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Abstract—Millimeter wave (mmWave) communication is a key
component of 5G systems and beyond. Such systems provide high
bandwidth and high data rate but are sensitive to blockages. A
sudden blockage in the line of sight (LOS) link leads to abrupt
disconnection. Thus addressing blockage problems is essential for
enhancing the reliability and latency of mmWave communication
networks. In this paper, we propose a novel solution that relies
only on in-band mmWave wireless measurements to proactively
predict future dynamic line-of-sight (LOS) link blockages. The
proposed solution utilizes deep neural networks and special
patterns of received signal power, that we call pre-blockage
wireless signatures, to infer future blockages. Specifically, the
machine learning models attempt to predict: (i) Whether a
blockage will occur in the next few seconds? (ii) At what time
instance will this blockage occur? To evaluate our proposed
approach, we build a mmWave communication setup with moving
blockage and collect received power sequences. Simulation results
on a real dataset show that blockage occurrence can be predicted
with more than 85% accuracy, and the exact time instance
of blockage occurrence can be obtained with less than 2 time
instances (1.66s) error for prediction interval of 10 time instances
(8.8s). This demonstrates the potential of the proposed solution
for dynamic blockage prediction and proactive hand-off.

Index Terms—Millimeter wave, machine learning, blockage
prediction, handover

I. INTRODUCTION

Communication in the mmWave frequency range offers
high bandwidth and higher data rate demands required by 5G
and beyond cellular systems [1]. Unfortunately such systems
perform poorly in presence of line-of-sight (LOS) link block-
ages, which could cause sudden link failures, impacting the
reliability and latency of the mobile networks. This problem is
particularly important in mmWave/sub-THz systems because
of (i) their reliance on LOS communications for sufficient
receive signal power and (ii) the high penetration loss of these
high-frequency signals (high sensitivity to blockages). One
approach to address this challenge is equipping the mmWave
system with the capability to predict possible blockage proac-
tively. A successful prediction will allow a base station to
take mitigation measures, e.g., user hand-off, before the link is
blocked, thereby resolving the reliability and latency problems.
In this paper, we investigate the potential of leveraging
wireless mmWave/sub-THz in-band signatures to proactively
predict future link blockages and attempt to answer two
main questions: (i) Can in-band wireless signals be utilized
to predict future blockages? (ii) Can these signals also predict
when a blockage will happen in the future?

Many recently published studies have used machine learning
to address problems arising from link blockages in MIMO
and mmWave communications [2]–[6]. The work in [2], [3],
[5] collectively demonstrates the ability of a machine learning
algorithm (whether deep [3] or shallow [2]) to identify or
differentiate LOS and NLOS links. This identification task
could be an interesting ability of a system operating in the sub-
6 GHz range. However, the requirements are more stringent for
a mmWave system and demand a proactive approach. A step
towards doing so is presented in [4], where a proactive solution
is proposed to predict stationary blockages. This solution
depends on beam sequences alone, and as such, cannot handle
dynamic blockages. Another direction addressing blockage
prediction relies on Vision-Aided Wireless Communications
[6], [7], where proactive blockage prediction is done using
images and sub-6GHz channels [7] or mmWave beams [6].
The work requires extra sensory data (images), and it does
not take full advantage of the wireless data.

In this paper, we propose a machine learning algorithm
to address the dynamic-blockage prediction problem. The
algorithm uses sequences of received power to predict whether
a blockage is incoming or not. The basic idea behind our
algorithm is the ability to recognize pre-blockage signature,
a sequence of received signal power prior to blockage oc-
currence. We argue that such a signature could serve as a
important clue for incoming blockages. Our contribution is
summarized as follows:

1) We propose a new approach that leverages only the
in-band mmWave signals to proactively predict future
dynamic LOS link blockages before they happen. This
approach does not require any extra sensors or out-of-
band measurements and can work transparently to the
normal operation of the communication systems.

2) We propose a recurrent neural network (RNN) architec-
ture based on Gated-Recurrent Units (GRUs) to predict
incoming blockages. The architecture is designed to learn
one of two tasks: i) predict whether a blockage is incom-
ing or not, ii) pinpoint the time instance at which the
blockage occurs.

3) We develop a mmWave communication setup with a
moving blockage. We use that setup to build a dataset of
received power sequences and their corresponding future
link statuses. The proposed algorithm uses this dataset to
predict incoming blockages.
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Fig. 1: The left panel illustrates the overall system model where a mmWave/sub-THz basestation utilizes the received mmWave/sub-THz
signal power to enable the proposed proactive dynamic link blockage prediction approach. The right panel shows the overall RNN architecture
to predict the blockage occurrence. The architecture consists of (i) recurrent component, and (ii) prediction component.

The rest of this paper is organized as follows. Section II
presents the system and channel models adopted to study the
dynamic-blockage prediction. Section III presents a formula-
tion of the prediction problem. The proposed machine learning
model is presented in Section IV. The data collection scenario
and setup is introduced in Section V. Proposed algorithm
evaluation and simulation results are presented in Section VI,
and, finally, the paper is concluded in Section VII.

II. SYSTEM AND CHANNEL MODELS

System model: The communication system considered in this
work is described in Fig.1. It assumes a base station serving a
static user who is in the vicinity of a possible moving block-
age. The base station employs an M -element Uniform Linear
Array (ULA) antenna operating at 60GHz carrier frequency
with Orthogonal Frequency Division Multiplexing (OFDM).
It also assumes a fully analog architecture with a predefined
beam-steering codebook F = {fw}Ww=1, where fw ∈ CM×1 is
given by:

fw =
1√
M

[
1, ej

2π
λ d sin(ϕw), . . . , ej(M−1) 2π

λ d cos(ϕw)
]T

, (1)

where d is the spacing between the ULA elements, λ is the
wavelength, and ϕw ∈ { 2πw

W }W−1
w=0 is a uniformly quantized

azimuth angle with a step of 1/W . At any time instance t, the
downlink received signal is expressed as follows:

rk[t] = hk[t]
T fwsk[t] + nk (2)

where hk[t] ∈ CM×1 is the downlink channel at the kth
subcarrier, sk[t] is the symbol transmitted on the kth sub-
carrier, and, finally, nk is a complex Gaussian noise sample,
∼ CN (0, σ2) at the kth subcarrier.
Channel model: This work adopts the geometric (physical)
channel model, which captures the physical characteristics of
signal propagation including the dependence on the environ-
ment geometry, materials, frequency band, etc., [1]. With this
model, the channel can be expressed as:

hk =
D−1∑
d=0

L∑
ℓ=1

αℓe
−ȷ 2πk

K dp (dTS − τℓ)a (θℓ, ϕℓ) , (3)

where L is number of channel paths, αℓ is the path gain
(including the path-loss), τℓ is the delay, θℓ is the azimuth
angle of arrival, and ϕℓ is the elevation angle, of the ℓth
channel path. TS represents the sampling time while D denotes
the cyclic prefix length (assuming that the maximum delay is
less than DTS).

III. PROBLEM FORMULATION

Proactively identifying Line of Sight (LOS) link status has
significant advantages both at the physical and network layer
levels. In this paper, we focus on two specific problems: (i)
How to use the received mmWave signal power information
to predict whether there is a blockage in the near future or
not, and (ii) in case there is a blockage, how to use the
received mmWave signal power information to predict when
that blockage will occur.
Problem 1: To formulate the presence of a blockage in the
near future, let t ∈ Z be the index of the discrete time
instance, x[t] be the link status at the tth time instance, and
Sob = {|r[t+n]|2}0n=−To+1 be the sequence of received signal
power for the observation interval of To instances. Note that
for simplicity, the subcarrier index k is omitted from r[t+n].
Given a signal power based observation sequence, we want
to predict the occurrence of blockage within a future time
interval extending over TP instances. We use bTP

to indicate
whether there is a blockage occurrence within that interval or
not. More formally, bTp is defined as follows:

bTP
=

{
0, x[t+ n′] = 0 ∀n′ ∈ {1, . . . , TP }
1, otherwise

(4)

where 1 indicates the occurrence of a blockage and 0 is
the absence of blockage. The goal of this problem is to
predict bTp with high accuracy, i.e., high success probability
P(b̂Tp = bTp |Sob) where b̂Tp is the predicted link status. To
that end, a prediction function fΘ(Sob) parameterized by a set
of parameters Θ could to be learned using a machine learning
algorithm such that it maximizes P(b̂Tp

= bTp
|Sob).

Problem 2: Given signal power based observation sequence
Sob and the knowledge that there is a blockage in the future
Tp instances, the goal is to predict n′ at which x[t + n′] =
1. This represents the exact instance at which the blockage
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Fig. 2: Example of indoor pre-blockage signature: The upper subfigure shows the received signal power vs time. The bottom panel shows
images captured by the camera.

occurs within a window of Tp instances. Similar to Problem
1, the future instance is predicted by a parameterized function
gΘ(Sob) that could be learned using a ML algorithm. The aim
of the ML algorithm is to maximize the prediction accuracy
P(n̂′ = n′|Sob, bTp = 1).

IV. MOVING BLOCKAGE PREDICTION USING RECURRENT
NEURAL NETWORKS

A. Key Idea

Any wireless environment can be broadly broken down
into two categories of objects, stationary and dynamic. Both
shape the characterization of the wireless channel [8], and as
a result, the behavior of these objects (whether stationary or
dynamic) affect the behavior of the wireless channel. Building
on that, the key blockage prediction approaches in this paper
are based on the following simple observation: Consider a
fixed transmitter and receiver in a certain environment with a
LOS path. If an object moves in this environment till it blocks
this LOS path, then, during the movement, the object acts
like a scatterer for the signal propagating from the transmitter
to the receiver. The received signal during this interval will
experience a constructive and destructive interference from the
LOS ray and the ray scattered on the moving object. Further,
the contribution of the moving blockage/scatterer will change
as the scatterer approaches the LOS link and before it blocks
the link. We call this receive signal pattern that precedes
the occurrence of a blockage and reflects the behavior of
the blocking object the pre-blockage wireless signature.

Fig. 2 illustrates the example in indoor scenario. It shows
a sequence of received power versus time instances, and
the corresponding photos show how far the blockages (the
metal object in the photos) is from the transmitter (the object
circled with red in the photos). The received power starts with
smooth fluctuations (between the 1-st and 30-th instances in
Fig. 2), for the blockage is far from both the receiver and the
transmitter. However, as the blockage advances, the received
power sequence changes, as shown in the red-shaded region
of Fig. 2. The sharper fluctuations is what we refer to as the

pre-blockage signature, and it could be utilized to identify
incoming blockages.

B. Deep Learning Model

Neural Network Architecture: Learning the pre-blockage
signature from a sequence of observed received signal power
requires a neural network that processes input data samples
over time such as recurrent neural networks. We design a
Gated Recurrent Unit (GRU) network [9] of Q-layers that
takes in a sequence of observed received signal power (i.e.,
Sob) and learns to predict the link status bTp . Fig.1 depicts
the schematic of such a network. Each layer in the network
consists of To GRUs, where To is the length of the observation
time interval. The output of the last GRU of the last layer is fed
to a Fully Connected (FC) layer followed by either a classifier
for Problem 1 or a regressor for Problem 2. The classifier
outputs a probability vector (p̂) of whether the link status is
blocked or not in TP future time instances. For Problem 2,
the regressor outputs the predicted time instance n̂′ indicating
the time instance when the blockage will occur.

Pre-Processing: The input data is pre-processed to make
it suitable for our model to learn, see [10] for more details.
We choose to standardize the inputs by subtracting the mean
µ of the dataset and dividing by its standard deviation σ. Let
A ∈ RU×N be the dataset matrix with U rows and N columns
to represent power sample data of U data points. Each row
represents a data point and N is the number of received power
samples of each data point. Data standardization is done by
computing:

Âu,n =
Au,n − µ

σ
, (5)

where:

µ =
1

N × U

U∑
u=1

N∑
n=1

Au,n (6)

σ =

√√√√ 1

N × U

U∑
u=1

N∑
n=1

(Au,n − µ)2 (7)

∀u ∈ {1, . . . , U}and n ∈ {1, . . . , N}, (8)
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Fig. 3: Data collection setup for indoor scenario, where a blockage
moves along a trajectory between the transmitter (TX) and the
receiver(RX).

TABLE I: Parameters for mmWave Communication System

Name Value
Carrier Frequency 60GHz
Signal Bandwidth 20MHz

number of subcarriers 64
Horn Antenna Gain 20dBi

Transmit Power 30dBm

Training loss: For Problem 1 the future link-status predic-
tion is posed as a binary classification problem, in which the
classifier attempts to determine whether the link is blocked
or not within the future time interval. As such, the network
training is performed with a cross entropy loss function [11]
computed over the outputs of the network:

lCH =
2∑

c=1

pc log p̂c, (9)

where p = [p1, p2]
T is the one-hot vector which represents

the categorical variables as binary vector; the category with
highest probability is encoded as 1 others are encoded as 0’s.
It takes one of two values: [1, 0]T for the case when bTp

= 0
and [0, 1]T for the case when bTp

= 1, and lCH is the training
loss computed for one data point.

For Problem 2, we pose the problem of predicting the
blockage instance as a regression problem. Our model tries
to determine the exact time instance at which the blockage
occurs. We use Mean Square Error (MSE) loss as training
function. In formal terms, we aim to minimize the difference
between the predicted instance and groundtruth instance [11]

lMSE = (n′(u) − n̂′(u))2 (10)

where n′(u) and n̂′(u) are ground truth time instance and
predicted time instance, respectively.

V. EXPERIMENTAL SETUP AND EVALUATION DATASET

To evaluate our approach, we build a mmWave testbed and
create a dataset, the details of which are explained below.

A. Communication Scenario & Testbed

We build a mmWave communication system comprising of a
transmitter with an omnidirectional antenna that communicates
with a receiver that has a 10-degree beamwidth horn antenna.
The operating parameters for our mmWave communication
system are shown in Table I. To simulate a moving blockage,
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Fig. 4: Top-view of the experimental scenario. (a) Directions and area
of the moving blockage and the relative positions of transmitter (TX),
receiver (RX) and moving blockage. (b) Rotated TX-RX setup.

we use a metal cylinder with a height of 1m, which can
completely block the LOS link between the transmitter and
receiver. Then, we mount that cylinder onto a programmed
robot that moves along a pre-defined trajectory to simulate
the moving blockage. The speed of the robot is 0.0625m/s
and the sampling rate of our system is 1.13 sample/s, which
means a single time instance takes about 0.88s. Fig. 3 depicts
our experimental system.

We consider an indoor scenario where the transmitter and
receiver are placed 8 m apart from each other and the robot
moves between them in different trajectories. The moving
area of the robot is shown as red-shaded region in both
Fig. 4a and Fig. 4b. To illustrate this further, let’s consider the
coordinate system in Fig. 3, where the x-axis extends along the
LOS between the transmitter and receiver and y-axis extends
perpendicular to the LOS between the transmitter and receiver;
z-axis is perpendicular to the ground. The robot moves back
and forth on the y-axis to create multiple back and forward
trajectories with a spacing of 1 m. In order to make our dataset
diverse, we also program the robot to create trajectories with
different angles. In Fig. 4a and Fig. 4b, arrows are used to
show those trajectories. Furthermore, the whole testbed is
rotated with a small angle on the x-y plane such that the
background is slightly changed, and the robot is programmed
to do another back and forth cycle. See Fig. 4a and Fig. 4b
for an example of the robot motion in the rotated testbed.
By continuously moving and rotating, we collect a dataset of
power sequences for different motion and propagation patterns.

B. Dataset Generation

Every robot trajectory provides us with a single received-
power sequence, which is manually annotated to create the
link status labels. We use 1 to indicate the time instances
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Fig. 5: Sequence generation using sliding window. The top image
shows the received power for a raw sequence. The bottom image
shows the corresponding link status.

at which the LOS link is blocked and 0 otherwise. We call
the pair of received power and link status sequence a raw
sequence pair. Furthermore, since the number of raw sequence
pairs we collected from the experiment is limited, data aug-
mentation is used to increase the dataset size. Originally, we
conducted 158 experiments and generated 158 sequence pairs,
i.e. S1 = {(Sd1, xd1)

(u)}Ud
u=1, Ud = 158, d1 means the original

input. We generate additional pairs by dropping samples at
rates 2, 3, and 4, which results in S2 = {(Sd2, xd2)

(u)}Ud
u=1,

S3 = {(Sd3, xd3)
(u)}Ud

u=1, S4 = {(Sd4, xd4)
(u)}Ud

u=1, respec-
tively. In reality, this procedure means the blockage moves
along the same trajectory at 2, 3 or 4 times the original
speed. Next we concatenate these sequences together as S =
S1

⋃
S2

⋃
S3

⋃
S4 = {(S, x)(u)}Uu=1 where U = 4Ud.

The method to generate the data points for Problem 1 and
Problem 2 are as follows.
Problem 1: A data point consists of an input received signal
power sequence Sob and an input label bTp

. To generate the
received signal power sequence, we use a sliding window
method, shown in Fig. 5. For example, for current time t, we
generate Sob by extracting the received power sequence from
time instance t − To + 1 to t, shown as red box in the top
subplot in Fig. 5. For input label generation, we first extract
the label sequence from time instance t+1 to t+TP , shown as
green box in bottom subplot in Fig. 5, to generate the sequence
{x[t+n]}t+TP

n=t . Then we generate input labels btP using eqn. 4.
Finally, we pair the received signal power sequences with input
labels, expressed as SP1 = {(Sob, bTP

)(u)}UP1
u=1, where UP1 is

the total number of samples that are input to our model. In this
problem, SP1 is a mixture of two categories, non-transition
sequence pairs with bTP

= 0 and transition sequence pairs
with bTP

= 1. To eliminate the dataset bias, we keep the ratio
of transition and non-transition sequence pairs to 1:1.
Problem 2: A data point is represented by input received
signal power sequence Sob with the ground-truth time instance
n′ instead of the label. So SP2 = {(Sob, n

′)(u)}UP2
u=1, where

UP2 is the total number of samples that are input to our model.
For this problem, we only select transition-sequence pairs for

TABLE II: Parameters for Deep Learning Model

ValueName Problem 1 Problem 2
Input sequence length 10 10

Predicted future time steps 1-40 1-40
Hidden state of RNN 20 20

Output dimension 2 1
Number of RNN layer 1 1

Dropout rate 0.2 0.2
Epoch 1000 1000

the input dataset.
In our experiments, we pick input sequence length (To) as

10 and prediction interval (Tp) from 1 to 40. For each Tp,
each raw sequence pair generates one transition-sequence pair
and multiple non-transition sequence pairs. Totally, we get 632
transition-sequence pairs for each Tp.

VI. EXPERIMENTAL RESULTS

In this Section, the metrics used to evaluate the performance
is introduced in subsection VI-A, and the details of parameters
for our neural network are shown in subsection VI-B. The
analysis of the results is presented in subsection VI-C.

A. Evaluation Metrics

Since Problem 1 is a classification problem, we use Top-
1 accuracy as our evaluation metric. It is defined as the
compliment of the classification error given in [12].
Problem 2 is posed as a regression problem, and so we use
Mean Absolute Error (MAE) and its standard deviation to
evaluate the quality of our model predictions. The MAE is the
mean absolute error between ground-truth value and predicted
value. For each prediction interval TP , we calculate ēTP

, the
MAE over all the samples, and stdTP

, the standard deviation
of the absolute errors.

e
(u)
TP

= |n′(u) − n̂′(u)|, ∀u ∈ {1, . . . , Uv2}, (11)

ēTP
=

1

Uv2

Uv2∑
u=1

|n′(u) − n̂′(u)|, (12)

stdTP
=

√√√√ 1

Uv2

Uv2∑
i=1

(
e
(u)
TP

− ēTP

)2

, (13)

where, e(u)TP
is the absolute error for uth sample, Uv2 is the

total numbers of samples in validation set, n′(u) and n̂′(u) are
target and predicted time instances between current time and
the time of blockage occurrence, for prediction interval is TP .

B. Network Training

We build the deep learning model described in Section IV
using Pytorch. It consists of 1 GRU layer with a dropout layer,
which has been chosen empirically by experimenting on the
dataset. The details of the model are listed in Table II. We
input 10 successive time-instances of received signal power
and the corresponding labels for training.
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C. Performance Evaluation

Problem 1: Fig. 6 plots the Top-1 accuracy as a function of
the prediction interval. We see that as the prediction interval
increases the accuracy decreases; the Top-1 accuracy decreases
sharply at first, and then flattens out. Our model achieves high
accuracy when predicting the occurrence of blockage in the
near future. i.e. we can achieve above 80% accuracy when
predicting the occurrence of blockage in the future 6 time
instances (around 5s in the future). This is because when the
prediction interval is small, our training dataset contains a
large number of sequences with a clear pre-blockage signature,
resulting in a high ratio of these sequences in the training
dataset. The prediction accuracy is good until the prediction
interval goes beyond 15 time instances. It finally converges to
the “random guess” or 50% accuracy as the prediction interval
approaches 40 time instances. This is because pre-blockage
signature is less effective when the blockage is far away from
the transmitter and receiver.
Problem 2: Fig. 7 plots the mean absolute error between
prediction and ground-truth as a function of prediction interval.

For each prediction instance, we show the standard deviation
as an error bar. For prediction interval of 15 time instances
(Tp = 15), our model can predict all the blockage transitions
with an average error of 2 time instances. This prediction also
happens with relatively low volatility (±1.5). As the blockage
happens further in the future, the blockage instance prediction
error increases. Nevertheless, even when the prediction interval
is as large as 40 time instances, we can still predict the exact
time of blockage occurrence with the mean absolute error of
under 8 time instances.

VII. CONCLUSION

In this paper, we explored the potential of utilizing mmWave
received power data to proactively predict dynamic block-
ages in mmWave systems, thereby allowing the network to
proactively manage hand-off/beam-switching decisions. We
formulated the wireless signature blockage prediction problem
and developed an efficient machine learning model for this task
based on our RNN architecture. Simulation results on real data
showed that our model can achieve good performance (85%)
for moving blockage prediction for short prediction interval
(13.2s). This allows the user to be proactively handed over to
another base station without disconnecting the session with a
high success probability.
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