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The pion light-cone distribution amplitude (LCDA) is a central nonperturbative object of interest for
high-energy exclusive processes in quantum chromodynamics. In this article, the second Mellin moment of
the pion LCDA is determined as a proof-of-concept calculation for the first numerical implementation of
the heavy-quark operator product expansion method. The resulting value for the second Mellin moment,
determined in quenched QCD at a pion mass of m, = 550 MeV at a factorization scale of 2 GeV is
(&%) = 0.210 + 0.013(stat) & 0.034(sys). This result is compatible with those from previous determi-

nations of this quantity.
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I. INTRODUCTION

The pion light-cone distribution amplitude (LCDA) plays
an important role in parton physics. It is central to a
description of a range of exclusive processes in high energy
quantum chromodynamics [1]. This LCDA, denoted as ¢,
is defined via its relation to the matrix element for the
transition between the vacuum and the (chargedl) pion state,
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where u is the renormalization scale and W[—z,z] is a
lightlike Wilson line between light-cone coordinates —z to
7 (z> = 0). In the above equation, f,, p, and p,, are the decay
constant, the three-momentum, and the four-momentum of
the pion. In the light-cone gauge, ¢, (&, u) can be interpreted
as the probability amplitude for the pion to transition to the
state of a quark and an antiquark that carry (1 + £)/2 and
(1 = &)/2 fractions of the pion momentum, respectively [1].
This LCDA plays an important role in understanding exclu-
sive processes in QCD [1,2], in addition to being a crucial
ingredient for extracting information regarding the Cabibbo-
Kobayashi-Maskawa matrix in flavor physics via hadronic
decays of the B meson [3-6].

Since ¢,(&, 1) encodes nonperturbative physics from
strong interactions, it is natural to attempt to compute this
quantity with lattice QCD (LQCD). However, LQCD calcu-
lations are normally carried out in Euclidean space because

Published by the American Physical Society
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of the need to employ Monte Carlo methods in evaluating the
path integrals. Therefore it is challenging to adopt LQCD for
investigating parton physics which involves dynamics on the
light cone. This leads to the conventional LQCD approach of
determining the Mellin moments for various parton distribu-
tion functions (PDFs) and LCDAs. In general these moments
can be extracted by computing matrix elements of local
operators that result from an operator product expansion
(OPE) [7-11]. The analytic continuation between Euclidean
and Minkowski spaces for these matrix elements is straight-
forward. In principle, knowledge of the relevant Mellin
moments enables the construction of PDFs and LCDAs.
Nevertheless, such a strategy has been limited by the
possibility of having reliable LQCD results for only the first
few moments because the breaking of O(4) Euclidean space-
time symmetry by the lattice regularization requires the
subtraction of power divergences in the renormalization of
the relevant local operators [7]. These power divergences
already appear in the computation of the first nontrivial (the
second) Mellin moment for ¢, (&, u). They can be evaded by
using a method proposed in Ref. [8], where one chooses
particular combinations of the Lorentz indices in the local
operator for computing the second moment. However, this
method is not applicable for the extraction of higher moments,
making it desirable to have other approaches with which to
extract information of LCDAS and other light-cone quantities,
including PDFs.

Alternative strategies for extracting information about
LCDAs and PDFs using LQCD have been proposed in the
last two decades [12—20], and their implementations are being
intensively pursued, see Refs. [21-24] for reviews. To access
information contained in higher Mellin moments while
bypassing the above-mentioned complication in renormaliz-
ing the local operators, a generic character of these strategies
is the computation for hadronic matrix elements of nonlocal
operators. For instance, one much studied procedure, the
quasi-PDF approach [17], features the calculation of matrix
elements involving a spacelike Wilson line. This work follows
the method suggested in Ref. [14]. It relies on investigating
the OPE analysis for hadronic amplitudes in Euclidean space
with the insertion of two local quark bilinears that contain a
fictitious, valence heavy quark. For this reason, this approach
is termed the heavy-quark OPE (HOPE) method. The
introduction of this heavy quark affords several advantages,
such as the removal of certain higher-twist effects, the
inclusion of an extra heavy scale to control the OPE, and
simple properties of analytic continuation to Minkowski
space. As pointed out in recent work [25], this method can
be used to extract the £ dependence in ¢, (&, i) through a
perturbative matching procedure. The current article presents
its application to the numerical determination of the (second)
Mellin and Gegenbauer moments.” Since this is the first

2Preliminaly results from this calculation have been presented
in contributions to the proceedings of recent lattice conferences
[26-28].

numerical implementation of the HOPE strategy, this
calculation bears the character of a feasibility study, which
investigates the relatively well-known second Mellin
moment. This allows a better quantification of the efficacy
of the method. The success of the current work paves the way
for further studies using this technique. For this reason, the
quenched approximation and an unphysical pion mass of
~550 MeV are used. Since the continuum extrapolation is an
important ingredient in this approach, the calculations are
performed at four choices of the lattice spacing, a, ranging
from 0.04 to 0.08 fm.

Definitions relevant to this method and the conventions
adopted in this article are declared in Sec. II. The HOPE
method and its particular features for the current work are
explained in Sec. III, while Sec. IV describes the details of
the numerical implementation. The analysis of the data and
the results are discussed in Sec. V. The conclusion of this
work and the outlook in this research direction are then
given in Sec. VL

II. DEFINITIONS AND CONVENTIONS

Before proceeding to describe the numerical lattice
determination for the second Mellin and Gegenbauer
moments of ¢, (& u), a review of the definition of these
moments is in order. The discussion presented here also
serves the purpose of setting the conventions and notation
that will be used in subsequent calculations.

Conformal symmetry in QCD [29] implies that the pion
LCDA can be conveniently studied using the Gegenbauer
OPE. C-parity imposes the constraint ¢, (&, ) = ¢, (=&, )
in the isospin limit, leading to

bW =2(1-8) Y HWEE. @)

n=0,even

oW

where C3/ 2(¢) are the Gegenbauer polynomials, with

C2(E)=1 and C*(£)=(-3+1562)/2. The Gegenbauer
moments, ¢,(u), are defined as

2(2n +3)

) = s | @b n. )

Because of conformal symmetry, the ¢, (1) do not mix
under the renormalization group (RG) evolution at one
loop. To this order, their renormalization scale dependence
is [30]

4)

) = o) (Z020)"

(ﬂl)

where a; is the strong coupling, fy = 11 —2N;/3 (N,
being the number of flavors) is the coefficient of the
leading-order (LO) QCD f function, and y,, is the anoma-
lous dimension,
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Since y,, increases monotonically with 7, one expects that a
truncated version of the OPE in Eq. (2) can be a good
approximation to ¢, (&, i) at large enough renormalization
scales. In the regime where yu > Agcp (With Agep being
the QCD dynamical scale), the pion LCDA is dominated by
the zeroth Gegenbauer moment. Equations (4) and (5) lead
to the asymptotic form the pion LCDA,

(1-¢), (6)

W

lim ¢, (&, u) =

J—> 00

where the normalization ¢, = 1 has been imposed.

The Gegenbauer moments in Egs. (2) and (3) can be
expressed as linear combinations of the Mellin moments
(&"), which are defined as

(&) () = / 1 dEE" Do (& 10). (7)

For instance, from Egs. (2) and (7) it is straightforward to
obtain

h=(E) =1 = (5~ (&)
b = 5 (C1E) —14E) + (). . (®

In general, knowledge of (£%), (£2), ...(£") is equivalent to
that of ¢, ¢, ..., ¢,. These Mellin moments, (£"), can be
related to matrix elements of local, twist-2, operators,

(Ollay 5D+ (D" — traces] " (p)
= (&) (W?)[ptop* -+ pn — traces], ©9)
where the Lorentz indices are totally symmetrized, with

<u

D' == (D" -D") (10)

N[ =

and the traces are taken in all possible pairs amongst the
Lorentz indices, ug,Hy, ..., 1,. As discussed in the last
paragraph, from the leading-order result of QCD perturba-
tion theory, it is natural to expect that knowledge of the first
few Gegenbauer moments allows one to construct ¢, (&, u)
reliably at sufficiently large p. This also implies that
obtaining important information about the LCDA at u >
Aqcp 18 possible from the first few Mellin moments.” This
point can be illustrated by investigating an extreme scenario

The qualitative feature of low-moment dominance in ¢, was
also argued using QCD sum rules [31].

(& 1)

FIG. 1. Dependence of d),(,z)(.f, u), defined in Eq. (11), on the
values of (£2). The range of (£?) values shown in the plot covers
typical results for this second Mellin moment at y ~ 2 GeV from
modern lattice computations. They lead to consistency with a
single-humped or double-humped structure of the DA, and more
precise measurements would resolve this.

where one truncates the Gegenbauer OPE in Eq. (2) at
n =2. The pion LCDA constructed with this truncated

OPE is denoted (,b,(,z)(.f, u). Using Eq. (8), one obtains

PO E ) = (1= ) doW)C(E) + da(u)C2 (D)

4
= B TE W] + o5 + 2 W]E
o 1= 5@ e (1)

Figure 1 shows the result with ¢§,2)(§,/1) at (£2)(u) = 0.2,
0.25 and 0.3. Note that these are typical values for this
second Mellin moment at 4 ~2 GeV from modern lattice
computations [9-11,32,33]. This figure demonstrates that
the shape of the pion LCDA can depend strongly upon
(€)(u). Naturally, the inclusion of higher moments will
likely reduce the sensitivity to the second moment, but
nevertheless, this exercise shows that the second Mellin
moment is a phenomenologically interesting quantity.

III. STRATEGY AND CORRELATION FUNCTIONS

To present the calculation for the second Mellin and
Gegenbauer moments of ¢, (&, i), it is first necessary to
describe the strategy and the correlators that have to be
computed using LQCD. To extract moments for the pion
LCDA employing the HOPE method, the hadronic
amplitudes

Vi (q, p) = V*(q, p)

; )

Viel(q, p) =
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are computed, where

vie(g. p) = / 'z €95 (O[T {4 (2/2)0% (~2/2) (D).
(13)

with J% being the axial-vector current involving a light
quark y and a fictitious valence heavy quark W with
mass ny,

T =y + gyt (14)

The antisymmetrization in Eq. (12) is performed explicitly
to reduce statistical noise, and the axial-axial correlator in
Eq. (13) was empirically found to have less excited-state
contamination than the analogous correlator with two
vector current insertions.

A. Relevant results from the HOPE strategy

Conformal symmetry in QCD [29] implies that it is
natural to proceed with the Gegenbauer OPE for studying
the twist-2 contribution to the hadronic amplitude defined
in Eq. (12). This OPE allows one to express the twist-2
component of V#I(g, p) in terms of the same Gegenbauer
moments, ¢, (u), defined in Eq. (3). These Gegenbauer
moments do not mix under RG evolution at one-loop

V(g p) =

[34,35]. At this order, generically the Gegenbauer OPE
leads to [25]

216’”””’q Po
SLGL LIRS SN

n=>0,even

+higher-twist terms, (15)

Viel(q.p) =~ Q2 ..y ) by ()

where p is the renormalization scale, my is the mass of the
fictitious valence heavy quark, and F,, are coefficients that
can be computed in QCD perturbation theory and can be
expressed as functions of the kinematic variables

Q=0 +mi, =", (16)
with Q? = —¢4°. For simplicity, higher-twist contributions
to VI*(q, p) will be discarded below in this section. They
will be discussed in detail in Sec. V.

Employing results in Ref. [25], it can be demonstrated
that

[Se]

Fn(QZ’#’6)7m‘P): Z

m=n,even

fn,m(QzJ"?m‘P)(%)m. (17)

As an example, the leading-order (tree-level) result of F, is
independent of y and gives, up to O(®?),

_wfﬂ{{“ridqu( )}¢0+{335 @+ O(a 4)]¢2+(9( )}

0? 20
-2 L e(3) o (19)

where the relation between the leading two Mellin and Gegenbauer moments given in Eq. (8) is used. In this work, the goal
is to compute the second Mellin and Gegenbauer moments of ¢, (&, u), working in the kinematic regime where @ < 1,
such that the OPE for V*!(p, q) can be truncated at the order of @?.

Beyond the leading order (LO) in QCD perturbation theory, adopting Egs. (15), (17) and (8), one obtains

2ie"P°q,p,

V[ﬂy] (q’ p) = Q2

> @ ame(3)" (19)

n=0,even

where the Wilson coefficients, C (Q2 4, my), are linear combinations of F, (0%, u, my) [25]. Since this work uses a
relatively heavy pion (m, ~ 550 MeV) it is beneficial to resum higher-twist target mass effects proportional to m,. The

resummation prescription given in [36] is to replace @" by {"C2(n)/(n +

and C%(n) is a Gegenbauer polynomial. In other words,

i SUUPO
Vil(g, p) = — 2 4pPo

fo S0 OO wmy) ()

2
Q n=>0,even

VP*? /0% n=p-q/\/P*q,

1)0?% where ¢ =

[ £"Caln) ] (20)

2"(n+1)0%
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Truncating at the order of @?,

: vpo
2ie"’?q,p,

Q2

B 5 2c2
Vil(g. p) £ @) + €@ ) S on

where the explicit one-loop expressions for c$)(Q2, u, my) and C(uz,)(Qz, u, my) are given in Ref. [25]. Equation (21) is
used in this analysis to extract (£2). As described in Refs. [14,25], in addition to (£?), f,, and my are also fit parameters in
the analysis procedure that will be presented in detail in Sec. V. Note that while the hadronic matrix element is
renormalization scheme and scale independent, the factorization of this matrix element into short-distance Wilson
coefficients and long-range Mellin moments are dependent on the renormalization scheme and scale. The calculation of the
Wilson coefficients was determined in the MS scheme and thus the fitted heavy-quark masses and Mellin moments are
directly extracted in this scheme.

B. The correlation functions

The power of the hadronic tensor lies in its amenability to lattice QCD calculations. The pion LCDA defined in Eq. (1)
cannot be computed directly in Euclidean-space LQCD due to the lightlike separation vector z. In contrast, the hadronic
tensor V#¥ can be written in terms of quantities calculable on the lattice. Defining

R*(r:p. q) = / Pz & (O[T (7% (2/2.2)2) 1 (=22, ~2/2)]2(p))
— (0175 (2/2: (b + 0)/2) 7% (~2/2: (b — 0)/2) 2(p)). (22)

then the hadronic tensor is the Fourier transform of R** in the temporal direction:

Ve(q.p) = [ dr v R4 (.. (23)
Using lattice methods, one can compute two-point and three-point correlation functions

Cy(z.p) _/dSX e (0]0,(z.x)0%(0.0)[0)
= (0]O(z.p) O%(0. )|0), (24)
and
Cy (T T Pes P) = / dx, dx,, €PXee®rn (O|T [J4 (70, X,) T4 (70 X)) Ox(0)][0)
= (04 (7e. Pe) /4 (70 P ) Ox (0. P)]0). (25)
The three-point correlator is shown diagrammatically in Fig. 2.

For 0 <« 7 <« T, the two-point correlator is saturated with the contribution of the lowest-lying hadronic state and can be
written as

Z:P) ko) o ()Tt
Clz.p) ~ |2E((I))|) (e E0)r | o E)(T-9)] (26)

which allows determination of the overlap factor* Z,(p) = (0|0,|z(p)) and the pion energy E,(p).
Similarly, for 0 < 7,, 7,, < T/2, the three-point correlation function takes the form

C Z,(p)
5 Tes Tns Pes P) ~ RF (7P q - e—E,,(p)(rp+rm)/2’ (27
! ) ( ) 2E,(p) )

*Z.(p) is taken to be real and positive in this analysis.
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[F-monee

=
3
B

J:z/; (fmr Tm)

Euclidean time

FIG. 2. A diagram of the three-point correlator used in this
calculation with current insertions at times 7z, and 7,,.

withp =p, +ppandz =7, —

7,,, allowing one to extract

2E,(p)C5 (7o, T3 Pe- Pin)

from the two- and three-point correlators. From this and
Egs. (21) and (23), one can extract the second Mellin
moment on the lattice.

IV. DETAILS OF NUMERICAL
IMPLEMENTATION

A. Lattice action and O(a) improvements

Order-a corrections to correlation functions arise from
both the action and the interpolating operators [37-39].
Thus in order to remove these effects, one must in general
improve both. The ensembles were generated with the
standard Wilson gauge action

ZZRe{Tr [1-

n  p<v

Pu(n)]}, (29)

Selw.w. U

where f = 6/¢” is inverse coupling and P,, is the Wilson
plaquette. The gauge action is automatically O(a) improved.
The Wilson fermion action, which is omitted from

HY (7 = ensemble generation in the quenched approximation but
R*(z:p.q) Z (p)eF-0 i 2 (28) ¢ e g quenched app
=\P is used in propagator construction, is given by
|
RS )
SF v, l//’ - 614 Z Z W(ll/l |:—) 5aﬂ5ab5nm - Z Z (1 - J//l)aﬂU/l(n)abénJrﬁ,m Wﬂb (m)’ (30)
=1 m,n p==1

where k') is the hopping parameter for flavor f [40]. The fermion action can be improved by addition of the clover term
] 1 I
88w U] = g @’cq) | Y w(n)ic™ Fy (m(n). (31)
nouv

where 6, = [y,.7,]/2i and I:",,,,

is a discretized version of the field strength tensor corresponding to a sum over plaquettes.

The clover coefficient cg,, is taken from the nonperturbative tuning in Ref. [41].
The O(a)-improved, renormalized axial current operator is given by

/

Jy = Zﬁxo)(l + byain;;) |Wy,rsY + acsd,pys¥ —

0) . . . .
where Zg) is the axial-vector renormalization constant

calculated in the chiral limit, 7;; = (7; 4 /;)/2 is the
average value of the masses of the two quark fields and
ba,ca. ¢/, are couplings which must be tuned to remove the
O(a) corrections [42]. However, only b, is required for
the O(a) improvement of the hadronic matrix element
considered in this work.

This work studies the antisymmetric correlator
Rl (7,p,q), which may be obtained by taking the anti-
symmetric combination of Eq. (22). For this specific matrix
element, it is possible to show that the term proportional to
ac, vanishes by symmetry (see Appendix A 2 for details).

o - e
a3 (r,rs(D +my)® = 5(D +my, )y, rs¥) +

w<W), (32)

The terms proportional to ¢/, can also be shown to vanish;
details of this argument are given in Appendix A 3. This
means that both renormalization and O(a) improvement

of the current are, for the purposes of this work, purely

multiplicative effects. ZE‘(» is given in Ref. [41] and b, is

given in Ref. [42]. However, in the time-momentum
representation analysis procedure described below, any
multiplicative factors only affect the fitted pion decay
constant f, and not the second moment (£%), and thus
the second moment is independent of any uncertainties in
these O(a) improvement parameters. As a result, lattice
artifacts in (£2) only enter at O(a?) or higher order.
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B. Lattice parameters

Despite the O(a)-improvement scheme described above,
the method in this work requires very fine lattice spacings
because of the large mass used for the intermediate heavy-
quark propagator. With renormalized heavy-quark masses
ranging from about 2 to 4.5 GeV, lattice spacings between
0.08 and 0.04 fm are needed to keep amy < 1. At larger
values of amy, lattice artifacts were uncontrolled and could
not be reliably removed.

Due to critical slowing down, generating dynamical
configurations at such fine spacings is expensive and
beyond the scope of this preliminary study. As a result,
this analysis uses gauge configurations generated in the
quenched approximation following the multiscale pro-
cedure of Ref. [43]. The lattice spacings for the ensembles
with L/a = 24, 32, and 48 had previously been determined
in Ref. [43] using Wilson flow with a reference scale of
wo4 = 0.193 fm [44]. This scale-setting procedure was
repeated for the ensemble with L/a = 40. The lattice
geometries were tuned to a constant physical volume
of 1.92 fm, which was kept small to reduce computational
costs.

Finite volume effects were suppressed by using light
quark masses tuned to give m, =550 MeV so that
m,L =~ 5.3. The heavy-quark masses were chosen to give
approximately constant masses of the heavy-heavy pseu-
doscalar meson across the four lattices. Details on the
lattices and quark masses used are listed in Table I and

shown graphically in Fig. 3. The required two- and three-
point functions were generated using the software package
CHROMA with the QPHIX inverters [45,46].

C. Choice of heavy-quark masses

The operator product expansion in Eq. (21) will require
higher-twist corrections that scale like Agcp/Q or m,/Q.
Unlike light-quark operator product expansions that rely on
large momenta or small distances to suppress higher-twist
effects [47], this work relies on the heavy intermediate mass
for this suppression. With my 2 g, > |q|, higher-twist
effects will scale as Agcep/my or m,/my, so this analysis
requires Agcp, M, << my. Separately, lattice artifacts enter
as powers of either aAgcp or amy. Suppressing these will
require amy < 1, so altogether it is required that

AQCD’ m,; < My < al. (33)

With Agcp ~250 MeV and m, = 550 MeV, my >
1.8 GeV provides some suppression of higher-twist effects.
To fit the residual higher-twist effects away will require a
range of heavy-quark masses, and therefore this analysis
will consider my as large as 4.5 GeV. The lattice spacing is
small enough for the finest discretization to accommodate
such a heavy mass while maintaining amy < 1; coarser
lattices out of necessity have a smaller range of heavy-
quark masses. Figure 4 shows the quark masses used on
each of the four ensembles considered here.

D. Choice of kinematics

The heavy-quark OPE is given by

V[}w] - _ 21..7“718;4~1//1/1qpp/1

TABLE L

2 {ci},’) +(&)a? <1 -

P ¢

o)
6(p- q)z) Cw +

..+0<AQQCD>],

Details of the ensembles used in this numerical study.

(L/Cl)3 X T/a ﬂ a (fm) Klight Kheavy Csw

Configurations used Sources/configurations Total sources used

243 x 48 6.10050 0.0813 0.134900 0.1200

0.1100

0.1250
0.1184
0.1095

0.1270
0.1217
0.1150
0.1088

0.1285
0.1244
0.1192
0.1150
0.1100

1.6842

323 x 64 6.30168 0.0600 0.135154 1.5792

40% x 80 6.43306 0.0502 0.135145 1.5292

483 x 96 6.59773 0.0407 0.135027 1.4797

650 12 7800

450 10 4500

250 6 1500

341 10 3410
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+ Lja=24
0.56 1 + L/a =32
' + Lja=40
= } + Lja=48
o
< 0.55 +
. +
) —
0.54 1
1925 1950 1.975  2.000
L (fm)
FIG. 3. A comparison of tuning of pion mass and lattice spatial

extent L across the used ensembles.

where p is the momentum of the incoming pion and ¢ is the
difference in momenta between the two outgoing currents,
and where the ellipsis represents the contributions of higher
moments that are negligibly small in this analysis. The
exact form of the higher-twist effects suppressed by A/Q is
not known, but symmetries (see Appendix A 1) constrain it
to be proportional to ¢,,,,¢” p*.

In order to enhance the contribution of the second
moment, one would like its prefactor to be as large as
possible. However, 0> must be large to suppress higher-
twist effects, and p is limited by noise that grows
exponentially with the pion energy on the lattice. In this
work, p = ﬁ was constrained to be one unit of momen-
tum, which for the volumes used in this work corresponds
to |p| =640 MeV. At these kinematics, the second
moment is a small contribution to the hadronic tensor.
As such, it is desirable to isolate its effect from the much
larger contribution of the zeroth moment. In this study,
the axial current indices are fixed to be u = 1, v = 2, the
prefactor on the right-hand side of Eq. (34) becomes

i€upsq"P° = i(¢°p* — P°q°) = —¢*p* —iE.q*.  (35)

If the kinematics are chosen such that p? = 0, then this
prefactor is purely imaginary. At tree level, the entire
contribution of the zeroth moment will be pure imaginary
as well. However, p-q =iE,q* —p-q is generically
complex (as long as p-q #0), so the contribution of
the second moment to the hadronic tensor will have
nonzero real part. The effect of these special kinematics
is shown in Fig. 5. This work met these criteria by choosing

p=1(1,0,0) and q=1(1/2,0,1) (36)
in units of 27/ L, as well as all combinations of P, q that are
equivalent under lattice symmetries. With these choices,

0.6

I
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I
I
1
1
1
1
I
I
I
I
I
1
1
1
1
1
1
]

000 025 050 075  1.00
(amqj)2

FIG. 4. The four lattice spacings and the heavy-quark masses
used. The plot shows the trade-off between discretization
effects [which can depend on (amy)?] and higher-twist effects
(which scale as 1/my). At fixed lattice spacing, one can
decrease the higher-twist effects at the cost of increasing
discretization errors, and the available trade-offs at the four
lattice spacings studied here are shown by the blue curves. The
colored points show the masses actually used in this study. The
black dashed line at amy = 1.05 shows the cutoff beyond
which discretization effects were no longer found to be well
controlled, and the gray line at amy = 0.7 shows a more
conservative threshold used for analyzing systematic errors
arising from lattice artifacts.

(£2) can be extracted as the leading contribution in the real
part of V#*. [Note that ¢ = (p,, — P.)/2, so it is quantized
in half-integers rather than integers.]

There are two caveats to this argument:

(1) The Wilson coefficient of the zeroth moment CE,(;),
while real at tree level, becomes complex at one-loop
order and also contributes to the real part of V*.
However, this contribution is suppressed by a,, and
it is known analytically, so this small correction can
be subtracted.

(2) Higher-twist contributions may also be complex,
but their contribution to Re[V#] must also contain
powers of (p - q)*/(0%)?, just like the second mo-
ment contribution. They are further suppressed by
Agep/ 0, so it is expected that they are smaller than
the second moment contribution, particularly for
large 0.

However, assuming the second Mellin moment is
(&%) ~0.25, both of the above contributions are subdomi-
nant at the special kinematics chosen here.

E. Computing real and imaginary parts of V**

To compute the hadronic tensor, values of RM(7)
Cy (e, =7, +7) are needed at both positive and
negative values of 7. In particular, using the fact that
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Investigation of optimal kinematics for the HOPE procedure. Feasible lattice simulations are restricted to small lattice

momentum, and thus for the HOPE method, small @. Generally speaking, this results in moments beyond the leading zeroth moment
being highly suppressed. This behavior may be seen in the imaginary part of the amplitude where the variation of (£2) has a minimal

effect on the matrix element. By choosing p = (1,0,0) and q =

(1/2,0, 1), itis possible to show that the leading contribution to the real

component of the amplitude arises from (£2). Thus this choice of kinematics offers improved access to the second Mellin moment.

R*(7) is pure imaginary,5 the imaginary and real parts of
V# can be written in terms of symmetric and antisymmetric
combinations of R*(=£7):

Re[V*(p. q)]

= / " dr [R*(r:p.q) - R*(~7:p.q)]sin(qs7).  (37)

0
m[V*(p, q)]
- / ® dr [R*(:p.q) + R(~z:p. q)] cos(qsr).  (38)

At the kinematics of interest, the real part of V#¥ is about
2 orders of magnitude smaller than the imaginary part, so
computing the difference in Eq. (37) requires a delicate
cancellation between R*/(+7). The computation becomes
more tractable if the two terms are highly correlated, as this
increases the statistical power of the correlated difference.
These correlations are substantially enhanced if values of
C%¥ for = < 0 are obtained using the identity®

ng(fevrm;pev pm)* = Cgﬂ(fmvfe;_pm»_pe)' (39)

°In terms of the Minkowski 4-momentum ¢ = (g.q), the
hadronic tensor is pure imaginary and can be related to R*(z)
via Laplace transform, which has a purely real kernel.

®This identity can be proven by writing C%’ in terms of the
quark propagators,

v .
C3 (Te’ T Pes pm)
B / X, d>X,, e/Pe X PnXn

XTT[75D$1(0|xm)75hD\p ( m‘x )757/;4 y/ ( e|0)]

and applying ys Hermiticity to each of the propagators.

Then Egs. (37) and (38) can be written as

Re[V¥*(p, q)]
= /O dr [R*(:p.q) + R*(z:-p. q)] sin(gy7).  (40)
m[V*(p, )]
_ / " dr [R™(r:p.q) — R*(1:-p.q)| cos(qyr). (41

Consequently, one can obtain both 7 > 0 and 7 < 0 at the
same sets of current insertion times, which will enhance the

o~ 4 R[w](ﬂp, q) — R[Wl(,ﬂp}q)

% 0.0000751 {  RW(r,p,q)+ R (r,—p,q)

S

— 0.000050

=

3

= 0.0000251

| L]

R 0.000000 \ Pb oy e
0.0 0.2 0.4 0.6

7 (fm)

FIG. 6. A comparison of the real part of the hadronic tensor
computed using Eq. (37) versus Eq. (40), the latter of which has
been manipulated to reduce the statistical error. While the
manipulations do not change the expectation of the correlator,
they reduce statistical uncertainties by about an order of magni-
tude. For comparison purposes, both quantities were measured on
two sources on each of 450 configurations.
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FIG. 7. Excited-state contamination at operator separations (a) 7 = 0.06 fm and (b) 7 = 0.36 fm.
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FIG. 8. Validation plots for the single-state ansatz used in this study. The left panels show fits to the L/a = 40 pseudoscalar correlator

for |p| = 1 and |p| = 0, respectively, while the right panel shows the resulting effective mass plateaus. The “pull” in the left-hand plot is
the residual of each data point normalized to its standard deviation and is a measure of that point’s effect on the fit.

correlations. A demonstration of this reduction in statistical
error is shown in Fig. 6.

F. Excited-state contamination and choice of z,

The three-point correlator C5’(z,. 7,,) = (J4 ()4 (T,0)
(’);,(0)) is computed by creating a pion source, propagating
one of the quarks forward to 7,, creating a sequential
source, and then tying together the sequential heavy-quark
propagator and the other light quark propagator at the sink.
Since 7, < 7,, is chosen in this work, excited state effects
arise from the fact that the combination of states created by
the pion interpolator has not fully relaxed to the ground
state before z,, so they are suppressed exponentially in z,.
Excited-state effects are reduced by using a Gaussian-
smeared pion source [48] with smearing radius equal to
the inverse pion mass (aWgper = {4.5,6.0,8.0,9.0} for
L/a = {24,32,40,48}, respectively). With this smearing,
numerical study on the L/a = 32 lattices showed that

excited-state contamination is estimated to be about 1%
for a source-operator separation z, of about 0.7 fm, as
shown in Fig. 7.

Since 7, must be fixed at run-time, 7, ~ 0.7 fm is chosen,
leading to a ~1% systematic error due to excited-state
contamination. Excited-state contamination in the two-
point function is better controlled since one does not need
to choose the source-sink separation at run-time, and one
can afford the very conservative fit range of [T/4,37/4]
since the statistical errors on the two-point function are
smaller than those on the three-point function (for an
example of the goodness of fit, see Fig. 8).

V. ANALYSIS, RESULTS AND DISCUSSION

Extraction of the second moment from the two- and
three-point correlation functions measured here is non-
trivial due to signal contamination by both lattice artifacts
and higher-twist effects. The extraction of Z,(p), E,(p)
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FIG. 9. Comparing the two analysis strategies. Both approaches utilize the same bare correlators, but note that the order of the

continuum extrapolation and HOPE fit are reversed.

from fitting the two-point correlation function C,(z,p) at
late 7 and the construction of R*(7) in Eq. (22) are
relatively straightforward. However, comparing the three-
point data to the OPE of the hadronic amplitude can be
done in multiple ways, which can lead to somewhat
different systematics. As this is the first numerical study
of the HOPE method, two analysis methods, called the
time-momentum analysis and the momentum-space analy-
sis, are performed. This enables a cross-check of the results
and ensures that they are robust against systematics in the
analysis procedure. These analysis methods are as follows:
(1) Time-momentum analysis

(i) Fit f, and the heavy-quark mass my by
comparing the symmetric part of the data to
the inverse Fourier transform of the OPE of
Im[V(p, ¢)], that is, from the inverse Fourier
transform of Eq. (41).

(i) Use the fitted results of f,, my and the anti-
symmetric part of the data to fit the second
moment (£2) from the inverse Fourier transform
of Re[V(p. q)|, using Eq. (40), at each heavy-
quark mass and lattice spacing.

(iii) Perform a combined fit to (£2)(a, my) to remove
both lattice spacing and higher-twist effects.

(2) Momentum-space analysis

(i) Perform a Fourier transform of R*(z) in the

temporal direction.

(ii) Extrapolate the momentum-space hadronic am-
plitude to the continuum.

(iii) Fit f,, my and (£?) to the hadronic amplitude in
the continuum limit using the momentum-
space, continuum HOPE formula presented in
Sec. IIT A.

These alternative procedures are shown diagrammati-
cally in Fig. 9. The following sections will detail both
analysis strategies.

A. Time-momentum analysis

The ratio R*(z; p, q) was constructed for 0 < 7 < 7., ~
0.6 fm. The statistical quality of the signal deteriorates
with time, and large-r data may be more susceptible to
higher-twist contamination, motivating the cut at z,,,,. The
symmetric and antisymmetric components of R*(z) are
constructed as described in Sec. III B.

An example fit to V#* for a single heavy-quark mass at a
single lattice spacing is shown in Fig. 10. At the chosen
kinematics, the second moment provides a negligible
contribution to the imaginary part of the hadronic tensor
(see Fig. 5), so the fitting procedure can be split into two
steps: one in which f, and my are fit to the imaginary part
of V# and a second step that consists of a single-parameter
fit of (£2) to the real part of V#*, where f, and my are used
as inputs. At values of 7 comparable to the lattice spacing,
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FIG. 10. The real and imaginary parts of the hadronic tensor V#* can be inverse Fourier transformed (indicated by F~!) to produce the
antisymmetric and symmetric components of the ratio of correlators R*. The symmetric part of R*(z) [corresponding to F~! [Im(V#)]]
is dominated by the zeroth moment contribution, allowing extraction of f, and my. These are then used as inputs to the fit of
F~1[Re(V*)] to extract the second moment {¢?). In order to avoid contamination with UV divergences near 7 = 0, points with 7 < 3a

(grayed out in the plots) are excluded from the fit.

uncontrolled discretization effects are to be expected.
Additionally, if the two current insertions are close in
space-time relative to the lattice spacing, they may mix with
lower-dimensional operators and lead to UV divergences.
Both of these effects suggest that small-z data should be
removed from the fits. Empirically, the y? values for the fits
to the various heavy-quark masses became reasonable if the
7 < 2a data are excluded, so all fits will only use data
with 7 > 3a.

This fitting procedure compares lattice data to a con-
tinuum, twist-2 OPE. As a result, the extracted second
moment (£2)(a, my) will be contaminated by both lattice
artifacts and higher-twist corrections. The lattice artifacts
enter at O(a?) (see Appendices A2 and A 3 for details),
and by dimensional analysis, a> must be accompanied by
two factors of a mass scale, either the typical momentum
scale of Agcp or the heavy-quark mass my, so there may be
discretization effects proportional to a?, a’my, or a*mg,.
With amy < 1.05, these terms were sufficient to describe
lattice artifacts without need for additional O(a?) terms.
Higher-twist effects scale as powers of Agcp/ Q orm,/0,
and Agcp ~m, in this analysis. The fitting procedure
effectively integrates over the ¢, dependence, and
my > |q, so the twist-3 contribution can be approximated
by a A/my term. Therefore, to extract (£?) in the
continuum limit without higher-twist contamination,
(&%) (a, my) is fit to the formula

A
(&) (a,my) = (&%) + — + Ba* + Ca*my + Da’m,,
My
(42)

where (£2), A, B, C, and D are the fit parameters. At an
intermediate mass scale of my =3 GeV and a lattice

spacing of a = 0.06 fm, the magnitudes of the various
terms are

(52) =0.210 £ 0.013, (43)
A
— =0.009 £ 0.005, (44)
My
Ba? = —0.004 + 0.013, (45)
Ca’my = —0.004 + 0.013, (46)
Dcﬂm?p = —0.027 4+ 0.006, (47)

where the renormalization scale for (£?) is taken to be
1 = 2 GeV and the error bars are purely statistical. Neither
the higher-twist nor the discretization effects can be
neglected at the precision considered in this work. The
fit result for (£2) is shown in Fig. 11.

B. Estimation of systematic uncertainties
for time-momentum analysis

The analysis procedure described in the previous sub-
section contains several systematic errors. Excited-state
contamination in the three-point function was estimated in
Sec. IV F to be a ~1% effect (and contamination in the two-
point function is much smaller). Finite-volume effects are
expected to scale as ;lze™"" < 107 and are negligible
compared to both statistical and other systematic errors.

This work uses an unphysically heavy pion mass of
m, ~ 550 MeV. Previous studies [49] have indicated that

(&%) at such a pion mass differs from its physical value by
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FIG. 11. The values of (£2)(a, my) at the gauge couplings and
heavy-quark masses listed in Table I, plotted as a function of a?
with the heavier masses at each lattice spacing displaced slightly
to the right for visual clarity. The black star at a> = 0 represents
the extrapolated value from the fit to Eq. (42).

about 5%. Therefore, this is taken as a systematic effect
arising from the unphysical pion mass.

Other systematic errors can be estimated by studying the
effects of changing input parameters or varying the analysis
procedure.

(i) The global fit described in Eq. (42) restricted the

heavy-quark masses to those satisfying amy < 1.05.
To test whether this cut is sufficient to exclude lattice
artifacts of O(a’) or higher, one could choose a
more conservative cut, using only data satisfying
amy < 0.7. Refitting with this more limited dataset
results in a fit value of (&%) =0.226 +0.043.
Although these two results are compatible within
one standard deviation, the difference between the
central values (0.016) is taken as the estimate of
the systematic uncertainty from the continuum
extrapolation.

(i) The global fit contains a Agcp/my term to account
for the twist-3 contribution. In principle, higher-
twist contributions are also present. To estimate such
systematic effects, one could add a Agcp/ mi, term
to the global fit in Eq. (42). This changes the fit
result to (£2) = 0.185 + 0.017 which has a central
value differing from that of the primary procedure by
0.025. This is taken to be the systematic uncertainty
from higher-twist effects.

(iii) As explained in Sec. VA, at small values of
T =1, —1,, the data are contaminated with uncon-
trolled lattice artifacts. The primary fit omits the
7/a =0, 1, and 2 points, where such effects are the
most significant and result in unacceptable y? values
in the fits. To analyze errors arising from the
placement of this cut, one can exclude z/a =3
from the fits, which gives a modified result of (£2) =
0.208 £ 0.014 and therefore a small systematic

TABLE II.  The error budget for the computation of the second
Mellin moment (&%) using the HOPE method, with the data
processed in the time-momentum representation.

Source of error Size
Statistical 0.013
Continuum extrapolation 0.016
Higher-twist 0.025
Excited-state contamination 0.002
Unphysical m, 0.014
Fit range 0.002
Running coupling 0.008
Total (excluding quenching) 0.036

uncertainty from the difference in central values
of 0.002.

(iv) The Wilson coefficients Cy, are calculated in pertur-
bation theory, and in this analysis, they are only
computed to one-loop order. As an estimate of the
magnitude of higher-loop corrections, one can per-
form this analysis at a larger renormalization scale of
1 =4 GeV and then run back to y =2 GeV using
Eq. (4). Such a procedure results in (&2) (u=4GeV) =
0.2164-0.012, which evolves to {(£2)(u = 2 GeV) =
0.218 £ 0.014, giving a systematic uncertainty of
0.008 from the change in central value.

The above procedure for estimating systematic effects
leads to a final value of (&2)(u =2 GeV) = 0.210+
0.013(stat) & 0.034(sys), which can be combined in quad-
rature to give (£2)(u =2 GeV) =0.210+0.036 (total,
excluding quenching). The above error estimates are
summarized in Table II.

The dominant sources of uncertainty are from the
continuum and higher-twist extrapolations. In principle,
both these extrapolations can be better controlled by
including finer lattice spacings, which would also allow
the inclusion of larger heavy-quark masses. However,
computations at finer lattices are expensive and therefore
beyond the scope of this preliminary work. The error from
quenching is formally uncontrollable, although empirically
itis a 10%—-20% effect in many calculations. To perform a
precise comparison of this result to dynamical calculations
would require redoing these calculations on dynamical
ensembles.

C. Determination of f,

The previous two subsections describe the determination
of the second moment of the pion LCDA using the time-
momentum analysis procedure. To check the validity of the
HOPE strategy, it is worth noting that the pion decay
constant f, is computed as a by-product of this analysis. As
is clear in the OPE formula, Eq. (21), f, is an overall
normalization factor for the hadronic amplitude V#*.

One can extrapolate the f, values computed at various
heavy-quark masses on the four ensembles to the
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FIG. 12. Extrapolation of f, to the continuum. The colored
points at finite lattice spacing are the values of f, extracted from
the four lattice spacings at various heavy-quark masses as an
intermediate step in the determination of (£2). The black point is
the global fit of 161 -2 MeV to the hadronic tensor data. The
gray points are direct computations of f, at the four lattice
spacings. These direct calculations suffer from O(a) discretiza-
tion errors, but an extrapolation linear in a gives a continuum
value of 158 £5 MeV, in good agreement with the value
extracted from hadronic tensor measurements.

continuum using the same procedure as for the extrapola-
tion of (£2), giving a global fit value of 161 4-2 MeV after
removal of lattice discretization and higher-twist effects,
where the error reflects statistical uncertainties only. It
should be noted that this measurement suffers from not
only the systematic errors mentioned in the previous
subsection but also additional uncertainties from the
normalization constants Z, and b, to which the second
moment is completely insensitive in the time-momentum
analysis.’

On the other hand, f, can be directly measurable on the
lattice via the axial-axial correlator at 0 < 7 <« T,

(ferA)zmﬂ

(0144(7)A4(0)[0) ~ =5

[e—mﬂr+e—in”(T—T)]’ (48)

where A, is the local unsmeared axial current yy,ysy and
the convention where f, ~ 130 MeV at the physical pion
mass is used. As written, Eq. (48) contains O(a) correc-
tions, so the continuum extrapolation must include a term
linear in a rather than in a?. A low-statistics (one source per

"Since this normalization factor is only used in the determi-
nation of f, rather than in the computation of (£?) that is the
main focus of the paper, this work uses the approximation
byam;; = byam;;, which is correct up to a mass-independent
O(a) term [42]. The value of b, was taken to be a constant value
of 1.25 across all lattice spacings, which is consistent with
the values quoted in Ref. [42] at all lattice spacings measured in
that work.

configuration) computation of f at the four lattices gives a
continuum value of f, = 157 & 6 MeV.

Despite the systematics that could affect the value
extracted from the hadronic tensor measurement, the two
determinations of f, are in good agreement (see Fig. 12).
While f, is not directly relevant to the calculation, this
serves as a useful cross-check of the validity of the operator
product expansion and, more generally, of this calculational
method.

D. Momentum-space analysis

A further check of the validity of the time-momentum
representation method can be obtained by analyzing the
same data using a momentum-space analysis. The starting
point for the momentum-space analysis is the time-
momentum representation ratio R*(z, p, q; @) constructed
in Eq. (28). The lattice-regularized data are converted to
momentum-space via

Tmax

Vil(p,g;a) =a Y ™R (z,p,q;a), (49)

T="Tmax

where 7., was taken to be approximately 1 fm =
5 GeV~'. By Fourier transforming the tree-level HOPE
equation, it is possible to show that the numerical data
decay exponentially in 7 as

—Eq7

2E,

where E, = \/mi + ¢*. Since R¥(z,p,q;a) exhibits

exponential decay in 7 with an exponent with magnitude
greater than approximately 2 GeV, the truncation in the sum
in Eq. (49) is expected to be well controlled. While the
discrete Fourier transform formally only produces a dis-
crete set of Fourier modes, in this work, interpolation
between these Fourier modes is achieved by evaluating
Eq. (49) for arbitrary g,. Note that the largest Fourier
mode, g™, must be taken sufficiently small to remain
below the Nyquist frequency which corresponds to requir-
ing ¢gi'™ < z/a. For the ensemble with the coarsest lattice
spacing (a = 0.0813 fm) this results in the constraint that
gy < 7.5 GeV. In practice, data at momenta close to the
Nyquist frequency may possess large lattice artifacts, and in
this analysis g™ =5 GeV is chosen.

While data at nonzero 7z are guaranteed to have a well-
defined continuum limit, 7 = 0 data contain additional UV
divergences arising from the mixing of the current-current
operator with lower-dimensional operators. After perform-
ing the Fourier transform, this divergence will appear as an
additive shift in the numerical data. Thus in order to ensure
that the hadronic amplitude considered in this work has a
well-defined continuum limit (after finite, multiplicative

Rz, p,q;a) ~

(50)
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renormalization), a single subtraction is first performed at
fixed lattice spacing:

Vi (p,gia) = VIl (p,g:a) =V p, (q.qagw):al,  (51)

where g4, is chosen to be @44 = ¢f* =5 GeV.
This choice is informed by the desire to minimize the
statistical noise introduced in this process. As a result of
this subtraction, the matrix element may be expressed
generically as

Vid(p.gia) =" a Vi L (p.q). (52)
n=0

where V%ﬂsub(p,q) =V"(p.q) is the continuum had-
ronic matrix element. As emphasized previously, the
simplicity of this continuum limit is one of the advantages
of considering a current-current correlator. As argued in
Sec. IVA, it is possible to show that the use of the
Sheikholeslami-Wohlert (clover) improved action leads
to the removal of O(a) corrections for the matrix element

studied here (see Appendices A2 and A 3 for details), so

Vi (p.asa) = Vi (p.q) + @Vl (p.q) + O(d),

(53)

It is important to note that the continuum extrapolation
requires taking a — 0 along a line of constant physics. This
is achieved by tuning the bare parameters to ensure certain
physical quantities remain fixed as lattice spacing is varied,
but there are some mistunings resulting from percent level
inaccuracies in the tuning process. While such a mistuning
appears as a relatively mild effect in the time-momentum
representation analysis where it results in a variation of f,,
the momentum-space approach is more sensitive to any
such mistuning, since it affects the continuum extrapolation
of the hadronic matrix element V! (p, ¢). Evidence of this
mistuning can be seen in Fig. 3. It is important to note that
the tuning of the light-quark sector parameters to their
physical values is an issue for all methods, and is not
unique to this approach. One can reduce the systematic
error associated with this mistuning by considering a ratio
which is less sensitive to the volume and pion mass
dependence. Examining the HOPE, the leading volume
and pion mass dependent quantities are found in the
prefactor (for y =1, v = 2),

(12]

Vsub (p’ q) x elZa/}

Padp X (Eﬂ‘I3)’ (54)

for the special kinematics considered. In order to reduce the

volume and pion mass dependence, the ratio VLLZb]( p.q)/

(E,q3) is formed and then continuum extrapolated.

In contrast to the time-momentum representation analy-
sis, a further cut must be made on the data included in the
analysis. All data presented in the time-momentum repre-
sentation analysis satisfy the constraint amy < 1.05. This
restriction is placed to ensure control over lattice artifacts.
However, in addition to this constraint, the momentum-
space analysis requires data at a sufficient number of lattice
spacings for the continuum extrapolation to be performed.
In particular, the model for the continuum extrapolation
contains two free parameters, and thus the analysis must
be limited to the subset of data where the heavy-quark
mass satisfies the constraint amy < 1.05 for at least three
lattice spacings. From Fig. 4, this criterion constrains this
analysis to make use of only the lightest three heavy-quark
masses. The continuum extrapolations of the real and
imaginary parts of the hadronic amplitude are shown in
Figs. 13 and 14.

E. Extraction of second moment

Having extrapolated the real and imaginary parts of the
hadronic matrix element to the continuum, a global fit is
performed to the order-ag HOPE formula given in Eq. (21)
plus an additional twist-3 ansatz which is used to control
the leading higher-twist effects. The functional form of the
model used in the extraction of the Mellin moments from
the continuum data is

VI2(q, p,my)/(E.q3)

2i ; _ . 2c2
-2 {c§3><Q2,u,T>+cé§)<Q2,u,r><f2> [cIZZQ(;I)]}

2if 23
—l—%{b(ﬁ—bz[ IZZQ(;’)]}. (55)

Itis important to note that while the above parametrization of
the twist-3 piece is the most natural, other terms like 7y /O*
are also possible. The resulting fit is shown in Fig. 15. As a
result of this global analysis, the first two moments of the
pion LCDA are found to be f, = 0.173 = 0.001 GeV, and
(%) (u =2 GeV?) = 0.210 £ 0.013, where the statistical
uncertainty is determined from a bootstrap analysis of the
numerical data. Since this a global fit, the three heavy-quark

masses are also determined to be m.(I} ) — 1.82 £0.02 GeV,

m{) =2524002GeV and m =3.3440.02 GeV,

which are in good agreement with the heavy-quark masses
determined at fixed lattice spacing in the time-momentum
representation.

Systematic uncertainties in (£2) for the momentum-space
analysis may also be estimated following the same pro-
cedure as described in the time-momentum representation
analysis. Since both analyses use the same lattice data they
share some sources of systematic error. Thus the excited-
state contamination is taken to be a ~1% effect, and as with
the time-momentum representation analysis, finite-volume
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FIG. 13.

Continuum extrapolation of the real part of the hadronic matrix element. Parts (a)—(c) show the pointwise continuum

extrapolation for each value of g, for heavy-quark masses of (a) my = 1.8 GeV, (b) mg = 2.5 GeV, and (c) my = 3.3 GeV. The
resulting hadronic amplitude in the continuum is shown in part (d), where curves are included to guide the eye.

effects are taken to be negligible. Finally, as in the time-
momentum representation analysis, the unphysically heavy
pion mass is assumed to contribute a 5% systematic error.
In addition to these shared sources of systematic uncer-
tainty, the momentum-space method has several additional
sources of systematic error. These arise from the difference
in the order of steps of the analysis, and are dis-

cussed below:

(i) Following the procedure employed above, O(a®)
effects are studied by making a more conservative
cut on amy. In particular, the cut is chosen to be
amyg < 0.7, which is consistent with the time-mo-

mentum representation. The resulting fit leads to a

(iii)

value for the second moment of (&) = 0.222 +
0.068. Taking the differences of central values leads

to a systematic error of 0.012.

(i)

The effects of higher-twist contributions may be

studied by adding a twist-4 ansatz to the continuum
HOPE formula in Eq. (55). The form chosen is

034506-16

[12]
higher-twist

|4 (g, p,my)/(Erq3)

2if Ngcp

= V12 (g, p.my)/(E,q3) + o

5 {CO e [Czcﬁ(n)} }

120?

mirroring the choice for the twist-3 term. The
resulting value for the second moment is
(£7) = 0.245 £ 0.019. This results in a systematic
uncertainty of 0.035.

The higher-loop corrections to the Wilson coefficients
are studied by repeating the above analysis at a
renormalization scale of 4 = 4 GeV, and then evolv-
ing back to u =2 GeV using the renormaliza-
tion-group evolution of the Gegenbauer moments
given by Eq. (4). This gives (&2)(u =4 GeV) =
0.236 £ 0.016. Running this to 2 GeV results in

(56)
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FIG. 14. Continuum extrapolation of the imaginary part of the hadronic matrix element. Parts (a)—(c) show the pointwise continuum
extrapolation for each value of g, for heavy-quark masses of (a) my = 1.8 GeV, (b) mgy = 2.5 GeV, and (c) my = 3.3 GeV. The
resulting hadronic amplitude in the continuum is shown in part (d), where curves are included to guide the eye.

(%) (u =2 GeV) = 0.239 4 0.017. Taking the dif-
ference between the evolved (£2) and the original
fitted (£2)(u =2 GeV) gives a systematic uncer-

tainty of 0.029.

Re[V(p, )/ Ergs] (Gev )

FIG. 15.

0.0001 1 { mg =251 GeV

0.0000

—0.00011

{  mg =330 GeV

my = 1.82 GeV,

-5 0 5
q1 (GeV)

A breakdown of the sources of systematic error described
here is given in Table III. This analysis of systematic
errors leads to a final value for the second moment of
(&) (u=2GeV)=0.210+0.013(stat) +-0.044(sys). These

= 0.061 t me =330 GeV
=z b omg =251 GeV
o § my=182GeV
& 0.04;
=
=
~
=
= 0.021
B
=
= 0.001 ¢ ' :
-5 0 5
q1 (GeV)

Global fit of continuum matrix element data to the HOPE formula to extract f,, my and (&2).
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TABLE III.  The error budget for the computation of the second
Mellin moment (&%) using the HOPE method, with the data
analyzed in the momentum-space approach.

Source of error Size
Statistical 0.013
Excited-state contamination 0.002
Continuum extrapolation 0.012
Higher-twist 0.035
Running coupling 0.029
Unphysical m, 0.014
Total (excluding quenching) 0.046

two sources of error may be added in quadrature to obtain the
final result (£2) (4 = 2 GeV) = 0.210 4 0.046. Similarly to
the time-momentum space analysis, the dominant source of
systematic uncertainty arises from the higher-twist terms.
This issue is made worse in momentum space due to the
additional cut on lattice data required for the continuum
extrapolation of the hadronic amplitude.

F. Discussion of results

The ratio R (7,p,q; a) was analyzed using two alter-
native approaches, termed the time-momentum represen-
tation (TMR) analysis and the momentum-space (Mom)
analysis. The results of the second moment from these
approaches are

(&) oyr (1 = 2 GeV) = 0.210 & 0.013(stat) & 0.034(sys)
=0.210 % 0.036, (57)

() yiom (1 = 2 GeV) = 0.210 % 0.013(stat) - 0.044(sys)
= 0.210 + 0.046. (58)

The central values and statistical errors are the same in both
approaches. The agreement of central values is the result
of statistical coincidence; with a different choice of fit
parameters this extrapolated central value is expected to
vary. The equivalence of the statistical error is relatively
unsurprising, since both approaches mostly share the same
raw lattice data.

As a cross-check, the pion decay constant f,z,pt =0.158 +
0.005 GeV was extracted from a conventional analysis of the
axial-vector two-point correlation function. This is to be
compared with the HOPE-derived values fIMR = 0.161 4
0.002(stat.) GeV and fMo™ = 0.173 4 0.001(stat.) GeV,
with systematic uncertainties in f,. The systematic uncer-
tainties in these determinations f, are likely comparable to
the systematic uncertainty in (£2) (about 10%-20%), or
perhaps slightly larger due to the added uncertainty in the
normalization factors.

Examining both procedures allows the study of the
advantages and shortcomings of both approaches and
serves as a further cross-check of the analysis. The above

equations show that the time-momentum representation
approach results in a smaller systematic error than that of
the momentum-space analysis. While the systematic uncer-
tainty incurred from the truncation of the twist expansion is
the largest systematic error in both analyses, the additional
cut placed on the data in the momentum-space analysis
results in the removal of data with the heaviest heavy-quark
masses. Since higher-twist corrections are suppressed by
factors of 1/Q ~ 1/my, this results in less control over the
higher-twist effects.

Given the above considerations, the central value is
chosen to be the more precise time-momentum represen-
tation analysis value of

(%) (u =2 GeV) = 0.210 4 0.036. (59)
This corresponds to a Gegenbauer moment of
¢r(p =2 GeV) =0.03+0.11. (60)

Most previous lattice calculations have used local
operators to compute (£2). In the quenched approximation,
(£2) was previously computed to be 0.280 £ 0.051 at a
renormalization scale of y = 2.67 GeV [9]. Running this
down to 2 GeV gives (£2) = 0.285 4 0.054, which agrees
with this quenched calculation, albeit with a large error bar.

More recent calculations with the local operator method
have been performed in dynamical QCD, giving (£%) =
0.28 +0.02 [10] and (&) = 0.235 £ 0.008 [50], both at
u =72 GeV. A separate approach is to proceed via the
quasidistribution amplitude (the distribution amplitude
analog of the quasi-PDF), which was used to give a result
of (£2) = 0.244 £ 0.030 [51]. These results are compared

This work, TMR { et HE
This work, Mom 1 ° COLLABORATION
Zhang et al.
1 —
(2020)
Bali et al.
(2019) | =
Arthur et al.
(2011) | ©
Del Debbio et al. |
(2003)
0.2 0.3

(€%) (1 =2 GeV)

FIG. 16. Comparison of {£2) extracted from the time-momen-
tum representation (TMR) and momentum-space analyses to
various results in the literature. Note that the values from this
work and Del Debbio et al. are in the quenched approximation,
whereas the results from Zhang et al., Bali e al., and Arthur et al.
use dynamical QCD, and the error bars do not reflect the
uncertainty from the quenched approximation.
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to the second moment determined in this work in Fig. 16.
Formally, the uncertainty from quenching cannot be con-
trolled, so a precise comparison of the results in this work to
these dynamical calculations is not possible. However, in
practice, quenching errors are usually at the order of
10%—-20%, and the calculation presented here agrees with
the dynamical results within the listed uncertainties com-
bined with this approximate quenching uncertainty.

VI. CONCLUSION AND OUTLOOK

Factorization theorems in QCD imply that the LCDA of
the pion is relevant to a variety of experimental processes.
Since the LCDA is a nonperturbative object, it is a quantity
of importance for LQCD calculations. While direct com-
putation of ¢,(&, ) is impossible in a Euclidean field
theory, a range of different theoretical approaches which
allow one to indirectly study the LCDA have been
proposed and pursued. These methods include direct
calculation of the local matrix elements [7—11], factoriza-
tion approaches like the pseudo-DA approach [17], and a
light-quark operator product expansion [15], have been
used or proposed to this effect.

Knowledge of the first nontrivial Mellin moment of the
pion (£2) provides an important constraint on the shape of
the LCDA. Due to the one-loop running behavior of the
Gegenbauer moments, one expects that the second moment
is especially important for the shape of the LCDA at large
enough renormalization scale. This quantity has previously
been studied with the conventional approach of calculating
the relevant matrix element of the local twist-2 operator. As
a result, this quantity is relatively well known and therefore
provides a good test of the validity and applicability of the
new methods.

This paper presents the first numerical study of the
HOPE method to extract the second Mellin moment of the
pion LCDA. This approach utilizes a quenched fictitious
heavy-quark species which enables more control over
higher-twist effects. After a discussion of the numerical
calculation of the hadronic matrix element, two alternative
approaches were explored for extracting the second Mellin
moment of the pion LCDA from the numerical data. These
two approaches were termed the time-momentum analysis
and the momentum-space analysis. Central to both analyses
is the fact that the matrix element has a well-defined
continuum limit after multiplicative renormalization.

In the time-momentum analysis, the O(a;) formula of
the HOPE is fit to the lattice data, and the resulting fit
parameters are then extrapolated to the continuum. In the
momentum-space analysis, the order of operations is
reversed, and instead after Fourier transforming the lattice
data, the correlators are extrapolated to the continuum
before being compared with the O(a;) continuum HOPE.
Both analyses produce results in good agreement with each
other, and with other calculations in the literature. Due to
the order of operations, more lattice data are included in the

time-momentum analysis. This leads to an improved
estimate of the statistical error in the second Mellin
moment. As a result, the final value of (£2) determined
in this work is

(E)(u =2 GeV) = 0.210 = 0.036.

The uncertainty in this result is dominated by systematic
effects, especially from higher-twist terms and the con-
tinuum extrapolation. From Table II, it is clear that reducing
the systematic effect arising from higher-twist contributions
is the most important task for improving these calculations.
For this purpose, it could be helpful to adopt other heavy-
quark formulations, such as that in Ref. [52], for future
lattice numerical calculations.

The results shown here demonstrate the viability of
the HOPE approach to determine moments of light-cone
quantities with comparable statistical precision to results
from other methods. This paves the way for further
investigations of the pion LCDA, including dynamical
studies of the second moment using the HOPE method
and a determination of higher Mellin moments. Early
numerical studies have commenced, and preliminary
results for the fourth moment are discussed in Ref. [28].
The success of this approach for the LCDA also suggests
that the HOPE method can be applied to the study of other
light-cone quantities. Key objects of interest are the kaon
LCDA which would allow the study of Mellin moments
of a system with nonzero strangeness and pion PDF and
helicity PDF, for which the Wilson coefficients have
already been calculated to one-loop order [25].
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APPENDIX: SYMMETRY CONSTRAINTS ON
MATRIX ELEMENT

1. Lorentz invariant decomposition

The derivation of the O(a) improvement relies on the
symmetry properties of the hadronic amplitude that is
constructed. The momentum-space hadronic amplitude is
defined as

VH(p.q) = a;p*p* + axp'q’ + asq' p* + asq'q* + asg” + age* p,qp.

W%nq%:/d%64““MTUWmQN%—UﬁHdp»
(Al)

The time-momentum representation of this amplitude,
R*(z,p,q), is obtained by performing a Fourier transform
in the Euclidean momentum ¢ :

mw@m:/ﬁ%%mmw» (A2)

(27)

In momentum space, the most general Lorentz covariant
form of the amplitude, V**(p, q), is

where a; are scalar functions of the invariants g%, p?> and p - ¢, that is,

a;=a;(p*.¢*.p-q).

Applying a parity transformation P to the hadronic amplitude gives

Vi (p.q) = /d4z ™4 (0[PYPT {J#(2/2.24/2)P"PJ* (=2/2. =24 /2)}P"P|n(p))

= —(—1)"(—1)”/6142 e (0| T{J"(~2/2.24/2)J*(2/2.~24/2) }|m(-P))

= —(=D(=1)"V*(p.q).

where for simplicity the notation k = (=k, p*) has been introduced and

Applying these transformations to the terms in the amplitude decomposition, Eq. (A3), gives

a\p'p’ + a;p*q¥ + azg' p* + asq' g + asg” + age"* pq;
= —(=D"(=1)"a; p*p* = (=1)*(=1)*a, p*q" — (=1)*(=1)"a3q"p* — (=1)*(=1)"asq" 3"

= (=D (=1) asg™ = (=1)"(=1)"ace"? p,qp.

(A3)
(A4)
(A5)
fory=1,2,3
for u =4. (46)
(A7)

Noting that p# = (—1)*p*, one may conclude all terms but aq vanish, and thus the most general form of the amplitude is

The three-point correlation function is defined as

Vi (p.q) = as(q*. P - 9)€"* ™ pagp. (A8)
2. Vanishing of ¢, term
G5 (x.y) = (T {J4(x)J4 () O:(0)}|). (A9)

where J% (x) is given in Eq. (32), and O} (0) = (0)ysy(0)

Z.59(0)ysy?(0). Neglecting terms proportional to ¢/, in

Eq. (32), which will be considered in the next subsection,” one can expand the O(a) improvements to the currents in

Eq. (A9) as [42]

SAt O(a), there are no cross-terms between the ¢, and c; corrections, since these would be proportional to achcg, so these two

effects can be studied separately.
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Gy (x,y) = Z*(a) Z(QIT{ (¥ (x)r* v (x) + 5O (x) 1y ¥ (x)
+ ac, 0 {PO (x) Py O (x)} + ac, 0 {0 (x) PO () 1) (PO )y O (y) + 5O )y YO (y)
+ ac, 0 {PO (y)rw O (y)} + ac, {5 () PO ) H I 0)° w2 (0)] 1) + O(a?), (A10)

where Z(a) = Z,(1 + ZJAarh,-j), and 7i;; = (i; + in;) /2. At order a, there are two terms proportional to ¢, one with the c4
contribution originating from the J# current and the other with ¢, from the J* current. To illustrate that terms proportional to
c, vanish, it suffices to investigate one of these two terms. For this purpose, contribution with ¢, coming from the
improvement of J* is chosen:

G5 (x.y) = Z(a) Zyach (QT{(PV )y y @ () ({70 () PO DO 0)7°w O 0)] }Q) + O(a?).  (Al1)

The Fourier transform of G5’ (x,y) is denoted G3 “(p1, p2)- Integrating by parts yields

G5 (p1. p2) = Z*(a)Z,ac,iph / d*x e+ dtye= P2 (QIT{ (PO (x)p*y ) (x)) (@ () PO (y))
x [0 (0)r w @ (0)]7}K). (A12)

Consider the most general form of the matrix element in Eq. (A12). Since there is already one factor of p%, the integral
must transform as a vector under Lorentz boosts. Thus, the most general form of C’gf’z (p1, p») must be

G55 (p1. p2) = bi(pl. P3P+ P2) P PS + ba(pi. P3. p1 - P2) P DS (A13)

Using the parity constraints derived previously allows one to conclude that C3 “(p1, p2) contains no terms which satisfy
these symmetry properties, and therefore it must vanish. The other term proportional to ¢4 (arising from the correction to J*)
vanishes analogously. Thus, ¢, terms do not contribute to the O(a) correction.

3. Vanishing of ¢/, terms

Neglecting the ¢4 and Z, corrections discussed above, the discretized version of the three-point correlator given in
Eq. (25) is given by

= Z <[l/_/u (xm>7D75\P<xm) - %CIIA (l/_/u (xm)ybys (5‘YT) (xm) - (l/_/ub_y/) (xm)yyyslp(xm))]

X[‘i‘(xe)y”yswd( )——CA(‘?( )7”7’5(5de)()%)_(qu_‘l’)(xe)yﬂysl//d(xe))} [74(0)7 7w, (0)])e'PeXce®nXn, (Al4)

where the u and d quarks are degenerate and are solely distinguished in order to avoid disconnected diagrams.
Expanding this out gives

= ()7 PP o) [¥ )Py wa(xe)|[74(0)7y, (0)] ) e Pee el

= @Y )77 (Du¥) (%) = (D) o)y v ¥ ()]

x [P(x )Y”YSWd( [7a(0)7y, (0)]) e P

- az (7 (57 PP ) [P (x )77 (Dyyra) (xe) = (D) (x )7y oy a(x. )]

X [0y (O)]) P ePee + 0(a?). (A15)

The first line of Eq. (A15) is the tree-level contribution studied above. The second and third lines contain four very
similar terms, the first of which is
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—az ()77 (D) i) [P (k)7 W a (5 )[4 (0)wr, (0) ) e P P (A16)
Explicitly writing out all spin, color, and spacetime indices, this becomes

—% D (o) 7 )P D |3 I ()2 (77 VoW ][ (003 (1) M (0) ]y e P Xe P (A17)

X XX

Performing the contractions with Wick’s theorem gives
Z o Oben) 1103 (el OVI DG (e ) D (x5 (7477 ) P (7 Y (e (A18)
Note that
> Dy D3 (xlxe ) = 89 (x = x)8%6, (A19)

and thus these terms cannot contribute to this analysis, where contributions from 7 = z,, — 7, = 0 have been explicitly
removed. However, for completeness, it should be noted that one can show that these terms are in fact zero. With this result,
Eq. (A18) becomes

/
TS ST e D71 (0, DT (xe OS5 (3 = )8, (VG (A20)
ac’ .
= 0(re = 1) Y e PPN DT 0L D (xe0)5 (rr ) () () (A21)
:— Te Tm Zelp” eTr O|X ) yﬂD_l(xe|0)},5]' (AZZ)

Under charge conjugation, v — C~'! and & — —yTC (with C = iy*y*), so
“Hxly) = (w(x)w(y)) = €D~ (ylx)'C (A23)

Further noting that Cy#*C~! = —(y*)T and Cy°C~! = (y°)7, charge conjugation sends the trace in Eq. (A22) to

Tr[CD™(x,|0) Cly"yCD™! (0]x,) T C™1y°] = Te[D™ (x[0)" ()" () D71 (Olx,) " (°)"] (A24)
= Tr[D7!(0lx, )r*y* D" (x[0)r] (A25)
= =Tr[D7'(Olx,)y*y* D" (x[0)7’]. (A26)

Since QCD is invariant under charge conjugation, amplitudes must be similarly invariant, so this trace must vanish. The
remaining ¢/, terms vanish similarly, so there is no need to include the corresponding operators in the definition of the axial
currents J*.
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