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LiDAR Aided Future Beam Prediction in
Real-World Millimeter Wave V2I Communications

Shuaifeng Jiang, Gouranga Charan, and Ahmed Alkhateeb

Abstract—This paper presents the first large-scale real-world
evaluation for using LiDAR data to guide the mmWave beam
prediction task. A machine learning (ML) model that leverages
LiDAR sensory data to predict the current and future beams was
developed. Based on the large-scale real-world dataset, DeepSense
6G, this model was evaluated in a vehicle-to-infrastructure com-
munication scenario with highly-mobile vehicles. The experimen-
tal results show that the developed LiDAR-aided beam prediction
and tracking model can predict the optimal beam in 95% of
the cases and with around 90% reduction in the beam training
overhead. The LiDAR-aided beam tracking achieves comparable
accuracy performance to a baseline solution that has perfect
knowledge of the previous optimal beams, without requiring
any knowledge about the previous optimal beam information
and without any need for beam calibration. This highlights a
promising solution for the critical beam alignment challenges in
mmWave and terahertz communication systems.

Index Terms—beam tracking, LiDAR, machine learning,
DeepSense 6G, real-world data.

I. INTRODUCTION

Harvesting the millimeter wave (mmWave) and terahertz
(THz) data rate gains requires deploying large antenna arrays
and using narrow beams [1]. Adjusting the optimal narrow
beams, however, often requires large beam training overhead,
which makes it hard for these systems to support highly mo-
bile applications. This motivates developing novel approaches
that can reduce the beam training overhead. An important
observation here is that due to the highly directional nature
of the mmWave/THz communication, the beam management
problem in these systems implicitely relies on the positions
of the base station (BS) and the user equipment (UE) and the
geometry of the surrounding environment. Based on that, the
sensing information about the user location and the environ-
ment geometry could potentially be utilized to guide the beam
management and reduce beam training overhead [3]–[6].

Prior work has studied improving the mmWave/THz beam
selection and blockage prediction based on a variety of sens-
ing modalities [3]–[6]. One conventional direction is using
wireless sensing information. In [3], the authors proposed
to leverage wireless received signals as a unique signature
for the UE position and its interaction with the surrounding
environment. [4] exploits the sub-6 GHz channel, which is
easier to obtain compared to the mmWave channel, to predict
the mmWave beam and blockage status. Another direction
gaining increasing interest is exploiting the vision/camera
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information. [5] leverages the camera signals to proactively
predict dynamic link blockages for mmWave systems. In [6],
the authors proposed to use the radar signals to sense the UE
to predict the 6G beam.

However, each sensing modality mentioned above has its
own drawbacks. The wireless received signal and the radar
sensing signals occupy wireless resources. The performance of
the camera/vision-based sensing degrades under poor lighting
conditions, and it leads to privacy concerns. Extra signaling
overhead is needed for the BS to obtain position information of
the UEs, and the accurate position information can also cause
privacy problems. This motivates us to investigate the other
alternative: the light detection and ranging (LiDAR) sensors.
In this paper, we propose to achieve mmWave/THz beam
prediction and beam tracking relying on the LiDAR sensing
data. Our contribution is summarized as follows.
• We propose to leverage LiDAR sensory data to aid the

mmWave beam prediction and tracking tasks. While using
LiDAR to predict current beams has been previously
investigated in [7] and [8], this is the first paper that
leverages LiDAR data to also predict future beams.

• We propose an efficient machine learning (ML) model
for the LiDAR-aided beam prediction tasks.

• To evaluate the performance of the proposed LiDAR
beam prediction and tracking approach, this paper
presents the first large-scale real-world evaluation results
based on a vehicle-to-infrastructure communication sce-
nario of the DeepSense 6G dataset.

Evaluation results show that the proposed LiDAR beam pre-
diction and tracking approach can achieve high accuracy
performance: it can predict the optimal beam in 95% of the
cases with beam training overhead reduced from 64 to 5. This
demonstrates the potential of LiDAR sensing information in
real-world mmWave/THz communication systems.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the adopted system model.
Then, we define the two considered beam management tasks,
namely LiDAR-aided current, and future beam prediction.

A. System Model

As shown in Fig. 1, we consider a communication system
model where a base station (BS) serves a single mobile user
equipment (UE) over a mmWave frequency band. Extensions
to multi-user scenarios is an important future research direc-
tion. The BS has N antennas, and is also equipped with a
LiDAR sensor to aid the communication. For simplicity, the
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Fig. 1. This figure illustrates the considered system model: the BS senses the environment and the moving UE with a LiDAR. The obtained sensing information
is then utilized for the BS beam prediction and beam tracking. The figure also shows the block diagram of the proposed ML models. The ML model consists
of the embedding block, the gated recurrent unit (GRU) feature extractor block, and the classifier block.

UE is assumed to be single-antenna. Adopting a narrowband
block-fading channel model, the channel vector between the
BS and the UE at time step t, h[t] ∈ CN×1, can be written as

h[t] =
L∑

l=1

αla(θl, φl), (1)

where L is the total number of paths. αl, θl, and φl represent
the complex gain, azimuth angle, and elevation angle of the
l-th path. a(θl, φl) is the array response vector of the two
angles. The L, αl, θl, and φl are all functions of t due to the
UE and environment dynamics. The channel coherence time
Tc is assumed to be larger than the duration of each time step.

In the downlink transmission, if the BS sends a complex
symbol s ∈ C, the received signal at the UE can be written as

y[t] = hH [t]f [t]s+ n[t], (2)

where f [t] ∈ CN×1 is the transmit beamforming vector the
BS used at time step t, and n is the receive additive white
Gaussian noise, satisfying E[n[t]nH [t]] = σ2

n. The downlink
signal s satisfies E

[
ssH

]
= P with P denoting the transmit

power. The BS is assumed to adopt a pre-defined beamforming
codebook F = {f1, . . . , fM} of size M , i.e., f [t] ∈ F . Since
analog beamsteering is considered, the beamforming vectors
in F satisfy the constant modulus constraint and ‖f‖22 = 1.

Under the pre-defined codebook constraint, the beamform-
ing vector f [t] ∈ F is uniquely indicated by the beam index
p[t] ∈ {1, . . . ,M}. The optimal beam index p?[t] can be
obtained by maximizing the receive SNR:

p?[t] = arg max
p[t]∈{1,...,M}

∣∣hH [t]fp[t]

∣∣2. (3)

B. Problem Formulation and ML Task Definition

In this paper, we investigate how to leverage the LiDAR
sensory information to achieve beam prediction (predicting
the current beams) and beam tracking (predicting the future
beams) with reduced beam training overhead. For that, we
define x[t] ∈ RD×1 as the LiDAR sensing signal captured by
the BS at time step t, where D is the number of quantized
angles in the LiDAR field-of-view and each entry of x[t]
represents the LiDAR-estimated distance to the obstacle at the
corresponding angular direction. Furthermore, the sequence
of observed LiDAR information can be written as X t,W =
{x[t−W + 1], . . . ,x[t]}, where W ∈ Z+ is an observation

window. The objective is then to find a mapping function that
predicts the current/future optimal beam index from the X t,W .
In this paper, we focus on the use of ML models to learn
this mapping function. Next, we formally define the beam
prediction and tracking problems.

LiDAR Beam Prediction: The beam prediction task is
defined as predicting the current optimal beam based on the
LiDAR data captured until the current time step. If fpr(·)
denotes the model that takes the current LiDAR sensory
information as the input, then the beam prediction optimization
problem can be written as

f?pr(X t,W ; Θ?
pr) = arg max

fpr(·),Θpr

P {fpr (X t,W ; Θpr) = p?[t]} ,

where fpr(·) denotes the ML model mapping function for the
beam prediction task, and Θpr is its training parameters.

LiDAR Beam Tracking: The beam tracking targets predict-
ing the optimal future beams using the LiDAR data captured
until the current time step. If ftr(·) denotes the model that
takes the previous LiDAR sensory information as the input,
then the beam tracking optimization problem predicting the
beam for the v-th future time step can be written as

f?tr(X t,W , v; Θ?
tr)

=arg max
ftr(·),Θtr

P {ftr (X t,W , v; Θtr) = p?[t+ v]} , (4)

where Θ?
tr is the associated trainable parameters, and v ∈

{1, ..., V } denotes the lead-time (future instance) of the beam
tracking process. Next, we present a baseline for the beam
tracking problem which relies only on wireless data.

Baseline Beam Tracking: The sequence of the previously
adopted beams contains information about the UE moving
pattern, which can be exploited to predict the future optimal
beams. In this paper, we employ this baseline ML model which
predicts the future beams using the previously used beams.
Similar to (4), this optimization problem is defined as

f?b (F t,W , v; Θ?
b)

=arg max
fb(·),Θb

P {fb (F t,W , v; Θb) = p?[t+ v]} ,

where F t,W = {f [t−W + 1], . . . , f [t]} denotes the beam
sequence used at time steps (t − W + 1), ..., t. Similar to
the two LiDAR beam management tasks, f?b (·) and Θ?

b are
the optimal ML model and trainable parameters associated to
this baseline beam tracking task.
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In Section III, we explain the proposed ML models for the
mmWave beam prediction and beam tracking tasks.

III. PROPOSED LIDAR AIDED BEAM MANAGEMENT
SOLUTION

First, we present why LiDAR sensor is promising for aiding
the mmWave beam management tasks. Then, we explain
the system operation for LiDAR-aided communications. Last,
we describe the proposed ML model for the LiDAR beam
prediction/tracking tasks and the baseline (beam history based)
solution.

A. Key Idea: Why LiDAR?

LiDARs are often seen installed in vehicles to enable
autonomous driving. Although the use of LiDAR for wireless
communications has not been commonly investigated, LiDAR
can be a promising sensing option for mmWave BSs. First,
the BS is more stationary than vehicles, and the height of
the BS is also usually higher. Therefore, installing LiDARs at
the BSs can have better observing angles and produce more
accurate measurements. Second, since the BSs are less power-
constrained compared to vehicles, the power consumption of
LiDARs could be more affordable for BSs. The main limitation
of LiDARs is the inaccuracy of measuring distance under some
weather conditions, such as heavy rain, snow, and fog. In these
cases, complementary sensors can be adopted to enhance the
sensing capability at the BSs.

B. Proposed LiDAR-Aided System Operation

We propose a LiDAR-aided mmWave communication sys-
tem that operates as follows: In each time step (e.g., coherence
time [9]), the BS captures a LiDAR image using its sensor as
shown in Fig. 1. A sequence of L captured LiDAR sensing
images is then presented to an ML model, which predicts
the top-k promising beams that should be used to serve the
user. Given the top-k predicted beams, the BS can either (i)
directly adopt the top-1 beam and completely eliminate the
beam training overhead or (ii) perform an over-the-air beam
refinement/training using only the predicted subset of beams
(the top-k beams). Next, we describe the proposed ML model.

C. Deep Learning Model

To solve the beam prediction/tracking tasks, we utilize
the recurrent neural network (RNN) based encoder-decoder
architecture in [10]. The adopted RNN predicts a sequence of
current and future optimal beams given an input sequence of
previous LiDAR or wireless beam measurements. We adopt
the encoder-decoder RNN architecture for the following rea-
sons. (i) Since the optimal beam evolves together with the UE
and environment dynamics, useful information for predicting
the optimal beams can be extracted from the previously
observed sensory data using sequential modeling. RNNs have
been extensively studied and empirically proven for sequential
modeling tasks, e.g., natural language processing and speech
recognition. (ii) The beam prediction/tracking task is latency-
sensitive due to the short coherence time of the wireless

channels. Compared to other NN architectures for sequential
modeling, e.g. Transformers [11], RNNs have advantages in
computational complexity and inference time.

Fig. 1 shows the block diagram of the proposed beam
prediction and tracking ML model. As shown in Fig. 1, the
ML model consists of (i) W − 1 repeated blocks, each has
an embedding and a gated recurrent unit (GRU) [10] feature
extractor components, in addition to (ii) V +1 repeated blocks,
each has an embedding, a GRU feature extractor, and classifier
components. Next, we describe the different components.

Embedding Block: The embedding block transforms the
high-dimensional input data into a low-dimensional represen-
tation and reduces the trainable parameters of the model. For
the LiDAR data embedding, we adopt a fully connected layer
that projects the x[t] ∈ RD×1 into x̃[t] ∈ R64×1. To embed
the previous beam indices, we apply a trainable look-up table
of M embedding vectors {p̃1, . . . , p̃M}, where the embedding
vector p̃m ∈ R64×1 corresponds to the beam index m.

RNN Feature Extractor Block: We employ W single-
layer GRUs to extract features from the input LiDAR or beam
sequence. In our implementation, the hidden state size of the
GRU is 64, and it is initialized with the all-zero vectors. For
fair comparisons, we use the same RNN architecture in all
three ML beam management tasks.

Classifier Block: Following the RNN feature extractor,
a fully connected layer works as the classifier. Since the
beam prediction and tracking tasks are classification tasks, we
employ the softmax activation function at the output of this
fully connected layer. The output of the classifier is a score
vector ŝ = [s1, . . . , sM ]T . The score sm ∈ (0, 1) corresponds
to the m-th beam fm in the codebook. The beam index with
the highest score indicates the predicted beam.

Learning Process: The ML model is trained offline in
a supervised way. Each data point consists of (i) the input
sequence {X t,W ,Z}, where Z is a padding sequence of V
all-zero vectors, each of dimension D × 1, and (ii) the label
which is the desired output sequence {s?[t], . . . , s?[t+ V ]},
where s?[t+ v] is the one-hot representation of p?[t+ v].

For the baseline model, each data point consists of (i)
the input sequence {F t,W ,Z}, and (ii) the desired output
sequence {s?[t], . . . , s?[t+ V ]}. To train the ML models, we
adopt a cross-entropy loss function applied to the last γ outputs
among the output sequence, where γ is a design parameter that
is set to 4 in our implementation.

IV. EVALUATION SETUP

In this section, we present the first evaluation of LiDAR
aided beam prediction based on a large-scale real-world
dataset. In particular, we adopt our DeepSense 6G dataset [12],
which comprises co-existing multi-modal sensing and com-
munications data. Next, we describe the adopted DeepSense
scenario and the task-specific development dataset.

A. Data Acquisition

We adopt Scenario 8 of the DeepSense 6G dataset. As
shown by Fig. 2, the system setup consists of (i) a moving UE
working as a transmitter, (ii) a fixed BS working as a receiver,
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TABLE I
TOP-k ACCURACY AND RELATIVE RECEIVE POWER OF ML MODELS WITH LIDAR AND BEAM INPUT TRAINED ON 80% AND EVALUATED ON 20% DATA.

Metric Current beam Future beam 1 Future beam 2 Future beam 3

LiDAR input Beam input LiDAR input Beam input LiDAR input Beam input LiDAR input Beam input
Top-1 acc. 57.5% - 55.3% 60.3% 51.9% 56.8% 46.0% 50.9%
Top-5 acc. 95.6% - 95.0% 97.8% 94.5% 97.0% 93.3% 96.7%
Top-1 pow. 95.9% - 95.0% 98.1% 93.8% 97.1% 91.8% 96.3%
Top-5 pow. 99.9% - 99.8% 99.9% 99.7% 99.9% 99.4% 99.9%

BS Antenna Array

LiDAR

Moving UE

Fig. 2. System setup of the Scenario 8 of the DeepSense 6G dataset. The
mmWave BS antenna array receives the signal transmitted by the moving UE.
A LiDAR is placed in front of the BS to obtain sensing information.

and (iii) a LiDAR sensor with which the BS obtains sensing
information. The moving vehicle carries an omni-directional
mmWave 60 GHz transmitter to communicate with the BS.
The BS is equipped with a 60 GHz receiver that has a 16-
element phased array and uses a pre-defined beam codebook
of 64 beams. During the data collection process, and at each
sampling time t, one LiDAR raw sensing data vector and one
64-element beam training power vector (carrying the receive
power values with the 64 beams) are collected.

One raw LiDAR sensing data vector captures a 360◦ point
cloud consisting of 460 samples. Each sample contains an an-
gle and a range. The maximum range and the range resolution
of the LiDAR sensor are 30 m and 0.03 m, respectively. The
raw LiDAR data vector is preprocessed to obtain x[t]. After
preprocessing [13], x[t] has D = 216 angle bins, and the
angle resolution is approximately 0.97◦. Since the pre-defined
beamforming codebook has 64 beams, the angle difference
between two neighboring beams is around 2.8◦. Therefore,
the LiDAR angle resolution is reasonable.

The LiDAR and wireless beam data are synchronized in
time. The interval between time steps is 128 millisecond (ms).
Due to the 60 GHz carrier frequency and our system setup in
Fig. 2, the communication channels are dominated by LoS
components. Therefore, the channel coherence time can be
approximated using equation (46) in [9]. The derived channel
coherence time is around 143 ms under the 0.9 correlation
target, which is longer than the time step interval. Further-
more, the DeepSense data collection testbed uses a 10 MHz
bandwidth at the 60 GHz band. Therefore, it is reasonable to
consider the narrowband channel model in Section II-A.

B. Development Dataset Generation
The DeepSense 6G Scenario 8 data consists of multiple data

sequences. Each data sequence contains the data corresponding

to only one pass through the road. We extract the optimal
beam indices of each data sequence from the receive powers.
After that, each data point in these data sequences is a tuple
of LiDAR sensing data and optimal beam index (x[t], p?[t]).
Then, 80% of the data sequences are used for the training
dataset, and the remaining data sequences form the test dataset.
Note that, with this data split, no overlapping data point (and
the corresponding LiDAR information) exists in the training
and test datasets so the split is data-leakage free. In the training
process, we use an observation window W = 8, and train the
models to predict the beams up to the third future beam (V =
3). Therefore, we further format the training dataset such that
each training sample consists of (i) a LiDAR data sequence
of eight time steps, (ii) the corresponding eight optimal beam
indices, and (iii) three optimal beam indices for the three future
time steps we intend to predict.

V. EVALUATION RESULTS

In this section, we evaluate the performance of the proposed
LiDAR aided beam prediction/tracking solution compared to
the baseline approach. We adopt the top-k accuracy and the
top-k relative receive power as the performance metrics. The
top-k accuracy is defined as the percentage of the test samples
whose ground-truth beam index lies in the predicted beams of
top-k scores. The top-k relative receive power captures the
ratio between the highest receive power achieved by the top-k
predicted beams and the receive power of the optimal beam.

Beam Prediction and Tracking Performance: Table I
presents the top-k accuracy and relative power performance of
the two proposed approaches for the beam prediction/tracking
tasks. It can be seen that the performance of the LiDAR-based
solution is comparable to the baseline. The top-5 accuracy of
the LiDAR beam prediction is 95.6%. This means that, with
the proposed LiDAR beam prediction model, the BS can find
the optimal beam in 95.6% of the cases, reducing the beam
training overhead from 64 (in the exhaustive search case) to 5.

Although the top-1 accuracy of the LiDAR-based solution
is relatively low, its top-1 relative receive power performance
is over 95%. This demonstrates the efficacy of the LiDAR-
based solution: most of the mispredictions come from the sub-
optimal beam with near-optimal receive power.

It is important to mention that the baseline model is assumed
to have perfect knowledge of the previous 8 optimal beams,
which requires high beam training overhead. As an alternative
solution, the baseline model can use the latest predicted beam
index as the optimal index. The error in the predicted beam
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indices, however, accumulates and the future beam prediction
is expected to gradually deviate from the ground-truth optimal
beams. This deviation is captured in Fig. 3 which presents the
average top-k accuracy for predicting the first future beam
versus different operation windows. The operation window
represents the window over which the predicted beams are
used as inputs to the baseline model; i.e., instead of the optimal
beams, before another exhaustive beam search is done. For
example, for an operation window of 5 and an observation
window of 8, the approach predicts the first future beam
5 times (in 5 sequential time instances), and then updates
its beams by performing exhaustive beam search 8 times
(the length of the observation window). It can be seen from
Fig. 3 that the LiDAR-aided approach can keep track of
the beams because the BS captures the up-to-date LiDAR
sensing information at every time step with no cost on the
wireless resources. On the other side, the accuracy of the
baseline model degrades as the prediction window becomes
longer. Without very frequent exhaustive beam training, the
proposed LiDAR-aided beam prediction approach consistently
outperforms the baseline solution.

Training Overhead: Fig. 3 compares the average beam
training overhead required for one time step versus the op-
eration window length when using the top-5 beams. With
a prediction window of three time steps, the LiDAR-aided
approach only needs around 10% training overhead compared
to the baseline solution.

Robustness to Vehicle Dynamics: We evaluate the top-
1 relative receive power performance for the future beams
predicted by the LiDAR-aided solution with different vehicle
speed. The vehicle speed in our dataset ranges from 3 to 18
km/h, and the speed is quantized into four bins {4, 8, 12, 16}
km/h in the evaluation. Although the relative receive power
slightly decreases as the vehicle velocity increases, over 94%
top-1 relative receive power can be achieved for the first future
beam across all the vehicle speeds in the dataset.

NN runtime: The runtime of the NN is important for
deploying the LiDAR-aided beam prediction and tracking
systems in the real world. We tested the runtime using the
Intel Xeon Silver 4216 CPU. Since the NN size is relatively
small (around 4, 0000 parameters), the runtime can be small:
1.38 ms on the CPU when the first future beam is predicted,
which is reasonable for real-world deployment.

VI. CONCLUSION

This paper develops a machine learning based mmWave
beam prediction/tracking approach utilizing LiDAR data and
demonstrates its performance on a large-scale real-world
dataset for the first time. Based on the DeepSense 6G dataset,
the proposed LiDAR-aided beam prediction and tracking
model achieves only slightly lower accuracy than a baseline
model that has perfect knowledge of the previous optimal
beams. The top-5 accuracy of the LiDAR-aided approach is
95.6% and 95.0% for the current beam (beam prediction) and
the first future beam (beam tracking), respectively. However,
the LiDAR-aided approach only needs 10.4% beam training
overhead to match the performance of the baseline approach.
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Fig. 3. This figure shows the accuracy performance of the two future beam
prediction approaches with different operation windows. The LiDAR-aided
solution can keep track of the beam with lower training overhead.

These results highlight the potential of leveraging LiDAR
sensory data in real-world mmWave communication systems.
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