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The pion light-cone distribution amplitude (LCDA) is a central nonperturbative object of interest for
high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of
the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of
the heavy-quark operator product expansion method. The resulting value for the second Mellin moment,
determined in quenched QCD at a pion mass of mπ ¼ 550 MeV at a factorization scale of 2 GeV is
hξ2i ¼ 0.210� 0.013ðstatÞ � 0.034ðsysÞ. This result is compatible with those from previous determi-
nations of this quantity.
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I. INTRODUCTION

The pion light-cone distribution amplitude (LCDA) plays
an important role in parton physics. It is central to a
description of a range of exclusive processes in high energy
quantum chromodynamics [1]. This LCDA, denoted as ϕπ ,
is defined via its relation to the matrix element for the
transition between the vacuum and the (charged1) pion state,

h0jψ̄dðzÞγμγ5W½z;−z�ψuð−zÞjπþðpÞi

¼ ipμfπ

Z
1

−1
dξe−iξp·zϕπðξ; μÞ; ð1Þ

where μ is the renormalization scale and W½−z; z� is a
lightlike Wilson line between light-cone coordinates −z to
z (z2 ¼ 0). In the above equation, fπ , p, and pμ are the decay
constant, the three-momentum, and the four-momentum of
the pion. In the light-cone gauge, ϕπðξ; μÞ can be interpreted
as the probability amplitude for the pion to transition to the
state of a quark and an antiquark that carry ð1þ ξÞ=2 and
ð1 − ξÞ=2 fractions of the pion momentum, respectively [1].
This LCDA plays an important role in understanding exclu-
sive processes in QCD [1,2], in addition to being a crucial
ingredient for extracting information regarding the Cabibbo-
Kobayashi-Maskawa matrix in flavor physics via hadronic
decays of the B meson [3–6].
Since ϕπðξ; μÞ encodes nonperturbative physics from

strong interactions, it is natural to attempt to compute this
quantity with lattice QCD (LQCD). However, LQCD calcu-
lations are normally carried out in Euclidean space because
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1The isospin limit is used for the calculation presented in this
article.
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of the need to employMonte Carlo methods in evaluating the
path integrals. Therefore it is challenging to adopt LQCD for
investigating parton physics which involves dynamics on the
light cone. This leads to the conventional LQCD approach of
determining the Mellin moments for various parton distribu-
tion functions (PDFs) and LCDAs. In general these moments
can be extracted by computing matrix elements of local
operators that result from an operator product expansion
(OPE) [7–11]. The analytic continuation between Euclidean
and Minkowski spaces for these matrix elements is straight-
forward. In principle, knowledge of the relevant Mellin
moments enables the construction of PDFs and LCDAs.
Nevertheless, such a strategy has been limited by the
possibility of having reliable LQCD results for only the first
fewmoments because the breaking ofOð4Þ Euclidean space-
time symmetry by the lattice regularization requires the
subtraction of power divergences in the renormalization of
the relevant local operators [7]. These power divergences
already appear in the computation of the first nontrivial (the
second) Mellin moment for ϕπðξ; μÞ. They can be evaded by
using a method proposed in Ref. [8], where one chooses
particular combinations of the Lorentz indices in the local
operator for computing the second moment. However, this
method is not applicable for the extractionof highermoments,
making it desirable to have other approaches with which to
extract informationofLCDAs andother light-cone quantities,
including PDFs.
Alternative strategies for extracting information about

LCDAs and PDFs using LQCD have been proposed in the
last twodecades [12–20], and their implementations are being
intensively pursued, see Refs. [21–24] for reviews. To access
information contained in higher Mellin moments while
bypassing the above-mentioned complication in renormaliz-
ing the local operators, a generic character of these strategies
is the computation for hadronic matrix elements of nonlocal
operators. For instance, one much studied procedure, the
quasi-PDF approach [17], features the calculation of matrix
elements involving a spacelikeWilson line.Thiswork follows
the method suggested in Ref. [14]. It relies on investigating
the OPE analysis for hadronic amplitudes in Euclidean space
with the insertion of two local quark bilinears that contain a
fictitious, valence heavy quark. For this reason, this approach
is termed the heavy-quark OPE (HOPE) method. The
introduction of this heavy quark affords several advantages,
such as the removal of certain higher-twist effects, the
inclusion of an extra heavy scale to control the OPE, and
simple properties of analytic continuation to Minkowski
space. As pointed out in recent work [25], this method can
be used to extract the ξ dependence in ϕπðξ; μÞ through a
perturbative matching procedure. The current article presents
its application to the numerical determination of the (second)
Mellin and Gegenbauer moments.2 Since this is the first

numerical implementation of the HOPE strategy, this
calculation bears the character of a feasibility study, which
investigates the relatively well-known second Mellin
moment. This allows a better quantification of the efficacy
of themethod. The success of the current work paves theway
for further studies using this technique. For this reason, the
quenched approximation and an unphysical pion mass of
∼550 MeV are used. Since the continuum extrapolation is an
important ingredient in this approach, the calculations are
performed at four choices of the lattice spacing, a, ranging
from 0.04 to 0.08 fm.
Definitions relevant to this method and the conventions

adopted in this article are declared in Sec. II. The HOPE
method and its particular features for the current work are
explained in Sec. III, while Sec. IV describes the details of
the numerical implementation. The analysis of the data and
the results are discussed in Sec. V. The conclusion of this
work and the outlook in this research direction are then
given in Sec. VI.

II. DEFINITIONS AND CONVENTIONS

Before proceeding to describe the numerical lattice
determination for the second Mellin and Gegenbauer
moments of ϕπðξ; μÞ, a review of the definition of these
moments is in order. The discussion presented here also
serves the purpose of setting the conventions and notation
that will be used in subsequent calculations.
Conformal symmetry in QCD [29] implies that the pion

LCDA can be conveniently studied using the Gegenbauer
OPE. C-parity imposes the constraint ϕπðξ; μÞ ¼ ϕπð−ξ; μÞ
in the isospin limit, leading to

ϕπðξ; μÞ ¼
3

4
ð1 − ξ2Þ

X∞
n¼0;even

ϕnðμÞC3=2n ðξÞ; ð2Þ

where C3=2n ðξÞ are the Gegenbauer polynomials, with
C3=20 ðξÞ¼1 and C3=22 ðξÞ¼ð−3þ15ξ2Þ=2. The Gegenbauer
moments, ϕnðμÞ, are defined as

ϕnðμÞ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
Z

1

−1
dξC3=2n ðξÞϕπðξ; μÞ: ð3Þ

Because of conformal symmetry, the ϕnðμÞ do not mix
under the renormalization group (RG) evolution at one
loop. To this order, their renormalization scale dependence
is [30]

ϕnðμ2Þ ¼ ϕnðμ1Þ
�
αsðμ2Þ
αsðμ1Þ

�
γn=β0

; ð4Þ

where αs is the strong coupling, β0 ¼ 11 − 2Nf=3 (Nf

being the number of flavors) is the coefficient of the
leading-order (LO) QCD β function, and γn is the anoma-
lous dimension,

2Preliminary results from this calculation have been presented
in contributions to the proceedings of recent lattice conferences
[26–28].
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γn ¼
4

3

�
1 −

2

ðnþ 1Þðnþ 2Þ þ 4
Xnþ1
j¼2

j−1
�
: ð5Þ

Since γn increases monotonically with n, one expects that a
truncated version of the OPE in Eq. (2) can be a good
approximation to ϕπðξ; μÞ at large enough renormalization
scales. In the regime where μ ≫ ΛQCD (with ΛQCD being
the QCD dynamical scale), the pion LCDA is dominated by
the zeroth Gegenbauer moment. Equations (4) and (5) lead
to the asymptotic form the pion LCDA,

lim
μ→∞

ϕπðξ; μÞ ¼
3

4
ð1 − ξ2Þ; ð6Þ

where the normalization ϕ0 ¼ 1 has been imposed.
The Gegenbauer moments in Eqs. (2) and (3) can be

expressed as linear combinations of the Mellin moments
hξni, which are defined as

hξniðμÞ ¼
Z

1

−1
dξξnϕπðξ; μÞ: ð7Þ

For instance, from Eqs. (2) and (7) it is straightforward to
obtain

ϕ0 ¼ hξ0i ¼ 1; ϕ2 ¼
7

12
ð5hξ2i − hξ0iÞ;

ϕ4 ¼
11

24
ð21hξ4i − 14hξ2i þ hξ0iÞ;…: ð8Þ

In general, knowledge of hξ0i; hξ2i;…hξni is equivalent to
that of ϕ0, ϕ2;…;ϕn. These Mellin moments, hξni, can be
related to matrix elements of local, twist-2, operators,

h0j½d̄γfμ0γ5ðiD
↔μ1Þ � � � ðiD↔μngÞu − traces�jπþðpÞi

¼ fπhξniðμ2Þ½pμ0pμ1 � � �pμn − traces�; ð9Þ

where the Lorentz indices are totally symmetrized, with

D
↔μ ¼ 1

2
ðD!μ − D

 μÞ; ð10Þ

and the traces are taken in all possible pairs amongst the
Lorentz indices, μ0; μ1;…; μn. As discussed in the last
paragraph, from the leading-order result of QCD perturba-
tion theory, it is natural to expect that knowledge of the first
few Gegenbauer moments allows one to construct ϕπðξ; μÞ
reliably at sufficiently large μ. This also implies that
obtaining important information about the LCDA at μ ≫
ΛQCD is possible from the first few Mellin moments.3 This
point can be illustrated by investigating an extreme scenario

where one truncates the Gegenbauer OPE in Eq. (2) at
n ¼ 2. The pion LCDA constructed with this truncated

OPE is denoted ϕð2Þπ ðξ; μÞ. Using Eq. (8), one obtains

ϕð2Þπ ðξ; μÞ ¼ 3

4
ð1 − ξ2Þ½ϕ0ðμÞC3=20 ðξÞ þ ϕ2ðμÞC3=22 ðξÞ�

¼ 15

32
½3 − 7hξ2iðμÞ� þ 16

15
½−5þ 21hξ2iðμÞ�ξ2

þ 105

32
½1 − 5hξ2iðμÞ�ξ4: ð11Þ

Figure 1 shows the result with ϕð2Þπ ðξ; μÞ at hξ2iðμÞ ¼ 0.2,
0.25 and 0.3. Note that these are typical values for this
second Mellin moment at μ ∼ 2 GeV from modern lattice
computations [9–11,32,33]. This figure demonstrates that
the shape of the pion LCDA can depend strongly upon
hξ2iðμÞ. Naturally, the inclusion of higher moments will
likely reduce the sensitivity to the second moment, but
nevertheless, this exercise shows that the second Mellin
moment is a phenomenologically interesting quantity.

III. STRATEGY AND CORRELATION FUNCTIONS

To present the calculation for the second Mellin and
Gegenbauer moments of ϕπðξ; μÞ, it is first necessary to
describe the strategy and the correlators that have to be
computed using LQCD. To extract moments for the pion
LCDA employing the HOPE method, the hadronic
amplitudes

V ½μν�ðq; pÞ≡ Vμνðq; pÞ − Vνμðq; pÞ
2

; ð12Þ

FIG. 1. Dependence of ϕð2Þπ ðξ; μÞ, defined in Eq. (11), on the
values of hξ2i. The range of hξ2i values shown in the plot covers
typical results for this second Mellin moment at μ ∼ 2 GeV from
modern lattice computations. They lead to consistency with a
single-humped or double-humped structure of the DA, and more
precise measurements would resolve this.

3The qualitative feature of low-moment dominance in ϕπ was
also argued using QCD sum rules [31].
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are computed, where

Vμνðq; pÞ ¼
Z

d4z eiq·z h0jT fJμAðz=2ÞJνAð−z=2ÞgjπðpÞi;

ð13Þ

with JμA being the axial-vector current involving a light
quark ψ and a fictitious valence heavy quark Ψ with
mass mΨ,

JμA ¼ Ψ̄γμγ5ψ þ ψ̄γμγ5Ψ: ð14Þ

The antisymmetrization in Eq. (12) is performed explicitly
to reduce statistical noise, and the axial-axial correlator in
Eq. (13) was empirically found to have less excited-state
contamination than the analogous correlator with two
vector current insertions.

A. Relevant results from the HOPE strategy

Conformal symmetry in QCD [29] implies that it is
natural to proceed with the Gegenbauer OPE for studying
the twist-2 contribution to the hadronic amplitude defined
in Eq. (12). This OPE allows one to express the twist-2
component of V ½μν�ðq; pÞ in terms of the same Gegenbauer
moments, ϕnðμÞ, defined in Eq. (3). These Gegenbauer
moments do not mix under RG evolution at one-loop

[34,35]. At this order, generically the Gegenbauer OPE
leads to [25]

V ½μν�ðq;pÞ¼−
2iϵμνρσqρpσ

Q̃2
fπ

X∞
n¼0;even

F nðQ̃2;μ;ω̃;mΨÞϕnðμÞ

þhigher-twist terms; ð15Þ
where μ is the renormalization scale, mΨ is the mass of the
fictitious valence heavy quark, and F n are coefficients that
can be computed in QCD perturbation theory and can be
expressed as functions of the kinematic variables

Q̃2 ¼ Q2 þm2
Ψ; ω̃ ¼ 2p · q

Q̃2
; ð16Þ

with Q2 ¼ −q2. For simplicity, higher-twist contributions
to V ½μν�ðq; pÞ will be discarded below in this section. They
will be discussed in detail in Sec. V.
Employing results in Ref. [25], it can be demonstrated

that

F nðQ̃2;μ;ω̃;mΨÞ¼
X∞

m¼n;even
F n;mðQ̃2;μ;mΨÞ

�
ω̃

2

�
m
: ð17Þ

As an example, the leading-order (tree-level) result of F n is
independent of μ and gives, up to Oðω̃2Þ,

V ½μν�treeðq; pÞ ¼ −
2iϵμνρσqρpσ

Q̃2
fπ

��
1þ 1

20
ω̃2 þOðω̃4Þ

�
ϕ0 þ

�
3

35
ω̃2 þOðω̃4Þ

�
ϕ2 þOðω̃4Þ

�

¼ −
2iϵμνρσqρpσ

Q̃2
fπ

�
1þ hξ2i

�
ω̃

2

�
2

þOðω̃4Þ
�
; ð18Þ

where the relation between the leading two Mellin and Gegenbauer moments given in Eq. (8) is used. In this work, the goal
is to compute the second Mellin and Gegenbauer moments of ϕπðξ; μÞ, working in the kinematic regime where ω̃ ≪ 1,
such that the OPE for V ½μν�ðp; qÞ can be truncated at the order of ω̃2.
Beyond the leading order (LO) in QCD perturbation theory, adopting Eqs. (15), (17) and (8), one obtains

V ½μν�ðq; pÞ ¼ −
2iϵμνρσqρpσ

Q̃2
fπ

X∞
n¼0;even

CðnÞW ðQ̃2; μ; mΨÞhξni
�
ω̃

2

�
n
; ð19Þ

where the Wilson coefficients, CðnÞW ðQ̃2; μ; mΨÞ, are linear combinations of F n;mðQ̃2; μ; mΨÞ [25]. Since this work uses a
relatively heavy pion (mπ ∼ 550 MeV), it is beneficial to resum higher-twist target mass effects proportional to mπ. The
resummation prescription given in [36] is to replace ω̃n by ζnC2nðηÞ=ðnþ 1ÞQ̃2, where ζ ¼

ffiffiffiffiffiffiffiffiffiffi
p2q2

p
=Q̃2, η ¼ p · q=

ffiffiffiffiffiffiffiffiffiffi
p2q2

p
,

and C2nðηÞ is a Gegenbauer polynomial. In other words,

V ½μν�ðq; pÞ ¼ −
2iϵμνρσqρpσ

Q̃2
fπ

X∞
n¼0;even

CðnÞW ðQ̃2; μ; mΨÞhξni
�

ζnC2nðηÞ
2nðnþ 1ÞQ̃2

�
: ð20Þ
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Truncating at the order of ω̃2,

V ½μν�ðq; pÞ ≈ −
2iϵμνρσqρpσ

Q̃2
fπ

�
Cð0ÞW ðQ̃2; μ; mΨÞ þ Cð2ÞW ðQ̃2; μ; mΨÞhξ2i

�
ζ2C22ðηÞ
12Q̃2

��
; ð21Þ

where the explicit one-loop expressions for Cð0ÞW ðQ̃2; μ; mΨÞ and Cð2ÞW ðQ̃2; μ; mΨÞ are given in Ref. [25]. Equation (21) is
used in this analysis to extract hξ2i. As described in Refs. [14,25], in addition to hξ2i, fπ and mΨ are also fit parameters in
the analysis procedure that will be presented in detail in Sec. V. Note that while the hadronic matrix element is
renormalization scheme and scale independent, the factorization of this matrix element into short-distance Wilson
coefficients and long-range Mellin moments are dependent on the renormalization scheme and scale. The calculation of the
Wilson coefficients was determined in the MS scheme and thus the fitted heavy-quark masses and Mellin moments are
directly extracted in this scheme.

B. The correlation functions

The power of the hadronic tensor lies in its amenability to lattice QCD calculations. The pion LCDA defined in Eq. (1)
cannot be computed directly in Euclidean-space LQCD due to the lightlike separation vector z. In contrast, the hadronic
tensor Vμν can be written in terms of quantities calculable on the lattice. Defining

Rμνðτ;p;qÞ ¼
Z

d3z eiq·z h0jT ½JμAðτ=2; z=2ÞJνAð−τ=2;−z=2Þ�jπðpÞi

¼ h0jJμAðτ=2; ðpþ qÞ=2ÞJνAð−τ=2; ðp − qÞ=2ÞjπðpÞi; ð22Þ

then the hadronic tensor is the Fourier transform of Rμν in the temporal direction:

Vμνðq; pÞ ¼
Z

dτ eiq4τ Rμνðτ;p;qÞ: ð23Þ

Using lattice methods, one can compute two-point and three-point correlation functions

C2ðτ;pÞ ¼
Z

d3x eip·x h0jOπðτ;xÞO†
πð0; 0Þj0i

¼ h0jOπðτ;pÞO†
πð0;pÞj0i; ð24Þ

and

Cμν
3 ðτe; τm;pe;pmÞ ¼

Z
d3xe d3xm eipe·xeeipm·xm h0jT ½JμAðτe;xeÞJνAðτm;xmÞO†

πð0Þ�j0i

¼ h0jJμAðτe;peÞJνAðτm;pmÞO†
πð0;pÞj0i: ð25Þ

The three-point correlator is shown diagrammatically in Fig. 2.
For 0 ≪ τ ≪ T, the two-point correlator is saturated with the contribution of the lowest-lying hadronic state and can be

written as

C2ðτ;pÞ ∼
jZπðpÞj2
2EπðpÞ

½e−EπðpÞτ þ e−EπðpÞðT−τÞ�; ð26Þ

which allows determination of the overlap factor4 ZπðpÞ ¼ h0jOπjπðpÞi and the pion energy EπðpÞ.
Similarly, for 0 ≪ τe, τm ≪ T=2, the three-point correlation function takes the form

Cμν
3 ðτe; τm;pe;pmÞ ∼ Rμνðτ;p;qÞ ZπðpÞ

2EπðpÞ
e−EπðpÞðτeþτmÞ=2; ð27Þ

4ZπðpÞ is taken to be real and positive in this analysis.
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with p ¼ pe þ pm and τ ¼ τe − τm, allowing one to extract

Rμνðτ;p;qÞ ¼ 2EπðpÞCμν
3 ðτe; τm;pe;pmÞ

ZπðpÞe−EπðpÞðτeþτmÞ=2 ð28Þ

from the two- and three-point correlators. From this and
Eqs. (21) and (23), one can extract the second Mellin
moment on the lattice.

IV. DETAILS OF NUMERICAL
IMPLEMENTATION

A. Lattice action and OðaÞ improvements

Order-a corrections to correlation functions arise from
both the action and the interpolating operators [37–39].
Thus in order to remove these effects, one must in general
improve both. The ensembles were generated with the
standard Wilson gauge action

SG½ψ ; ψ̄ ; U� ¼
β

3

X
n

X
μ<ν

RefTr½1 − PμνðnÞ�g; ð29Þ

where β ¼ 6=g2 is inverse coupling and Pμν is the Wilson
plaquette. The gauge action is automaticallyOðaÞ improved.
The Wilson fermion action, which is omitted from

ensemble generation in the quenched approximation but
is used in propagator construction, is given by

SF½ψ ; ψ̄ ; U� ¼ a4
XNf

f¼1

X
m;n

ψ̄ ðfÞαa ðnÞ
�

1

2aκðfÞ
δαβδabδnm −

1

2a

X�4
μ¼�1
ð1 − γμÞαβUμðnÞabδnþμ̂;m

�
ψ ðfÞβb ðmÞ; ð30Þ

where κðfÞ is the hopping parameter for flavor f [40]. The fermion action can be improved by addition of the clover term

δS½ψ̄ ;ψ ; U� ¼ 1

4
a5csw

X
n

X
μν

ψ̄ðnÞiσμνF̂μνðnÞψðnÞ; ð31Þ

where σμν ¼ ½γμ; γν�=2i and F̂μν is a discretized version of the field strength tensor corresponding to a sum over plaquettes.
The clover coefficient csw is taken from the nonperturbative tuning in Ref. [41].
The OðaÞ-improved, renormalized axial current operator is given by

JμA ¼ Zð0ÞA ð1þ b̃Aam̃ijÞ
�
ψ̄γμγ5Ψþ acA∂μψ̄γ5Ψ − a

c0A
4
ðψ̄γμγ5ð  DþmΨÞΨ − ψ̄ðD⃖þmψÞγμγ5ΨÞ þ ðψ ↔ ΨÞ

�
; ð32Þ

where Zð0ÞA is the axial-vector renormalization constant
calculated in the chiral limit, m̃ij ¼ ðm̃i þ m̃jÞ=2 is the
average value of the masses of the two quark fields and
b̃A; cA; c0A are couplings which must be tuned to remove the
OðaÞ corrections [42]. However, only bA is required for
the OðaÞ improvement of the hadronic matrix element
considered in this work.
This work studies the antisymmetric correlator

R½μν�ðτ;p;qÞ, which may be obtained by taking the anti-
symmetric combination of Eq. (22). For this specific matrix
element, it is possible to show that the term proportional to
acA vanishes by symmetry (see Appendix A 2 for details).

The terms proportional to c0A can also be shown to vanish;
details of this argument are given in Appendix A 3. This
means that both renormalization and OðaÞ improvement
of the current are, for the purposes of this work, purely

multiplicative effects. Zð0ÞA is given in Ref. [41] and b̃A is
given in Ref. [42]. However, in the time-momentum
representation analysis procedure described below, any
multiplicative factors only affect the fitted pion decay
constant fπ and not the second moment hξ2i, and thus
the second moment is independent of any uncertainties in
these OðaÞ improvement parameters. As a result, lattice
artifacts in hξ2i only enter at Oða2Þ or higher order.

FIG. 2. A diagram of the three-point correlator used in this
calculation with current insertions at times τe and τm.
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B. Lattice parameters

Despite theOðaÞ-improvement scheme described above,
the method in this work requires very fine lattice spacings
because of the large mass used for the intermediate heavy-
quark propagator. With renormalized heavy-quark masses
ranging from about 2 to 4.5 GeV, lattice spacings between
0.08 and 0.04 fm are needed to keep amΨ ≲ 1. At larger
values of amΨ, lattice artifacts were uncontrolled and could
not be reliably removed.
Due to critical slowing down, generating dynamical

configurations at such fine spacings is expensive and
beyond the scope of this preliminary study. As a result,
this analysis uses gauge configurations generated in the
quenched approximation following the multiscale pro-
cedure of Ref. [43]. The lattice spacings for the ensembles
with L=a ¼ 24, 32, and 48 had previously been determined
in Ref. [43] using Wilson flow with a reference scale of
w0.4 ¼ 0.193 fm [44]. This scale-setting procedure was
repeated for the ensemble with L=a ¼ 40. The lattice
geometries were tuned to a constant physical volume
of 1.92 fm, which was kept small to reduce computational
costs.
Finite volume effects were suppressed by using light

quark masses tuned to give mπ ≈ 550 MeV so that
mπL ≈ 5.3. The heavy-quark masses were chosen to give
approximately constant masses of the heavy-heavy pseu-
doscalar meson across the four lattices. Details on the
lattices and quark masses used are listed in Table I and

shown graphically in Fig. 3. The required two- and three-
point functions were generated using the software package
CHROMA with the QPHIX inverters [45,46].

C. Choice of heavy-quark masses

The operator product expansion in Eq. (21) will require
higher-twist corrections that scale like ΛQCD=Q̃ or mπ=Q̃.
Unlike light-quark operator product expansions that rely on
large momenta or small distances to suppress higher-twist
effects [47], this work relies on the heavy intermediate mass
for this suppression. With mΨ ≳ q4 ≫ jqj, higher-twist
effects will scale as ΛQCD=mΨ or mπ=mΨ, so this analysis
requires ΛQCD, mπ ≪ mΨ. Separately, lattice artifacts enter
as powers of either aΛQCD or amΨ. Suppressing these will
require amΨ ≲ 1, so altogether it is required that

ΛQCD; mπ ≪ mΨ ≲ a−1: ð33Þ

With ΛQCD ∼ 250 MeV and mπ ≈ 550 MeV, mΨ >
1.8 GeV provides some suppression of higher-twist effects.
To fit the residual higher-twist effects away will require a
range of heavy-quark masses, and therefore this analysis
will consider mΨ as large as 4.5 GeV. The lattice spacing is
small enough for the finest discretization to accommodate
such a heavy mass while maintaining amΨ < 1; coarser
lattices out of necessity have a smaller range of heavy-
quark masses. Figure 4 shows the quark masses used on
each of the four ensembles considered here.

D. Choice of kinematics

The heavy-quark OPE is given by

V½μν� ¼ −
2ifπεμνρλqρpλ

Q̃2

�
Cð0ÞW þ hξ2iω̃2

�
1 −

p2q2

6ðp · qÞ2
�
Cð2ÞW þ � � � þO

�
ΛQCD

Q̃

��
; ð34Þ

TABLE I. Details of the ensembles used in this numerical study.

ðL=aÞ3 × T=a β a (fm) κlight κheavy csw Configurations used Sources/configurations Total sources used

243 × 48 6.10050 0.0813 0.134900 0.1200 1.6842 650 12 7800
0.1100

323 × 64 6.30168 0.0600 0.135154 0.1250 1.5792 450 10 4500
0.1184
0.1095

403 × 80 6.43306 0.0502 0.135145 0.1270 1.5292 250 6 1500
0.1217
0.1150
0.1088

483 × 96 6.59773 0.0407 0.135027 0.1285 1.4797 341 10 3410
0.1244
0.1192
0.1150
0.1100
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where p is the momentum of the incoming pion and q is the
difference in momenta between the two outgoing currents,
and where the ellipsis represents the contributions of higher
moments that are negligibly small in this analysis. The
exact form of the higher-twist effects suppressed by Λ=Q̃ is
not known, but symmetries (see Appendix A 1) constrain it
to be proportional to εμνρλqρpλ.
In order to enhance the contribution of the second

moment, one would like its prefactor to be as large as
possible. However, Q̃2 must be large to suppress higher-
twist effects, and p is limited by noise that grows
exponentially with the pion energy on the lattice. In this
work, p̂≡ p

2π=L was constrained to be one unit of momen-
tum, which for the volumes used in this work corresponds
to jpj ¼ 640 MeV. At these kinematics, the second
moment is a small contribution to the hadronic tensor.
As such, it is desirable to isolate its effect from the much
larger contribution of the zeroth moment. In this study,
the axial current indices are fixed to be μ ¼ 1, ν ¼ 2, the
prefactor on the right-hand side of Eq. (34) becomes

iεμνρσqρpσ ¼ iðq0p3 − p0q3Þ ¼ −q4p3 − iEπq3: ð35Þ

If the kinematics are chosen such that p3 ¼ 0, then this
prefactor is purely imaginary. At tree level, the entire
contribution of the zeroth moment will be pure imaginary
as well. However, p · q ¼ iEπq4 − p · q is generically
complex (as long as p · q ≠ 0), so the contribution of
the second moment to the hadronic tensor will have
nonzero real part. The effect of these special kinematics
is shown in Fig. 5. This work met these criteria by choosing

p̂ ¼ ð1; 0; 0Þ and q̂ ¼ ð1=2; 0; 1Þ ð36Þ

in units of 2π=L, as well as all combinations of p̂; q̂ that are
equivalent under lattice symmetries. With these choices,

hξ2i can be extracted as the leading contribution in the real
part of Vμν. [Note that q̂ ¼ ðp̂m − p̂eÞ=2, so it is quantized
in half-integers rather than integers.]
There are two caveats to this argument:
(1) The Wilson coefficient of the zeroth moment Cð0ÞW ,

while real at tree level, becomes complex at one-loop
order and also contributes to the real part of Vμν.
However, this contribution is suppressed by αs, and
it is known analytically, so this small correction can
be subtracted.

(2) Higher-twist contributions may also be complex,
but their contribution to Re½Vμν� must also contain
powers of ðp · qÞ2=ðQ̃2Þ2, just like the second mo-
ment contribution. They are further suppressed by
ΛQCD=Q̃, so it is expected that they are smaller than
the second moment contribution, particularly for
large Q̃2.

However, assuming the second Mellin moment is
hξ2i ∼ 0.25, both of the above contributions are subdomi-
nant at the special kinematics chosen here.

E. Computing real and imaginary parts of Vμν

To compute the hadronic tensor, values of RμνðτÞ ∝
Cμν
3 ðτe; τm ¼ τe þ τÞ are needed at both positive and

negative values of τ. In particular, using the fact that

FIG. 3. A comparison of tuning of pion mass and lattice spatial
extent L across the used ensembles.

FIG. 4. The four lattice spacings and the heavy-quark masses
used. The plot shows the trade-off between discretization
effects [which can depend on ðamΨÞ2] and higher-twist effects
(which scale as 1=mΨ). At fixed lattice spacing, one can
decrease the higher-twist effects at the cost of increasing
discretization errors, and the available trade-offs at the four
lattice spacings studied here are shown by the blue curves. The
colored points show the masses actually used in this study. The
black dashed line at amΨ ¼ 1.05 shows the cutoff beyond
which discretization effects were no longer found to be well
controlled, and the gray line at amΨ ¼ 0.7 shows a more
conservative threshold used for analyzing systematic errors
arising from lattice artifacts.
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RμνðτÞ is pure imaginary,5 the imaginary and real parts of
Vμν can be written in terms of symmetric and antisymmetric
combinations of Rμνð�τÞ:

Re½Vμνðp; qÞ�

¼
Z

∞

0

dτ ½Rμνðτ;p;qÞ − Rμνð−τ;p;qÞ� sinðq4τÞ; ð37Þ

Im½Vμνðp; qÞ�

¼
Z

∞

0

dτ ½Rμνðτ;p;qÞ þ Rμνð−τ;p;qÞ� cosðq4τÞ: ð38Þ

At the kinematics of interest, the real part of Vμν is about
2 orders of magnitude smaller than the imaginary part, so
computing the difference in Eq. (37) requires a delicate
cancellation between Rμνð�τÞ. The computation becomes
more tractable if the two terms are highly correlated, as this
increases the statistical power of the correlated difference.
These correlations are substantially enhanced if values of
Cμν
3 for τ < 0 are obtained using the identity6

Cμν
3 ðτe; τm;pe;pmÞ� ¼ Cνμ

3 ðτm; τe;−pm;−peÞ: ð39Þ

Then Eqs. (37) and (38) can be written as

Re½Vμνðp; qÞ�

¼
Z

∞

0

dτ ½Rμνðτ;p;qÞ þ Rμνðτ;−p;qÞ� sinðq4τÞ; ð40Þ

Im½Vμνðp; qÞ�

¼
Z

∞

0

dτ ½Rμνðτ;p;qÞ − Rμνðτ;−p;qÞ� cosðq4τÞ: ð41Þ

Consequently, one can obtain both τ > 0 and τ < 0 at the
same sets of current insertion times, which will enhance the

FIG. 5. Investigation of optimal kinematics for the HOPE procedure. Feasible lattice simulations are restricted to small lattice
momentum, and thus for the HOPE method, small ω̃. Generally speaking, this results in moments beyond the leading zeroth moment
being highly suppressed. This behavior may be seen in the imaginary part of the amplitude where the variation of hξ2i has a minimal
effect on the matrix element. By choosing p̂ ¼ ð1; 0; 0Þ and q̂ ¼ ð1=2; 0; 1Þ, it is possible to show that the leading contribution to the real
component of the amplitude arises from hξ2i. Thus this choice of kinematics offers improved access to the second Mellin moment.

FIG. 6. A comparison of the real part of the hadronic tensor
computed using Eq. (37) versus Eq. (40), the latter of which has
been manipulated to reduce the statistical error. While the
manipulations do not change the expectation of the correlator,
they reduce statistical uncertainties by about an order of magni-
tude. For comparison purposes, both quantities were measured on
two sources on each of 450 configurations.

5In terms of the Minkowski 4-momentum q ¼ ðq0;qÞ, the
hadronic tensor is pure imaginary and can be related to RμνðτÞ
via Laplace transform, which has a purely real kernel.

6This identity can be proven by writing Cμν
3 in terms of the

quark propagators,

Cμν
3 ðτe; τm;pe;pmÞ

¼
Z

d3xed3xmeipe ·xeþipm·xm

× Tr½γ5D−1
ψ ð0jxmÞγ5γνD−1

Ψ ðxmjxeÞγ5γμD−1
ψ ðxej0Þ�;

and applying γ5 Hermiticity to each of the propagators.
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correlations. A demonstration of this reduction in statistical
error is shown in Fig. 6.

F. Excited-state contamination and choice of τe
The three-point correlator Cμν

3 ðτe; τmÞ ¼ hJμAðτeÞJνAðτmÞ
O†

πð0Þi is computed by creating a pion source, propagating
one of the quarks forward to τe, creating a sequential
source, and then tying together the sequential heavy-quark
propagator and the other light quark propagator at the sink.
Since τe ≤ τm is chosen in this work, excited state effects
arise from the fact that the combination of states created by
the pion interpolator has not fully relaxed to the ground
state before τe, so they are suppressed exponentially in τe.
Excited-state effects are reduced by using a Gaussian-
smeared pion source [48] with smearing radius equal to
the inverse pion mass (awsmear ¼ f4.5; 6.0; 8.0; 9.0g for
L=a ¼ f24; 32; 40; 48g, respectively). With this smearing,
numerical study on the L=a ¼ 32 lattices showed that

excited-state contamination is estimated to be about 1%
for a source-operator separation τe of about 0.7 fm, as
shown in Fig. 7.
Since τe must be fixed at run-time, τe ∼ 0.7 fm is chosen,

leading to a ∼1% systematic error due to excited-state
contamination. Excited-state contamination in the two-
point function is better controlled since one does not need
to choose the source-sink separation at run-time, and one
can afford the very conservative fit range of ½T=4; 3T=4�
since the statistical errors on the two-point function are
smaller than those on the three-point function (for an
example of the goodness of fit, see Fig. 8).

V. ANALYSIS, RESULTS AND DISCUSSION

Extraction of the second moment from the two- and
three-point correlation functions measured here is non-
trivial due to signal contamination by both lattice artifacts
and higher-twist effects. The extraction of ZπðpÞ, EπðpÞ

(a) (b)

FIG. 7. Excited-state contamination at operator separations (a) τ ¼ 0.06 fm and (b) τ ¼ 0.36 fm.

FIG. 8. Validation plots for the single-state ansatz used in this study. The left panels show fits to the L=a ¼ 40 pseudoscalar correlator
for jpj ¼ 1 and jpj ¼ 0, respectively, while the right panel shows the resulting effective mass plateaus. The “pull” in the left-hand plot is
the residual of each data point normalized to its standard deviation and is a measure of that point’s effect on the fit.
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from fitting the two-point correlation function C2ðτ;pÞ at
late τ and the construction of RμνðτÞ in Eq. (22) are
relatively straightforward. However, comparing the three-
point data to the OPE of the hadronic amplitude can be
done in multiple ways, which can lead to somewhat
different systematics. As this is the first numerical study
of the HOPE method, two analysis methods, called the
time-momentum analysis and the momentum-space analy-
sis, are performed. This enables a cross-check of the results
and ensures that they are robust against systematics in the
analysis procedure. These analysis methods are as follows:
(1) Time-momentum analysis

(i) Fit fπ and the heavy-quark mass mΨ by
comparing the symmetric part of the data to
the inverse Fourier transform of the OPE of
Im½Vðp; qÞ�, that is, from the inverse Fourier
transform of Eq. (41).

(ii) Use the fitted results of fπ; mΨ and the anti-
symmetric part of the data to fit the second
moment hξ2i from the inverse Fourier transform
of Re½Vðp; qÞ�, using Eq. (40), at each heavy-
quark mass and lattice spacing.

(iii) Perform a combined fit to hξ2iða;mΨÞ to remove
both lattice spacing and higher-twist effects.

(2) Momentum-space analysis
(i) Perform a Fourier transform of RμνðτÞ in the

temporal direction.

(ii) Extrapolate the momentum-space hadronic am-
plitude to the continuum.

(iii) Fit fπ ,mΨ and hξ2i to the hadronic amplitude in
the continuum limit using the momentum-
space, continuum HOPE formula presented in
Sec. III A.

These alternative procedures are shown diagrammati-
cally in Fig. 9. The following sections will detail both
analysis strategies.

A. Time-momentum analysis

The ratio Rμνðτ;p;qÞwas constructed for 0 < τ ≤ τmax≈
0.6 fm. The statistical quality of the signal deteriorates
with time, and large-τ data may be more susceptible to
higher-twist contamination, motivating the cut at τmax. The
symmetric and antisymmetric components of RμνðτÞ are
constructed as described in Sec. III B.
An example fit to Vμν for a single heavy-quark mass at a

single lattice spacing is shown in Fig. 10. At the chosen
kinematics, the second moment provides a negligible
contribution to the imaginary part of the hadronic tensor
(see Fig. 5), so the fitting procedure can be split into two
steps: one in which fπ and mΨ are fit to the imaginary part
of Vμν and a second step that consists of a single-parameter
fit of hξ2i to the real part of Vμν, where fπ and mΨ are used
as inputs. At values of τ comparable to the lattice spacing,

FIG. 9. Comparing the two analysis strategies. Both approaches utilize the same bare correlators, but note that the order of the
continuum extrapolation and HOPE fit are reversed.
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uncontrolled discretization effects are to be expected.
Additionally, if the two current insertions are close in
space-time relative to the lattice spacing, they may mix with
lower-dimensional operators and lead to UV divergences.
Both of these effects suggest that small-τ data should be
removed from the fits. Empirically, the χ2 values for the fits
to the various heavy-quark masses became reasonable if the
τ ≤ 2a data are excluded, so all fits will only use data
with τ ≥ 3a.

This fitting procedure compares lattice data to a con-
tinuum, twist-2 OPE. As a result, the extracted second
moment hξ2iða;mΨÞ will be contaminated by both lattice
artifacts and higher-twist corrections. The lattice artifacts
enter at Oða2Þ (see Appendices A 2 and A 3 for details),
and by dimensional analysis, a2 must be accompanied by
two factors of a mass scale, either the typical momentum
scale ofΛQCD or the heavy-quark massmΨ, so there may be
discretization effects proportional to a2, a2mΨ, or a2m2

Ψ.
With amΨ < 1.05, these terms were sufficient to describe
lattice artifacts without need for additional Oða3Þ terms.
Higher-twist effects scale as powers of ΛQCD=Q̃ or mπ=Q̃,
and ΛQCD ∼mπ in this analysis. The fitting procedure
effectively integrates over the q4 dependence, and
mΨ ≫ jqj, so the twist-3 contribution can be approximated
by a Λ=mΨ term. Therefore, to extract hξ2i in the
continuum limit without higher-twist contamination,
hξ2iða;mΨÞ is fit to the formula

hξ2iða;mΨÞ ¼ hξ2i þ
A
mΨ
þ Ba2 þ Ca2mΨ þDa2m2

Ψ;

ð42Þ
where hξ2i, A, B, C, and D are the fit parameters. At an
intermediate mass scale of mΨ ¼ 3 GeV and a lattice

spacing of a ¼ 0.06 fm, the magnitudes of the various
terms are

hξ2i ¼ 0.210� 0.013; ð43Þ

A
mΨ
¼ 0.009� 0.005; ð44Þ

Ba2 ¼ −0.004� 0.013; ð45Þ

Ca2mΨ ¼ −0.004� 0.013; ð46Þ

Da2m2
Ψ ¼ −0.027� 0.006; ð47Þ

where the renormalization scale for hξ2i is taken to be
μ ¼ 2 GeV and the error bars are purely statistical. Neither
the higher-twist nor the discretization effects can be
neglected at the precision considered in this work. The
fit result for hξ2i is shown in Fig. 11.

B. Estimation of systematic uncertainties
for time-momentum analysis

The analysis procedure described in the previous sub-
section contains several systematic errors. Excited-state
contamination in the three-point function was estimated in
Sec. IV F to be a ∼1% effect (and contamination in the two-
point function is much smaller). Finite-volume effects are
expected to scale as 1

mπL
e−mπL < 10−3 and are negligible

compared to both statistical and other systematic errors.
This work uses an unphysically heavy pion mass of

mπ ∼ 550 MeV. Previous studies [49] have indicated that
hξ2i at such a pion mass differs from its physical value by

(a) (b)

FIG. 10. The real and imaginary parts of the hadronic tensor Vμν can be inverse Fourier transformed (indicated by F−1) to produce the
antisymmetric and symmetric components of the ratio of correlators Rμν. The symmetric part of RμνðτÞ [corresponding toF−1½ImðVμνÞ�]
is dominated by the zeroth moment contribution, allowing extraction of fπ and mΨ. These are then used as inputs to the fit of
F−1½ReðVμνÞ� to extract the second moment hξ2i. In order to avoid contamination with UV divergences near τ ¼ 0, points with τ < 3a
(grayed out in the plots) are excluded from the fit.
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about 5%. Therefore, this is taken as a systematic effect
arising from the unphysical pion mass.
Other systematic errors can be estimated by studying the

effects of changing input parameters or varying the analysis
procedure.

(i) The global fit described in Eq. (42) restricted the
heavy-quark masses to those satisfying amΨ < 1.05.
To test whether this cut is sufficient to exclude lattice
artifacts of Oða3Þ or higher, one could choose a
more conservative cut, using only data satisfying
amΨ < 0.7. Refitting with this more limited dataset
results in a fit value of hξ2i ¼ 0.226� 0.043.
Although these two results are compatible within
one standard deviation, the difference between the
central values (0.016) is taken as the estimate of
the systematic uncertainty from the continuum
extrapolation.

(ii) The global fit contains a ΛQCD=mΨ term to account
for the twist-3 contribution. In principle, higher-
twist contributions are also present. To estimate such
systematic effects, one could add a ΛQCD=m2

Ψ term
to the global fit in Eq. (42). This changes the fit
result to hξ2i ¼ 0.185� 0.017 which has a central
value differing from that of the primary procedure by
0.025. This is taken to be the systematic uncertainty
from higher-twist effects.

(iii) As explained in Sec. VA, at small values of
τ ¼ τm − τe, the data are contaminated with uncon-
trolled lattice artifacts. The primary fit omits the
τ=a ¼ 0, 1, and 2 points, where such effects are the
most significant and result in unacceptable χ2 values
in the fits. To analyze errors arising from the
placement of this cut, one can exclude τ=a ¼ 3

from the fits, which gives a modified result of hξ2i ¼
0.208� 0.014 and therefore a small systematic

uncertainty from the difference in central values
of 0.002.

(iv) The Wilson coefficients CW are calculated in pertur-
bation theory, and in this analysis, they are only
computed to one-loop order. As an estimate of the
magnitude of higher-loop corrections, one can per-
form this analysis at a larger renormalization scale of
μ ¼ 4 GeV and then run back to μ ¼ 2 GeV using
Eq. (4). Such a procedure results in hξ2iðμ¼4GeVÞ¼
0.216�0.012, which evolves to hξ2iðμ ¼ 2 GeVÞ ¼
0.218� 0.014, giving a systematic uncertainty of
0.008 from the change in central value.

The above procedure for estimating systematic effects
leads to a final value of hξ2iðμ ¼ 2 GeVÞ ¼ 0.210�
0.013ðstatÞ � 0.034ðsysÞ, which can be combined in quad-
rature to give hξ2iðμ ¼ 2 GeVÞ ¼ 0.210� 0.036 (total,
excluding quenching). The above error estimates are
summarized in Table II.
The dominant sources of uncertainty are from the

continuum and higher-twist extrapolations. In principle,
both these extrapolations can be better controlled by
including finer lattice spacings, which would also allow
the inclusion of larger heavy-quark masses. However,
computations at finer lattices are expensive and therefore
beyond the scope of this preliminary work. The error from
quenching is formally uncontrollable, although empirically
it is a 10%–20% effect in many calculations. To perform a
precise comparison of this result to dynamical calculations
would require redoing these calculations on dynamical
ensembles.

C. Determination of f π
The previous two subsections describe the determination

of the second moment of the pion LCDA using the time-
momentum analysis procedure. To check the validity of the
HOPE strategy, it is worth noting that the pion decay
constant fπ is computed as a by-product of this analysis. As
is clear in the OPE formula, Eq. (21), fπ is an overall
normalization factor for the hadronic amplitude Vμν.
One can extrapolate the fπ values computed at various

heavy-quark masses on the four ensembles to the

FIG. 11. The values of hξ2iða;mΨÞ at the gauge couplings and
heavy-quark masses listed in Table I, plotted as a function of a2

with the heavier masses at each lattice spacing displaced slightly
to the right for visual clarity. The black star at a2 ¼ 0 represents
the extrapolated value from the fit to Eq. (42).

TABLE II. The error budget for the computation of the second
Mellin moment hξ2i using the HOPE method, with the data
processed in the time-momentum representation.

Source of error Size

Statistical 0.013
Continuum extrapolation 0.016
Higher-twist 0.025
Excited-state contamination 0.002
Unphysical mπ 0.014
Fit range 0.002
Running coupling 0.008

Total (excluding quenching) 0.036
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continuum using the same procedure as for the extrapola-
tion of hξ2i, giving a global fit value of 161� 2 MeV after
removal of lattice discretization and higher-twist effects,
where the error reflects statistical uncertainties only. It
should be noted that this measurement suffers from not
only the systematic errors mentioned in the previous
subsection but also additional uncertainties from the
normalization constants ZA and b̃A to which the second
moment is completely insensitive in the time-momentum
analysis.7

On the other hand, fπ can be directly measurable on the
lattice via the axial-axial correlator at 0 ≪ τ ≪ T,

h0jA4ðτÞA4ð0Þj0i ∼
ðfπZAÞ2mπ

2
½e−mπτ þ e−mπðT−τÞ�; ð48Þ

where A4 is the local unsmeared axial current ψ̄γ4γ5ψ and
the convention where fπ ∼ 130 MeV at the physical pion
mass is used. As written, Eq. (48) contains OðaÞ correc-
tions, so the continuum extrapolation must include a term
linear in a rather than in a2. A low-statistics (one source per

configuration) computation of fπ at the four lattices gives a
continuum value of fπ ¼ 157� 6 MeV.
Despite the systematics that could affect the value

extracted from the hadronic tensor measurement, the two
determinations of fπ are in good agreement (see Fig. 12).
While fπ is not directly relevant to the calculation, this
serves as a useful cross-check of the validity of the operator
product expansion and, more generally, of this calculational
method.

D. Momentum-space analysis

A further check of the validity of the time-momentum
representation method can be obtained by analyzing the
same data using a momentum-space analysis. The starting
point for the momentum-space analysis is the time-
momentum representation ratio R½μν�ðτ;p;q; aÞ constructed
in Eq. (28). The lattice-regularized data are converted to
momentum-space via

V ½μν�ðp; q; aÞ ¼ a
Xτmax

τ¼−τmax

eiτq4R½μν�ðτ;p;q; aÞ; ð49Þ

where τmax was taken to be approximately 1 fm ¼
5 GeV−1. By Fourier transforming the tree-level HOPE
equation, it is possible to show that the numerical data
decay exponentially in τ as

R½μν�ðτ;p;q; aÞ ∼ e−Eqτ

2Eq
; ð50Þ

where Eq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ψ þ q2
q

. Since R½μν�ðτ;p;q; aÞ exhibits

exponential decay in τ with an exponent with magnitude
greater than approximately 2 GeV, the truncation in the sum
in Eq. (49) is expected to be well controlled. While the
discrete Fourier transform formally only produces a dis-
crete set of Fourier modes, in this work, interpolation
between these Fourier modes is achieved by evaluating
Eq. (49) for arbitrary q4. Note that the largest Fourier
mode, qmax

4 , must be taken sufficiently small to remain
below the Nyquist frequency which corresponds to requir-
ing qmax

4 < π=a. For the ensemble with the coarsest lattice
spacing (a ¼ 0.0813 fm) this results in the constraint that
qmax
4 < 7.5 GeV. In practice, data at momenta close to the

Nyquist frequency may possess large lattice artifacts, and in
this analysis qmax

4 ¼ 5 GeV is chosen.
While data at nonzero τ are guaranteed to have a well-

defined continuum limit, τ ¼ 0 data contain additional UV
divergences arising from the mixing of the current-current
operator with lower-dimensional operators. After perform-
ing the Fourier transform, this divergence will appear as an
additive shift in the numerical data. Thus in order to ensure
that the hadronic amplitude considered in this work has a
well-defined continuum limit (after finite, multiplicative

FIG. 12. Extrapolation of fπ to the continuum. The colored
points at finite lattice spacing are the values of fπ extracted from
the four lattice spacings at various heavy-quark masses as an
intermediate step in the determination of hξ2i. The black point is
the global fit of 161� 2 MeV to the hadronic tensor data. The
gray points are direct computations of fπ at the four lattice
spacings. These direct calculations suffer from OðaÞ discretiza-
tion errors, but an extrapolation linear in a gives a continuum
value of 158� 5 MeV, in good agreement with the value
extracted from hadronic tensor measurements.

7Since this normalization factor is only used in the determi-
nation of fπ rather than in the computation of hξ2i that is the
main focus of the paper, this work uses the approximation
b̃Aam̃ij ≈ bAamij, which is correct up to a mass-independent
OðaÞ term [42]. The value of bA was taken to be a constant value
of 1.25 across all lattice spacings, which is consistent with
the values quoted in Ref. [42] at all lattice spacings measured in
that work.
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renormalization), a single subtraction is first performed at
fixed lattice spacing:

V ½μν�sub ðp;q;aÞ¼V ½μν�ðp;q;aÞ−V ½μν�½p;ðq;q4;subÞ;a�; ð51Þ

where q4;sub is chosen to be q4;sub ¼ qmax
4 ¼ 5 GeV.

This choice is informed by the desire to minimize the
statistical noise introduced in this process. As a result of
this subtraction, the matrix element may be expressed
generically as

V ½μν�sub ðp; q; aÞ ¼
X∞
n¼0

anV ½μν�ðnÞ;subðp; qÞ; ð52Þ

where V ½μν�ð0Þ;subðp; qÞ≡ V ½μν�sub ðp; qÞ is the continuum had-

ronic matrix element. As emphasized previously, the
simplicity of this continuum limit is one of the advantages
of considering a current-current correlator. As argued in
Sec. IVA, it is possible to show that the use of the
Sheikholeslami-Wohlert (clover) improved action leads
to the removal of OðaÞ corrections for the matrix element
studied here (see Appendices A 2 and A 3 for details), so

V ½μν�sub ðp; q; aÞ ¼ V ½μν�sub ðp; qÞ þ a2V ½μν�ð2Þ;subðp; qÞ þOða3Þ:
ð53Þ

It is important to note that the continuum extrapolation
requires taking a → 0 along a line of constant physics. This
is achieved by tuning the bare parameters to ensure certain
physical quantities remain fixed as lattice spacing is varied,
but there are some mistunings resulting from percent level
inaccuracies in the tuning process. While such a mistuning
appears as a relatively mild effect in the time-momentum
representation analysis where it results in a variation of fπ ,
the momentum-space approach is more sensitive to any
such mistuning, since it affects the continuum extrapolation
of the hadronic matrix element V ½μν�ðp; qÞ. Evidence of this
mistuning can be seen in Fig. 3. It is important to note that
the tuning of the light-quark sector parameters to their
physical values is an issue for all methods, and is not
unique to this approach. One can reduce the systematic
error associated with this mistuning by considering a ratio
which is less sensitive to the volume and pion mass
dependence. Examining the HOPE, the leading volume
and pion mass dependent quantities are found in the
prefactor (for μ ¼ 1, ν ¼ 2),

V ½12�sub ðp; qÞ ∝ ϵ12αβpαqβ ∝ ðEπq3Þ; ð54Þ

for the special kinematics considered. In order to reduce the

volume and pion mass dependence, the ratio V ½12�sub ðp; qÞ=
ðEπq3Þ is formed and then continuum extrapolated.

In contrast to the time-momentum representation analy-
sis, a further cut must be made on the data included in the
analysis. All data presented in the time-momentum repre-
sentation analysis satisfy the constraint amΨ < 1.05. This
restriction is placed to ensure control over lattice artifacts.
However, in addition to this constraint, the momentum-
space analysis requires data at a sufficient number of lattice
spacings for the continuum extrapolation to be performed.
In particular, the model for the continuum extrapolation
contains two free parameters, and thus the analysis must
be limited to the subset of data where the heavy-quark
mass satisfies the constraint amΨ < 1.05 for at least three
lattice spacings. From Fig. 4, this criterion constrains this
analysis to make use of only the lightest three heavy-quark
masses. The continuum extrapolations of the real and
imaginary parts of the hadronic amplitude are shown in
Figs. 13 and 14.

E. Extraction of second moment

Having extrapolated the real and imaginary parts of the
hadronic matrix element to the continuum, a global fit is
performed to the order-αS HOPE formula given in Eq. (21)
plus an additional twist-3 ansatz which is used to control
the leading higher-twist effects. The functional form of the
model used in the extraction of the Mellin moments from
the continuum data is

V ½12�ðq; p;mΨÞ=ðEπq3Þ

¼ −
2ifπ
Q̃2

�
Cð0ÞW ðQ̃2; μ; τÞ þ Cð2ÞW ðQ̃2; μ; τÞhξ2i

�
ζ2C2

2ðηÞ
12Q̃2

��

þ 2ifπΛQCD

Q̃3

�
b0 þ b2

�
ζ2C2

2ðηÞ
12Q̃2

��
: ð55Þ

It is important to note that while the above parametrization of
the twist-3 piece is the most natural, other terms likemΨ=Q̃

4

are also possible. The resulting fit is shown in Fig. 15. As a
result of this global analysis, the first two moments of the
pion LCDA are found to be fπ ¼ 0.173� 0.001 GeV, and
hξ2iðμ ¼ 2 GeV2Þ ¼ 0.210� 0.013, where the statistical
uncertainty is determined from a bootstrap analysis of the
numerical data. Since this a global fit, the three heavy-quark

masses are also determined to be mð1ÞΨ ¼ 1.82� 0.02 GeV,

mð2ÞΨ ¼ 2.52� 0.02 GeV and mð3ÞΨ ¼ 3.34� 0.02 GeV,
which are in good agreement with the heavy-quark masses
determined at fixed lattice spacing in the time-momentum
representation.
Systematic uncertainties in hξ2i for the momentum-space

analysis may also be estimated following the same pro-
cedure as described in the time-momentum representation
analysis. Since both analyses use the same lattice data they
share some sources of systematic error. Thus the excited-
state contamination is taken to be a ∼1% effect, and as with
the time-momentum representation analysis, finite-volume
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effects are taken to be negligible. Finally, as in the time-
momentum representation analysis, the unphysically heavy
pion mass is assumed to contribute a 5% systematic error.
In addition to these shared sources of systematic uncer-
tainty, the momentum-space method has several additional
sources of systematic error. These arise from the difference
in the order of steps of the analysis, and are dis-
cussed below:

(i) Following the procedure employed above, Oða3Þ
effects are studied by making a more conservative
cut on amΨ. In particular, the cut is chosen to be
amΨ < 0.7, which is consistent with the time-mo-
mentum representation. The resulting fit leads to a
value for the second moment of hξ2i ¼ 0.222�
0.068. Taking the differences of central values leads
to a systematic error of 0.012.

(ii) The effects of higher-twist contributions may be
studied by adding a twist-4 ansatz to the continuum
HOPE formula in Eq. (55). The form chosen is

V ½12�higher-twistðq; p;mΨÞ=ðEπq3Þ

¼ V ½12�ðq; p;mΨÞ=ðEπq3Þ þ
2ifπΛ2

QCD

Q̃4

×

�
c0 þ c2

�
ζ2C2

2ðηÞ
12Q̃2

��
; ð56Þ

mirroring the choice for the twist-3 term. The
resulting value for the second moment is
hξ2i ¼ 0.245� 0.019. This results in a systematic
uncertainty of 0.035.

(iii) The higher-loop corrections to theWilson coefficients
are studied by repeating the above analysis at a
renormalization scale of μ ¼ 4 GeV, and then evolv-
ing back to μ ¼ 2 GeV using the renormaliza-
tion-group evolution of the Gegenbauer moments
given by Eq. (4). This gives hξ2iðμ ¼ 4 GeVÞ ¼
0.236� 0.016. Running this to 2 GeV results in

(a) (b)

(c) (d)

FIG. 13. Continuum extrapolation of the real part of the hadronic matrix element. Parts (a)–(c) show the pointwise continuum
extrapolation for each value of q4 for heavy-quark masses of (a) mΨ ¼ 1.8 GeV, (b) mΨ ¼ 2.5 GeV, and (c) mΨ ¼ 3.3 GeV. The
resulting hadronic amplitude in the continuum is shown in part (d), where curves are included to guide the eye.
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hξ2iðμ ¼ 2 GeVÞ ¼ 0.239� 0.017. Taking the dif-
ference between the evolved hξ2i and the original
fitted hξ2iðμ ¼ 2 GeVÞ gives a systematic uncer-
tainty of 0.029.

A breakdown of the sources of systematic error described
here is given in Table III. This analysis of systematic
errors leads to a final value for the second moment of
hξ2iðμ¼2GeVÞ¼0.210�0.013ðstatÞ�0.044ðsysÞ. These

(a) (b)

(c) (d)

FIG. 14. Continuum extrapolation of the imaginary part of the hadronic matrix element. Parts (a)–(c) show the pointwise continuum
extrapolation for each value of q4 for heavy-quark masses of (a) mΨ ¼ 1.8 GeV, (b) mΨ ¼ 2.5 GeV, and (c) mΨ ¼ 3.3 GeV. The
resulting hadronic amplitude in the continuum is shown in part (d), where curves are included to guide the eye.

FIG. 15. Global fit of continuum matrix element data to the HOPE formula to extract fπ , mΨ and hξ2i.
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two sources of errormay be added in quadrature to obtain the
final result hξ2iðμ ¼ 2 GeVÞ ¼ 0.210� 0.046. Similarly to
the time-momentum space analysis, the dominant source of
systematic uncertainty arises from the higher-twist terms.
This issue is made worse in momentum space due to the
additional cut on lattice data required for the continuum
extrapolation of the hadronic amplitude.

F. Discussion of results

The ratio R½μν�ðτ;p;q; aÞ was analyzed using two alter-
native approaches, termed the time-momentum represen-
tation (TMR) analysis and the momentum-space (Mom)
analysis. The results of the second moment from these
approaches are

hξ2iTMRðμ ¼ 2 GeVÞ ¼ 0.210� 0.013ðstatÞ � 0.034ðsysÞ
¼ 0.210� 0.036; ð57Þ

hξ2iMomðμ ¼ 2 GeVÞ ¼ 0.210� 0.013ðstatÞ � 0.044ðsysÞ
¼ 0.210� 0.046: ð58Þ

The central values and statistical errors are the same in both
approaches. The agreement of central values is the result
of statistical coincidence; with a different choice of fit
parameters this extrapolated central value is expected to
vary. The equivalence of the statistical error is relatively
unsurprising, since both approaches mostly share the same
raw lattice data.
As a cross-check, the pion decay constant f2ptπ ¼ 0.158�

0.005 GeVwas extracted from a conventional analysis of the
axial-vector two-point correlation function. This is to be
compared with the HOPE-derived values fTMR

π ¼ 0.161�
0.002ðstat:Þ GeV and fMom

π ¼ 0.173� 0.001ðstat:Þ GeV,
with systematic uncertainties in fπ . The systematic uncer-
tainties in these determinations fπ are likely comparable to
the systematic uncertainty in hξ2i (about 10%–20%), or
perhaps slightly larger due to the added uncertainty in the
normalization factors.
Examining both procedures allows the study of the

advantages and shortcomings of both approaches and
serves as a further cross-check of the analysis. The above

equations show that the time-momentum representation
approach results in a smaller systematic error than that of
the momentum-space analysis. While the systematic uncer-
tainty incurred from the truncation of the twist expansion is
the largest systematic error in both analyses, the additional
cut placed on the data in the momentum-space analysis
results in the removal of data with the heaviest heavy-quark
masses. Since higher-twist corrections are suppressed by
factors of 1=Q̃ ∼ 1=mΨ, this results in less control over the
higher-twist effects.
Given the above considerations, the central value is

chosen to be the more precise time-momentum represen-
tation analysis value of

hξ2iðμ ¼ 2 GeVÞ ¼ 0.210� 0.036: ð59Þ

This corresponds to a Gegenbauer moment of

ϕ2ðμ ¼ 2 GeVÞ ¼ 0.03� 0.11: ð60Þ

Most previous lattice calculations have used local
operators to compute hξ2i. In the quenched approximation,
hξ2i was previously computed to be 0.280� 0.051 at a
renormalization scale of μ ¼ 2.67 GeV [9]. Running this
down to 2 GeV gives hξ2i ¼ 0.285� 0.054, which agrees
with this quenched calculation, albeit with a large error bar.
More recent calculations with the local operator method

have been performed in dynamical QCD, giving hξ2i ¼
0.28� 0.02 [10] and hξ2i ¼ 0.235� 0.008 [50], both at
μ ¼ 2 GeV. A separate approach is to proceed via the
quasidistribution amplitude (the distribution amplitude
analog of the quasi-PDF), which was used to give a result
of hξ2i ¼ 0.244� 0.030 [51]. These results are compared

TABLE III. The error budget for the computation of the second
Mellin moment hξ2i using the HOPE method, with the data
analyzed in the momentum-space approach.

Source of error Size

Statistical 0.013
Excited-state contamination 0.002
Continuum extrapolation 0.012
Higher-twist 0.035
Running coupling 0.029
Unphysical mπ 0.014
Total (excluding quenching) 0.046

FIG. 16. Comparison of hξ2i extracted from the time-momen-
tum representation (TMR) and momentum-space analyses to
various results in the literature. Note that the values from this
work and Del Debbio et al. are in the quenched approximation,
whereas the results from Zhang et al., Bali et al., and Arthur et al.
use dynamical QCD, and the error bars do not reflect the
uncertainty from the quenched approximation.
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to the second moment determined in this work in Fig. 16.
Formally, the uncertainty from quenching cannot be con-
trolled, so a precise comparison of the results in this work to
these dynamical calculations is not possible. However, in
practice, quenching errors are usually at the order of
10%–20%, and the calculation presented here agrees with
the dynamical results within the listed uncertainties com-
bined with this approximate quenching uncertainty.

VI. CONCLUSION AND OUTLOOK

Factorization theorems in QCD imply that the LCDA of
the pion is relevant to a variety of experimental processes.
Since the LCDA is a nonperturbative object, it is a quantity
of importance for LQCD calculations. While direct com-
putation of ϕπðξ; μÞ is impossible in a Euclidean field
theory, a range of different theoretical approaches which
allow one to indirectly study the LCDA have been
proposed and pursued. These methods include direct
calculation of the local matrix elements [7–11], factoriza-
tion approaches like the pseudo-DA approach [17], and a
light-quark operator product expansion [15], have been
used or proposed to this effect.
Knowledge of the first nontrivial Mellin moment of the

pion hξ2i provides an important constraint on the shape of
the LCDA. Due to the one-loop running behavior of the
Gegenbauer moments, one expects that the second moment
is especially important for the shape of the LCDA at large
enough renormalization scale. This quantity has previously
been studied with the conventional approach of calculating
the relevant matrix element of the local twist-2 operator. As
a result, this quantity is relatively well known and therefore
provides a good test of the validity and applicability of the
new methods.
This paper presents the first numerical study of the

HOPE method to extract the second Mellin moment of the
pion LCDA. This approach utilizes a quenched fictitious
heavy-quark species which enables more control over
higher-twist effects. After a discussion of the numerical
calculation of the hadronic matrix element, two alternative
approaches were explored for extracting the second Mellin
moment of the pion LCDA from the numerical data. These
two approaches were termed the time-momentum analysis
and the momentum-space analysis. Central to both analyses
is the fact that the matrix element has a well-defined
continuum limit after multiplicative renormalization.
In the time-momentum analysis, the OðαsÞ formula of

the HOPE is fit to the lattice data, and the resulting fit
parameters are then extrapolated to the continuum. In the
momentum-space analysis, the order of operations is
reversed, and instead after Fourier transforming the lattice
data, the correlators are extrapolated to the continuum
before being compared with the OðαsÞ continuum HOPE.
Both analyses produce results in good agreement with each
other, and with other calculations in the literature. Due to
the order of operations, more lattice data are included in the

time-momentum analysis. This leads to an improved
estimate of the statistical error in the second Mellin
moment. As a result, the final value of hξ2i determined
in this work is

hξ2iðμ ¼ 2 GeVÞ ¼ 0.210� 0.036:

The uncertainty in this result is dominated by systematic
effects, especially from higher-twist terms and the con-
tinuum extrapolation. From Table II, it is clear that reducing
the systematic effect arising from higher-twist contributions
is the most important task for improving these calculations.
For this purpose, it could be helpful to adopt other heavy-
quark formulations, such as that in Ref. [52], for future
lattice numerical calculations.
The results shown here demonstrate the viability of

the HOPE approach to determine moments of light-cone
quantities with comparable statistical precision to results
from other methods. This paves the way for further
investigations of the pion LCDA, including dynamical
studies of the second moment using the HOPE method
and a determination of higher Mellin moments. Early
numerical studies have commenced, and preliminary
results for the fourth moment are discussed in Ref. [28].
The success of this approach for the LCDA also suggests
that the HOPE method can be applied to the study of other
light-cone quantities. Key objects of interest are the kaon
LCDA which would allow the study of Mellin moments
of a system with nonzero strangeness and pion PDF and
helicity PDF, for which the Wilson coefficients have
already been calculated to one-loop order [25].
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APPENDIX: SYMMETRY CONSTRAINTS ON
MATRIX ELEMENT

1. Lorentz invariant decomposition

The derivation of the OðaÞ improvement relies on the
symmetry properties of the hadronic amplitude that is
constructed. The momentum-space hadronic amplitude is
defined as

Vμνðp; qÞ ¼
Z

d4z e−iq·z hΩjT fJμðz=2ÞJνð−z=2ÞgjπðpÞi:

ðA1Þ
The time-momentum representation of this amplitude,
Rμνðτ;p;qÞ, is obtained by performing a Fourier transform
in the Euclidean momentum q4:

Rμνðτ;p;qÞ ¼
Z

dq4
ð2πÞ e

−iq4τVμνðp; qÞ: ðA2Þ

In momentum space, the most general Lorentz covariant
form of the amplitude, Vμνðp; qÞ, is

Vμνðp; qÞ ¼ a1pμpν þ a2pμqν þ a3qμpν þ a4qμqν þ a5gμν þ a6ϵμναβpαqβ; ðA3Þ
where ai are scalar functions of the invariants q2, p2 and p · q, that is,

ai ¼ aiðp2; q2; p · qÞ: ðA4Þ
Applying a parity transformation P to the hadronic amplitude gives

Vμνðp; qÞ ¼
Z

d4z e−iq·z h0jP†PT fJμðz=2; z4=2ÞP†PJνð−z=2;−z4=2ÞgP†PjπðpÞi

¼ −ð−1Þμð−1Þν
Z

d4z e−iq·z h0jT fJμð−z=2; z4=2ÞJνðz=2;−z4=2Þgjπð−pÞi

¼ −ð−1Þμð−1ÞνVμνðp̃; q̃Þ; ðA5Þ
where for simplicity the notation k̃ ¼ ð−k; p4Þ has been introduced and

ð−1Þμ ≡
�−1; for μ ¼ 1; 2; 3

1; for μ ¼ 4:
ðA6Þ

Applying these transformations to the terms in the amplitude decomposition, Eq. (A3), gives

a1pμpν þ a2pμqν þ a3qμpν þ a4qμqν þ a5gμν þ a6ϵμναβpαqβ

¼ −ð−1Þμð−1Þνa1p̃μp̃ν − ð−1Þμð−1Þνa2p̃μq̃ν − ð−1Þμð−1Þνa3q̃μp̃ν − ð−1Þμð−1Þνa4q̃μq̃ν
− ð−1Þμð−1Þνa5gμν − ð−1Þμð−1Þνa6ϵμναβp̃αq̃β: ðA7Þ

Noting that pμ ¼ ð−1Þμp̃μ, one may conclude all terms but a6 vanish, and thus the most general form of the amplitude is

Vμνðp; qÞ ¼ a6ðq2; p · qÞϵμναβpαqβ: ðA8Þ

2. Vanishing of cA term

The three-point correlation function is defined as

Gμν
3 ðx; yÞ ¼ hΩjT fJμAðxÞJνAðyÞO†

πð0ÞgjΩi; ðA9Þ

where JμAðxÞ is given in Eq. (32), and O†
πð0Þ ¼ ψ̄ð0Þγ5ψð0Þ ¼ Zπψ̄

ð0Þð0Þγ5ψ ð0Þð0Þ. Neglecting terms proportional to c0A in
Eq. (32), which will be considered in the next subsection,8 one can expand the OðaÞ improvements to the currents in
Eq. (A9) as [42]

8At OðaÞ, there are no cross-terms between the cA and c0A corrections, since these would be proportional to a2cAc0A, so these two
effects can be studied separately.
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Gμν
3 ðx; yÞ ¼ Z2ðaÞZπhΩjTfðΨ̄ð0ÞðxÞγμγ5ψ ð0ÞðxÞ þ ψ̄ ð0ÞðxÞγμγ5Ψð0ÞðxÞ

þ acA∂μfΨ̄ð0ÞðxÞγ5ψ ð0ÞðxÞg þ acA∂μfψ̄ ð0ÞðxÞγ5Ψð0ÞðxÞgÞðΨ̄ð0ÞðyÞγνγ5ψ ð0ÞðyÞ þ ψ̄ ð0ÞðyÞγνγ5Ψð0ÞðyÞ
þ acA∂νfΨ̄ð0ÞðyÞγ5ψ ð0ÞðyÞg þ acA∂νfψ̄ ð0ÞðyÞγ5Ψð0ÞðyÞgÞ½ψ̄ ð0Þð0Þγ5ψ ð0Þð0Þ�†gjΩi þOða2Þ; ðA10Þ

where ZðaÞ ¼ ZAð1þ b̃Aam̃ijÞ, and m̃ij ¼ ðm̃i þ m̃jÞ=2. At order a, there are two terms proportional to cA, one with the cA
contribution originating from the Jμ current and the other with cA from the Jν current. To illustrate that terms proportional to
cA vanish, it suffices to investigate one of these two terms. For this purpose, contribution with cA coming from the
improvement of Jν is chosen:

Gμν
3;2ðx; yÞ≡ Z2ðaÞZπacAhΩjTfðΨ̄ð0ÞðxÞγμγ5ψ ð0ÞðxÞÞð∂νfψ̄ ð0ÞðyÞγ5Ψð0ÞðyÞgÞ½ψ̄ ð0Þð0Þγ5ψ ð0Þð0Þ�†gjΩi þOða2Þ: ðA11Þ

The Fourier transform of Gμν
3;2ðx; yÞ is denoted G̃μν

3;2ðp1; p2Þ. Integrating by parts yields

G̃μν
3;2ðp1; p2Þ ¼ Z2ðaÞZπacAipν

2

Z
d4x e−ip1·x d4ye−ip2·y hΩjTfðΨ̄ð0ÞðxÞγμγ5ψ ð0ÞðxÞÞðψ̄ ð0ÞðyÞγ5Ψð0ÞðyÞÞ

× ½ψ̄ ð0Þð0Þγ5ψ ð0Þð0Þ�†gjΩi: ðA12Þ

Consider the most general form of the matrix element in Eq. (A12). Since there is already one factor of pν
2, the integral

must transform as a vector under Lorentz boosts. Thus, the most general form of Cμν
3;2ðp1; p2Þ must be

G̃μν
3;2ðp1; p2Þ ¼ b1ðp2

1; p
2
2; p1 · p2Þpμ

1p
ν
2 þ b2ðp2

1; p
2
2; p1 · p2Þpμ

2p
ν
2: ðA13Þ

Using the parity constraints derived previously allows one to conclude that Cμν
3;2ðp1; p2Þ contains no terms which satisfy

these symmetry properties, and therefore it must vanish. The other term proportional to cA (arising from the correction to Jμ)
vanishes analogously. Thus, cA terms do not contribute to the OðaÞ correction.

3. Vanishing of c0A terms

Neglecting the cA and ZA corrections discussed above, the discretized version of the three-point correlator given in
Eq. (25) is given by

Cμν
3 ¼

X
xe;xm

h½ψ̄uðxmÞγνγ5ΨðxmÞ−
a
4
c0Aðψ̄uðxmÞγνγ5ð  DΨΨÞðxmÞ− ðψ̄uD⃖ψÞðxmÞγνγ5ΨðxmÞÞ�

×
h
Ψ̄ðxeÞγμγ5ψdðxeÞ−

a
4
c0AðΨ̄ðxeÞγμγ5ð  DψψdÞðxeÞ− ðΨ̄D⃖ΨÞðxeÞγμγ5ψdðxeÞÞ

i
½ψ̄dð0Þγ5ψuð0Þ�ieipe·xeeipm·xm; ðA14Þ

where the u and d quarks are degenerate and are solely distinguished in order to avoid disconnected diagrams.
Expanding this out gives

Cμν
3 ¼

X
xe;xm

h½ψ̄uðxmÞγνγ5ΨðxmÞ�½ΨðxeÞγμγ5ψdðxeÞ�½ψ̄dð0Þγ5ψuð0Þ�ieipe·xeeipm·xm

− a
X
xe;xm

c0A
4
h½ψ̄uðxmÞγνγ5ð  DΨΨÞðxmÞ − ðψ̄uD⃖ψÞðxmÞγνγ5ΨðxmÞ�

× ½Ψ̄ðxeÞγμγ5ψdðxeÞ�½ψ̄dð0Þγ5ψuð0Þ�ieipe·xeeipm·xm

− a
X
xe;xm

c0A
4
h½ψ̄uðxmÞγνγ5ΨðxmÞ�½Ψ̄ðxeÞγμγ5ð  DψψdÞðxeÞ − ðΨ̄D⃖ΨÞðxeÞγμγ5ψdðxeÞ�

× ½ψ̄dð0Þγ5ψuð0Þ�ieipe·xeeipm·xm þOða2Þ: ðA15Þ

The first line of Eq. (A15) is the tree-level contribution studied above. The second and third lines contain four very
similar terms, the first of which is
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−a
X
xe;xm

c0A
4
h½ψ̄uðxmÞγνγ5ð  DΨΨÞðxmÞ�½Ψ̄ðxeÞγμγ5ψdðxeÞ�½ψ̄dð0Þγ5ψuð0Þ�ieipe·xeeipm·xm: ðA16Þ

Explicitly writing out all spin, color, and spacetime indices, this becomes

−
ac0A
4

X
xe;xm;x

h½ψ̄uðxmÞαaðγνγ5ÞαβDΨðxmjxÞβγabΨðxÞγb�½Ψ̄ðxeÞδcðγμγ5ÞδεψdðxeÞεc�½ψ̄dð0Þζdðγ5Þζηψuð0Þηd�ieipe·xeeipm·xm: ðA17Þ

Performing the contractions with Wick’s theorem gives

ac0A
4

X
xe;xm;x

½D−1
u ð0jxmÞηαda�½D−1

d ðxej0Þεζcd�½D−1
Ψ ðxjxeÞγδbc�½DΨðxmjxÞβγab�ðγνγ5Þαβðγμγ5Þδεðγ5Þζηeipe·xeeipm·xm: ðA18Þ

Note that

X
x

DΨðxmjxÞβγabD−1
Ψ ðxjxeÞγδbc ¼ δð4Þðxm − xeÞδβδδac ðA19Þ

and thus these terms cannot contribute to this analysis, where contributions from τ≡ τm − τe ¼ 0 have been explicitly
removed. However, for completeness, it should be noted that one can show that these terms are in fact zero. With this result,
Eq. (A18) becomes

ac0A
4

X
xe;xm

X
xe;xm

eiðpeþpmÞ·xe ½D−1
u ð0jxmÞηαda�½D−1

d ðxej0Þεζcd�½δð4Þðxm − xeÞδβγδac�ðγνγ5Þαβðγμγ5Þδεðγ5Þζη ðA20Þ

¼ ac0A
4

δðτe − τmÞ
X
xe

eiðpeþpmÞ·xeD−1ð0jxeÞηαdaD−1ðxej0Þεζadðγνγ5Þαβðγμγ5Þβεðγ5Þζη ðA21Þ

¼ ac0A
4

δðτe − τmÞ
X
xe

eipπ ·xeTr½D−1ð0jxeÞγνγμD−1ðxej0Þγ5�: ðA22Þ

Under charge conjugation, ψ → C−1ψ̄T and ψ̄ → −ψTC (with C ¼ iγ2γ4), so

D−1ðxjyÞ ¼ hψðxÞψ̄ðyÞi → CD−1ðyjxÞTC−1: ðA23Þ

Further noting that CγμC−1 ¼ −ðγμÞT and Cγ5C−1 ¼ ðγ5ÞT , charge conjugation sends the trace in Eq. (A22) to

Tr½CD−1ðxej0ÞTC−1γνγμCD−1ð0jxeÞTC−1γ5� ¼ Tr½D−1ðxej0ÞTðγνÞTðγμÞTD−1ð0jxeÞTðγ5ÞT � ðA24Þ

¼ Tr½D−1ð0jxeÞγμγνD−1ðxej0Þγ5� ðA25Þ

¼ −Tr½D−1ð0jxeÞγνγμD−1ðxej0Þγ5�: ðA26Þ

Since QCD is invariant under charge conjugation, amplitudes must be similarly invariant, so this trace must vanish. The
remaining c0A terms vanish similarly, so there is no need to include the corresponding operators in the definition of the axial
currents JμA.
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