a very simple demonstration of this method, consider

a one-dimensional example of the standard normal distri-
bution PðxÞ ¼ 1ffiffiffiffi

2π
p e−x

2=2 and observables PpðxÞ ¼ epx
2

for real p < 1
2
. The expectation values of these observables

are given by hPpi ¼ 1ffiffiffiffiffiffiffiffi
1−2p

p and the variances by

10If fðxÞ is a polynomial of degree at most 2N − 1, thenR
1
−1 fðxÞdx ¼ P

i¼N wifðxiÞ where fxig are the roots of the Nth
Legendre polynomial PNðxÞ and wi ¼ 2

ð1−xiÞ2ðP0
N ðxiÞÞ2

.
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(b)(a)

FIG. 11. Standard deviation of O ¼ Qð1; 1Þ vs. the total sample size for the Gross-Neveu model for (a) 2 × 2 and (b) 8 × 8 lattice
geometries with m ¼ 1.73, g ¼ 1.0, Nf ¼ 2 and the step size N ¼ 10.

(c)(a)

(d)(b)

FIG. 10. Estimations of the mean ofQð1; 1Þ obtained with the median of means estimator applied to Eq. (53) for various step numbers
and total sample sizes for the Gross-Neveu model for the L ¼ 2 (left) and L ¼ 8 (right) lattice extent, and for m ¼ −1.5, and ffiffiffi

g
p ¼ 2.0.

In the top row, (a) and (c), the step size N ¼ 10 is fixed while in the bottom row, (b) and (d), the total sample size NT ¼ 1048576 ¼ 220

is fixed and step sizes are chosen to be 2k for k ∈ f1;…; 10g. For L ¼ 2, the red line shows the exact value obtained from explicit
summation over all possible configurations of the discrete sampling scheme. The error bars at each sample size show a confidence level
of 0.9973.
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varðPpÞ ¼ 1−2p−
ffiffiffiffiffiffiffiffi
1−4p

p
ð1−2pÞ ffiffiffiffiffiffiffiffi

1−4p
p . The variance diverges for p ≥ 1

4
and

the expectation value diverges for p ≥ 1
2
.

To calculate loghPpi using Eq. (57) and Gauss-Legendre
quadrature, a proposal distribution for each si is required.
A simple and straightforward choice is to use P0ðxÞ ¼
1ffiffiffiffi
2π

p e−
1
2
x2 for all si. The data labeled as “basic” in Fig. 12 is

generated in this context. For 1=p≳ 3 this provides an
accurate estimate that agrees with the exact value within
uncertainties. However for a fixed sample size per Gauss-
Legendre node, the estimates deviate from the exact value
as p approaches 1

2
. A possible cause of this is that for

p ¼ 1
2
− ϵ, the probability weight is proportional to e−ϵx

2

for s ¼ 1 and important contributions will be due to
jxj ≲ 1ffiffi

ϵ
p . Therefore, more and more samples will be needed

as ϵ → 0 and the “basic” method suffers from an overlap
problem. To improve the algorithm in this simple example,
one can also directly sample for Psi which are normal
distributions. Results generated in this latter context are
labeled as “improved” in Fig. 12, and are seen to agree
perfectly with the exact results for all p. Systematic errors
due to the finite number of nodes are negligible compared
to the statistical errors in both cases.
To test this method on a more realistic system, estimates

of glogQð1; 1Þ for the Gross-Neveu model on the L ¼ 2 and
L ¼ 8 lattices with m ¼ −1.5, ffiffiffi

g
p ¼ 2.0 and Nf ¼ 2 are

presented in Fig. 13. For L ¼ 2, the exact value is
reproduced within uncertainties while for L ¼ 8, results

from continuous reweighting agree with those from discrete
reweighting.

VII. CONCLUSIONS

Large statistical variance in Monte Carlo sampling
severely limits the precision with which many important
quantities in quantum field theories can be determined. In
this work, quantities that have formally infinite variance
under standard sampling schemes have been considered. In
the context of fermionic theories, a family of discrete
sampling schemes has been presented that surmounts the
issue of infinite variance. Nevertheless, the variances in
these schemes can be very large (compared to their means
squared) and hence sampling maybe inefficient. An alter-
nate sampling scheme has also been developed which can
be applied to any non-negative random variable that can be
sampled with the Monte Carlo method. While the method
has been proposed in order to estimate observables with
infinite variances, it is likely to be effective for non-negative
random variables that have finite but large noise to signal
ratios. There are potentially interesting connections of the
investigations presented here to the large time-separation
behavior of two-point correlation functions for quantities
that possess global charges, such as for baryons and nuclei
in QCD, that will be explored in subsequent work.
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APPENDIX A: REVIEW OF THE BASIC
PROBABILITY THEORY

The standard method of estimating an observable
(a random variable) is based on the Central Limit
Theorem. We therefore begin by reviewing the background
for the Central Limit Theorem. We refer to Ref. [10] for
further details.
A probability space is a triplet (Ω, F , P) where:
(i) Ω is the sample space.
(ii) F is the space of events and is required to be a

σ-algebra.
(iii) P∶ F → ½0; 1� is the probability measure.

Every element ω in the sample space Ω is called an
outcome. An event A ∈ F is said to occur if ω is the

FIG. 12. Estimates of logðPpÞ obtained with the median of the
means estimator applied to Eq. (57) as a function of 1=p for
N ¼ 1000 nodes and Ns ¼ 1000 samples per node in the Gauss-
Legendre sampling. The blue line shows the exact values. “Basic”
corresponds to the results obtained where the random variables
for each distribution Ps≠0 are obtained through the Metropolis
algorithm with P0 being the proposal distribution. “Improved”
corresponds to the results where the random variables are drawn
from the distribution Ps directly. Error bars show a statistical
confidence level of cl ¼ 0.9973.
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outcome and ω ∈ A. F is required to be a σ-algebra which
means that

(i) ∅;Ω ∈ F .
(ii) A ∈ F implies Ac ∈ F where Ac is the complement

of A.
(iii) If Ai≥1 ∈ F is a countable sequence of elements of

F it follows that ∪i≥1 Ai ∈ F .
The probability measure P is required to satisfy:

(i) Pð∅Þ ¼ 0.
(ii) PðΩÞ ¼ 1.
(iii) If Ai≥1 ∈ F is a countable sequence of pairwise

disjoint elements of F it follows that Pð∪i≥1 AiÞ ¼P
i≥1 PðAiÞ.

It must be noted that in general one can not choose
F ¼ 2Ω, the set of all subsets of Ω. Therefore, the choice
of F is essential and elements of F are said to be
measurable.
A random variable X∶ Ω → R is a real valued function

on the sample space such that for all a ∈ R, X−1ðABR
Þ ∈ F

where BR is the Borel σ-algebra on R, the smallest11

σ-algebra containing all open subsets of R. An equivalent
condition is X−1ðð−∞; a�Þ ∈ F for all a ∈ R. This con-
dition allows one to define another probability distribution
PX on the real line through the formula PXðða; b�Þ ¼
PðX−1ðð−∞; b�ÞÞ − PðX−1ðð−∞; a�ÞÞ. By the celebrated
Carathéodory’s extension theorem PX can be extended to
the BR. If A ∈ BR, PXðAÞ should be interpreted as the
probability that X takes value in A. We further define the
cumulative distribution function FXðtÞ ¼ PXðð−∞; t�Þ
which gives the probability that X ≤ t.
For a stochastic physical system represented by the

probability space ðΩ;F ; PÞ, one can consider the space
of repeated outcomes denoted byΩ∞ ¼ Q∞

i¼1Ω, associated
with the σ-algebra F∞, the smallest σ-algebra containing

(a) (c)

(b) (d)

FIG. 13. Estimates of loghQð1; 1Þi, for the Gross-Neveu model on L ¼ 2 (left column) and L ¼ 8 (right column) lattice extents with
m ¼ −1.5, ffiffiffi

g
p ¼ 2.0 and Nf ¼ 2, obtained with the median of means estimator applied to Eq. (57) for N ¼ 101; 102; 103 nodes with

sample size per node NSSPN ¼ 105 fixed in the top row, (a) and (c), and for NSSPN ¼ 104; 105; 106 sample sizes per nodes with the
number of nodesN ¼ 100 fixed in the bottom row, (b) and (d). Error bars show a confidence level of cl ¼ 0.9973. In the L ¼ 2 case, the
red line shows the exact value obtained from explicit summation over all possible configurations of the discrete sampling scheme.

11Smallest σ-algebra containing a given set of sets is defined as
the intersection of all σ-algebras that contains the given set of sets
which can be shown to be a σ-algebra.
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Q∞
i¼1 Ai where only finitely many of Ai ∈ F are different

than Ω. An element ω∞ ∈ Ω∞ is given by ω∞ ¼
fω1;ω2; � � �g where ωi ∈ Ω for all i ∈ Nþ. Then, Ω∞

can be identified with the set of of all samples of the
physical system with infinite sample size. By
Kolmogorov’s Extension Theorem, there exists a unique
probability measure P∞ on F∞ such that P∞ðQ∞

i¼1 AiÞ ¼Q
i PðAiÞ if only finitely many of Ai ∈ F are different

that Ω. Given a random variable X on ðΩ;F ; PÞ, we
define the random variable Xn on ðΩ∞;F∞; P∞Þ by
Xnðω∞Þ ¼ XðωnÞ.
For our purposes, there are three important types of

convergence for random variables. One says that a
sequence of random variables Xn converges to a random
variable X

(i) almost surely/everywhere12 if PðXn → XÞ ¼ 1. It is

denoted by Xn→
a:s:
X.

(ii) in probability if for every ϵ > 0, PðjXn−Xj> ϵÞ→0.

It is denoted by Xn→
p
X.

(iii) in distribution if FXn
converges pointwise to FX at

every continuity point of FX. It is denoted by

Xn →
d
X.

These three different types of convergence imply each other
in the sense that

→
a:s:

⇒ →
p
⇒ →

d
: ðA1Þ

Three of the most important results of the probability
theory are the Strong Law of the Large Numbers (SLLN),
The Weak Law of Large Numbers (WLLN), and the
Central Limit Theorem (CLT).
Strong Law of Large Numbers Let fXng be a sequence of

identically and independently distributed random variables
with the finite mean E½Xn� ¼ μ. If one defines the sample
mean X̄n≥1 ¼ 1

n

P
n
i¼1 Xi, it follows that:

X̄n !a:s: μ: ðA2Þ
An important consequence of the SLLN is the Weak Law of
Large Numbers.
Weak Law of Large Numbers Let fXng be a sequence of

identically and independently distributed random variables
with the finite mean E½Xn� ¼ μ. If one defines the sample
mean X̄n ¼ 1

n

P
n
i¼1 Xi forn ≥ 1, it follows that for any ϵ > 0:

lim
N→∞

PðjX̄N − μj ≤ ϵÞ ¼ 1: ðA3Þ

Although the SLLN says any sequence of sample means
will eventually converge to the mean, in practice it does not
say anything about how close a sample mean is to the mean
for a given sample size N. A similar statement also applies

to the WLLN. On the other hand, the CLT gives a measure
of how close the sample mean is to the mean.
Central Limit Theorem Let fXng be a sequence of

identically and independently distributed random variables
with the finite mean E½X1� ¼ μ and finite variance

E½X2
1� − E½X1�2 ¼ σ2. It then follows that

ffiffiffi
n

p ðX̄n − μÞ→d
N ð0; σ2Þ where N ðμ; σ2Þ denotes the normal distribution
with mean μ and variance σ2.
It follows that for large enough n,

ffiffiffi
n

p ðX̄n−μÞ≈N ð0;σ2Þ.
Therefore, it follows that X̄n ≈N ðμ; σ2n Þ. Although one can
derive a similar expression for the estimation of σ2 in the case
E½X4

1� < ∞, it is usually enough to estimate σ2 by the
(unbiased) estimator sn ¼ 1

n−1
P

n
i¼1ðXi − X̄nÞ2.

Let fXng to be an i.i.d. sequence of random variables
with finite variance σ2. Application of the SLLN to fXng
and fX2

ng immediately implies that sn→
a:s:
σ2.

1. Theorems under infinite variance

Two theorems are particularly important for analysis of
random variables with infinite variance.
Theorem 1. Let Xn≥1 to be a sequence of independent

and identically distributed random variables with finite
mean μ and infinite variance. Then, for any given L > 0,
the number of the random variables sn that satisfies sn > L
is infinite almost surely.
We need a bit preparation beforewe can prove Theorem 1.
Lemma 1. (Second Borel-Cantelli) Let fEng to a

sequence of independent events. If
P

n PðEnÞ ¼ ∞ then13

Pðlim supEnÞ ¼ 1.
Lemma 2. Let Z be a non-negative random variable

with infinite mean. Then, for any given L > 0,
P∞

n¼1

PðfZ ≥ nLgÞ ¼ ∞.
Proof.

∞ ¼ E½Z�

¼
X∞
n¼0

Z
nL≤Z<ðnþ1ÞL

ZdP

≤ L
X∞
n¼0

ðnþ 1ÞPðfnL ≤ Z < ðnþ 1ÞLgÞ

≤ L
X∞
n¼0

nPðfnL ≤ Z < ðnþ 1ÞLgÞ

þ L
X∞
n¼0

PðfnL ≤ Z < ðnþ 1ÞLgÞ

¼
X∞
n¼1

nPðfnL ≤ Z < ðnþ 1ÞLgÞ þ L: ðA4Þ

12To be precise, there is a set A ∈ F such that for all ω ∈ A,
limn→∞ XnðωÞ ¼ XðωÞ and PðAÞ ¼ 1. It is possible that the set of
all elements ω ∈ Ω satisfying XnðωÞ → XðωÞ is not measurable,
but this distinction is not relevant for our discussion.

13Here, lim supEn≡ ∩n≥1∪m≥n Em and is equal to the set of all
outcomes ω such that ω ∈ Ek for infinitely many Ek. Therefore,
Pðlim supEnÞ can be interpreted as the probability that infinitely
many events Ek happens.
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It follows that
P∞

n¼1 nPðfnL ≤ Z < ðnþ 1ÞLgÞ ¼ ∞.
Then:

∞ ¼
X∞
n¼1

nPðfnL ≤ Z < ðnþ 1ÞLgÞ

¼
X∞
n¼1

Xn
m¼1

PðfnL ≤ Z < ðnþ 1ÞLgÞ

¼
X∞
m¼1

X∞
n¼m

PðfnL ≤ Z < ðnþ 1ÞLgÞ

¼
X∞
m¼1

PðfZ ≥ mLgÞ: ðA5Þ

▪
Corollary 1. Let fZng to be a sequence of independent

and identically distributed non-negative random variables
with infinite mean. Then, for any given L > 0, the number
of the random variables Zn that satisfies Zn ≥ nL is infinite
almost surely.
Proof. We define the events En ¼ fω∶ZnðωÞ ≥ nLg.

The corollary then follows from Lemma 2 and the second
Borel-Cantelli lemma. ▪
Proof of Theorem 1. We first define the random

variable s0n ¼ 1
n−1

P
i¼1ðXi − μÞ2 for n ≥ 2. Next, we are

going to show that, almost surely, infinitely many elements
of the sequence fs0ng satisfy s0n ≥ L. Let Tn ¼ ðXn − μÞ2.
Then, Corollary 1 applies and there are infinitely many Tn
that satisfy Tn ≥ nL. Let nk ≥ 2 for k ≥ 1 be an increasing
sequence that satisfies Tnk ≥ nkL. Then for each k ≥ 1, we
have s0nk ≥

1
nk−1

Tnk > L. Let Ωs0;L be the set of outcomes
such that fs0n > Lg is satisfied for infinitely many n. We
showed that PðΩs0;LÞ ¼ 1.

We now show that a similar statement holds for
sn ¼ 1

n−1
P

n
i¼1ðXi − X̄nÞ2. By the SLLN, there is a set of

outcomes ΩX̄→μ such that limn→∞ X̄nðωÞ ¼ μ for all ω ∈
ΩX̄n→μ and PðΩX̄n→μÞ ¼ 1. Let Ωs ¼ Ωs0;3L ∩ ΩX̄→μ.
Choose an arbitrary ω ∈ Ωs. Since Ωs ⊆ Ωs0;3L, there is
an infinite sequence fnk ≥ 2g such that s0nkðωÞ ≥ 3L. As
X̄n converges to μ inΩs ⊆ ΩX̄n→μ, the sequence fnkg has an
infinite subsequence fmk ≥ 2g that also satisfies
jX̄mk

ðωÞ − μj < L. As snðωÞ ¼ s0nðωÞ − n
n−1 ðXnðωÞ − μÞ2,

it follows that s0mk
≥ 2n−3

n−1 L. Since for n ≥ 2 2n − 3 ≥ n − 1

is satisfied, s0mk
≥ L is valid for all mk. The theorem is

proved if we can show PðΩs0 Þ ¼ 1. To see this note that
PðΩsÞ ¼ 1 ⇔ PðΩnΩsÞ ¼ 0. The latter follows from the
following relation. PðΩnΩsÞ ¼ PðΩ ∩ ðΩc

s0;3L ∪Ωc
X̄n→μ

ÞÞ ≤
PðΩ ∩ Ωc

X̄n→μ
Þ þPðΩ ∩ Ωc

s0 Þ ¼ 0. ▪
Let Ω be a finite sample space associated with the

σ-algebra F ¼ 2Ω, the set of all subsets of Ω, and a family
of probability distributions Pt∶ F → ½0; 1� for t ∈ ð0; 1�.
We assume that Pt is continuous in the sense that PtðωÞ is a

continuous function of t for t ∈ ð0; 1� for all ω ∈ Ω. We
consider a non-negative random variable Xt which is
continuous in t in the same sense. We further assume that
there is a set E ⊂ Ω such that limt→0 PtðωÞ ¼ 0 and
limt→0 PtðωÞXtðωÞ ≠ 0 for all ω ∈ E.
Theorem 2. Let δ, ϵ > 0. There is an integer Nðδ; ϵÞ

such that for all N ≥ Nðδ; ϵÞ:

lim
t→0

PtðjX̄t
N − ðμ − ΔÞj ≤ δÞ ≥ 1 − ϵ: ðA6Þ

Proof of Theorem 2. We first define another probability
measure on Ω that we will denote by P0. P0 is defined by
P0ðωÞ ¼ limt→0 PtðωÞ for all ω ∈ Ω. We also define X0

similarly: X0ðωÞ ¼ limt→0 XtðωÞ. Effectively, this defini-
tion ignores exceptional configurations. It follows that,
expectation value of X0 is μ − Δ:

μX0 ¼
X
ω∈Ω

P0ðωÞX0ðωÞ

¼
X
ω∈E

P0ðωÞX0ðωÞ þ
X

ω∈ðΩnEÞ
P0ðωÞX0ðωÞ

¼
X

ω∈ðΩnEÞ
lim
t→0

PtðωÞlim
t→0

XtðωÞ

¼ lim
t→0

X
ω∈ðΩnEÞ

PtðωÞXtðωÞ

¼ μ − Δ: ðA7Þ

Now given δ, ϵ > 0, by the WLLN there is an integer
Nðδ; ϵÞ such that for all N ≥ Nðδ; ϵÞ:

PðjX̄0
N − ðμ − ΔÞj ≤ δÞ ≥ 1 − ϵ: ðA8Þ

Now we consider ðEcÞN, the set of ensembles of sample
size N that does not include any exceptional configurations
where EcΩnE. For P0, exceptional configurations can
be ignored and therefore ΩN ≡ ðEcÞN effectively so it
follows that:

P0ðjX̄0
N − ðμ − ΔÞj ≤ δÞ

¼ P0ðjX̄0
N − ðμ − ΔÞj ≤ δjωN ∈ ðEcÞNÞ

¼ lim
t→0

PtðjX̄t
N − ðμ − ΔÞj ≤ δjωN ∈ ðEcÞNÞ: ðA9Þ

Now we make the following observation. Let ððEcÞNÞc ⊂
ΩN be the subset of ΩNS that includes at least one element
from E, the set of the exceptional configurations. The
probability of ððEcÞNÞc occurs is a polynomial in the
variables fPtðωÞ∶ω ∈ Eg with the constant term is vanish-
ing. Since limt→0 PtðωÞ ¼ 0 for all ω ∈ E, we have:
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lim
t→0

PtðððEcÞNÞcÞ ¼ 0

lim
t→0

PtððEcÞNÞ ¼ 1: ðA10Þ

Now we complete the proof of Theorem 2 by combining Eqs. (A9) and (A10):

lim
t→0

PtðjX̄t
N − ðμ − ΔÞj ≤ δÞ ¼ lim

t→0
PtðjX̄t

N − ðμ − ΔÞj ≤ δjωN ∈ ðEcÞNÞPtðωN ∈ ðEcÞNÞ
þ lim

t→0
PtðjX̄t

N − ðμ − ΔÞj ≤ δjωN ∈ ððEcÞNÞcÞPtðωN ∈ ððEcÞNÞcÞ
¼ lim

t→0
PtðjX̄t

N − ðμ − ΔÞj ≤ δjωN ∈ ðEcÞNÞ
¼ P0ðjX̄0

N − ðμ − ΔÞj ≤ δÞ
≥ 1 − ϵ: ðA11Þ

APPENDIX B: MEDIAN OF MEANS

In this section we will prove Eq. (18) for the median of
means by modifying the arguments given in Ref. [11] to
include correlations between samples. Consider a random
variable X with mean μX. Given an ϵ > 0, we aim to find a
lower bound for the probability that jμ̂MoM − μXj < ϵ,
where μ̂MoM is defined in Sec. III C. If there are K batches
of size B, for this to happen less than K

2
of the batch means

μ̂i must be outside the range ðμX − ϵ; μX þ ϵÞ. Let us define
the indicator random variables Ii for i ¼ 1;…; K. Ii
defined to be 1 if μ̂i ∈ ðμ − ϵ; μþ ϵÞ and 0 otherwise.
Consequently:

Probðjμ̂MoM − μj < ϵÞ ≥ Prob

�
1

K

XK
i¼1

Ii <
1

2

�
: ðB1Þ

Since the batches are independent, we can use Hoeffding’s
inequality ([10]):

Prob

�
1

K

XK
i¼1

Ii <
1

2

�
≥ 1 − e−2Kð12−E½I1�Þ2 ; ðB2Þ

where the first indicator function I1 is chosen for con-
venience. Now we define μ̂1 to be the standard deviation of
X and use Chebyshev’s inequality ([10]) to obtain:

E½I1� −
1

2
¼ 1

2
− Probðjμ̂1 − μj ≥ ϵÞ

≥
1

2
−
σ21
ϵ2

: ðB3Þ

By choosing ϵ ¼ 2σ1, we obtain:

Probðjμ̂MoM − μj < 2σ1Þ ≥ 1 − e−
K
8 : ðB4Þ

To estimate σ1, we note that μ̂1 ¼ 1
B

P
B
n¼1 Xn. Then one

obtains:

σ21 ¼
1

B2

�XB
n¼1

VarðXnÞ þ 2
X
m<n

CovðXm; XnÞ
	

¼ 1

B2

�
Bσ2 þ 2

XB−1
m¼1

XB
n¼mþ1

CovðXm; XnÞ
	

¼ 1

B2

�
Bσ2 þ 2σ2

XB−1
m¼1

XB
n¼mþ1

ΓXðn −mÞ
	

¼ 1

B2

�
Bσ2 þ 2σ2

XB−1
t¼1

ðB − tÞΓXðtÞ
	

¼ σ2

B

�
1þ 2

XB−1
t¼1

�
1 −

t
B

�
ΓXðtÞ

	

¼ σ2

B
2τX;intðBÞ; ðB5Þ

where we have defined the autocorrelation function
ΓXðtÞ≡ 1

σ2
CovðXn; XnþtÞ and the integrated autocorrela-

tion time τX;intðBÞ ¼ 1
2
þP

B−1
t¼1 ð1 − t

BÞΓXðtÞ [The sequence
fXng is assumed to be stationary, ΓXðtÞ is independent
of n.]. Equation (18) then follows by combining above
inequality with (B4).

APPENDIX C: GAUSS-HERMITE QUADRATURE

The polynomials HenðξÞ are defined by:

HenðξÞ ¼ ð−1Þne1
2
ξ2 dn

dξn
e−

1
2
ξ2 ðC1Þ

and have the properties:

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2ξmHenðξÞ ¼ 0 for 0 ≤ m < n; ðC2Þ

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2HemðξÞHenðξÞ ¼ n!δnm; ðC3Þ
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HnðξÞ ¼ ξn þ…: ðC4Þ

Consider a polynomial fðξÞ of degree at most 2n − 1. We
can then write

fðξÞ ¼ qðξÞHenðξÞ þ rðξÞ; ðC5Þ

where both qðξÞ and rðξÞ have degree at most n − 1. By
Eq. (C2) one has:

1ffiffiffiffiffiffi
2π

p
Z

dξe−ξ
2=2qðξÞHenðξÞ ¼ 0; ðC6Þ

and therefore one obtains:

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2fðξÞ ¼ 1ffiffiffiffiffiffi

2π
p

Z
dξe−

1
2
ξ2rðξÞ: ðC7Þ

As rðξÞ is a polynomial of degree at most n − 1, it is
determined by its values at n points. Let us choose

these points fξðnÞa ja ¼ 1;…ng as the roots of HenðξÞ ¼Q
n
a¼1ðξ − ξðnÞa Þ. Then we have:

rðξÞ ¼
X
a

rðξaÞ
Y
1≤b≤n
b≠a

ξ − ξb
ξa − ξb

¼
X
a

rðξaÞ
1Q

b≠aðξa − ξbÞ
HenðξÞ
ξ − ξa

: ðC8Þ

This allows us to express Eq. (C7) as:

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2rðξÞ ¼

X
a

rðξaÞ
1Q

b≠aðξa − ξbÞ

×
1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2 HenðξÞ
ξ − ξa

: ðC9Þ

After defining wa as:

wa ¼
1Q

b≠aðξa − ξbÞ
1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2 HenðξÞ
ξ − ξa

; ðC10Þ

one can use fðξaÞ ¼ qðξaÞHenðξaÞ þ rðξaÞ ¼ rðξaÞ to
obtain:

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2fðξÞ ¼

X
a

wafðξaÞ: ðC11Þ

Moreover, if qðξÞ is a polynomial of degree at most n:

1Q
b≠aðξa − ξbÞ

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2 HenðξÞ
ξ − ξa

qðξÞ ¼ qðξaÞwa:

ðC12Þ
To see that consider qðξÞ ¼ ξm for m < n. Using the
identity

ξm ¼ ξma þ ðξ − ξaÞðξm−1
a þ ξm−2

a ξþ � � � þ ξaξ
m−2 þ ξm−1Þ

ðC13Þ

and Eq. (C2), we see that

1Q
b≠aðξa − ξbÞ

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2 HenðξÞ
ξ − ξa

ξm ¼ ξma wa ðC14Þ

for m ≤ n, from which (C12) follows. Now choosing
qðξÞ ¼ Hen−1ðξÞ and using Eqs. (C2) and (C4), the left-
hand side of Eq. (C12) becomes:

1Q
b≠aðξa − ξbÞ

1ffiffiffiffiffiffi
2π

p
Z

dξe−
1
2
ξ2Hen−1ðξÞHen−1ðξÞ: ðC15Þ

Using Eq. (C3), this leads to:

wa ¼
ðn − 1Þ

He0nðξaÞHen−1ðξaÞ
; ðC16Þ

where wa satisfies the normalization:X
a

wa ¼ 1: ðC17Þ

A table of the weights and roots corresponding to the
Hermite polynomials used in this work is provided in
Table II.
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TABLE II. Non-negative roots and weights for the first few Hermite polynomials. For every positive root, there is
a negative root with the same magnitude and weight.

n Roots ξðnÞa Weights wðnÞ
a

2 1 1=2

3
0 2=3ffiffiffi
3

p
1=6

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 −

ffiffiffi
6

pp
1=12ð3þ ffiffiffi

6
p Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ ffiffiffi
6

pp
1=12ð3 − ffiffiffi

6
p Þ

5
0 0.5333333333

1.3556261800 0.2220759220
2.8569700139 0.0112574113

6
0.6167065902 0.4088284696
1.8891758778 0.0886157460
3.3242574336 0.0025557844

7

0 0.4571428571
1.1544053947 0.2401231786
2.3667594107 0.0307571240
3.7504397177 0.0005482689

8

0.5390798114 0.3730122577
1.6365190424 0.1172399077
2.8024858613 0.0096352201
4.1445471861 0.0001126145

9

0 0.4063492063
1.0232556638 0.2440975029
2.0768479787 0.0499164068
3.2054290029 0.0027891413
4.5127458634 0.0000223458
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