
Integrating Symbolic Planning and Reinforcement Learning for

Following Temporal Logic Specifications

Duo Xu1 and Faramarz Fekri1

AbstractÐ Teaching a deep reinforcement learning (RL)
agent to follow instructions in multi-task environments is a
challenging problem. We consider that user defines every
task by a linear temporal logic (LTL) formula. However,
some causal dependencies in complex environments may be
unknown to the user in advance. Hence, when human user is
specifying instructions, the robot cannot solve the tasks by simply
following the given instructions. In this work, we propose a
hierarchical reinforcement learning (HRL) framework in which
a symbolic transition model is learned to efficiently produce high-
level plans that can guide the agent efficiently solve different
tasks. Specifically, the symbolic transition model is learned by
inductive logic programming (ILP) to capture logic rules of
state transitions. By planning over the product of the symbolic
transition model and the automaton derived from the LTL
formula, the agent can resolve causal dependencies and break
a causally complex problem down into a sequence of simpler
low-level sub-tasks. We evaluate the proposed framework on
three environments in both discrete and continuous domains,
showing advantages over previous representative methods.

I. INTRODUCTION

A long-standing motivation of artificial intelligence is

to build agents that can understand and follow human

instructions [30]. Recent advances in deep reinforcement

learning (RL) and language modeling have made it possible

to learn a policy which produces the next action conditioned

on the current observation and a natural language instruction

[28]. However, these approaches require manually building a

large training set comprised of natural language instructions.

Recently, people have focused on using formal languages

(instead of natural language) to instruct RL agents, e.g., policy

sketches [1], reward machines [17], and temporal logic [24].

These languages offer several desirable properties for RL,

including clear semantics, and compact compositional syntax

that enables RL practitioners to (automatically) generate

massive training data to teach RL agents to follow instructions.

Among popular formal languages, the linear temporal logics

(LTL) is a widely-used powerful specification language for

complex tasks, which allows Boolean and temporal constraints

and instructions with multiple subgoals, accommodating rich

specifications for many applications such as mobile robotics

[40], [29], [38]. In this work, we consider solving tasks

specified by LTL instructions.

However, some causal dependencies in complex environ-

ments may be unknown to the user in advance. Hence, when

human user is specifying instructions, the robot cannot solve

the tasks by simply following the given instructions. It is

1Authors are with Department of Electrical and Computer
Engineering, Georgia Institute of Technology, GA 30332, USA
dxu301@gatech.edu

well known that regular RL architectures fail in situations

involving non-trivial causal dependencies that require the

reasoning over an extended time horizon [31]. Therefore,

solving LTL tasks can be constrained by causal dependencies

unknown to the human user. This problem is not considered

by the previous works on LTL task solving [15], [23], [25],

[2], [37].

In this work, in order to tackle the problem above, we

propose to first learn causal dependencies via learning

symbolic operators [15], [36]. Then we use a hierarchical

framework to solve LTL tasks, where symbolic planning and

RL are used in the high level and low level, respectively. In the

high level of the proposed framework, symbolic planning is

conducted in a symbolic MDP [29], [38], [25] whose state is

a discrete abstraction of the environment state. The symbolic

operators, i.e., symbolic actions, are described in the symbolic

planning domain description language (PDDL) [13]. In

contrast to prior papers which used propositions to formulate

symbolic states, here we propose to use predicates to describe

relational information of objects in the environment. We first

use ILP-based method to learn preconditions of symbolic

operators. Then with lifted effect sets, we formulate the

preconditions and effects of operators as a symbolic transition

model. Combing the automaton of the given LTL formula

with the learned transition model, we get a product MDP over

which the symbolic planning can be conducted to produce

a high-level plan of subtasks. In the low level, based on

goal-conditional RL method, the policies of controllers can

be trained to solve subtasks, produced by the high-level plan,

one by one.

In experiments, we conduct empirical evaluations of the

proposed framework in three domains, including room, 2D

reacher and 3D block stacking domains. The room domain has

discrete action and state spaces, while the other two domains

have continuous action and state spaces. For both training

and generalization, the proposed framework is compared with

representative methods from prior works.

II. RELATED WORK

Recently, there has been a surge of RL papers which looked

into using LTL (or similar formal languages) for reward

function specification, decomposition, or shaping [27], [16],

[26], [5], [42], [20], [41], [14], [8], [7], [19]. However, all

of these works formulate the LTL over propositions, without

considering the relationships of objects. None of the past

works consider the causal dependencies in the environment

and hence, they cannot solve tasks that involve complex

logical reasoning in the learning horizon.

978-1-7281-8671-9/22/$31.00 ©2022 IEEE

20
22

 In
te

rn
at

io
na

l J
oi

nt
 C

on
fe

re
nc

e
on

 N
eu

ra
l N

et
w

or
ks

 (I
JC

NN
) |

 9
78

-1
-7

28
1-

86
71

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IJ
CN

N5
50

64
.2

02
2.

98
92

30
4

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

Some past works considered investigating planning and RL

in relational domain [21] or with causal dependencies [10].

However, they directly assumed that causal dependencies

and objective relationships are known to the agent as

prior knowledge. In our framework, instead of using these

information directly, we propose to use ILP-based method to

learn them.

In the planning literature, learning symbolic transition rules

have been investigated [33], [4], [36]. However, these works

did not study the case in which the agent follows an instruction

provided by LTL. When solving tasks that involve causal

dependencies, it is necessary to learn symbolic transition

rules for reasoning over a long time horizon.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we are going to introduce some preliminar-

ies and formulate the problem.

A. Environment MDP

The low level part of the proposed framework is working on

the environment MDP. Specifically, this environment contains

a set of objects O = {o1, . . . , on} and the state s ∈ S consists

of attributes of all the objects, including position, velocity,

and so on.

Controller. We assume that the robot is equipped with a set

of controller Π = {π1, . . . , πK} representing specific skills

in the environment MDP, which are learned to solve subtasks

in the low level of the proposed framework. For example,

in block stacking tasks with N blocks, and there are two

controllers π1 and π2 denoting the skills of picking up object

o and placing object o to the goal position g, respectively.

B. Symbolic MDP

In prior related papers [16], [18], [2], the high-level part of

the environment is represented by a symbolic MDP, where the

state and action are described by propositions which ignore

the relations of objects. In this work, the high level is defined

as a the relational domain specified by objects in O and a

set of predicates representing relationships of objects and

events in the environment. A predicate with only variables

as arguments is called lifted; a predicate with objects as

arguments is called as a grounded predicate or atom. Each

predicate is a classifier over the environment state s. All the

grounded predicates are assumed to be in the set Q whose

values (True or False) are determined by a deterministic

labeling function L. Given the environment state s, we can

compute the atoms that hold true in the state s by L. And

the output of function L formulates the symbolic state, i.e.,

s̃ := L(s) ∈ 2Q.

Symbolic MDP Formally, a symbolic MDP is defined

as M̃ := ⟨S̃, Ã, s̃0, T̃ , R̃, γ⟩. The symbolic states in S̃ are

subsets of atoms (grounded predicates) in Q. The symbolic

action in Ã is a PDDL-style operator predicate [13] grounded

by objects in O. In addition, s̃0 is the initial symbolic state,

T̃ is a probability transition function S̃ × Ã × S̃ → [0, 1]
which is unknown a priori, R̃ is the reward function, and

γ ∈ [0, 1) is the discount factor. We also distinguish the set

of subgoal atoms as QG ⊂ Q which are used to define the

atoms of the LTL formula.

Operators. A PDDL operator op ∈ OP is defined as a

lifted predicate with objects as arguments, playing the role

of symbolic action in the high level, e.g., in block stacking,

the operator Place(X,Y) refers to moving the object X onto

the top of Y. A grounded operator means the operator with

arguments replaced by objects in O, defining a symbolic

action in M̃. Formally, an operator op is defined by a tuple

⟨p(op), pre(op), eff(op)⟩ [36], where p is the corresponding

controller, and pre, eff are logic rules for preconditions and

effects of the operator op, respectively. Preconditions are lifted

predicates that describe what must hold for the applicability

(causal dependencies) of the operator. Effects are lifted

predicates that describe how the symbolic state in S̃ changes

as a result of applying this operator successfully, which

consists of positive and negative effects. The termination

of the operator is determined by its controller policy in the

low level, i.e., when p(op) successfully reaches its goal, the

operator op terminates.

C. Inductive Logic Programming

We use Inductive logic programming (ILP) to derive a

definition (set of clauses) of some lifted predicates, given

some positive and negative examples [22], [11]. Conducting

ILP with differentiable architectures has been investigated in

many previous work [11], [35], [9], [34]. In this work we use

an ILP-based method to learn the symbolic transition rules.

D. Problem Formulation

In this work, the problem is to train a robot to follow

LTL instructions in a relational domain that involve complex

causal dependencies among symbolic operators (actions in

symbolic MDP M̃). Different from prior papers, we assume

that causal dependencies of operators, i.e., symbolic transition

rules, are unknown a priori and not contained in the LTL

formula. In order to overcome the long planning horizon and

sparsity of rewards, we propose to decompose the original

problem into high-level and low-level parts which are solved

by symbolic planning and goal-conditioned RL separately.

IV. METHODOLOGY

In order to solve the problems defined above, we propose

the framework described in Figure 1. In the high level, the

environment is abstracted into a symbolic MDP M̃ which

encodes the complex causal dependencies in the environment,

whereas in the low level, the controllers Π of the environment

are realized by goal-conditioned policies.

The proposed method has two stages. First, the symbolic

transition model Φ is learned by an ILP-based method to

model causal dependencies of symbolic operators, while the

policy of every low-level controller in Π is trained by the goal-

conditioned RL method. In the second stage, when learning to

solve a task, the LTL formula ϕ for task specification is first

converted into a finite state automaton (FSA) Aφ. Then over

the product MDP of Φ and Aφ, a high-level plan h, which

satisfies both LTL specifications and causal dependencies,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

goal with high probability. For instance, in block stacking

tasks, the controller π1 refers to moving the robotic arm to

pick up a block whose position determines the goal for the

policy. The details of learning GCRL policies are presented

in Algorithm 2 in Appendix.

C. Symbolic Planning

Product MDP. The high-level part of the proposed

framework is to find a plan consisting of a sequence of

grounded operators which can then be executed by low-level

controller policies to finish the LTL task. In order to find

plans that satisfy both the LTL specification ϕ and causal

dependencies (preconditions) of operators, we construct a

product MDP P [15], [25] of the symbolic MDP M̃ and the

FSA Aφ, i.e., P = M̃×Aφ, as shown in Figure 1. We use the

learned model Φ as the transition function of M̃. Specifically,

we define P = ⟨Zp, zp,0,Σ, Tp,Fp⟩, where Zp = S̃ × Za

whose element is a tuple of (s̃, za) ∈ Zp, zp,0 = (s̃0, za,0),
Σ = 2Q, Tp : Zp × Zp → [0, 1], and Fp ⊂ Zp. Note that

the product transition function satisfies (s̃′, z′a) ∼ Tp(·|s̃, za)
iff there exists ã ∈ Ã and Ta such that s̃′ ∼ Φ(·|s̃, ã) and

z′ ∼ Ta(·|za, s̃
′), where Ta is the state transition function of

FSA Aφ.

In the high level, we use P as a search graph for finding a

plan, which is to find a valid trajectory starting from an initial

state (s̃0, za,0) to one of the accepting states (s̃K , za,F) where

za,F ∈ Fa in FSA Aφ, i.e., ξ := {(s̃i, za,i, ãi)}
K
i=0, where ãi

satisfies s̃i+1 ∼ Φ(·|s̃i, ãi) and za,i+1 ∼ Ta(·|za,i, s̃i+1).
Then, a high-level plan h := {ãi}

K−1
i=0 consisting of a

sequence of grounded operators can be directly extracted

from the valid trajectory ξ.

Specifically, in finding ξ, we construct a graph G =
⟨V,E, ω⟩ and use the symbolic planning algorithm (logic

value iteration [3]) to find a valid trajectory. In particular,

every state zp ∈ Zp corresponds to a node v ∈ V . And

there is an edge e ∈ E connecting the pair zp = (s̃, za) and

z′p = (s̃′, z′a) where z′p ∼ Tp(·|zp), s̃ ̸= s̃′ and there exists

ã satisfying s̃′ ∼ Φ(·|s̃, ã). The cost of the edge ω(zp, z
′
p)

is read from the critics of the low-level controller for the

operator ã.

D. Integrating Symbolic Planning and Reinforcement Learn-

ing

With learned symbolic transition model Φ, the proposed

hierarchical framework integrates symbolic planning in the

high level with goal-conditioned RL in the low level, as shown

in Figure 1. We can generate valid high-level plans over this

learned transition model Φ and FSA Aφ, without applying

actions/operators in the practical environment, so that we can

learn and follow causal dependencies in a sample-efficient

manner.

For every grounded operator ã in the plan h, we select

the corresponding controller policy in the low level whose

goal is grounded by the positions of objects. For instance, in

block stacking tasks, for Place(o1, o2), the controller policy

for placing π2 is selected and the goal is set to be the position

of object o2. The details of the proposed framework are in

Algorithm 1.

Algorithm 1 The Proposed Framework for Hierarchical RL

with LTL Objectives

Require: Environment MDP M = ⟨S, s0,A, T ⟩;
symbolic MDP M̃ = ⟨S̃, Ã, s̃0, T̃ , R̃, γ⟩;
The set of grounded predicates (atoms) Q, the set of

subgoal atoms QG ⊂ Q, the set of objects Q, the set

of operator predicates OP , and the labeling function

L : S → S̃;

The LTL formula ϕ for task specification given by the

user;

The FSA of the given LTL formula Aφ =
⟨Za, za,0,Σ, Ta,Fa⟩;

1: Apply Algorithm 2 in Appendix to learn low-level

controller policies in Π;

2: Apply Algorithm 3 in Appendix to learn the symbolic

transition model Φ;

3: //Find a high-level plan h over the product MDP P by

Logic Value Iteration:

4: Initialize Q : Za × S̃ × Ã → R, V : Za × S̃ → R to 0;

5: for k = 1, . . . ,K do

6: for (z, s̃) ∈ Za × S̃ do

7: for ã ∈ Ã do

8: Qk(z, s̃, ã) ← R̃(s̃) +∑
(z′,s̃′)∈Za×S̃

Φ(s̃′|s̃, ã)Ta(z
′|z, s̃′)Vk−1(z

′, s̃′)
9: end for

10: Vk(z, s̃)← maxã∈Ã
Qk(z, s̃, ã)

11: end for

12: end for

13: Initialize h← {}, s̃← s̃0, z ← za,0;

14: while z ̸∈ Fa do

15: ã← argmaxa′∈Ã
QK(z, s̃, a′);

16: Append ã to h;

17: Update s̃ ∼ Φ(·|s̃, ã) and then z ∼ Ta(·|z, s̃);
18: end while

19: Return Controller policies Π and high-level plan h

V. EXPERIMENTS

The method of learning symbolic transition model Φ is

evaluated in three environments, including room, reacher and

block stacking domains. For LTL task solving, we conducted

experiments to evaluate the proposed framework on the

training of the given LTL instruction and the generalization

to other ones. Since the LTL task has multiple subgoals, the

evaluation of training and generalization should be separated.

For training, the LTL formulae are chosen to be randomly

generated, and the metric of evaluation is success rate. For

generalization, given a random LTL task, based on the trained

controller policies and value functions, the number of re-

training steps for searching a high-level plan is recorded and

compared with baselines. The metric in generalization is the

success rate of testing tasks. More details of the algorithms,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

implementation and baselines are in Appendix1.

Environments. The performance of the proposed framework

is evaluated on three environments (domains).

• Room domain: the robot is tasked to visit several rooms

in a specific temporal order. In this environment, the

robot has to pick up keys and open the doors and the

door can only be opened by keys in the same color,

which imposes causal dependencies of visiting different

rooms. The task in this domain is to visit multiple rooms

in an order satisfying the LTL formula.

• Reacher domain: it is a two-link arm that has continuous

state and action spaces. There are multiple objects

denoted as colored balls, such as green g, red r, blue

b, yellow y, white w. In order to introduce causal

dependencies, we impose pre-conditions of visiting some

balls. For example, red ball can only be visited after

yellow ball is visited, and red and blue balls have to

be visited before the robot goes to the green one. The

task in this domain is to visit multiple colored balls in

a valid order.

• Block stacking domain: it is a continuous adaptation of

the classical blocks world problem simulated by PyBullet

[6]. A robot uses its gripper to interact with blocks on

a tabletop and must assemble them into various towers.

The robot has two operators, Pick and Place, which are

to pick up certain block and place it on top of another

block, respectively. There are many causal dependencies

here, e.g., the gripper has to be empty before picking

up a block, and the top of target block should be empty

before the robot places something there. The task in

this domain is to realize different On(o1, o2) in an order

satisfying the given LTL formula.

Task. We evaluate the proposed framework on three tasks.

Every task is randomly generated, and the robot does not

know any information about the task before learning starts.

The first task is ºsequentialº task and is written in the form

of ϕseq = ♢(a ∧ ♢(b ∧ ♢(c ∧ ♢d))), where the atom has

to be realized in the order of a, b, c and d, and atoms are

selected randomly. The length of sequential formula (number

of atoms) are randomly selected between 2 and 5. The second

task is ºORº task that concatenates terms by disjunctive

operator ∨ where every term is a short sequential task, e.g.,

ϕor = ♢(a ∧ ♢b) ∨ ♢(c ∧ ♢d). Specifically, the number of

terms is ranging between 2 and 4, and the length of every

term is from 1 to 3. The third task is called ºrecursiveº

task [37], which can be formulated as ϕrec = ϕrec ∧ ϕ′|ϕ′,

ϕ′ = ♢(p′∧ϕ′)|♢p′, and p′ = a|a∨b, where a and b are atoms

for subgoals. The notation | is for alternative, and in task

formula generation, two sub-formulae around | are uniformly

selected. The depth of recursion is randomly selected between

1 and 3.

Baselines. In order to test the effects of the learned symbolic

transition model, we evaluate two baselines against the

proposed framework. The baselines considered here still use

hierarchical RL to solve given tasks, but they use different

1https://arxiv.org/abs/2204.03196

methods from the proposed framework in the high-level part,

where the symbolic transition rules are not learned or utilized.

• Baseline-1: The first baseline is to use Q-learning to

find a high-level plan, which does not need to utilize

the transition rules in either symbolic model Φ or FSA

Aφ.

• Baseline-2: The second baseline uses Reward Machines

[16] to find the high-level plan, where the Q-value

functions are trained for reaching every state in the FSA

Aφ. In this approach, the original task is decomposed

into sub-tasks of reaching different states of Aφ and

solved independently by Q-learning.

Data Collection for Learning Φ. In order to learn the

symbolic transition model Φ, in every domain, we use random

high-level policies to collect symbolic transition data for K

trajectories, denoted as D, where every grounded operator is

uniformly selected and the maximum length of each trajectory

is 100. Specifically, for data collection, the room domain has

4× 4 rooms with two pairs of keys and locks where K = 50.

The reacher domain and block stacking domains have the

same number of objects as those in the evaluation where

K = 100. In every domain, the low-level controller policies

are pre-trained before data collection, and the agent will be

reset to its previous state if any grounded operator is not

successfully executed.

A. Learning Symbolic Transition Model

1) Room: Setup. In this domain, the symbolic state is

defined by the following predicates: At(X), Visited(X), Con-

nect(X,Y), Lock(X,Y,C) and hasKey(C), RoomHasKey(X,C).

The predicates in the symbolic state, At(X) and Visited(X),

denote the current room and previously visited rooms of

the robot. The Connect(X,Y) means there is a corridor

between room X and Y. Lock(X,Y,C) denotes a lock in color

C between room X and Y. The predicates hasKey(C) and

RoomHasKey(X,C) denote the key in color C is at the robot or

room X, respectively. The operator predicate is FromTo(X,Y),

which is also the predicate for representing symbolic actions.

Here X and Y are variables of room indices. Since only

neighboring rooms are connected by corridors or locks, the

low-level controller policy is only to visit next rooms in 4

cardinal directions, which is so simple that GCRL policy is

not used here. The application of operator can be blocked by

walls and locks between rooms.

Learned Transition Rules. By applying the learning

method introduced in Section IV-A on the dataset D, we can

learn the transition rules for operator predicates as below:

• FromTo(X,Y):

± precondition: At(X), Connect(X,Y)
± effect: At(Y), Visited(Y)

• FromTo(X,Y):

± precondition: At(X), Connect(X,Y), RoomHasKey(X,C)
± effect: At(Y), Visited(Y), hasKey(C),

¬RoomHasKey(X,C)

• FromTo(X,Y):

± precondition: At(X), Lock(X,Y,C), hasKey(C)
± effect: At(Y), Visited(Y), Connect(X,Y), ¬Lock(X,Y,C)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

Baseline-2 uses Reward Machine to learn sub-policies for

every automaton state in FSA, which decomposes the task

into sub-tasks of reaching different automaton states. Based

on the transitions in Aφ, it uses Q-learning to find a sequence

of grounded operators (sub-policy) to reach every automaton

state. However, this method separately solves every sub-task

of transiting between automaton states, which may ignore

the global optimality as shown in Figure 3. In addition, some

automaton states are not on the optimal paths from initial

states to accepting states, and learning sub-policies to reach

those states can reduce the learning efficiency. In contrast, the

proposed framework uses a planner to find a plan of grounded

operators to directly reach the accepting automaton state,

which can keep the global optimality and ignore distracting

states by value iterations. We can see that Baseline 2 performs

worst, since it does not utilize the transition rules and suffers

from sub-optimality resulted from task decomposition.

Generalization. With the trained controller (low-level)

policies and value functions, we compare the re-training steps

of the proposed framework and Baseline-1 in unseen tasks.

Since the task in Reward Machine is decomposed according to

the FSA of the task formula ϕ, we can not compare Baseline-

2 with the proposed framework for generalization to unseen

tasks. In Figure 3, we can see that the proposed framework

can generalize to new tasks significantly faster (more than

5x) than the Baseline-1, which shows the effect of learned

symbolic transition rules and product MDP on improving the

generalization capability.

VI. CONCLUSION

In this work, we propose a new learning framework for

following temporal logic instructions in a relational domain

that involves causal dependencies. Different from prior works,

the agent does not know these causal dependencies as prior

knowledge. We propose to use ILP-based method to learn

symbolic operators and describe them as symbolic operators

which can build a symbolic transition model for operators.

Based this learned transition model, we can build a product

MDP as the high-level abstraction of the environment, and

the solve the given LTL task by a hierarchical RL approach.

The advantage of the proposed framework is verified in three

different domains.

REFERENCES

[1] Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask re-
inforcement learning with policy sketches. In International Conference

on Machine Learning, pages 166±175. PMLR, 2017.

[2] Brandon Araki, Xiao Li, Kiran Vodrahalli, Jonathan DeCastro, Micah J
Fry, and Daniela Rus. The logical options framework. arXiv preprint

arXiv:2102.12571, 2021.

[3] Brandon Araki, Kiran Vodrahalli, Thomas Leech, Cristian-Ioan Vasile,
Mark D Donahue, and Daniela L Rus. Learning to plan with logical
automata. 2019.

[4] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc MÂetivier, and
Sylvie Pesty. A review of learning planning action models. The

Knowledge Engineering Review, 33, 2018.

[5] Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard An-
thony Valenzano, and Sheila A McIlraith. Ltl and beyond: Formal
languages for reward function specification in reinforcement learning.
In IJCAI, volume 19, pages 6065±6073, 2019.

[6] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics
simulation for games, robotics and machine learning, 2016. URL

http://pybullet. org, 2016.

[7] Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and
Alessandro Ronca. Temporal logic monitoring rewards via transducers.
In Proceedings of the International Conference on Principles of

Knowledge Representation and Reasoning, volume 17, pages 860±870,
2020.

[8] Giuseppe De Giacomo, Luca Iocchi, Marco Favorito, and Fabio Patrizi.
Restraining bolts for reinforcement learning agents. In Proceedings

of the AAAI Conference on Artificial Intelligence, volume 34, pages
13659±13662, 2020.

[9] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and
Denny Zhou. Neural logic machines. arXiv preprint arXiv:1904.11694,
2019.

[10] Manfred Eppe, Phuong DH Nguyen, and Stefan Wermter. From
semantics to execution: Integrating action planning with reinforcement
learning for robotic causal problem-solving. Frontiers in Robotics and

AI, page 123, 2019.

[11] Richard Evans and Edward Grefenstette. Learning explanatory rules
from noisy data. Journal of Artificial Intelligence Research, 61:1±64,
2018.

[12] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel.
Automatic goal generation for reinforcement learning agents. In
International conference on machine learning, pages 1515±1528.
PMLR, 2018.

[13] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for
expressing temporal planning domains. Journal of artificial intelligence

research, 20:61±124, 2003.

[14] Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate.
Deep reinforcement learning with temporal logics. In International

Conference on Formal Modeling and Analysis of Timed Systems, pages
1±22. Springer, 2020.

[15] Keliang He, Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi.
Towards manipulation planning with temporal logic specifications. In
2015 IEEE international conference on robotics and automation (ICRA),
pages 346±352. IEEE, 2015.

[16] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila
McIlraith. Using reward machines for high-level task specification and
decomposition in reinforcement learning. In International Conference

on Machine Learning, pages 2107±2116. PMLR, 2018.

[17] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A
McIlraith. Reward machines: Exploiting reward function structure in
reinforcement learning. Journal of Artificial Intelligence Research,
73:173±208, 2022.

[18] LeÂon Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A McIlraith.
Symbolic plans as high-level instructions for reinforcement learning.
In Proceedings of the International Conference on Automated Planning

and Scheduling, volume 30, pages 540±550, 2020.

[19] Yuqian Jiang, Sudarshanan Bharadwaj, Bo Wu, Rishi Shah, Ufuk Topcu,
and Peter Stone. Temporal-logic-based reward shaping for continuing
learning tasks. arXiv preprint arXiv:2007.01498, 2020.

[20] Kishor Jothimurugan, Rajeev Alur, and Osbert Bastani. A composable
specification language for reinforcement learning tasks. Advances in

Neural Information Processing Systems, 32, 2019.

[21] Harsha Kokel, Arjun Manoharan, Sriraam Natarajan, Balaraman
Ravindran, and Prasad Tadepalli. Reprel: Integrating relational planning
and reinforcement learning for effective abstraction. In Proceedings of

the International Conference on Automated Planning and Scheduling,
volume 31, pages 533±541, 2021.

[22] Daphne Koller, Nir Friedman, Sašo Džeroski, Charles Sutton, Andrew
McCallum, Avi Pfeffer, Pieter Abbeel, Ming-Fai Wong, David Hecker-
man, Chris Meek, et al. Introduction to statistical relational learning.
MIT press, 2007.

[23] Hadas Kress-Gazit, Morteza Lahijanian, and Vasumathi Raman. Syn-
thesis for robots: Guarantees and feedback for robot behavior. Annual

Review of Control, Robotics, and Autonomous Systems, 1:211±236,
2018.

[24] Borja G LeÂon, Murray Shanahan, and Francesco Belardinelli. System-
atic generalisation through task temporal logic and deep reinforcement
learning. arXiv preprint arXiv:2006.08767, 2020.

[25] Shen Li, Daehyung Park, Yoonchang Sung, Julie A Shah, and Nicholas
Roy. Reactive task and motion planning under temporal logic
specifications. arXiv preprint arXiv:2103.14464, 2021.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

[26] Xiao Li, Yao Ma, and Calin Belta. A policy search method for temporal
logic specified reinforcement learning tasks. In 2018 Annual American

Control Conference (ACC), pages 240±245. IEEE, 2018.
[27] Michael L Littman, Ufuk Topcu, Jie Fu, Charles Isbell, Min Wen, and

James MacGlashan. Environment-independent task specifications via
gltl. arXiv preprint arXiv:1704.04341, 2017.

[28] Jelena Luketina, Nantas Nardelli, Gregory Farquhar, Jakob Foerster,
Jacob Andreas, Edward Grefenstette, Shimon Whiteson, and Tim
RocktÈaschel. A survey of reinforcement learning informed by natural
language. arXiv preprint arXiv:1906.03926, 2019.

[29] Matthew R Maly, Morteza Lahijanian, Lydia E Kavraki, Hadas Kress-
Gazit, and Moshe Y Vardi. Iterative temporal motion planning for
hybrid systems in partially unknown environments. In Proceedings of

the 16th international conference on Hybrid systems: computation and

control, pages 353±362, 2013.
[30] John McCarthy et al. Programs with common sense. RLE and MIT

computation center Cambridge, MA, USA, 1960.
[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,

Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529±533, 2015.

[32] Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin,
and Sergey Levine. Visual reinforcement learning with imagined goals.
Advances in Neural Information Processing Systems, 31:9191±9200,
2018.

[33] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling.
Learning symbolic models of stochastic domains. Journal of Artificial

Intelligence Research, 29:309±352, 2007.
[34] Ali Payani and Faramarz Fekri. Learning algorithms via neural logic

networks. arXiv preprint arXiv:1904.01554, 2019.
[35] Tim RocktÈaschel and Sebastian Riedel. End-to-end differentiable

proving. In Advances in Neural Information Processing Systems, pages
3788±3800, 2017.

[36] Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling,
and TomÂas Lozano-PÂerez. Learning symbolic operators for task and
motion planning. In 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 3182±3189. IEEE, 2021.
[37] Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A

Mcilraith. Ltl2action: Generalizing ltl instructions for multi-task rl. In
International Conference on Machine Learning, pages 10497±10508.
PMLR, 2021.

[38] Cristian Ioan Vasile and Calin Belta. Sampling-based temporal
logic path planning. In 2013 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4817±4822. IEEE, 2013.
[39] Zhuo Wang, Wei Zhang, Ning Liu, and Jianyong Wang. Scalable rule-

based representation learning for interpretable classification. Advances

in Neural Information Processing Systems, 34, 2021.
[40] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray.

Receding horizon control for temporal logic specifications. In
Proceedings of the 13th ACM international conference on Hybrid

systems: computation and control, pages 101±110, 2010.
[41] Zhe Xu and Ufuk Topcu. Transfer of temporal logic formulas in

reinforcement learning. In IJCAI: proceedings of the conference,
volume 28, page 4010. NIH Public Access, 2019.

[42] Lim Zun Yuan, Mohammadhosein Hasanbeig, Alessandro Abate, and
Daniel Kroening. Modular deep reinforcement learning with temporal
logic specifications. arXiv preprint arXiv:1909.11591, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 31,2023 at 19:55:50 UTC from IEEE Xplore. Restrictions apply.

