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Abstract—Millimeter-wave (mmWave) and terahertz (THz)
communications require beamforming to acquire adequate re-
ceive signal-to-noise ratio (SNR). To find the optimal beam,
current beam management solutions perform beam training
over a large number of beams in pre-defined codebooks. The
beam training overhead increases the access latency and can
become infeasible for high-mobility applications. To reduce or
even eliminate this beam training overhead, we propose to utilize
the visual data, captured for example by cameras at the base
stations, to guide the beam tracking/refining process. We propose
a machine learning (ML) framework, based on an encoder-
decoder architecture, that can predict the future beams using
the previously obtained visual sensing information. Our proposed
approach is evaluated on a large-scale real-world dataset, where
it achieves an accuracy of 64.47% (and a normalized receive
power of 97.66%) in predicting the future beam. This is achieved
while requiring less than 1% of the beam training overhead of a
corresponding baseline solution that uses a sequence of previous
beams to predict the future one. This high performance and low
overhead obtained on the real-world dataset demonstrate the
potential of the proposed vision-aided beam tracking approach
in real-world applications.

Index Terms—beam tracking, vision, sensing, machine learn-
ing, DeepSense 6G, real-world data

I. INTRODUCTION

The millimeter-wave(mmWave) and terahertz (THz) have
been considered as key enabler for the high data rate com-
munication in future wireless networks [1]. The high carrier
frequencies provide an order of magnitude more bandwidth
compared with existing wireless communication systems. The
move to higher frequencies, however, brings new challenges
such as the higher path-loss. To overcome that and ensure
sufficient receive power, mmWave/sub-THz communication
systems need to deploy large antenna arrays at the trans-
mitters/receivers and use narrow beams. Nevertheless, ob-
taining the optimal narrow beams often requires large beam
training overhead, which occupies wireless resources and de-
creases spectral efficiency. This becomes more significant for
high-mobility applications such as autonomous vehicles and
vehicle-to-everything (V2X) communications [2], which are
considered key applications for future wireless communication
systems [3]. All that motivates the need to develop novel
approaches that can find the optimal beams with low or
negligible beam training overhead.

An important observation is that the use of narrow beams
at mmWave/sub-THz networks and the reliance on line-of-
sight (LoS) links give a special importance to the knowledge

of the physical location of the transmitters/receivers and the
geometry of the environment around the communication sys-
tems. This motivates the use of position/environment sensing
devices (such as wireless and position sensors, cameras, etc.)
at the communication terminals to guide the different link
establishment/resource allocation tasks.

Prior works have studied improving mmWave/THz beam
selection, blockage detection, and beam tracking based on
sensing information of different modalities [4]–[9]. In [4], the
authors propose that the sub-6 GHz channel contains useful
information of mmWave channel, therefore, this out-of-band
information can be used to establish mmWave link. In [5]
the position information of the UE is utilized to guide beam
training. [6] proposes to deploy passive radar receivers at the
BSs to help establish communication links and reduce beam
training overhead.

The vision/camera sensing modality has been also increas-
ingly studied [7]–[9]. [7] employs cameras at the mmWave
base stations and leverages the visual data to guide beam
selection and detect potential blockages for the current time
instance. However, this beam selection and blockage detection
may not be adequate for the sensing-aided mmWave commu-
nication systems as the latency of capturing and processing
the sensory data will unlikely enable current beam selection.
To that end, beam tracking, which aims to proactively predict
the future beams, is particularly important for the sensing-
aided mmWave communication systems. [8], [9] investigated
leveraging the camera signals to predict future optimal beams,
i.e, vision-aided beam tracking. It is worth mentioning that,
in [8], [9], the simulation and evaluation are conducted on
a synthetic dataset [13]. However, these result on synthetic
data are hard to scale to real-world scenarios considering the
complexity and dynamics of wireless communication channels
and the impairment of the communication hardware devices.

In this paper, we propose to utilize visual sensing infor-
mation to enable fast and low-overhead mmWave/THz beam
tracking. The main contribution can be summarized as follows.

• We propose a universal problem formulation for the
auxiliary data-aided beam tracking, which could be used
for different auxiliary data modalities, such as leveraging
a sequence of beams, or a sequence of RGB images.

• We propose a machine learning (ML) framework for
sensing information aided mmWave/THz beam tracking
exploiting an encoder-decoder architecture.

• We evaluate the proposed vision-aided beam tracking
on the real-world DeepSense 6G dataset [10], which978-1-6654-5975- 4/22 © 2022 IEEE
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Fig. 1. This figure illustrates the considered system model: the BS senses the
environment and the moving UE with an RGB camera. The obtained sensing
information is then utilized for the BS beam management.

comprises co-existing visual and wireless beam data. To
the best of our knowledge, this is the first time vision-
aided beam tracking is investigated on real-world data.

Evaluation results demonstrate the capability of the pro-
posed vision-aided beam tracking approach in achieving high
accuracy and receive power. This highlights the potential
gains of incorporating visual sensors (cameras) in real-world
mmWave/THz communication systems.

II. SYSTEM AND PROBLEM FORMULATION

In Section II, we first introduce the considered system
model for mmWave communications. Then, we formulate
beam tracking into an optimization problem. After that, we
clearly define the vision-aided beam tracking machine learning
task. Lastly, we also present a baseline beam tracking ML task
using the previous optimal beam sequence.

A. System Model

Fig. 1 shows the considered system model for mmWave
communications, where the base station (BS) is serving a mo-
bile user equipment (UE). The BS is equipped with an antenna
array of N elements and an RGB camera (visual data sensor).
Using the antenna array, the BS performs beamforming to
achieve adequate receive power. We assume that the BS has a
pre-defined beamforming codebook F = {f1, . . . , f|F |} con-
taining |F | beams fm ∈ CN×1. For the sake of simplicity, the
UE is assumed to have a single antenna. At time step t, the BS
transmits a complex symbol s[t] ∈ C. We assume the downlink
signal s[t] satisfies the power constraint E

[
sH [t]s[t]

]
= P

with P denoting the transmit power and (·)H denoting the
Hermitian transpose. Then, the corresponding downlink re-
ceive signal y[t] can be written as

y[t] = hH [t]f [t]s[t] + n[t], (1)

where h[t] ∈ CN×1 denotes the channel between the BS and
the UE at time step t. f [t] ∈ F is the transmit beamforming
vector used at the BS at time step t. n[t] is the receive noise
which satisfies E[n[t]nH [t]] = σ2

n, and σ2
n denotes the receive

noise power.

B. Problem Formulation

This paper focuses on the beam tracking problem at the
base station, which is defined as follows: Given the available
sensing information up to time t − 1, the BS attempts to
determine the optimal beams of ξ ∈ Z+ future time steps,
that is, optimal beams of t, . . . , (t + ξ − 1). First, we define
the optimal beam at time step t as the one which gives the
highest beamforming gain. The optimal beam at time step t
is then represented by

f⋆[t] = argmax
f [t]∈F

∣∣hH [t]f [t]
∣∣2. (2)

With this pre-defined codebook constraint, the optimal beam
f⋆[t] can be uniquely represented by its beam index in the
codebook. The optimal beam index at time step t satisfies

p⋆[t] = argmax
p[t]∈[1,2,...,|F |]

∣∣hH [t]fp[t]
∣∣2, (3)

where |F | denotes the cardinality of F . Note that, under the
codebook constraint, obtaining the optimal beam is equivalent
to obtaining the optimal beam index. With the definition of the
optimal beam index in (3), we formulate the beam tracking
problem as follows:

max
p̂[t]

P {p̂[t] = p⋆[t] | Ot−ξ}

s.t. p̂[t] ∈ [1, 2, . . . , |F |],
(4)

where P{· | ·} denotes the conditional probability. p̂[t] is the
predicted optimal beam index for time step t. Ot−ξ is any
auxiliary obtained before time step (t− ξ + 1) that contains
the partial information of the optimal beam at time step t.

C. Vision-aided Beam Tracking

In this paper, We propose exploiting the visual sensing
information to achieve accurate beam tracking. The BS uses
its RGB camera to capture the visual sensing information of
the mobile UE and the surrounding environment. Let X[t] ∈
RH×W×3 denote the visual sensing information (RGB image)
captured at time step t. H and W are the height and width
of the captured image, and the last dimension represents the 3
RGB channels. To utilize this visual sensing information for
beam tracking, our objective then becomes obtaining a func-
tion which can predict the optimal future beams starting from
time step t based on the visual sensing information obtained up
to time step t−1. Let Xt,i = {X[t− i+ 1], . . . ,X[t]} denote a
sequence of visual sensing information with i representing the
number of time steps in the observation window. Then, from
(4), the vision-aided beam tracking optimization problem can
be written as

max
p̂[t]

P {p̂[t] = p⋆[t] | Xt−ξ,i}

s.t. p̂[t] ∈ [1, 2, . . . , |F |]
(5)

Since the precise joint probability distribution of p⋆[t] and
Xt−ξ,i is difficult to model, we propose to leverage the
powerful learning capabilities of ML models to solve (5) in
an data-driven approach. Let f(; θ) denote an ML model with
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Fig. 2. This figure shows the block diagram of the proposed ML framework for sensing aided beam tracking. The ML framework adopts an encoder-decoder
architecture, and incorporates the feature extraction block, the embedding block, the RNN block, and the classifier block.

θ representing its trainable parameters. To solve the vision-
aided beam tracking in (5), the ML model aims at predicting
the optimal beam index p⋆[t] using the side information
Xt−ξ,i. Therefore the optimal ML model for vision-aided beam
tracking can be mathematically represented by

f⋆
v (; θ

⋆
v) = argmax

fv(;θv)

P {fv (Xt−ξ,i; θv) = p⋆[t]} , (6)

where θ⋆v is the associated optimal parameters of f⋆.

D. Baseline Beam Tracking

The sequence of beams resulting from exhaustive search
beam training in the previous time steps may also carry infor-
mation of the mobile UE’s future optimal beam. Therefore, it
can be exploited as the side information Ot−ξ in (4) to predict
the future beam (in the beam tracking problem). In this paper,
we employ this approach as a baseline for the beam tracking
task. If this approach is implemented using machine learning,
then we define this ML task as:

f⋆
b (; θ

⋆
b ) = argmax

fb(;θb)

P
{
fb

(
F ⋆
t−ξ,i; θb

)
= p⋆[t]

}
, (7)

where F ⋆
t,i = {f⋆[t− i+ 1], . . . , f⋆[t]} denotes the optimal

beam sequence from time step (t − i + 1) to time step t. f⋆
b

and θ⋆b are the optimal ML model and trainable parameters
associated to this baseline beam tracking task which uses the
previous optimal beam sequence as input.

In Section III, we will explain in detail the proposed ML
models for the vision-aided beam tracking and the baseline
beam tracking tasks.

III. PROPOSED SOLUTION

Fig. 2 shows the block diagram of the proposed ML
framework for the sensing-aided beam tracking task. The ML
framework adopts an encoder-decoder architecture featuring
four components: the feature extraction block, the embedding
block, the recurrent neural network (RNN) block, and the
classifier block. The encoder processes the previously obtained
information, and passes the information to the decoder. The
decoder predicts the future beams based on the information it
receives from the encoder.

Feature Extraction Block: The first component of the
proposed ML framework is the feature extraction block which
directly processes the raw input data. The raw input data
often contain extra information which does not contribute to
the beam tracking tasks. This irrelevant information can be
detrimental since the ML model can overfit on them while
neglecting the useful information. Moreover, dropping this
unnecessary information also results in a smaller feature space,
thus, results in a more stable training process and lower com-
putational overhead. Therefore, the feature extraction block is
designed to filter out the unwanted information and extract the
features that are informative for the downstream task.

To process the raw RGB data for the vision-aided beam
tracking task, we detect the potential transmission target (UE)
in the RGB image. We take advantage of the advanced
computer vision ML models and employ the YOLOv4 [12]
object detector. YOLOv4 is a state-of-the-art convolutional
neural network (CNN) based ML model designed to detect
thousands of classes of objects from real-world RGB images.
The YOLOv4 object detector can achieve real-time prediction
and high accuracy which is suitable for the vision-aided beam
tracking task. Given an input RGB image, the YOLOv4 object
detector predicts a class index c ∈ Z, a confidence score
sc ∈ [0, 1], and a bounding box vector b ∈ R4×1. Note that
the bounding box vector b = [xc, yc, w, h]

T consists of the
x-center, y-center, width, and height of the detected object in
the RGB image. For more detailed information related to the
YOLOv4 model, we refer the readers to [12]. As discussed
in Section I, the optimal beam is highly dependent on the
direction/position of the transmission target. Therefore, we
exploit the bounding boxes as the extracted feature for the
successive blocks in the framework.

The feature extraction block is skipped in the baseline
approach since the inputs are the optimal beam indices.

Embedding Block: The embedding layer transforms the in-
put feature into a different vector space. The embedded vector
ideally captures some of the semantics of the input vector
such that semantically similar input vectors form clusters in
the embedding space. For the vision feature (the bounding



boxes) embedding, we employ a fully connected layer which
linearly transforms the bounding box vector b ∈ R4×1 into
b̃ ∈ REv×1. To embed the previous beam indices, we apply
the same approach as the natural language processing (NLP)
ML models embed the word token. For the |F | beam indices
in the codebook F , we employ a look-up table of |F | trainable
embedding vectors

{
p̃1, . . . , p̃|F |

}
. In the simulations, we set

Ev and Eb to 64.
RNN Block: The third component of the proposed ML

model is the RNN block. The RNNs have been extensively
studied for processing sequential signals and data such as
the NLP and speech recognition tasks. Empirical results have
shown that RNNs can effectively capture and process sequen-
tial features. Due to the sequential nature of the beam tracking
task, we employ the RNN architecture to process the sequential
input Ot−i and predict the future beams. We adopt single-
layer gated recurrent units (GRUs) with ξ units to process the
sequence of visual information or the previous optimal beam
index. The hidden state size of the GRU is set to 64.

Classifier Block: A fully connected layer is used as the clas-
sifier block. This block predicts the future optimal beam index
from the high-level features obtained by the RNN block. The
softmax activation function is applied to this fully connected
layer to output a confidence score vector ŝ = [s1, . . . , s|F |]

T

of the beam indices in F . The beam index with the highest
score is predicted as the optimal future beam

p̂ = argmax
p∈[1,|F |]

sp. (8)

Learning Phase: The encoder of the proposed ML frame-
work processes the previously obtained information. The input
sequence to the encoder is Xt−ξ,i for the vision-aided beam
tracking task or Ft−ξ,i for the baseline beam tracking task.
Based on the information received from the encoder, the de-
coder predicts the future optimal beams. A padding sequence
of ξ zero vectors Zξ is input to the decoder as a placeholder.

Since the ML framework is designed to solve a classification
problem, we employ the cross-entropy loss. The loss function
can be written as

J =
t∑

j=t−ξ+1

|F |∑
m=1

p⋆m[j] log2 (ŝm[j]) , (9)

where p⋆m[j] is the m-th element of the one-hot coded vector
of p⋆ at time step j. ŝm[j] is the m-th element of the output
vector ŝ[j] at time step j.

IV. EXPERIMENTAL SETUP

Our proposed vision-aided beam tracking approach and the
ML framework are designed to manage real-world mmWave
beam tracking. Therefore, we need a high-quality real-world
dataset consisting of co-existing RGB images and beam data
to evaluate our proposed approach. In this paper, we adopt the
DeepSense 6G dataset [10] in our simulation and performance
evaluation. The DeepSense 6G is a multi-modal dataset com-
prising real-world measurements. The DeepSense 6G dataset
incorporates co-existing including wireless beam data, visual
sensing data, among other modalities.

mmWave BS Antenna Arrary

RGB Camera

Mobile UE

Fig. 3. System setup of the DeepSense 6G Scenario 8. The mmWave BS
antenna arrays operating at 60GHz receives the signal transmitted by the
moving UE. A Camera is placed under the BS to obtain sensing information.

A. DeepSense 6G Scenario 8

We adopt Scenario 8 of the DeepSense 6G dataset for our
simulation. The system setup of Scenario 8 is shown by Fig. 3.
In Scenario 8, a fixed BS receives signals from a moving UE.
The BS is equipped with a uniform linear array (ULA) of 16
elements and an RGB camera installed below the ULA. The
BS adopted a beamforming codebook consisting of 64 pre-
defined beams. The codebook is horizontal-only and 4-time
oversampled. The UE is a moving vehicle equipped with a 60
GHz quasi-omni transmitter that is always oriented towards
the BS. During the data collection process, the UE passes by
the BS multiple times. At each time step, the BS measures
the receive power of all beams in the codebook by beam
sweeping, and captures the UE with the RGB camera. The
RGB data and the beam receive power data are synchronized
by downsampling. After synchronization, the time interval
between each time step is 128 milliseconds. Note that, in our
experiment, we only consider the vehicle as UE. Extension
to other types of UE and multi-UE scenarios is an interesting
future research direction.

B. Develop Dataset Generation

We evaluated our proposed vision-aided beam tracking ap-
proach on the official development dataset split of DeepSense
6G Scenario 8. The training dataset and the validation dataset
consist of 70% and 20% of the raw dataset. The DeepSense
6G Scenario 8 dataset consists of multiple data sequences. In
a data sequence, the vehicle completes its path passing by the
BS for one time. Each data sequence consists of co-existing
RGB images and beam receive powers of multiple time steps.
We follow the official development dataset split of DeepSense
6G Scenario 8. The training dataset and the validation dataset
consist of 70% and 20% of the raw dataset data sequences.
Note that the data in two datasets come from different vehicle
passes to assure there is no data leakage. For each data
sequence, we break it into data samples using a sliding window
size of 13. One data sample consists of 13 time steps and can
be written as {(X[1], p⋆[1]), . . . , (X[13], p⋆[13])}.

In the training process, we use an observation window size
i = 8, and we train the models to predict the five future
beams (ξ ∈ [1, 5]). Therefore, the input to the encoder is
{X[1], . . . ,X[8]} for the vision-aided beam tracking model,
and {p⋆[1], . . . , p⋆[8]} for the baseline beam tracking model.
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Fig. 4. This figure compares the accuracy and normalized receive power of
the top-k predictions of future beam 1 and 3. For both the vision-aided and
baseline beam tracking, the accuracy increases as k increases. However, the
normalized receive power saturates to the optimum even when k = 1.

In both two beam tracking approaches, the decoder is expected
to output {ŝ[9], . . . , ŝ[13]}.

V. EVALUATION RESULTS

In this section, we evaluate the proposed vision-aided beam
tracking approach and compare its performance with the
baseline beam tracking’s performance. The metrics adopted
in the evaluation are the following.

• Top-k accuracy: the percentage of the time steps of all
validation samples where the beam corresponding to the
top-k confidence scores include the optimal beam.

• Normalized receive power: the ratio between the highest
receive power achieved by the top-k predicted beams and
the receive power of the optimal beam. This metric is
averaged over all time steps and all validation samples.

• Beam training overhead: the number of beam power
measurements including the beam power measurements
required in the observation window and the beam power
measurements that will be conducted to sweep top-k
beams in the future time step.

A. Do the ML Models Learn to Predict Future Beams?

In Fig. 4, we present the top-k accuracy and normalized
receive power of the future beam 1 and future beam 3. The
top-k accuracy improves significantly as k increases for both
the vision-aided and baseline beam tracking approaches. It can
also be observed that the accuracy decreases when predicting
beams in the further future. The top-5 accuracy of the vision-
aided beam tracking for future beam 1 is 99.37%. This accu-
racy implies that the proposed vision beam tracking approach
can find the optimal future beam 1 with 99.37% probability
by testing 5 beams in the beam sweeping process. However, in
terms of receive power, testing more beams (increasing k) may
not be worth the price of the training overhead. For the vision-
aided beam tracking, 97.66% receive power can already
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Fig. 5. This figure compares the training overhead required in nine time steps
of the vision-aided and the baseline approaches. The vision-aided approach
only consumes 1% beam training overhead compared to the baseline.

be obtained for future beam 1 even without any beam
training (k = 1), leaving little room for testing 5 beams
for improvement. Despite the relatively low top-1 accuracy
obtained by both beam tracking approaches, the near-optimal
receive power highlights that the ML models effectively learn
to predict future beams, and most of the mistakes occur at the
sub-optimal beam with near-optimal receive power. Overall,
the vision-aided beam tracking approach can achieve
comparable performance to the baseline approach in terms
of the two metrics. Note that the baseline beam tracking
approach is a strong baseline since it inputs the optimal beams
of the 8 previous time steps. This highlights the capability of
the proposed vision-aided approach in accurate beam tracking.
It is worth mentioning that the adopted DeepSense 6G scenario
8 mainly consists of LoS data. However, the baseline beam
tracking approach could be more sensitive to NLoS scenarios
since the previous optimal beam may not contain enough
information on the blockages, reflectors, and scatterers. The
baseline beam tracking is also expected to further degrade
when the surrounding environment becomes more dynamic.
On the contrary, The visual data obtained by the camera
captures rich information on the surrounding object and the
dynamics. Moreover, the baseline beam tracking approach
requires information on the optimal previous beams, which
may not always be applicable in practice. The baseline model
can instead rely on the beams it previously predicted. This may
cause the baseline approach to deviate more from the optimal
beam as the beam tracking goes on without calibration. The
vision-aided approach, however, keeps capturing the latest
information on the environment. Therefore, it is not likely to
suffer from this deviation.

B. Vision-aided vs. Baseline: Beam Training Overhead

In Section V-A, we analyzed the accuracy and received
power performance of the two beam tracking approaches.
However, in our evaluation, the baseline approach requires
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Fig. 6. This figure shows the accuracy and receive power performance of the
vision-aided and baseline beam tracking approaches with different codebook
sizes of 16, 32, and 64.

knowing the previous eight optimal beams to predict the opti-
mal beam of the future time step and match the performance
of the vision-aided approach. Therefore, Fig. 5 studies the
beam training overhead required by the vision-aided and the
baseline approaches in these nine time steps when top-k beams
are predicted. It is assumed that both approaches will conduct
beam sweeping over the predicted top-k beams at the future
time step when k ≥ 2. For the 5 cases shown in Fig.
5, the beam training overhead required by the vision-
aided approach is less than 1% of the baseline approach.
Furthermore, when top-1 beam is predicted the vision-aided
approach completely eliminates the beam training overhead.

C. What is the effect of the Beamforming Codebook Size

In this section, we study the effect of the codebook size
on the performance of the vision-aided and baseline beam
tracking approaches. Fig. 6 shows the top-1 accuracy and
normalized receive power of the future beam 1. It can be
seen that, as codebook size increases, the top-k accuracies of
both beam tracking approaches decrease as can be expected.
However, the normalized receive power increases when a
larger beam codebook size is adopted. Using the vision-
aided beam tracking approach with 16 pre-defined beams, the
normalized receive power of the top-1 prediction is 92.17%
for future beam 1. Exploiting the codebook with 64 beams,
a normalized receive power of 97.66% can be achieved,
which is a 6% relative improvement. This demonstrates that
reasonable receive power improvement can be achieved
by using oversampling codebook at a price of slightly more
computational complexity.

VI. CONCLUSION

This paper proposes a machine learning based vision-aided
beam tracking framework. Exploiting this framework, we
also develop an efficient baseline beam tracking approach
that utilizes the previous optimal beams. The proposed ap-
proaches are evaluated using a large-scale real-world dataset

comprising co-existing visual and wireless mmWave data.
Evaluation results demonstrate that the proposed vision-aided
beam tracking approach can learn to accurately predict future
beams and achieve comparable performance to the baseline
solution. It achieves a top-1 accuracy of 64.47% and a top-
5 accuracy of 98.95% in predicting the future beam. The
robustness of the proposed vision-aided beam tracking is
illustrated by the 97.66% normalized receive power of the
top-1 prediction. Moreover, the proposed vision-aided beam
tracking only requires 1% of the beam tracking overhead of
the baseline approach. These results highlight the potential of
leveraging visual sensors in improving real-world mmWave
communications.
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