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Abstract—This paper provides the first real-world evaluation
of using visual (RGB camera) data and machine learning for
proactively predicting millimeter wave (mmWave) dynamic link
blockages before they happen. Proactively predicting line-of-sight
(LOS) link blockages enables mmWave/sub-THz networks to
make proactive network management decisions, such as proactive
beam switching and hand-off) before a link failure happens.
This can significantly enhance the network reliability and latency
while efficiently utilizing the wireless resources. To evaluate this
gain in reality, this paper (i) develops a computer vision based
solution that processes the visual data captured by a camera
installed at the infrastructure node and (ii) studies the feasibility
of the proposed solution based on the large-scale real-world
dataset, DeepSense 6G, that comprises multi-modal sensing and
communication data. Based on the adopted real-world dataset,
the developed solution achieves ~ 90% accuracy in predicting
blockages happening within the future 0.1s and =~ 80% for
blockages happening within 1s, which highlights a promising
solution for mmWave/sub-THz communication networks.

Index Terms—computer vision, deep learning, blockage pre-
diction, mmWave, terahertz.

I. INTRODUCTION

Millimeter wave (mmWave) and sub-terahertz communi-
cation systems rely on line-of-sight (LOS) links to achieve
sufficient receive signal power. Blocking these LOS links
by the moving objects in the environment may disconnect
the communication session or cause sudden and significant
degradation in the link quality. This is due to the high
penetration loss of the mmWave/sub-terahertz signals and the
much less receive power of the NLOS links compared to the
LOS ones [1], [2]. All that highly challenges the reliabil-
ity and latency of the mmWave/sub-terahertz communication
networks. Initial approaches for overcoming these blockage
challenges relied mainly on multi-connectivity [3], [4]. These
solutions, however, generally keep the user connected to
multiple infrastructure nodes which under utilizes the wireless
network resources. This motivated the research for more
efficient blockage avoidance approaches.

Leveraging machine learning (ML) to address the blockage
challenges has gained increasing interest in the last few years
[5]-[7]. In [5], the authors proposed to leverage recurrent
neural networks to process the sequence of beams serving a
mobile user and to predict whether or not a future blockage
will happen. Relying only on beam sequences, however, limits
the applications to stationary blockage prediction. Predicting
dynamic blockages require more information about these
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Fig. 1. This figure illustrates the overall system model where a mmWave/THz
basestation utilizes the captured RGB images to predict the future link
blockage status.

moving blockages in the environment. In [6], [7], in-band
mmWave and sub-6GHz based wireless scattering signatures
were used to identify/predict the incoming mmWave link
blockages. These solutions, however, are mainly capable of
predicting immediate blockages and are hard to scale to
complex/crowded scenarios. To enable predicting blockages
early enough before they block the links, solutions based on
radar and LiDAR sensory data were proposed in [8], [9].
Despite their promising results, each sensing modality has
its advantages and drawbacks. For example, radar data is
mainly suitable for uncrowded scenarios and LiDAR sensors
are expensive and have relatively short range.

In [10], we proposed to leverage visual data (captured by
cameras) to predict future dynamic blockages. These solutions
and analysis in [10], though, were based only on synthetic
datasets, and an important question that arises is whether the
promising results in [10] can be achieved in reality? In this
paper, we attempt to answer this question. In particular, the
main contributions of the paper can be summarized as follows:

o Formulating the vision-aided blockage prediction prob-
lem in mmWave/THz wireless networks considering prac-
tical visual and communication models.

« Developing a machine learning approach that is capable
of (i) pre-processing the real-world visual data to enhance
the blockage prediction performance, (ii) extracting the
relevant features about the scatterers/environment, and
(iii) efficiently predicting future dynamic link blockages.

o Providing the first real-world evaluation of vision-aided
blockage prediction based on our large-scale dataset,
DeepSense 6G [11], that consists of co-existing multi-
modal sensing and wireless communication data.

Based on the adopted real-world dataset, the developed so-



lution achieves ~ 90% accuracy in predicting blockages
happening within a future prediction interval of 0.1s and
~ 80% for a prediction interval of 1s. This highlights the
potential of leveraging machine learning and visual data in
addressing the critical LOS link blockage challenges.

II. SYSTEM MODEL

This work considers a communication scenario where a
mmWave basestation is serving a stationary user located in
a busy environment with multiple moving objects, such as
vehicles, pedestrians, etc., as shown in Fig. 1. The mmWave
basestation is equipped with an RGB camera to monitor
and gather sensing data about the surrounding environment.
This information could potentially be leveraged to proactively
predict future link blockages caused by the moving objects.

The adopted system model consists of a mmWave bases-
tation equipped with an [N-element antenna array and a
standard-resolution RGB camera. The basestation is serving
a stationary user that is, for simplicity, considered to have
a single antenna. The basestation uses a pre-defined beam
codebook F = {f,,,}M_, to serve the user, where f,,, € CNV*!
and M is the total number of beamforming vectors in the
codebook. As will be described in Section V, the beam-
forming codebook adopted by the hardware prototype has 64
beamforming vectors (i.e., M = 64) with the azimuth angles
uniformly quantized between [—Z,Z]. The communication
system further adopts OFDM transmission with K subcarriers
and cyclic prefix of length D. At any time instant ¢, if the
basestation uses the beamforming vector f,,, € F to serve the
user, then the downlink received signal at the user at the kth
subcarrier can be expressed as

yilt] = by [fnalt] + naft], (1)

where hy[t] € CV*! is the channel between the basestation
and the user at the kth subcarrier, x[t] is a transmitted data
symbol, E|z[t]|> = P, with the average transmit power P, and
ny is a receive noise sample, ny ~ N¢(0,02).

LOS Blockage: The channel model hy, defined in (1), is
generic and can be expressed as follows at time instant ¢

hie[t] = (1 = b[t]) B[] + hy (1], 2

where hE0S and hYt©S are the LOS and NLOS channel
components. The binary variable b[t] € [0,1] represents the
link status at time instant ¢, with b[t] = 1 indicating that the
LOS path is blocked and b[t] = 0 otherwise.

It is important to note here that for mmWave and sub-THz
communication systems, the LOS channel gain is much greater
than the NLOS channel gain [1], [2]. Therefore, LOS link
blockages challenge the reliability of these networks. Next,
we provide a formal definition of the proactive vision-aided
blockage prediction problem which is the focus of this work.

III. VISION-AIDED BLOCKAGE PREDICTION:
KEY IDEA AND PROBLEM FORMULATION

One of the major challenges in the high-frequency wire-
less communication networks is the LOS link blockages;

the mmWave/THz communication systems suffer from link
disconnection and significant dips in the received SNR when
an object/blockage intersects the LOS path between the bases-
tation and the user. Re-establishing a LOS connection is
usually done in a reactive way, which incurs critical latency
and impacts the reliability of such systems. The presence of
dynamic moving objects in the environment further increases
these reliability/latency challenges. These challenges could
potentially be addressed if these blockages can be proactively
predicted [8]-[10]. In order to develop an efficient solution
that can proactively predict the occurrence of such future
blockages, it is essential to equip the wireless network with
a sense of its surroundings. This work attempts to do so
by utilizing machine learning and visual data captured by
cameras placed at the basestation to proactively predict future
blockages before they happen. In this section, we will first
present the key idea in Section III-A and then formulate the
vision-aided blockage prediction problem in Section III-B.

A. The Key Idea

In a wireless network, the link blockages are often caused
by moving objects, such as cars, trucks, buses, and humans,
present in the wireless environment. Given the dynamic nature
of multiple moving objects in a real-wireless scenario, the task
of future blockage prediction becomes extremely challenging.
While the detection of the different objects in the environment,
such as cars and humans, can be well achieved using a
single image, the success of the dynamic blockage prediction
task also relies on characterizing the mobility patterns and
geometric features of these objects. For example, for a vehicle-
to-infrastructure use case, the visual data at the infrastructure
needs to characterize the speed/direction of travel and the size
of the various objects in the environment. In order to capture
these additional indicators, which are normally obtained by
analyzing a sequence of images, our proposed solution
observes a sequence of  image samples instead of making
the predictions based on just one sample and attempts
to predict future LOS link blockages before they happen.
Building upon the key idea presented here, in the next sub-
section, we provide the formal definitions for the proactive
vision-aided blockage prediction problem.

B. Problem Formulation

The main objective of this work is to observe a sequence
of camera image samples captured at the basestation and
utilize the sensing data to predict whether or not the stationary
user will be blocked within a window of future instances.
Let X[t] € RWXHXC denote a single RGB image of the
environment captured at the basestation at time instant t, where
W, H, and C are the width, height, and the number of color
channels for the image. At any time instant 7 € Z, the
basestation uses a sequence of RGB images, S[7], defined as

S[r] = {X[t]} = i1 » 3)

where r € Z is the length of the input sequence or the obser-
vation window to predict future link blockages. In particular,
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Fig. 2. This figure presents the proposed architecture for vision-aided future blockage prediction. The raw visual data is first processed to enhance the
images captured during night or low-light scenario. The processed sequence of images are then passed through the proposed deep neural network architecture
consisting of a object detection model and recurrent neural network to predict the future blockage.

at any given time instant 7, the goal in this work is for the
basestation to observe S[r| and predict whether or not the
stationary user is going to be get blocked within a window of
r’ future instances. It is important to note here that we do not
focus on the exact future instance but consider the entire future
window sequence for denoting the future blockage status.
Given S[7] and the future window 7/, the future blockage
status at time instant 7 can then be expressed as

1, dt]=1,te{r+1,....,7+7
sm:{& 1] { }

otherwise
where 0 indicates that the user remains LOS within the next
r’ future instances and 1 points towards the occurrence of
blockage within the same window.

In order to predict the future blockage status, we define a
function fg that maps the observed sequence of images, S[7]
to a prediction (estimate) of the future blockage status, §..
The function fg can be formally expressed as

fo : S[r] — 3[7]. 3)
In this work, we adopt a machine learning model to learn
this prediction function fg, that takes in the observed image
sequence and predicts the future blockage status, §[7] € {0, 1}.
Here, © represents the parameters of the machine learning
model and is learned from a dataset of labeled sequences. For
this, a dataset of independent sample pairs D = {(S,, sv)}x=1
is collected, where s, is the ground-truth future blockage label
for the observed sequence S,, and V is the total number of
sequence-label pairs in the dataset. The labeled dataset D is
then used to optimize the prediction function fg such that
it maintains high fidelity for any samples drawn from this
dataset. The optimization problem can be written as
v
fé* = argmax H P(gv = 3v|Sv)’ (6)
fo(.) v=1
where the joint probability in (6) is factored out to convey
the identical and independent (i.i.d.) nature of the samples in
dataset D. In the next section, we present the proposed deep
learning-based solution for the vision-aided future blockage
prediction task.

“4)

IV. VISION-AIDED BLOCKAGE PREDICTION:
A DEEP LEARNING SOLUTION

Guided by the principles mentioned in Section III-A, the
blockage prediction task is divided into two sub-tasks: (i)
object detection and (ii) recurrent prediction. The first sub-
task deals with detecting the relevant objects of interest in
the FoV of the basestation. The objective of the second stage
needs is to predict the future blockages based on the features
extracted from the first stage. In Fig. 2, we illustrate the
proposed deep learning-based blockage prediction solution.
In this section, we first present the details of the image
enhancement pre-processing stage adopted to deal with the
low-light/dark images. Then, we take a deeper dive into the
developed two-stage vision-aided blockage prediction solution.

A. Data Processing (Image Enhancement)

Compared to LiDAR, radars and other sensing modalities,
RGB cameras provide a low-cost, high-resolution, and low-
footprint alternative, making it one of the preferred choices
for wireless sensing applications. However, there is major
bottleneck associated with the visual images captured using
an RGB camera. Under low-light conditions, the visual data
turns out to be noisy and dark, making it unsuitable for
further computer vision tasks. Fig. 2 shows an image captured
under such low light conditions. The white truck in the first
image and the red sedan in the second are hardly visible
highlighting the challenges associated with such images. In
order to develop a robust and reliable solution that can work
in most of the natural lighting conditions, it is essential to
perform some sort of image enhancement to extract the hidden
details and make the low-light images more usable. For the
post-processing stage, we adopt the state-of-the-art MIRNet
[12] model developed for low-light image enhancement. It is a
fully-convolutional architecture that learns an enriched set of
features by combining contextual information from multiple
scales, while simultaneously preserving the high-resolution
spatial details. As shown in Fig. 2, that the objects in the low-
light images are clearly visible after the image enhancement



Fig. 3. This figure shows the data collection setup used for DeepSense 6G
Scenarios 17-22. The figure on the left depicts the street view from Unit 1
perspective. It also highlights the location of the transmitter (Unit 2 TX) and
the receiver (Unit 1 RX) during the data collection process. The figure on the
right shows the exact location of Unit 1 and Unit 2 highlighted on the Google
Earth 3D view.

post-processing step, which is important for the performance
of the proposed blockage prediction solution.

B. A Two-Stage Deep Learning Model

Here, we present the details of the proposed blockage
prediction architecture, which consists of two key functions,
namely object detection and recurrent prediction.

Object Detection: The first stage of the proposed solu-
tion is the object detection deep learning model. There are
two primary goals of this stage: (i) Perform accurate and
quick detection of the objects of interest in the FoV of the
basestation and (ii) extract the coordinates of the bounding
boxes placed around the relevant objects. For this, in our
proposed solution, we adopt the state-of-the-art COCO pre-
trained YOLO object detection model. For each image sample,
the pre-trained YOLOV3 is used to detect the relevant objects
and extract the bounding box coordinates of the detected
objects. In particular, for each detected object in the image,
we extract a 4-dimensional vector consisting of the bottom-
left coordinates [z1, y1] and the top-right coordinates [x2, ya].
These coordinates are normalized to be between [0, 1]. In order
to account for multiple detected objects in the FoV of the
basestation, the extracted bounding boxes are concatenated
to form one dimensional vector d € R*¥Y*! where YV is
the number of objects detected by the YOLOv3 model. It is
important to highlight here that the number of detected objects
might not be the same in each data sample, which results in
a variable length vector d. This will lead to inconsistency
in the size of the extracted features and create unnecessary
complications for the next stage of the proposed solution
pipeline, i.e., the recurrent predictions. In order to avoid
this inconsistency, the extracted bounding box vector d is
further padded with Z — Y zeros to obtain a fixed size vector
d € RZ*1, The fixed size bounding box feature vector d is
then provided as an input to the recurrent network to predict
the future link blockage status.

Recurrent Prediction: Convolutional neural networks in-
herently fail in capturing sequential dependencies in input
data. In order to learn the inherent relation in a sequence of
input data, the final stage of the proposed solution utilizes
recurrent neural network (RNN) to make the final prediction.
In this work, we consider a two-stage Gated Recurrent Unit

(GRU) separated by a dropout layer. These two layers are
followed by a fully-connected layer that acts as a classifier.
More specifically, the model receives a sequence of r extracted
bounding box feature vectors, {d[r—r+1,...,d[r]]}, as input
and predicts the future link blockage status over a window of
r’ time instance.

V. TESTBED DESCRIPTION AND DEVELOPMENT DATASET

In order to evaluate the performance of the proposed
vision-aided blockage prediction solution, we adopt multiple
scenarios from the DeepSense 6G [11] dataset. DeepSense
6G is a real-world multi-modal dataset enabling sensing-
aided wireless communication applications. It contains co-
existing multi-modal data such as vision, mmWave wireless
communication, GPS data, LiDAR, and Radar, collected in
realistic wireless environments. In this section, we present a
brief overview of the scenarios adopted from the DeepSense
6G dataset followed by the analysis of the final development
dataset utilized in the blockage prediction task.

DeepSense 6G: [Scenarios 17 - 22] We adopt Scenarios
17-22 of the DeepSense 6G dataset for evaluating the efficacy
of our proposed solution. The hardware testbed and the exact
location used for collecting these data is shown in Fig. 3. The
DeepSense testbed 3 is utilized for this data collection and is
placed on the opposite sides of a 2-way street with a passing-
lane in-between. The primary components of the adopted
testbed are: (i) A stationary 60 GHz omni-directional mmWave
transmitter (unit2), (ii) a directional mmWave receiver (unitl),
(iii) an RGB camera. The receiver employs a 16-element
(N = 16) 60 GHz phased array and it receives the transmitted
signal using an over-sampled beam codebook of 64 pre-defined
beams (M = 64). Unit 1 is also equipped with a camera
and it captures RGB images for the wireless environment in
the FoV of the receiver. The data capture rate varies from
12 samples/sec for scenarios 17 — 19 to 6.5 samples/sec for
scenarios 20 — 22. The weighted average for all the scenarios
combined is 10 samples/sec. Each data sample consists of an
RGB image of the environment and a 64-element mmWave
receive power vector. For more information regarding the data
collected testbed and setup, please refer to [6], [11].

DeepSense 6G: [Development Dataset] The adopted
DeepSense scenarios include diverse data collected during
different times of the day (day and night). Each row in
the dataset scenarios consists of a tuple of an RGB image,
X[r], and the corresponding receive power vector and the
ground-truth link blockage status, s[r] (manually labeled).
To form the development dataset of the blockage prediction
task described in Section III-B, the offered DeepSense data is
further processed using a sliding window to generate a time-
series dataset consisting of 8 input image samples (r = 8) and
the corresponding future blockage status in a future window
of r’ samples (we generate 10 such time-series datasets at
r" = 1,2,...,10. In order to perform an in-depth study,
the development dataset per scenario was further processed
to generate datasets for different future prediction window
size. For example, future-1 dataset, consists of data sequences
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Fig. 4. This figure plots the future-1, future-5, and future-10 future blockage prediction scores (fl1-score) for scenarios 17-22 and the combined scenarios.
The combined scenario achieves comparable or better prediction accuracy highlighting the gain of having sufficient diversity in the dataset.
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IMPACT OF SPEED ON BLOCKAGE PREDICTION ACCURACY
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Fig. 5. Top-1 blockage prediction accuracy and Fl-score for different future
prediction intervals observed in the combined case. It is observed that both
the top-1 accuracy and f1-score decreases as we predict further into the future.

where the input sequence length is still 8, but the future predic-
tion window length is 1. During these process of generating
datasets with different future prediction window, we ensure
that the dataset is balanced {Number of LOS data sequences
~ Number of NLOS sequences.}. Each of the development
dataset is further divided into training, validation and test sets
following a split of 70 — 20 — 10%.

VI. PERFORMANCE EVALUATION

In this section, we first discuss the neural network training
parameters and the adopted evaluation metrics. Next, we
present the numerical evaluation of the proposed solution.

Experimental Setup: As described in Section IV, in this
work, the extracted bounding boxes(output of the YOLOV3)
are provided as an input to the recurrent neural network
proposed earlier in Section IV. The designed RNN has an
embedding dimension (Z) of 30 and the hidden state dimen-
sion of 128. The GRU model is trained using the labeled
development dataset discussed in Section V using a cross-
entropy loss function. The model is trained with an ADAM
optimizer with an initial learning rate of 1 x 10~ 3 and a batch
size of 128. All the simulations were performed on a single
NVIDIA Quadro 6000 GPU using the PyTorch deep learning
framework. We utilize the top-1 accuracy metric as the primary

method of evaluating the proposed solution. In order to study
the robustness of the proposed solution, we also utilize the
F1-score metric.

Can visual data predict LOS blockages? For each of the
scenarios 17-22, we evaluate the proposed solution for various
future prediction window lengths. In Fig. 4, we show the F1-
score of the future-1, future-5 and future-10 blockage pre-
diction. Note that ‘future-5’ here represents the development
dataset that considers a future blockage prediction window of
length 5 time instances (i.e., predicting a blockage that will
happen in the future 450ms in scenarios 17-19 and 750ms in
scenarios 20-22). In Fig. 4, we observe that for all the scenar-
ios, the proposed two-staged solution achieves an accuracy of
~ 0.88 — 0.90 future-1 and future-5 blockage prediction F1-
score, highlighting the high efficiency of the proposed vision-
aided blockage prediction approach. It is observed that there
is a slight degradation in the model’s performance for scenario
22, which could be attributed to the lower number of samples
in the development dataset of this scenario; the lower number
of training samples can often lead to under-fitting and impede
the model’s capability to learn efficiently.

What is the impact of vehicle speed? Given the dynamic
nature of the dataset, the vehicles travel at different speeds.
Therefore, it is important to consider the impact of vehicle
speed on blockage prediction accuracy. To estimate the vehicle
speed, we compute the difference between the initial and
final position in the input sequence and then divide it by the
number of data samples the vehicle is present. We further
divide the sequences into two buckets based on the mean and
standard deviation of the speeds: (i) slow-moving vehicles and
(i1) fast-moving vehicles. In Table I, we present the future-
5 blockage prediction accuracy versus the vehicle speed for



scenarios 17 — 20. It is observed that for these scenarios, the
prediction is more accurate for faster-moving vehicles. This
higher prediction performance can be partially attributed to the
imbalance in the dataset, highlighting the need for a balanced
dataset. However, the performance achieved on the available
dataset indicates the model’s ability to predict future blockages
for dynamic users with very high confidence.

What is the gain of combining the datasets? To eval-
vate that, we constructed a combined dataset by combining
the training, validation, and test sequences of the individual
scenarios. This increases the size and diversity of the dataset.
As shown in Fig. 4, the model that is trained based on this
combined dataset is generally achieving better than the models
trained on the individual scenario datasets.

How early can a blockage be predicted? To answer this
question, we evaluated the topl-accuracies and Fl-scores for
different future prediction window lengths (based on the com-
bined dataset) in Fig. 5. As shown in this figure, the proposed
approach achieves more than 90% prediction accuracy till
the future-5 prediction interval (an average of 500 ms before
the blockage happens). Even though the prediction accuracy
and Fl-score starts degrading after the future-5 instance, we
observe that the model achieves almost 80% accuracy for
predicting up to the 10th future instance. Accuracy being a
holistic metric may not reflect the intricacies of the blockage
prediction task. To develop a deeper insight into the model’s
performance, we plot the confusion matrices in Fig. 6(a) and
Fig. 6(b), for future-1 and future-10 combined predictions,
respectively. The high precision of 96% and 78% for both
cases further highlights the high efficiency of the proposed
architecture in the future blockage prediction task. The final
adoption of any solution depends on achieving both high ac-
curacy and extremely low latency. All three different stages of
the proposed solution, i.e., (i) image enhancement, (ii) object
detection, and (iii) recurrent prediction, contributes toward the
final inference latency. For this, we compute the prediction
latency associated with each of the three stages of the solution.
The analysis is performed on a single NVIDIA Quadro 6000
GPU. The total inference latency is ~ 45 ms, where the
contribution of the three stages are ~ 10ms, 30ms, and ~ 4ms.
The solution is designed to predict the future blockages, the
earliest being 100ms in the future. The computed inference
latency lies well within this prediction window, highlighting
the computational efficacy of the solution.

VII. CONCLUSION

This paper explores the potential of leveraging visual sen-
sory data for proactive blockage prediction in a mmWave com-
munication system. We formulate the vision-aided blockage
prediction problem and develop an efficient machine learning-
based solution to predict future blockages. The key takeaways
of evaluating our vision-aided blockage prediction solution
based on the large-scale real-world dataset, DeepSense, can be
summarized as follows: (i) the vision-aided solution achieves
high blockage prediction accuracy of more than 90% for a
shorter prediction window, i.e., for predicting future moving

Ground Truth
Ground Truth

I‘J 1
Predicted Blockage

(b) Future-10

6 1
Predicted Blockage

(a) Future-1

Fig. 6. This figure shows the confusion matrices for future-1 and future-10
blockage prediction interval (based on the combined dataset).

blockages that are within 500 ms. (ii) For predicting further
into the future (within one second), the proposed solution
achieves an average prediction accuracy of more than 80%.
These results highlight the potential gains of leveraging visual
data in predicting future link blockages and enable proactive
network management decisions.
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