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Improving Actor-Critic Reinforcement Learning via
Hamiltonian Monte Carlo Method
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Abstract—The actor-critic RL is widely used in various robotic
control tasks. By viewing the actor-critic RL from the perspective
of variational inference (VI), the policy network is trained to
obtain the approximate posterior of actions given the optimality
criteria. However, in practice, the actor-critic RL may yield
suboptimal policy estimates due to the amortization gap and
insufficient exploration. In this work, inspired by the previous
use of Hamiltonian Monte Carlo (HMC) in VI, we propose
to integrate the policy network of actor-critic RL with HMC,
which is termed as Hamiltonian Policy. As such we propose to
evolve actions from the base policy according to HMC, and our
proposed method has many benefits. First, HMC can improve
the policy distribution to better approximate the posterior and
hence reduce the amortization gap. Second, HMC can also guide
the exploration more to the regions of action spaces with higher
Q values, enhancing the exploration efficiency. Further, instead
of directly applying HMC into RL, we propose a new leapfrog
operator to simulate the Hamiltonian dynamics. Finally, in safe RL
problems, we find that the proposed method can not only improve
the achieved return, but also reduce safety constraint violations
by discarding potentially unsafe actions. With comprehensive
empirical experiments on continuous control baselines, including
MuJoCo and PyBullet Roboschool, we show that the proposed
approach is a data-efficient and easy-to-implement improvement
over previous actor-critic methods.

Impact Statement—In this work, we propose a new reinforce-
ment learning (RL) algorithm. Traditional RL approaches need
a lot of samples to train. This is caused by the inconsistency
between the actor and critic networks during the learning process,
which is termed as "amortization gap". Here we propose to use
HMC to minimize this gap, so that the learning efficiency of
RL algorithms can be improved. It has impact on autonomous
control and robotic systems.

Index Terms—Learning to Control, Hamiltonian Monte Carlo,
Reinforcement Learning, Soft Actor Critic

I. INTRODUCTION

In continuous control, actor-critic RL algorithms are widely
used in solving practical problems. However, searching opti-
mal policies can be challenging due to instability and poor
asymptotic performance. Specifically, most previous methods
of actor-critic RL, such as KL regularization [41], [42] and
maximum policy entropy [33], [12], essentially solve RL in
the framework of variational inference (VI) [27], which infers
a policy that yields high expected return while satisfying
prior policy constraints. However, from this perspective, the
policy network essentially performs amortized optimization
[14], [27]. It means that most actor-critic RL algorithms,
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such as soft actor-critic (SAC) [17], optimize a network to
directly output the parameters of policy distribution which
approximate the posterior given the input state and optimality.
While these schemes have improved the efficiency of VI by
encoder networks [22], [37], [32], the output distribution of
learned policy can be sub-optimal and far away from the target
posterior, due to the insufficient expressivity of the policy
network [9], [20]. This suboptimality is typically defined as the
amortization gap [9], resulting into a gap in the RL objective.

The Hamiltonian Monte Carlo (HMC) has been used to
improve VI in statistics [3], [51]. In this work, by leveraging
the advantages of both VI and HMC [39], [49], we propose
to initialize Hamiltonian dynamics (HD) with samples from
an optimized variational distribution, so that we can break the
expressive limitation of the variational distribution and hence
fill in the amortization gap. Specifically, we propose to use
HD to evolve the actions sampled from the policy network,
so as to better approximate the target posterior and sample
the actions with higher Q values, improving the efficiency of
the exploration. We call this new policy integrated with HD
as Hamiltonian policy. The proposed method offers several
benefits. First, the gradient information in Hamiltonian policy
can make the exploration more directionally informed, avoiding
sampling too many actions in opposite directions. Moreover,
the randomness of momentum vectors in HD can help sampled
actions to jump over the local optima and make the agent
to explore more unknown parts of the state space. Further,
the proposed leapfrog operator in Hamiltonian policy, which
generalizes HMC via gated neural networks, can also increase
the expressivity of the base policy network and adapt to the
changing target distribution defined by Q function. Finally, in
safe RL tasks, we find that the Hamiltonian policy can not
only improve the achieved return by boosting the exploration,
but also reduce the safety constraint violations by discarding
potentially unsafe actions according to Lyapunov constraints
[4], [5].

Using empirical experiments, we evaluated the proposed
method across a variety of benchmark continuous control tasks
such as OpenAI Gym using the MuJoCo simulator [47] and
the realistic PyBullet Roboschool tasks [8]. We show that
the proposed method improves upon representative previous
methods such as SAC [15] and SAC with normalizing flow
policy [31], achieving both a better convergence rate and
expected return. Additionally, we also empirically verify the
advantage of our method in safe RL problems.

In experiments, we conduct ablation study of the pro-
posed leapfrog and sensitivity analysis on hyper-parameters.
Additionally, we also compare the proposed method with
iterative amortization policy optimization [30]. And the action
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distribution of Hamiltonian policy is also visualized to show
the improvement of expressivity.

The contributions of our work can be summarized as the
following: 1) we investigate the application of HMC into actor-
critic RL for performance improvement; 2) we design a new
leapfrog operator for HMC to adapt to some characters of RL
setting; 3) comprehensive experimental studies are conducted
to evaluate our proposed method, including ablation study and
sensitivity analysis.

In the following, we first introduce some preliminary
knowledge and review previous literature in Section II and
III, respectively. In Section IV, the details of our proposed
RL method are introduced. And in Section V, we present
the comprehensive empirical evaluation and analysis of our
proposed method. Finally, our contribution is concluded in
Section VI.

II. PRELIMINARY

In this section, we are going to introduce reinforcement
learning (RL) as an Markov Decision Process (MDP). Then
the constrained MDP and the solution based on Lagrangian
method are introduced. We also formulate the RL problem
in the framework of variational inference. Finally we briefly
review the Soft Actor-Critic (SAC) [17] and Hamiltonian Monte
Carlo (HMC) [35] as building blocks of the proposed method.

A. Markov Decision Process

We consider Markov decision processes (MDP) as
(S,A, penv, r), where st ∈ S and at ∈ A are the state
and action at time step t, with the corresponding reward
rt = r(st, at). The state transition of the environment is
governed by st+1 ∼ penv(st+1|st, at), and the action is sampled
from the policy distribution, given by the policy network
πθ(at|st) with parameters θ. The discounted sum of rewards
is denoted as R(τ) =

∑
t γ

trt, where γ ∈ (0, 1] is the
discounted factor, and τ = (s1, a1, . . .) is a trajectory. Thus,
the distribution over the trajectory is

p(τ) = ρ(s1)

T∏
t=1

penv(st+1|st, at)πθ(at|st) (1)

where the initial state is drawn from the distribution ρ(s1). The
objective of RL is to maximize the expected discounted return
Ep(τ)[R(τ)]. At a given time step t, one can optimize this
objective by estimating the accumulated future returns in the
summation using an action-value network [32], [17], denoted
as Qπ(s, a) in terms of a policy π.

B. Constrained MDP and Lagrangian Method

Safety is an important issue in RL problems. We use
constrained MDP (CMDP) to model RL problems in which
there are constraints on the cumulative cost. The CMDP extends
MDP by introducing a safety cost function and the associated
constrained threshold, which is defined as (S,A, penv, r, c, d0)
where c(s) ∈ [0, Cmax] is a state-dependent cost function and
d0 ∈ R>0 is an upper-bound on the expected cumulative safety

cost in one episode. In addition to Qπ , we use another action-
value network to approximate the accumulated future safety
costs C(γ) := E[

∑
t γ

tct], denoted as QC,π .
The Lagrangian method is a straightforward method to

solve CMDP, by transforming it to a penalty form, i.e.,
maxθ minλ E[

∑
t γ

t(r(st, at) − λc(st))|πθ, s0]. The parame-
ters θ and λ are jointly optimized to a saddle-point. The
policy parameters θ are optimized by a policy gradient
algorithm, while the multiplier λ is updated iteratively as
λ←− [λ+ η(Jπ

C − d0)]+, where Jπ
C is the discounted sum (or

average sum) of safety costs in previous episodes.

C. Reinforcement Learning via Variational Inference

Recently a surge of works have formulated reinforcement
learning and control as probabilistic inference [10], [48], [46],
[2], [27]. In these works, the agent-environment interaction
process is formulated as a probabilistic graphical model, then
reward maximization is converted into maximum marginal
likelihood estimation, where the policy resulting the maximal
reward is learned via probabilistic inference. This conversion
is accomplished by introducing one or more binary optimality
variables O. Since calculating the likelihood of optimality O
requires intractable integral over all the possible trajectories,
variational inference (VI) is adopted to lower bound the
objective, where a variational distribution q(τ |O) is learned
to approximate the posterior of trajectory given the optimality,
yielding the evidence lower bound (ELBO) [27]. The ELBO
of the likelihood of optimality O can be written as below,

log p(O = 1)

≥
∫

q(τ |O)
[
log p(O = 1|τ) + log

p(τ)

q(τ |O)

]
dτ

= Eq[R(τ)/α]−DKL(q(τ |O)∥p(τ))) (2)

where DKL(·∥·) denotes the KL divergence. Only model-free
RL is considered here. We can simplify the ELBO in (2) by
cancelling the probability of environmental dynamics. Then
we can get the objective of policy optimization as below [27],

J (q, θ) = E(st,rt)∈τ,at∼q

[ T∑
t=1

γtrt − α log
q(at|st,O)
πθ(at|st)

]
(3)

Specifically, at time step t, this objective can be written as

J (q, θ) = Eq[Qq(st, at)]−αDKL(q(at|st,O)∥πθ(at|st)) (4)

Hence, with πθ as action prior, policy optimization in the
framework of VI [17], [27] is to find optimal q maximizing
the objective J (q, θ) in (4).

D. Actor-Critic RL and Soft Actor-Critic

Actor-critic methods are a hybrid class of methods that
mitigate some deficiencies of methods that are either purely
policy or purely value-based [24], [25]. An actor-critic method
generally consists of an actor that changes the policy in order
to maximize its value as estimated by the critic.

Soft Actor-Critic (SAC) [17] is a state-of-art actor-critic
(off-policy) RL algorithm widely used in many applications,
especially in robotic problems with continuous actions and
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states. SAC can also be formulated from the perspective of
variational inference. When using uniform distribution U =
(−1, 1) as the action prior πθ in (4), the objective of SAC can
be formulated as the state-action value function regularized
with a maximum entropy,

L(q) = Est∼ρq

[
Eat∼qQq(st, at)− α log q(at|st)

]
. (5)

where q is the variational distribution of action. Here ρq is the
state distribution induced by policy q, and α is the temperature
parameter which is introduced to improve the exploration. In
this work, we are going to build the proposed method upon
SAC. The optimal solution of (5) is p̄α(a|s) ∝ exp(Q(s, a)/α)
which is also the target policy distribution.

E. Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) is a popular Markov
chain Monte Carlo (MCMC) method for generating sequence
of samples, which converge to being distributed according
to the target distribution [35]. Inspired by physics, the key
idea of HMC is to propose new points by simulating the
dynamics of a frictionless particle on a potential energy
landscape U(x) induced by a desired target distribution p(x),
where p(x) ∝ exp(−U(x)). This simulation is done in the
formulation of Hamiltonian dynamics (HD). Specifically, HD
is a reformulation of physical dynamics whose states can be
described by a pair (x, v) of d-dimensional vectors, where
x is the position vector and v is the momentum vector. The
dynamics of the system over time, i.e., the HD, is described
by the Hamiltonian equations:

dx

dt
=

dH

dx
,

dv

dt
= −dH

dv
(6)

where H(x, v) is the Hamiltonian of the system, defined as the
total energy of the system. In the physical context of HMC, the
motion of the frictionless particle is governed by the potential
energy U(x) and kinetic energy K(v). Since the Hamiltonian is
the total energy here, we have H(x, v) = U(x)+K(v), which
is independent of time step due to the conservation of energy.
The kinetic energy can be described as K(v) = βvT v/2 where
β is the mass of the particle, and the momentum vector is
distributed as p(v) ∝ exp(−βvT v/2) [49].

The analytic solutions of HD (6) can determine three impor-
tant properties of HMC algorithm, i.e., reversibility, volume
preservation and Hamiltonian conservation. The reversibility
means that the mapping Ts from the state (xt, vt) at time
t to some future state at time t + s(s > 0) is one-to-one
and reversible. The volume preservation implies that the
transformation based on HD conserves the volume in state
space, i.e., applying Ts to some region results in another
region with the same volume. Finally, the Hamiltonian H(x, v)
stays constant with time, i.e., dH/dt = 0, which is called
Hamiltonian conservation.

The HD described in (6) is typically simulated by the
leapfrog operator [26], [35], of which the single time step
can be described as

v
1
2 = v − ϵ

2
∂xU(x); x′ = x+ ϵv

1
2 ; v′ = v

1
2 − ϵ

2
∂x′U(x′);

(7)

which transforms (x, v) to (x′, v′). We can see that transfor-
mations in (7) are all volume-preserving shear transformations,
where in every step only one of variables (x or v) changes, by
an amount determined by the other one. Hence the Jacobian
determinant of (7) is simply 1 and the density of transformed
distribution p(x′, v′) is tractable to compute.

III. RELATED WORK

There have been a lot of previous works on improve policy
optimization in recent years. To optimize the Q-value estimator
with an iterative derivative-free optimizer, Qt-opt [19] uses
the cross-entropy method (CEM) [38] to train robots to grasp
things. To improve the model-predictive control, CEM and
related methods are also used in model-based RL [34], [6],
[36], [40].

However, there are less recent works on gradient-based policy
optimization [18], [43], [1], [30]. They are specifically designed
for model-based RL [18], [43], [1]. Normalizing flow [15], [44],
[31] is another method to improve the policy optimization, by
increasing the expressivity of the policy network. But none of
them include gradient information, so that exploration is not
sufficient in some environments. Another significant challenge
with this approach is the Jacobian determinant in the objective,
which is generally expensive to compute. Previous methods
make the Jacobian determinant easy-to-evaluate at the sacrifice
of the expressivity of the transformation, where the determinant
only depends on the diagonal [23], [44], [31], limiting the
exploration in the RL process.

Another approach is to apply iterative amortization in policy
optimization, which uses gradients of Q function to iteratively
update the parameters of the policy distribution [16], [30].
However, especially when the estimation bias of Q functions
is significant [7], directly using gradients to improve policy
distributions without additional randomness may make the
policy search stuck at local optima which limits the exploration,
and the policy distribution therein is still Gaussian. That is
why methods in [30] cannot outperform SAC in many MuJoCo
environments. Finally, one more related work is Optimistic
Actor Critic (OAC) [7] using gradient of value function to
update actions in exploration. However, their updated policy
distribution is still Gaussian which has limited expressivity and
one-step update with gradient is not enough to have significant
performance improvement.

IV. METHODOLOGY

In this section, we first formulate the proposed policy
optimization method in the framework of variational inference
(VI), and then propose a new leapfrog operator to quickly adapt
to the changes of the target distribution during the learning.
Finally implementation considerations and its application into
safe RL are introduced.

A. Hamiltonian Policy Optimization

We call the method of using Hamiltonian policy into RL as
Hamiltonian policy optimization (HPO). A feature of HPO is
that a momentum vector ρ is introduced to pair with the action
a in dimension da, extending the Markov chain to work in a
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state space (a, ρ) ∈ Rda × Rda . Specifically, the momentum
vector ρ has Gaussian prior N (ρ|0, β−1

0 I), and the action a
follows the uniform prior U(−1, 1)da , where β0 is a hyper-
parameter which determines variance of ρ. According to the
discussion in Section II-C and II-D, the target distribution in
HPO, i.e., target posterior of action and momentum vector, can
be written as

p̄α(a, ρ|s) ∝ exp
(
Qπθ

(s, a)/α
)
N (ρ|0, β−1

0 I) (8)

Therefore, following Section II-E, the target potential function
and momentum kinetic energy can be written as Uθ(s, a) :=
−Qπθ

(s, a)/α and K(ρ) := β0

2 ρT ρ.
The core innovation of HPO is to evolve a and ρ via

Hamiltonian dynamics (HD) in (6), where HD is approximated
by steps of deterministic transitions (leapfrog in (7)), so that
the evolved actions would likely better approximate the target
posterior.

In Hamiltonian policy, given input state s, the initial action
a0 and momentum vector ρ0 are sampled as (a0, ρ0) ∼
πθ(·|s)N (0, β−1

0 I) where πθ is the base policy network. Then,
by using leapfrog operator in (7) to simulate HD, since
Uθ(s, a) := −Qπθ

(s, a)/α, action and momentum are evolved
iteratively by the leapfrog (HMC step) as below,

ρk+1/2 = ρk +
ϵ

2
⊙∇Qπθ

(s, ak)/α

ak+1 = ak + ϵ⊙ ρk+1/2

ρk+1 = ρk+1/2 +
ϵ

2
⊙∇Qπθ

(s, ak+1)/α (9)

where ∇ is the differentiation taken with respect to a, ϵ ∈ R is
the learning step size, and k = 0, . . . ,K−1. Then by evolving
initial action a0 for K leapfrog steps, the action aK is applied
to the environment finally. The working process is shown in
Figure 1(a)

Denote the k-th leapfrog step described above as (ak, ρk) :=
Φk

θ,h(ak−1, ρk−1). We can see that each leapfrog step still has
unit Jacobian. Therefore, based on the change of variable
formula in probability distribution, the joint distribution of
action and momentum variables after K steps of leapfrog can
be expressed as

qKθ,h(aK , ρK) = q0θ,h(a0, ρ0)

K−1∏
k=0

∣∣det∇Φk+1
θ,h (ak, ρk)

∣∣−1

= πθ(a0|s)N (ρ0|0, β−1
0 I) (10)

where (aK , ρK) are action and momentum evolved by K HMC
steps. Hence the density of output action and momentum vector
becomes tractable to compute, facilitating the policy entropy
regularization in SAC-style algorithms.

In the framework of VI, the policy optimization objective
of HPO is the ELBO (2). Since ELBO can be written as the
difference between the log of target distribution and log of
variational distribution [22], we can write the ELBO for HPO
as below,

LELBO(θ, h; s) = E(a0,ρ0)[log p̄α(aK , ρK |s)−log qKθ,h(aK , ρK)]
(11)

The policy network parameters are denoted as θ and parameters
in HMC are denoted as h.

Finally, combining (8), (10) and (11) together and ignoring
terms not related with θ and h, the objective of HPO, i.e., the
expectation of ELBO over all the visited states, can be written
as

J (θ, h) = Es∼ρπθ

[
Qπθ

(s, aK)−α log πθ(a0|s)−
αβ0

2
ρTKρK

]
(12)

where ρπθ
is the state distribution induced by the policy πθ.

Note that α is the temperature parameter tuned in the same
way as SAC [17]. And Qπθ

is approximated by a target critic
network which is not related with θ and is periodically updated
in the learning process [15].

B. Proposed Leapfrog Operator

Since HMC with conventional leapfrog (9) converges and
mixes slowly, some past works proposed to use neural networks
to generalize HMC [27], [28]. However, since Q networks are
changing in RL, the techniques proposed in [27], [28] cannot be
used here. Based on our empirical study, the direction variable,
binary mask and exp operation therein [27], [28] can make the
policy optimization unstable, degrading the RL performance.

Instead, we propose to use a gating-based mechanism to
generalize the conventional leapfrog operator (9) and design a
new leapfrog operator, which integrates gradient information
via both explicit and implicit approaches. The explicit approach
is to directly use the primitive gradient same as (9), whereas
the implicit approach is to use an MLP Th to transform the
primitive gradient, state and action together. Then the gradient
information from both explicit and implicit approaches are
combined by a gate σh. The motivation behind is to improve
the policy expressivity by MLP Th and control the numerical
stability by gate σh, making the policy distribution quickly
adapt to the changes of Q networks during the learning process.

The inputs of Th and σh include normalized gradients, action
and state, where the state is optional and can be ignored in
some environments. Therefore, the proposed leapfrog operation,
transforming from (ak, ρk) to (ak+1, ρk+1), can be written as

ρk+1/2 = ρk −
ϵ

2
⊙ (σh(s, ak, g)⊙ g

+(1− σh(s, ak, g))⊙ Th(s, ak, g))

ρk+1 = ρk+1/2 −
ϵ

2
⊙ (σh(s, ak+1, g

′)⊙ g′

+(1− σh(s, ak+1, g
′))⊙ Th(s, ak+1, g

′))(13)

where g := −∇Qθ(s,ak)
∥∇Qθ(s,ak)∥ , g

′ := −∇Qθ(s,ak+1)
∥∇Qθ(s,ak+1)∥ and ak+1 =

ak+ϵ⊙ρk+1/2. This process is shown in Figure 1(b). Since only
one variable (ρ or a) is changed in every update, the proposed
leapfrog operator (13) still keeps the properties of reversibility
and unit Jacobian, so that the distribution of (aK , ρK) in (10)
is still tractable.

C. Implementation and Algorithms

In implementation, we build the Hamiltonian dynamics (HD)
simulated by leapfrog steps on top of the policy network.
Specifically, we only use one hidden layer for the base policy
network πθ, so the number of parameters of our model is
much smaller than that of models in previous papers [15],
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s a0 ∼ N (·|µ(s),Σ(s))

ρ0 ∼ N (0, β−1
0 I)

a1

ρ1

a2

ρ2
. . .HMCHMC

πθ

(a) Hamiltonian Policy

Thσh

g

Thσh

g

ρk+1

×

ρ
k+1

2
ρk

ak+1ak+1ak

1−×

+ ⊙ ϵ
2

+

⊙ϵ

+

× 1−

+ ⊙ ϵ
2

×

+

(b) Proposed Leapfrog

Fig. 1. Diagram of the Hamiltonian policy and proposed leapfrog operator. The HMC box represents one step leapfrog operator.

[16], [30] which use two hidden layers in the policy network.
The proposed RL algorithm is built on top of SAC, where
the Gaussian policy is replaced by Hamiltonian policy and the
policy optimization objective in (12) is used. It is termed as
SAC-HPO. The process of producing actions from Hamiltonian
policy is shown in Figure 1(a). The details of the algorithm
are presented in Algorithm 1 and Algorithm 2.

Algorithm 1 Hamiltonian Policy Optimization
1: Denote at, st as the action and state at timet; Denote the

replay buffer as B;
2: Initialize θ, h
3: for t = 1, 2, . . . do
4: Sample at ∼ πθt(·|st)
5: Obtain aKt , ρKt by calling Algorithm 2

(fK
HMC(st, at; θt, ht))

6: Apply aKt , and obtain next state st+1

7: Store the experience tuple (st, a
K
t , st+1) into B

8: Sample a minibatch of transitions Dt from B
9: Update the Q network by Dt

10: Update θ and h by optimizing J (θ, h) in (12) with
minibatch Dt

11: end for

Algorithm 2 Hamiltonian Dynamics for Evolving Action
1: Input initial state s and action a; policy network πθ;

leapfrog parameters h, β0, ϵ;
2: Sample ρ0 ∼ N (0, I)
3: Set ρ0 ←− ρ0 · 1√

β0

4: for k = 1, . . . ,K do
5: Obtain ρk+1/2 by the first equation in (13)
6: Update ak = ak−1 + ϵ⊙ ρk+1/2

7: Obtain ρk+1 by the second equation in (13)
8: end for
9: Return aK , ρK

D. Safe Reinforcement Learning with Hamiltonian Policy

In addition to regular RL, we also find the proposed method
can be used in safe RL to reduce the safety violations. The
general idea is to iteratively sample many actions by HMC
until sampled action satisfies the Lyapunov constraint.

It is already proved that under the Lyapunov constraint, the
policy can be guaranteed to satisfy the safety constraint [4],
[5]. It transforms the trajectory-wise safety constraint to a
state-wise constraint [5]. Specifically, the Lyapunov constraint
is expressed as

QC,πB
(s, a)−QC,πB

(s, πB(s)) < ϵ̃ (14)

where
ϵ̃ = (1− γ) · (d0 −QC,πB

(s0, πB(s0))) (15)

where πB is the reference policy which is the updated policy in
last iteration, QC,πB

is the accumulated safety costs in terms
of policy πB , s0 is the initial state and γ is the discounting
factor of the MDP.

However, in previous work [4], [5], the sampled actions
are projected to satisfy the Lyapunov constraints based on
the linear approximation of the cost critic QC,πB

, which is
inaccurate in practice since the action may not have a linear
relationship with the future costs. In this paper, we propose
to use Hamiltonian policy to iteratively sample actions until
the Lyapunov constraint is satisfied, so that potentially unsafe
actions can be discarded in this process.

When interacting with the environment, for every sampled
action, the agent first uses Lyapunov-constraint to predict its
safety violation. If the Lyapunov-constraint is satisfied, it is
applied into the environment. Otherwise, the sampled action
will be updated by the leapfrog operator to get the next sampled
action, until it satisfies the Lyapunov constraint. So, HMC
here can not only boost the exploration by randomness and
gradient information, but also improve safety in exploration
by sampling actions iteratively until the safety (Lyapunov)
constraint is satisfied. The application of Hamiltonian policy
in safe RL is summarized in Algorithm 3. Note that compared
with regular RL, a difference of Hamiltonian policy used in
safe RL is that the random noise is injected into momentum
variables in every leapfrog step, rather than initial step only.

V. EXPERIMENT

In experiments, the Hamiltonian policy is applied into soft
actor critic (SAC), so the proposed method is denoted as
"SAC-HPO". The environments in our experiments are diverse,
ranging from OpenAI Gym MuJoCo [47] to the realistic
Roboschool PyBullet suit [8], [11]. We empirically evaluate
the proposed method from many perspectives. First, SAC-HPO
is compared with the primitive SAC [17] and SAC-NF [31]
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(a) HalfCheetah-v2 (b) Walker2d-v2 (c) Hopper-v2 (d) Ant-v2

(e) Humanoid-v2 (f) Humanoid PyBullet (g) Flagrun PyBullet (h) Flagrun Harder PyBullet

Fig. 2. The learning performance comparison over 8 tasks. All the curves are averaged over 5 random seeds, where shadowed regions are standard deviations.

Algorithm 3 Hamiltonian Policy in safe RL; s, πθ, β0, ϵ,K, d0
1: Input policy network πθ; leapfrog parameters h, β0, ϵ; Max

number of steps K; safety constraint d0;
2: Sample a0 ∼ πθ(·|s), ρ0 ∼ N (0, β−1

0 I)
3: for k = 0, . . . ,K − 1 do
4: Transform (ak, ρk) to (ak+1, ρk+1) by the proposed

leapfrog (13)
5: if (ak+1, ρk+1) satisfies Lyapunov constraint (14) then
6: Return ak+1, ρk+1

7: end if
8: Sample ρ̃ ∼ N (0, β−1

0 I), and update ρk+1 ←− ρk+1+
ρ̃

9: end for
10: Return aK , ρK

to show our advantage over classical SAC and normalizing
flow policy. Second, we show the advantage of Hamiltonian
policy in two MuJoCo environments with safety constraints,
comparing with SAC-Lagrangian [45], [5].

In addition, we conduct ablation study on the proposed
leapfrog operator and the sensitivity analysis of hyper-
parameters in Section V-D. The effect of random momentum
variables in HMC is also evaluated in Section V-D3. Finally,
in Section V-D4, we also analyze the shape of action distri-
bution after leapfrog steps, verifying its non-Gaussianity and
improvement of expressivity.

A. Continuous Control Tasks

We compare SAC-HPO with SAC and SAC-NF on eight
continuous control tasks. SAC is chosen because it is a funda-
mental learning method in actor-critic RL. SAC-NF is selected
since it is a representative and widely-used method which
adopts normalizing flow policy to improve the exploration.
We use the official implementation of SAC [17]. And we
try our best to implement SAC-NF according to [31], where
the policy network is one-layer MLP with 256 hidden units

and ReLU activation and radial normalizing flow is adopted.
The learning curves are shown in Figure 2, where first five
tasks, corresponding from Figure 2(a) to Figure 2(e), are from
the MuJoCo suite and the other three are from Roboschool
PyBullet.

All the methods use the same architecture for Q networks,
hyper-parameters, and tuning scheme for the temperature α.
The critic (Q) networks follows the same architecture as [17],
i.e., two-layer fully-connected neural networks with 256 units
and ReLU activation in each layer, where two Q networks are
implemented and trained by bootstrapping. All networks are
updated by Adam optimizer [21] with the learning rate of 3e-4.
The batch size for updating policies and critics is 256, and
the size of replay buffer is 106. In SAC, the policy network
consists of two fully-connected hidden layers with 256 units
and ReLU activation.

In SAC-HPO, actions are evolved by HD simulated by
leapfrog operations (13) for K ∈ {1, 2, 3} steps. The base
policy only has one hidden layer with 256 units and ReLU
activation. Neural networks in proposed leapfrog (Th and σh)
are simple MLPs having one hidden layer with hn hidden units
and ELU activation. The variances of the momentum vector
(β0) should be different for training and exploration, denoted
as βtr

0 and βexp
0 respectively. In most experiments, we find the

variance of momentum ρ0 in exploration should be larger than
that in training, i.e., βtr

0 < βexp
0 , which can improve exploration

efficiency. Besides, it is important to make networks Th and
σh in leapfrog small, which can stabilize the learning process.
Hyper-parameters used in SAC-HPO are shown in Table I,
including number of leapfrog steps (K), number of hidden
units in Th and σh (hn), momentum variances for training
and exploration (βtr

0 and βexp
0 ), update rate in leapfrog (ϵ), and

temperature parameter (α).
All results in Figure 2 show the evaluation performance.

Evaluation happens every 10,000 environmental steps, where
each evaluation score (accumulated rewards in one episode)
is averaged over 10 runs. The values reported in the plots
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(a) HalfCheetah-v2 (b) Walker2d-v2 (c) Hopper-v2 (d) Ant-v2

(e) Humanoid-v2 (f) Humanoid PyBullet (g) Flagrun PyBullet (h) Flagrun Harder PyBullet

Fig. 3. The performance comparison with PPO and TD3.

TABLE I
HYPERPARAMETERS IN SAC-HPO.

α 1/
√

βtr
0 1/

√
β

exp
0 ϵ K l hn m B size

HalfCheetah-v2 0.2 1 0.5 0.2 3 1 32

256 106

Hopper-v2 0.2 0.1 1.5 0.15 2 1 32
Walker2d-v2 0.2 0.2 1.5 0.15 3 1 32

Ant-v2 0.2 0.1 1.0 0.1 3 1 32
Humanoid-v2 0.05 1 1 0.1 3 1 64

Humanoid PyB. 0.05 0.4 1.5 0.2 3 1 64
Flagrun 0.05 0.2 1 0.15 3 1 32

Flagrun Harder 0.05 0.2 1.5 0.15 3 1 64

(a) Ant-Reward (b) Ant-Cost (c) HalfCheetah-Reward (d) HalfCheetah-Cost

Fig. 4. Learning performance of Hamiltonian policy in safe RL.

are smoothed by exponential moving averaging (EMA) with a
window size of 5, equivalent to averaging every 50,000 steps
to improving comparability. We can see that the SAC-HPO
outperforms SAC and SAC-NF in terms of both convergence
rate and performance.

B. Comparison with Other Actor Critic RL Algorithms

In this section, we will compare the proposed method (SAC-
HPO) with other state-of-the-art approaches in actor-critic
RL, such as PPO [42] and TD3 [13]. PPO is a popular on-
policy actor-critic RL algorithm, whose feature is to make
stable update to the policy network by clipping the density
ratio between current and previous action distribution. TD3
[13] algorithm is another popular off-policy actor-critic RL
algorithm, which is a variant of DDPG [29] and improves the

stability of DDPG by limiting the over-estimation bias by using
two critics and taking the lowest estimate of the action values
in the update mechanisms.

The results are shown in Figure 3. Here the actor and critic
networks of PPO and TD3 have the same architecture of SAC-
HPO introduced in previous section. We can see that, the
proposed method, SAC-HPO, has significant advantage over
both PPO and TD3. PPO performs worst here because it is on-
policy and does not utilize previous experience. TD3 performs
worse than ours, since its exploration capability is limited by
the Gaussian noise over its actions, and the action distribution
of our method is non-Gaussian and more expressive.

C. Safe Reinforcement Learning
In this section, we evaluate the performance of Hamiltonian

policy in safe RL problems. The environments in this section
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(a) Ant-v2 (b) Ant-v2 (c) Humanoid PyBullet (d) Humanoid PyBullet

Fig. 5. Performance Comparison in Ablation Study.

are Ant-v2 and HalfCheetah-v2 in MuJoCo suite. At each step
the robot selects the amount of torque to apply to each joint.
In Ant-v2, the safety constraint is on the amount of torque the
robot decided to apply at each time step [45]. Since the target
of the task is to prolong the motor life of the robot, the robot is
constrained from using high torque values. This is accomplished
by defining the constraint d0 as the average torque the agent
has applied to each motor. The constraint threshold on torques
is set to be 25 in each episode. In HalfCheetah-v2, the safety
constraint is that the speed of the robot should be less than
1, i.e., the constraint cost is 1[|v| > 1] at each time step [5].
The constraint threshold d0 is on the discounted sum of safety
costs in each episode, which is set to be 10.

In experiments, we learn critic networks for both return
and accumulated costs (safety violations), denoted as Q(s, a)
and QC(s, a) respectively. Both Q and QC are realized by
two-layer MLP with 256 hidden units and ReLU activation in
each layer.

The baseline is the Lagrangian-based SAC [5] which
introduces a Lagrangian multiplier λ to balance between
return and safety costs, shorted as SAC-Lagrangian. The
policy learning objective is maxθ Es∼B,a∼πθ(·|s)[(Q(s, a) −
λQC(s, a))− α log πθ(a|s)]. And the multiplier is updated as
λ←− [λ+ η(Jπθ

C − d0)]+ where η = 0.1. Specifically, in Ant-
v2, Jπθ

C is the average sum of safety costs averaged in recent
episodes, while in HalfCheetah-v2, Jπθ

C is the discounted sum
of safety costs averaged in recent episodes.

In SAC-HPO, the Lyapunov constraint is written as (14),
where reference policy πB is the policy updated in the last
iteration, and QπB

, QC,πB
are target value networks of return

and safety costs which are periodically updated in typical actor-
critic RL algorithms. The working process of Hamiltonian
policy in safe RL is summarized in Algorithm 3 in Section
IV-D. In SAC-HPO, the policy learning objective is in the same
form as (12), where Qπθ

is replaced by QπB
+ λQC,πB

and
λ is updated in the same way as SAC-Lagrangian. The policy
network and hyper-parameters of the SAC-HPO are same as
Section V-A, except that the maximum number of leapfrog K
is set to be 10 which is larger than that in regular RL problems,
and in practice the number of leapfrog steps taken actually is
usually much smaller than K.

The performance comparison is presented in Figure 4,
showing that our method not only improves the average
return, but also reduces the safety violations. In safe RL, the
learning objective contains Q+ λQC instead of Q, where λ
is changing in every learning iteration. Hence, since the target

posterior of actions in (8) is defined in terms of Q + λQC ,
the amortization gap in policy optimization is more significant
than that in regular RL due to the rapid changes of λ. So
HMC is more necessary here to make the sampled actions
better approximate the target posterior. Moreover, iterative
HMC sampling can discard potentially unsafe actions until
safe actions are sampled. So, Hamiltonian policy can achieve
more significant performance improvement in safe RL tasks
than that in regular RL tasks.

D. Analysis

In this section, we conduct ablation study, sensitivity analysis
and investigate the shape of the policy distributions evolved
by HD.

1) Ablation Study: In ablation study, we first verify the effect
of the proposed leapfrog operator (13) in comparison with the
conventional leapfrog in (9). Then we study the differences of
the effects of HMC in exploration and policy training, where
the policy training (policy optimization) refers to the training
step for policy network and neural networks Th, σh in leapfrog
(13).

Specifically, we introduce three baselines adopting different
leapfrog operators in exploration and policy training, which are
summarized in Table II. Here "Gaussian Policy" means that the
same policy network in SAC is directly used without evolving
actions by HMC. "Conv. Leapfrog" refers to that actions
are evolved by the conventional leapfrog in (9), and "Prop.
Leapfrog" denotes that actions are evolved by the proposed
leapfrog in (13). We cannot use the proposed leapfrog only in
exploration, since the neural networks Th, σh in (13) need to
be trained.

TABLE II
EXPLORATION AND TRAINING STRATEGIES IN BASELINES

Exploration Policy Training
SAC-HPO Prop. Leapfrog Prop. Leapfrog
Baseline-1 Conv. Leapfrog Conv. Leapfrog
Baseline-2 Conv. Leapfrog Gaussian Policy
Baseline-3 Gaus. Policy Prop. Leapfrog

SAC Gaussian Policy Gaussian Policy

The SAC-HPO and baselines are evaluated over Ant-v2
and HumanoidPyBulletEnv-v0, and learning curves are shown
in Figure 5, where we use the same hyper-parameters as
Section V-A. It can be seen that in Figure 5(a) and 5(c), SAC-
HPO outperforms the baseline-1 in terms of both performance
and learning stability, showing the advantage of the proposed
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(a) Hopper-v2 (b) Ant-v2 (c) Humanoid-v2 (d) Flagrun PyBullet (e) Flagrun Harder PyBullet

Fig. 6. Comparison of the proposed leapfrog operator and vanilla HMC.

(a) Hopper-v2 (b) Ant-v2 (c) PyBullet Flagrun Harder

(d) Hopper-v2 (e) Ant-v2 (f) PyBullet Flagrun Harder

(g) Hopper-v2 (h) Ant-v2 (i) PyBullet Flagrun Harder

Fig. 7. Sensitivity analysis on K,βexp, and βtr.

leapfrog operator over the conventional counterpart. And this
advantage can also be observed in other environments.

In Figure 5(b) and 5(d), the baseline-1 outperforms both
baseline-2 and baseline-3, showing the effects of leapfrog in
both exploration and policy optimization. Further, we can see
that the improvement of baseline-2 over SAC is higher than
that of baseline-3 over SAC, meaning that using HMC in
exploration can yield more performance improvement than that
in policy training.

Ablation Study of the Proposed Leapfrog. Here we
specifically conduct more experiments about the ablation study
of the proposed leapfrog (13). We compare the performance of
HPO and vanilla HMC, as shown in Figure 6. Similar advantage
can also be observed in other environments. It shows that the
generalizing leapfrog operator by gated neural networks has
advantages over vanilla HMC.

2) Sensitivity Analysis: Here we conducted sensitivity analy-
sis on three important hyper-parameters. The first is the number
of leapfrog steps in simulating HD, i.e., K = 1, 2, 3, shown

in Figures 7(g), 7(h) and 7(i). We can see that in Hopper-
v2, the cases of K = 2 and K = 3 perform similar, but
much better than that of K = 1, showing that it is not
meaningful to have larger K. The second parameter analyzed
here is the variance of momentum vector ρ in exploration,
i.e., 1/

√
βexp
0 = 0.5, 1.0, 1.5, shown in Figure 7(d), 7(e) and

7(f). We can see that the performance is sensitive to the
choice of βexp, showing the variance of ρ in exploration
is important to the learning performance. Although more
randomness in exploration can encourage the agent to explore
more unseen states, not the highest choice of βexp leads to best
performance, such as Figure 7(e). That is because too much
variance of ρ may make the sampled state-action pairs deviate
too much from the optimal trajectory during the exploration.
In Figure 7(a), 7(b) and 7(c), we analyze three different
values for the variances for momentum vector ρ in policy
training, i.e., 1/

√
βtr
0 = 0.01, 0.1, 0.2. However, we can see

that the performance is not sensitive to βtr
0 . According to more

evaluations, larger βtr
0 cannot lead to better performance. For
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(a) Hopper-v2 (b) Ant-v2 (c) PyBullet Flagrun Harder

Fig. 8. Performance comparison on the randomness of momentum vector. "No Randomness" refers to SAC-HPO without using random momentum vectors
which is to set ρ = 0.

(a) 270K Step (b) 580K Step (c) 880K Step

Fig. 9. The shape of policy distribution in Ant-v2. The dimensions of action are shown as x and y labels. The color bar is for Q values. βexp
0 = 1 for every

step. Here the blue dots are actions sampled from base network, and red ones are actions evolved by leapfrog operators in HMC.

example when βtr
0 = 1, the performance degrades significantly.

3) Effect of Random Momentum Vector: In Figure 8, we
study the effect of the randomness of momentum vector ρ on
the performance improvement. It is similar as the comparison
with iterative amortized policy optimization (IAPO) [30]. The
baseline here is the SAC-HPO without random momentum
vector, where we set ρ = 0 in both exploration and policy
training. We can see that if no randomness in momentum
vectors, the performance of SAC-HPO degrades significantly.
Previous work such as IAPO [30] directly uses gradients to
update the actions sampled from the base policy, without using
any extra random variables, which is same as the baseline here.
However, their performance is not good in high-dimensional
environments [30]. The comparison in Figure 8 can explain
the reason and show the advantage of our method. And similar
advantage of our method can be observed in other environments
as well.

4) Visualization of Policy Distribution: In Figure 9, we
visualize the action distributions of Hamiltonian policy (actions
evolved by HMC) at different environmental steps, where x and
y axes represent two different action dimensions. Specifically,
in Figure 9, the red dots represent 1000 actions sampled from
the policy distribution evolved by leapfrog steps (13). For
comparison, the blue dots represent 1000 actions sampled from
the base policy network πθ directly, which are Gaussian and
are not evolved by HMC. The contour of Q values is shown
as background for reference, which is drawn by triangular
interpolation method. In Figure 9, comparing red and blue
dots, we can see that HMC can evolve actions sampled from
the base policy more towards regions with higher Q values,
making sampled actions more directionally informed and hence
improving exploration efficiency. We can also observe that
policy distribution evolved by leapfrog operators can be highly

non-Gaussian and have larger variance with much broader
effective support. Besides, there are still some actions evolved
to regions with similar or lower Q values, so that a reasonable
trade-off of exploration and exploitation can be reached. That is
why the exploration of RL agent can be boosted by Hamiltonian
policy and the learning performance can be improved.

5) Computational Complexity: Last but not least, we discuss
the computational complexity of the proposed method here. In
HMC process, the major computation overhead is taking gradi-
ent of critic network, which actually has tractable complexity.
That is because the computation complexity of taking gradient
linearly scales with the dimension of derivative variable which
is the action a in HMC. The action dimension is much smaller
than the number of weights. Considering the critic network in
our work only has two layers, taking gradient of critic network
with respect to action does not have heavy computation. When
the environment has high-dimensional observations, such as
DeepMind Control Suite, we can use SAC-AE which builds
the critic network on top of a feature extractor [50], so that
the size of critic network can still be small. This will be our
future work.

TABLE III
RUNNING TIME COMPARISON (UNIT: MIN)

SAC SAC-HPO
Hopper-v2 45.2 (±1.2) 59.8 (±2.2)

Ant-v2 47.5 (±1.9) 60.8 (±2.3)
Humaniod-v2 48.2 (±1.1) 60.1 (±2.1)

Flagrun 45.5 (±1.3) 59.7 (±1.8)

In Table III, we compare the running time of SAC-HPO
(HMC step K = 3) with SAC. Every time data include the
average and standard deviation of 5 random seeds. The machine
has Intel Core i5, 32GB memory with one RTX 2080 Ti
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GPU. We can see that the running time of SAC-HPO does
not increase significantly, whose computation complexity is
tractable. However, as shown in Figure 2 and 3, the performance
of SAC-HPO is significantly better.

VI. CONCLUSION

In this work, we propose to integrate policy optimization
with HMC, evolving actions from the base policy network
by Hamiltonian dynamics simulated by leapfrog steps. In
order to adapt to the changes of Q functions which define
the target posterior, we propose a new leapfrog operator which
generalizes HMC via gated neural networks. The proposed
method can improve the efficiency of policy optimization and
make the exploration more directionally informed. In empirical
experiments, the proposed method can outperform baselines
in terms of both convergence rate and performance. In safe
RL problems, the Hamiltonian policy cannot only improve the
achieved return but also reduce the number of safety constraint
violations.
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