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Integrating Symbolic Planning and Reinforcement Learning for
Following Temporal Logic Specifications

Duo Xu! and Faramarz Fekri!

Abstract— Teaching a deep reinforcement learning (RL)
agent to follow instructions in multi-task environments is a
challenging problem. We consider that user defines every
task by a linear temporal logic (LTL) formula. However,
some causal dependencies in complex environments may be
unknown to the user in advance. Hence, when human user is
specifying instructions, the robot cannot solve the tasks by simply
following the given instructions. In this work, we propose a
hierarchical reinforcement learning (HRL) framework in which
a symbolic transition model is learned to efficiently produce high-
level plans that can guide the agent efficiently solve different
tasks. Specifically, the symbolic transition model is learned by
inductive logic programming (ILP) to capture logic rules of
state transitions. By planning over the product of the symbolic
transition model and the automaton derived from the LTL
formula, the agent can resolve causal dependencies and break
a causally complex problem down into a sequence of simpler
low-level sub-tasks. We evaluate the proposed framework on
three environments in both discrete and continuous domains,
showing advantages over previous representative methods.

I. INTRODUCTION

A long-standing motivation of artificial intelligence is
to build agents that can understand and follow human
instructions [30]. Recent advances in deep reinforcement
learning (RL) and language modeling have made it possible
to learn a policy which produces the next action conditioned
on the current observation and a natural language instruction
[28]. However, these approaches require manually building a
large training set comprised of natural language instructions.
Recently, people have focused on using formal languages
(instead of natural language) to instruct RL agents, e.g., policy
sketches [1], reward machines [17], and temporal logic [24].
These languages offer several desirable properties for RL,
including clear semantics, and compact compositional syntax
that enables RL practitioners to (automatically) generate
massive training data to teach RL agents to follow instructions.
Among popular formal languages, the linear temporal logics
(LTL) is a widely-used powerful specification language for
complex tasks, which allows Boolean and temporal constraints
and instructions with multiple subgoals, accommodating rich
specifications for many applications such as mobile robotics
[40], [29], [38]. In this work, we consider solving tasks
specified by LTL instructions.

However, some causal dependencies in complex environ-
ments may be unknown to the user in advance. Hence, when
human user is specifying instructions, the robot cannot solve
the tasks by simply following the given instructions. It is
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well known that regular RL architectures fail in situations
involving non-trivial causal dependencies that require the
reasoning over an extended time horizon [31]. Therefore,
solving LTL tasks can be constrained by causal dependencies
unknown to the human user. This problem is not considered
by the previous works on LTL task solving [15], [23], [25],
(2], [37].

In this work, in order to tackle the problem above, we
propose to first learn causal dependencies via learning
symbolic operators [15], [36]. Then we use a hierarchical
framework to solve LTL tasks, where symbolic planning and
RL are used in the high level and low level, respectively. In the
high level of the proposed framework, symbolic planning is
conducted in a symbolic MDP [29], [38], [25] whose state is
a discrete abstraction of the environment state. The symbolic
operators, i.e., symbolic actions, are described in the symbolic
planning domain description language (PDDL) [13]. In
contrast to prior papers which used propositions to formulate
symbolic states, here we propose to use predicates to describe
relational information of objects in the environment. We first
use ILP-based method to learn preconditions of symbolic
operators. Then with lifted effect sets, we formulate the
preconditions and effects of operators as a symbolic transition
model. Combing the automaton of the given LTL formula
with the learned transition model, we get a product MDP over
which the symbolic planning can be conducted to produce
a high-level plan of subtasks. In the low level, based on
goal-conditional RL method, the policies of controllers can
be trained to solve subtasks, produced by the high-level plan,
one by one.

In experiments, we conduct empirical evaluations of the
proposed framework in three domains, including room, 2D
reacher and 3D block stacking domains. The room domain has
discrete action and state spaces, while the other two domains
have continuous action and state spaces. For both training
and generalization, the proposed framework is compared with
representative methods from prior works.

II. RELATED WORK

Recently, there has been a surge of RL papers which looked
into using LTL (or similar formal languages) for reward
function specification, decomposition, or shaping [27], [16],
[26], [5], [42], [20], [41], [14], [8], [7], [19]. However, all
of these works formulate the LTL over propositions, without
considering the relationships of objects. None of the past
works consider the causal dependencies in the environment
and hence, they cannot solve tasks that involve complex
logical reasoning in the learning horizon.
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Some past works considered investigating planning and RL
in relational domain [21] or with causal dependencies [10].
However, they directly assumed that causal dependencies
and objective relationships are known to the agent as
prior knowledge. In our framework, instead of using these
information directly, we propose to use ILP-based method to
learn them.

In the planning literature, learning symbolic transition rules
have been investigated [33], [4], [36]. However, these works
did not study the case in which the agent follows an instruction
provided by LTL. When solving tasks that involve causal
dependencies, it is necessary to learn symbolic transition
rules for reasoning over a long time horizon.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we are going to introduce some preliminar-
ies and formulate the problem.

A. Environment MDP

The low level part of the proposed framework is working on
the environment MDP. Specifically, this environment contains
a set of objects O = {01, ...,0,} and the state s € S consists
of attributes of all the objects, including position, velocity,
and so on.

Controller. We assume that the robot is equipped with a set
of controller TI = {r!,... 7%} representing specific skills
in the environment MDP, which are learned to solve subtasks
in the low level of the proposed framework. For example,
in block stacking tasks with N blocks, and there are two
controllers ! and 72 denoting the skills of picking up object
o and placing object o to the goal position g, respectively.

B. Symbolic MDP

In prior related papers [16], [18], [2], the high-level part of
the environment is represented by a symbolic MDP, where the
state and action are described by propositions which ignore
the relations of objects. In this work, the high level is defined
as a the relational domain specified by objects in O and a
set of predicates representing relationships of objects and
events in the environment. A predicate with only variables
as arguments is called lifted; a predicate with objects as
arguments is called as a grounded predicate or atom. Each
predicate is a classifier over the environment state s. All the
grounded predicates are assumed to be in the set Q whose
values (True or False) are determined by a deterministic
labeling function L. Given the environment state s, we can
compute the atoms that hold true in the state s by L. And
the output of function L formulates the symbolic state, i.e.,
5:=L(s) € 2<.

Symbolic MDP Formally, a symbolic MDP is defined
as M = (S,f{, 50,7, R, v). The symbolic states in S are
subsets of atoms (grounded predicates) in Q. The symbolic
action in A is a PDDL-style operator predicate [13] grounded
by objects in O. In addition, 3y is the initial symbolic state,
T is a probability transition function S x A x S — [0,1]
which is unknown a priori, R is the reward function, and
v € [0,1) is the discount factor. We also distinguish the set

of subgoal atoms as Qg C Q which are used to define the
atoms of the LTL formula.

Operators. A PDDL operator op € OP is defined as a
lifted predicate with objects as arguments, playing the role
of symbolic action in the high level, e.g., in block stacking,
the operator Place(X,Y) refers to moving the object X onto
the top of Y. A grounded operator means the operator with
arguments replaced by objects in O, defining a symbolic
action in M. Formally, an operator op is defined by a tuple
(p(op), pre(op), eff(op)) [36], where p is the corresponding
controller, and pre, eff are logic rules for preconditions and
effects of the operator op, respectively. Preconditions are lifted
predicates that describe what must hold for the applicability
(causal dependencies) of the operator. Effects are lifted
predicates that describe how the symbolic state in S changes
as a result of applying this operator successfully, which
consists of positive and negative effects. The termination
of the operator is determined by its controller policy in the
low level, i.e., when p(op) successfully reaches its goal, the
operator op terminates.

C. Inductive Logic Programming

We use Inductive logic programming (ILP) to derive a
definition (set of clauses) of some lifted predicates, given
some positive and negative examples [22], [11]. Conducting
ILP with differentiable architectures has been investigated in
many previous work [11], [35], [9], [34]. In this work we use
an ILP-based method to learn the symbolic transition rules.

D. Problem Formulation

In this work, the problem is to train a robot to follow
LTL instructions in a relational domain that involve complex
causal dependencies among symbolic operators (actions in
symbolic MDP M). Different from prior papers, we assume
that causal dependencies of operators, i.e., symbolic transition
rules, are unknown a priori and not contained in the LTL
formula. In order to overcome the long planning horizon and
sparsity of rewards, we propose to decompose the original
problem into high-level and low-level parts which are solved
by symbolic planning and goal-conditioned RL separately.

IV. METHODOLOGY

In order to solve the problems defined above, we propose
the framework described in Figure 1. In the high level, the
environment is abstracted into a symbolic MDP M which
encodes the complex causal dependencies in the environment,
whereas in the low level, the controllers II of the environment
are realized by goal-conditioned policies.

The proposed method has two stages. First, the symbolic
transition model @ is learned by an ILP-based method to
model causal dependencies of symbolic operators, while the
policy of every low-level controller in II is trained by the goal-
conditioned RL method. In the second stage, when learning to
solve a task, the LTL formula ¢ for task specification is first
converted into a finite state automaton (FSA) .44. Then over
the product MDP of ® and Ay, a high-level plan h, which
satisfies both LTL specifications and causal dependencies,
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Fig. 1: Diagram of the proposed framework. The Automaton defines
the logic FSA Ag4. The symbolic transition model ¢ approximates
the transition rules of symbolic MDP M, i.e., the precondition and
effects of operators. The dashed rectangle represents the product
MDP P.
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Fig. 2: The process of learning symbolic transition model ®: 1)
collect symbolic transition data; 2) partition the dataset by operator
predicate; 3) learn effects by clustering the dataset further; 4) learn
precondition by logic neural network.
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can be found by a symbolic planner based on logic value
iterations. Hence, the agent can use low-level policies of
controllers to finish grounded operators in h one by one,
which can solve the whole LTL task successfully.

A. Learning Symbolic Transition Model

The symbolic transition model ® is to predict the next
symbolic state 5,43 given the current symbolic state 5; and
action (grounded operator) a;. This model ® consists of
preconditions and effects of operators. For each operator
ope OP, if s, satisfies pre(op), the effects eff(op) would be
applied onto 5; for predicting 5441, with atoms in §; added
or removed.

In our framework, based on partitioned dataset of transitions
in symbolic MDP M, we use clustering to learn effects in the
form of lifted predicates, and use ILP-based method to learn
preconditions, which can be combined to build the symbolic
transition model ®. The general process of learning ® is
summarized in Figure 2.

Dataset Partitioning. We first collect a dataset D =
{(5i, @, 3i41)} of symbolic transition tuples in M, which is
used to learn effects and preconditions of operators (symbolic
actions). The method of data collection in M may vary
across different environments and the details are introduced in
Section V. Then the dataset D is partitioned according to the
operator predicates of action a;. E.g., in block stacking tasks,
D can be partitioned into Dyick and Dpjace, corresponding to
operator predicates Pick(-) and Place(-, -) respectively.

Then, for every operator op € OP, we further cluster the
transition data D,, according to lifted effects, which can
learn the effects of applying operators in different symbolic
states. Specifically, for any transition tuple (§;, @;, §;+1) in
D,,, the grounded effects of applying operator op include
positive and negative effects which are computed as 5; 1 —5;
and 5; — S;41, representing added and removed atoms in

this state transition, respectively. We then cluster pairs of
transitions together if their effects can be unified, that is, if
there exists a bijective mapping between the objects in the
two transitions such that the effects are equivalent up to this
mapping [16], [18], [21]. Each of the resulting clusters is
indexed with the lifted effect set, where the objects in the
same effect set from any arbitrary one of the constituent
transitions are replaced with variables. For operator ope OP,
we denote the clustered dataset of transitions for m-th lifted
effect set as Dqp . The lifted effects obtained by clustering
D, tell us the effects of operator op in different symbolic
states.

Note that if the execution of operator a; is not successful
(operator’s precondition is not satisfied), we will have §; =
Si+1, where the lifted effect set is empty. The clustered dataset
for this none effect is specifically denoted as Dy o.

For every Dqp m(m > 0), we apply an ILP-based method
to learn the precondition for the m-th effect set of the operator
op. More details of learning ® are presented in Algorithm 3
in Appendix, which is summarized in Figure 2.

ILP-based Method to Learn Preconditions. We adopt
the logic neural network [39], [34] to learn logic rules for
preconditions of symbolic operators, where rules can be
represented conjunctive normal forms and made differentiable
by using logic activation function. In logic neural networks,
the input layer consists of Boolean-valued atoms (grounded
predicates) of the symbolic state. Then, we use one logic layer
consisting of one conjunction layer and one disjunction layer,
and every node in the logic layer represents one rule. The
logic layer and input layer are connected by a trainable weight
matrix W where predicates are grounded by the different
objects sharing same weights. The output layer, which is a
linear layer, only has one binary output which denotes the
applicability of the operator in the input symbolic state.

In the training, we use the continuous version of the
logic layer for optimization [34], [39]. The conjunction and
disjunction functions are defined as F,.(z,w) := 1 —w(l —x)
and Fy(x,w) := x - w, respectively. And we use the logic
activation function P(v) = —yo- from [39]. Specifically,
given the vector of atom values x, the rule at the ¢-node of
the conjunction and disjunction layer can be expressed as
P(][(Fe(zs, Wi ) +e)),

j=1

1— P(H(l = Fa(zj, Wi ) +e))

Conj,;(x, W;) =

Disj, (x, Wi) =

where W; is the trainable weight vector for the i-th node in
the logic layer, and € is a small constant, e.g., 10719, for
numerical stability.

B. Learning Controller Policies

In order to map the grounded operators in the high-level
plan into action sequences of the low level, we adopt the
goal-conditioned reinforcement learning (GCRL) approach
[12], [32]. For every controller 7k e TI, we train a goal-
conditioned policy which aims at reaching an independent
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goal with high probability. For instance, in block stacking
tasks, the controller 7! refers to moving the robotic arm to
pick up a block whose position determines the goal for the
policy. The details of learning GCRL policies are presented
in Algorithm 2 in Appendix.

C. Symbolic Planning

Product MDP. The high-level part of the proposed
framework is to find a plan consisting of a sequence of
grounded operators which can then be executed by low-level
controller policies to finish the LTL task. In order to find
plans that satisfy both the LTL specification ¢ and causal
dependencies (preconditions) of operators, we construct a
product MDP P [15], [25] of the symbolic MDP M and the
FSA Ay, ie,P = M x Ay, as shown in Figure 1. We use the
learned model ® as the transition function of M. Specifically,
we define P = (Z,,2p0,%,Tp, Fp), where Z, = Sx 2,
whose element is a tuple of (8, z,) € Zp, 2p.0 = (50,2a,0),
¥ =291T,: 2, x 2, — [0,1], and F, C Z,. Note that
the product transition function satisfies (§', 2},) ~ T,,(+|3, z4)
iff there exists @ € A and T, such that § ~ ®(-|5,a) and
2!~ Ty(+|2a, §'), where T, is the state transition function of
FSA Ay.

In the high level, we use P as a search graph for finding a
plan, which is to find a valid trajectory starting from an initial
state (50, z4,0) to one of the accepting states (5, z,, ) Where
Zq,F € Fo in FSA Ay, ie., & := {(5i, 2a,i, a;)} X, where a;
satisfies §i+1 ~ (I)(‘gz,dl) and Zai+1l Ta('|2a,i7§i+1)-
Then, a high-level plan h := {a;}/,' consisting of a
sequence of grounded operators can be directly extracted
from the valid trajectory &.

Specifically, in finding £, we construct a graph G =
(V,E,w) and use the symbolic planning algorithm (logic
value iteration [3]) to find a valid trajectory. In particular,
every state z, € Z, corresponds to a node v € V. And
there is an edge e € E connecting the pair z, = (8, z,) and
z, = (8, 2,) where 2z, ~ T)(:|2),5 # & and there exists
a satisfying 8" ~ ®(-[3,a). The cost of the edge w(zy, z,)
is read from the critics of the low-level controller for the
operator a.

D. Integrating Symbolic Planning and Reinforcement Learn-
ing

With learned symbolic transition model ®, the proposed
hierarchical framework integrates symbolic planning in the
high level with goal-conditioned RL in the low level, as shown
in Figure 1. We can generate valid high-level plans over this
learned transition model ¢ and FSA A4, without applying
actions/operators in the practical environment, so that we can
learn and follow causal dependencies in a sample-efficient
manner.

For every grounded operator a in the plan h, we select
the corresponding controller policy in the low level whose
goal is grounded by the positions of objects. For instance, in
block stacking tasks, for Place(oq, 02), the controller policy
for placing 72 is selected and the goal is set to be the position

of object 0. The details of the proposed framework are in
Algorithm 1.

Algorithm 1 The Proposed Framework for Hierarchical RL
with LTL Objectives

Require: Environment MDP M = (S, s, A, T);

symbolic MDP M = (S, A, 50, T, R, 73
The set of grounded predicates (atoms) O, the set of
subgoal atoms Qg C Q, the set of objects Q, the set
of operator predicates OP, and the labeling function
L:S—S ;
The LTL formula ¢ for task specification given by the
user;
The FSA of the given LTL formula Ay =
<Zaa Za,05 Ev Taa »Fa>;

1: Apply Algorithm 2 in Appendix to learn low-level
controller policies in 1I;

2: Apply Algorithm 3 in Appendix to learn the symbolic
transition model ®;

3: /Find a high-level plan h over the product MDP P by
Logic Value Iteration:

4: Initialize Q: Z, x Sx A >R,V : Z, xS — R to 0;
s5:fork=1,...,K do

6: for (z,5) € Z, xS do

7: for @ € A do ~

8: Qk(z,§, (NL) — R(g) +

Z(z/,g’)eza s P(85,a)To (22,8 ) Vi1 (2, 8)
9: end for

10 Vi(z,3) < max, 1 Qr(z,5,a)
11:  end for
12: end for

13: Initialize h < {}, $ < 30, 2 ¢ 2405

14: while z ¢ F, do

15: @< argmax, . ; Qk(z,5,a');

16:  Append a to h;

17:  Update § ~ ®(-|3,a) and then z ~ T,(:|z, §);

18: end while

19: Return Controller policies II and high-level plan h

V. EXPERIMENTS

The method of learning symbolic transition model ® is
evaluated in three environments, including room, reacher and
block stacking domains. For LTL task solving, we conducted
experiments to evaluate the proposed framework on the
training of the given LTL instruction and the generalization
to other ones. Since the LTL task has multiple subgoals, the
evaluation of training and generalization should be separated.
For training, the LTL formulae are chosen to be randomly
generated, and the metric of evaluation is success rate. For
generalization, given a random LTL task, based on the trained
controller policies and value functions, the number of re-
training steps for searching a high-level plan is recorded and
compared with baselines. The metric in generalization is the
success rate of testing tasks. More details of the algorithms,
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implementation and baselines are in Appendix'.
Environments. The performance of the proposed framework
is evaluated on three environments (domains).

e Room domain: the robot is tasked to visit several rooms
in a specific temporal order. In this environment, the
robot has to pick up keys and open the doors and the
door can only be opened by keys in the same color,
which imposes causal dependencies of visiting different
rooms. The task in this domain is to visit multiple rooms
in an order satisfying the LTL formula.

o Reacher domain: it is a two-link arm that has continuous
state and action spaces. There are multiple objects
denoted as colored balls, such as green g, red r, blue
b, yellow y, white w. In order to introduce causal
dependencies, we impose pre-conditions of visiting some
balls. For example, red ball can only be visited after
yellow ball is visited, and red and blue balls have to
be visited before the robot goes to the green one. The
task in this domain is to visit multiple colored balls in
a valid order.

o Block stacking domain: it is a continuous adaptation of
the classical blocks world problem simulated by PyBullet
[6]. A robot uses its gripper to interact with blocks on
a tabletop and must assemble them into various towers.
The robot has two operators, Pick and Place, which are
to pick up certain block and place it on top of another
block, respectively. There are many causal dependencies
here, e.g., the gripper has to be empty before picking
up a block, and the top of target block should be empty
before the robot places something there. The task in
this domain is to realize different On(o01, 02) in an order
satisfying the given LTL formula.

Task. We evaluate the proposed framework on three tasks.
Every task is randomly generated, and the robot does not
know any information about the task before learning starts.
The first task is ”sequential” task and is written in the form
of Peq = Ola A O(b A O(c A Od))), where the atom has
to be realized in the order of a,b,c and d, and atoms are
selected randomly. The length of sequential formula (number
of atoms) are randomly selected between 2 and 5. The second
task is "OR” task that concatenates terms by disjunctive
operator V. where every term is a short sequential task, e.g.,
dor = Oa A Ob) V O(c A Od). Specifically, the number of
terms is ranging between 2 and 4, and the length of every
term is from 1 to 3. The third task is called “recursive”
task [37], which can be formulated as ¢rec = Grec A &' |¢,
¢ = O(p'NP)|0p, and p’ = a|aVb, where a and b are atoms
for subgoals. The notation | is for alternative, and in task
formula generation, two sub-formulae around | are uniformly
selected. The depth of recursion is randomly selected between
1 and 3.

Baselines. In order to test the effects of the learned symbolic
transition model, we evaluate two baselines against the
proposed framework. The baselines considered here still use
hierarchical RL to solve given tasks, but they use different

Ihttps://arxiv.org/abs/2204.03196

methods from the proposed framework in the high-level part,
where the symbolic transition rules are not learned or utilized.
o Baseline-1: The first baseline is to use Q-learning to
find a high-level plan, which does not need to utilize
the transition rules in either symbolic model ® or FSA
Ay

o Baseline-2: The second baseline uses Reward Machines
[16] to find the high-level plan, where the Q-value
functions are trained for reaching every state in the FSA
Agy. In this approach, the original task is decomposed
into sub-tasks of reaching different states of A, and
solved independently by Q-learning.

Data Collection for Learning ®. In order to learn the
symbolic transition model ®, in every domain, we use random
high-level policies to collect symbolic transition data for K
trajectories, denoted as D, where every grounded operator is
uniformly selected and the maximum length of each trajectory
is 100. Specifically, for data collection, the room domain has
4 x 4 rooms with two pairs of keys and locks where K = 50.
The reacher domain and block stacking domains have the
same number of objects as those in the evaluation where
K = 100. In every domain, the low-level controller policies
are pre-trained before data collection, and the agent will be
reset to its previous state if any grounded operator is not
successfully executed.

A. Learning Symbolic Transition Model

1) Room: Setup. In this domain, the symbolic state is
defined by the following predicates: At(X), Visited(X), Con-
nect(X,Y), Lock(X,Y,C) and hasKey(C), RoomHasKey(X,C).
The predicates in the symbolic state, At(X) and Visited(X),
denote the current room and previously visited rooms of
the robot. The Connect(X,Y) means there is a corridor
between room X and Y. Lock(X,Y,C) denotes a lock in color
C between room X and Y. The predicates hasKey(C) and
RoomHasKey(X,C) denote the key in color C is at the robot or
room X, respectively. The operator predicate is FromTo(X,Y),
which is also the predicate for representing symbolic actions.
Here X and Y are variables of room indices. Since only
neighboring rooms are connected by corridors or locks, the
low-level controller policy is only to visit next rooms in 4
cardinal directions, which is so simple that GCRL policy is
not used here. The application of operator can be blocked by
walls and locks between rooms.

Learned Transition Rules. By applying the learning
method introduced in Section IV-A on the dataset D, we can
learn the transition rules for operator predicates as below:

e FromTo(X,Y):
— precondition: At(X), Connect(X,Y)
— effect: At(Y), Visited(Y)
e FromTo(X,Y):
— precondition: At(X), Connect(X,Y), RoomHasKey(X,C)
- effect: A(Y), Visited(Y), hasKey(C),
—RoomHasKey(X,C)
o FromTo(X,Y):
— precondition: At(X), Lock(X,Y,C), hasKey(C)
— effect: At(Y), Visited(Y), Connect(X,Y), ~Lock(X,Y,C)
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2) Reacher: Setup. In the reacher domain, the symbolic
state consists of RedVisited(), BlueVisited(), and so on,
meaning that the ball in some color has been visited or
not. The operator is GoRed(), GoBlue(), and so on, denoting
visiting a ball with a specific color. The low-level policies of
controller is trained by GCRL, where the goal space is defined
as the (x,y) coordinates of the target ball. The visiting of
some balls is constrained by partial orders, e.g., visiting red
(blue) ball is necessary before visiting the green (yellow)
ball.

Learned Transition Rule. Based on the learning method in
Section IV-A, we learn the following transition rules from the
collected data. Operators without constraints are omitted here

o GoToGreen():

— precondition: RedVisited()
— effect: GreenVisited()

o GoToYellow():

— precondition: BlueVisited()
— effect: Yellow Visited()

3) Block Stacking: Setup. In the definition of symbolic
state space 5‘, the predicates are On(oq, 02), TopEmpty(0),
OnTable(o), Holding(o) and GripperEmpty(), meaning that
the object 0y is on top of 02, object o has nothing on top of
it, object o is on the table, the gripper is holding object o,
and the gripper holds nothing, respectively. There are three
operator predicates, Pick(o), Place(o;, 02) and PutOnTable(o),
formulating symbolic actions. The goal vector g can be easily
obtained from the positions of related objects. In the low
level, there are two controller policies (skills of the robot),
7Pk (als, g) and 7% (als, g), which are to pick up and place
some object to some place by the gripper, respectively. The op-
erator Pick(o) is accomplished by the controller 7P (als, g),

whereas the operators Place(o;, 02) and PutOnTable(o) are
accomplished the controller 7P*¢(als, g).

Learned Transition Rules. Based on the collected sym-
bolic transition data D, we can learn first-order rules describ-
ing the pre-condition and effect of operator predicates as
below,

o Pick(X):
— precondition: GripperEmpty(), TopEmpty(X)
— effects: Holding(X), —GripperEmpty()
o Place(X,Y):
— precondition: Holding(X), TopEmpty(Y), On(X,Z)
— effects: GripperEmpty(), On(X,Y), TopEmpty(Z),
—Holding(X), =TopEmpty(Y), —-On(X,Z)
e Place(X,Y):
— precondition: Holding(X), TopEmpty(Y), OnTable(X)
- effects:  GripperEmpty(), On(X,Y), —Holding(X),
—TopEmpty(Y), -OnTable(X)
o PutOnTable(X):
— precondition: Holding(X), On(X, Y)
— effects: GripperEmpty(), OnTable(X), —Holding(X),
-0On(X, Y)

B. LTL Task Solving

Training. The performance comparisons of training, av-
eraged over all the randomly generated tasks, are shown in
Figure 3. In all three domains, we can see clear advantage of
the proposed framework over baselines. The Baseline-1 uses
Q-learning to find the satisfying plan in the product MDP P
and ground the operators by controller policies to finish the
task. It is purely model-free and does not utilize the transition
information of either the FSA Ay or the symbolic rules in ®.
It directly uses trial-and-error to learn the precondition and
effects of operators. Hence, its learning efficiency is low. The
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Baseline-2 uses Reward Machine to learn sub-policies for
every automaton state in FSA, which decomposes the task
into sub-tasks of reaching different automaton states. Based
on the transitions in Ay, it uses Q-learning to find a sequence
of grounded operators (sub-policy) to reach every automaton
state. However, this method separately solves every sub-task
of transiting between automaton states, which may ignore
the global optimality as shown in Figure 3. In addition, some
automaton states are not on the optimal paths from initial
states to accepting states, and learning sub-policies to reach
those states can reduce the learning efficiency. In contrast, the
proposed framework uses a planner to find a plan of grounded
operators to directly reach the accepting automaton state,
which can keep the global optimality and ignore distracting
states by value iterations. We can see that Baseline 2 performs
worst, since it does not utilize the transition rules and suffers
from sub-optimality resulted from task decomposition.
Generalization. With the trained controller (low-level)
policies and value functions, we compare the re-training steps
of the proposed framework and Baseline-1 in unseen tasks.
Since the task in Reward Machine is decomposed according to
the FSA of the task formula ¢, we can not compare Baseline-
2 with the proposed framework for generalization to unseen
tasks. In Figure 3, we can see that the proposed framework
can generalize to new tasks significantly faster (more than
5x) than the Baseline-1, which shows the effect of learned
symbolic transition rules and product MDP on improving the
generalization capability.

VI. CONCLUSION

In this work, we propose a new learning framework for
following temporal logic instructions in a relational domain
that involves causal dependencies. Different from prior works,
the agent does not know these causal dependencies as prior
knowledge. We propose to use ILP-based method to learn
symbolic operators and describe them as symbolic operators
which can build a symbolic transition model for operators.
Based this learned transition model, we can build a product
MDP as the high-level abstraction of the environment, and
the solve the given LTL task by a hierarchical RL approach.
The advantage of the proposed framework is verified in three
different domains.
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