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Abstract—Line-of-sight link blockages represent a key chal-
lenge for the reliability and latency of millimeter wave
(mmWave) and terahertz (THz) communication networks. This
paper proposes to leverage LiDAR sensory data to provide
awareness about the communication environment and proac-
tively predict dynamic link blockages before they happen. This
allows the network to make proactive decisions for hand-
off/beam switching which enhances its reliability and latency.
We formulate the LiDAR-aided blockage prediction problem
and present the first real-world demonstration for LiDAR-
aided blockage prediction in mmWave systems. In particular,
we construct a large-scale real-world dataset, based on the
DeepSense 6G structure, that comprises co-existing LiDAR and
mmWave communication measurements in outdoor vehicular
scenarios. Then, we develop an efficient LiDAR data denoising
(static cluster removal) algorithm and a machine learning model
that proactively predicts dynamic link blockages. Based on the
real-world dataset, our LiDAR-aided approach is shown to
achieve 95% accuracy in predicting blockages happening within
100ms and more than 80% prediction accuracy for blockages
happening within one second. If used for proactive hand-off,
the proposed solutions can potentially provide an order of
magnitude saving in the network latency, which highlights a
promising direction for addressing the blockage challenges in
mmWave/sub-THz networks.

Index Terms—Millimeter wave, LiDAR, blockage prediction.

I. INTRODUCTION

Millimeter wave (mmWave) and sub-terahertz (sub-THz)
communication systems have the potential of providing high
data rates thanks to the large bandwidth available at these
frequency bands [1], [2]. Realizing these gains in mobile
networks, however, requires overcoming the key challenge
represented by the sensitivity of the high-frequency signals
to blockages [3]. These blockages may abruptly disconnect
the line-of-sight (LOS) links, which critically affects the reli-
ability and latency of the mobile networks. Current solutions
for the mmWave/THz blockage and reliability problems are
mainly focused on multiple connectivity where the user simul-
taneously keeps multiple links to one or more basestations
[4], [5]. This, however, inefficiently consumes the network
resources and does not completely solve the reliability/latency
challenges as the switching between links is still performed
in a reactive way (after a link failure is observed).

A promising approach for overcoming the link block-
age problems in mmWave/THz networks is to leverage
machine/deep learning solutions to proactively predict the
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blockages before they happen [6]. This allows the net-
work to act proactively in switching the user to a different
link/basestation. In [6], recurrent neural networks were lever-
aged to predict future blockages based on sequences of previ-
ously used beams. Further, [7] leveraged sub-6GHz channels
to identify/predict close-to-happen mmWave blockages. The
approaches in [6], [7], are mainly suitable for predicting
stationary blockages or blockages that are a few milliseconds
ahead. To predict future blockages hundreds of milliseconds
before they happen, leveraging other sensory data such as
cameras [8]–[11] was proposed. Deploying cameras, however,
may not always be possible for privacy/regulatory reasons.
This motivates the research for using other data modalities
for future blockage prediction.

In this paper, we propose to leverage LiDAR sensory data
to provide information about the communication environment
and help proactively predict LOS mmWave link blockages po-
tentially seconds before they happen. The main contributions
of the paper can be summarized as follows:

• We formulate the LiDAR-aided blockage prediction
problem and develop an efficient convolutional neural
network (CNN)-based model to proactively predict mov-
ing link blockages using LiDAR data.

• We construct a framework for collecting co-existing
mmWave and LiDAR data, and use it to build a large-
scale real-world outdoor dataset (∼ 125 thousand data
points). The dataset consists of mmWave beam train-
ing data, LiDAR sensory data, and the corresponding
images, and can be used to study multiple problems
including the LiDAR-aided blockage prediction task.

• We develop a static cluster removal (pre-processing)
algorithm for the data generated by low-cost LiDAR
sensors. The approach denoises this data and accurately
extracts the traces of the moving objects, thus improving
the performance of our machine learning models.

Using the collected real-world dataset, our approach
achieves 95% accuracy for predicting blockages happening
within a future prediction interval of 0.1s and 80% for a
prediction interval of 1s. Thanks to proactively predicting
blockages, our solution can reduce the hand-off latency from
222.8ms (with reactive hand-off) to 35.43ms, highlighting a
promising solution for mmWave/sub-THz networks.

II. SYSTEM AND CHANNEL MODEL

We adopt a mmWave communication system where a
basestation with MA-element antenna array is used to serve
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Fig. 1: Illustration of the overall system model where a mmWave/sub-THz basestation leverages a LiDAR sensor to provide environment
awareness and enable the proposed proactive link blockage prediction approach. The figure also depicts the adopted neural network model
which consists of convolutional and prediction components.

a stationary user. The basestation is further equipped with a
LiDAR sensor to provide awareness about the surrounding
environment and moving scatterers/blockages, as shown in
Fig. 1. The basestation employs a pre-defined beamsteering
codebook of M beams, F = {fm}Mm=1, where fm is a
beamsteering vector that directs the signal towards direction
θm = θoffset + FoV/M , with FoV denoting the field of view
of the wireless beamforming system [12]. In our testbed,
described in Section V, we consider a phased array with
MA=16 elements and a codebook of M = 64 beamforming
vectors, with steering angles uniformly quantize the range
[−π/4, π/4]. It is worth mentioning here, though, that the
proposed blockage prediction approaches in this paper can be
applied to more general array architectures.

To account for the variations of the channel over time, we
adopt a block fading channel model where the channel is
assumed to be constant over a time duration of τB . Further, we
adopt an OFDM signal transmission model of K subcarriers.
We define hk[t] ∈ CM×1 as the downlink channel from the
base station to the user at the k-th subcarrier for discrete
time instance t, where t ∈ Z. At time t, if the beamsteering
vector fm is adopted by the basestation for the downlink
transmission, then the received signal at subcarrier k is

rk,m[t] = hk[t]T fmsk[t] + nk[t] (1)

where sk[t] is the transmitted symbol at the k-th subcarrier
and t-th time instance, E|sk[t]|2 = 1, and nk[t] ∼ CN (0, σ2

n)
is a noise sample.

III. PROBLEM DEFINITION

We investigate the potential of LiDAR sensors to proac-
tively predict if the link between the mmWave base station
and the user is going to be blocked in the near future.

Let x[t] ∈ {0, 1} be the link status (blocked or unblocked)
at time instance t. Further, we assume that at t, the LiDAR
sensor provides sensory data L[t] ∈ RP×2, where P repre-
sents the number of points collected by the LiDAR sensor at
time t for a 360 degree scan; data at each point consists of an
angle and a distance value representing the measured depth at
this angle. We define Lob as the sequence of LiDAR samples
at the Tob previous time instances (observation window),
Lob = {L[t+ n]}0n=−Tob+1.
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Fig. 2: An example of the LiDAR pre-blockage signature: The upper
plot shows the distance heatmap as a function of the angle and time
instance. The middle plot depicts the corresponding link status and
the bottom plot shows the image captured by the camera.

Now, given the observed LiDAR sequence Lob, our task is
to predict whether or not a link blockage will occur within a
future time interval of TP instances. We use bTP

to indicate
whether there is a blockage occurrence within that future
interval or not. More formally, bTp

can be defined as follows:

bTP
=

{
0, x[t+ np] = 0 ∀np ∈ {1, . . . , TP }
1, otherwise

(2)

where 0 indicates the absence of blockage and 1 is the
occurrence of a blockage. Thus, given the sequence Lob, our
machine learning task is to predict the future blockage status
bTp

with the highest accuracy. If b̂Tp
denotes the predicted

link status, our goal is to maximize the successful blockage
prediction probability P1(b̂Tp = bTp |Lob).

IV. PROACTIVE BLOCKAGE PREDICTION USING LIDAR
PRE-BLOCKAGE SIGNATURE

A typical LiDAR sensor sends pulsed light waves into
the surrounding environment. These pulses are reflected by
the objects and returned to the sensor; and the sensor uses
the round-trip time to calculate the distance it traveled. By



sending and receiving laser beams, the LiDAR sensor collects
a 2-D point cloud map of the surrounding environment. We
propose to leverage these LiDAR sensory data to detect if
an object is going to block the mmWave communication link
between the basestation and the mobile user. Fig. 2 shows
an example when a communication link is getting blocked
by a moving object. The heatmap on the top represents the
sensed distance for every quantized angle (direction) level
as a function of time. The horizontal lines represent static
objects (since their distances from the LiDAR device do not
change over time). The middle plot shows the link status and
the bottom photos show the corresponding scenario. Note
that from time instance 13 to 26, the color of the pattern
changes from yellow to green, indicating that the distance
between the moving object (bus) and the LiDAR sensor
has become shorter. This matches the scenario as the bus
was approaching. The color becomes yellow again after time
instance 35 implying that the object is moving away from the
LiDAR sensor. Thus, as the blockage approaches the link,
we can see a clear pre-blockage pattern in the LiDAR
heatmap that can potentially be leveraged for proactive
blockage prediction.

To learn this pre-blockage signature at the basestation, we
design the CNN model depicted in Fig. 1. In this figure, H ,
L and C denote the number of rows, columns and channels
of the input data. The CNN architecture consists of a convo-
lutional component followed by a prediction component. In
the convolutional component, the first stack (Stack 1) takes
the input collected LiDAR data (i.e., Sob) whose dimension
is H0 × L0 × C0 and passes the output with the dimension
H1 ×L1 ×C1 to the next stack. We design N similar stacks
and the last stack (Stack N ) is followed by a flatten layer
(a flatten layer converts the 2-D matrix to 1-D vector). Each
stack contains J convolutional blocks, each of which consists
of a convolutional layer and a ReLU layer, and a max-
pooling layer that occurs at the end of the stack. The output
of the convolutional component is fed to a fully connected
(FC) layer followed by a classifier. The classifier outputs a
probability vector (p̂) of whether the link status is blocked or
not in TP future time instances.

V. TESTBED AND SCENARIOS

To evaluate the performance of the proposed approach
in real-world environments, we generate measurement-based
datasets, following the footsteps of the DeepSense 6G dataset
[13]. We deploy a testbed in an outdoor wireless environment
to collect real-world multimodal measurements and construct,
what will be henceforth called, seed datasets.

A. Testbed Description

The DeepSense 6G dataset framework [13] defines a
generic structure for sensing/communication datasets where
a number of units, each equipped with a set of sensors,
collect co-existing sensory/communication data. We adopt the
DeepSense Testbed 3 [14] and add a synchronized LiDAR
sensor. Fig. 3 shows the DeepSense Testbed 3 which consists
of two stationary units, namely Unit 1 and Unit 2. Unit 1

TABLE I: Scenarios 24-27 (Multimodal Blockage I-IV)

Testbed 3

Number of Instances
Scenario 24: 11952 - Scenario 25: 35424
Scenario 26: 36648 -Scenario 27: 39672

Combined: 123696 (from 3436 trajectories)

Number of Units 2

Data Modalities RGB images, LiDAR point cloud, positions,
mmWave beam training measurements

Unit 1: Stationary

Hardware elements
RGB Camera,

mmWave receiver with 16-element
phased array, LiDAR

Data Modalities
RGB images,

LiDAR point cloud, GPS position,
mmWave beam training measurements

Unit 2: Stationary

Hardware elements mmWave transmitter with an omni-antenna

Data Modalities GPS position

collects mmWave beam training measurements, visual data,
and LiDAR data while Unit 2 is equipped with a mmWave
transmitter. At each capture, the system collects a number of
measurements including a LiDAR sample and an RGB image.
The scanning range of the LiDAR is 16 meters and the motor
spin frequency is 10Hz.

B. DeepSense Scenarios 24-27

We collect data in an outdoor wireless environment repre-
senting a two-way city street, as shown in Fig. 3. The two
units of DeepSense Testbed 3 are placed on the two sides
of the street. The LiDAR at Unit 1 continuously scans the
environment. The testbed collects data samples at a rate of 10
samples/s. Each data sample has multiple modalities including
an RGB image and a LiDAR 360-degree point cloud, both
collected by Unit 1. The important aspects of these DeepSense
scenarios are summarized in Table I.

VI. LIDAR DATA PROCESSING WITH
STATIC CLUSTER REMOVAL (SCR)

In order to build the development dataset used in the
LiDAR-aided blockage prediction ML task, the raw LiDAR
data described in Section V-B needs to be first pre-processed
to (i) remove the noise created by static clusters and (ii)
remove the sensory data collected from outside the com-
munication field of view. To clarify the first point, we plot
Fig. 4a and Fig. 4b which show the moving object captured
by the RGB camera and the corresponding point clouds of
the raw LiDAR data. The points in the orange rectangular
represent the trace of moving objects, the ones in the red
circles represent the static clusters or objects in the scenario,
while the points in the blue circles represent the noisy points
that are not present in the real scenario, which are called
distracting path reflection points (also static noise). We are
interested in the trace of moving objects and so the static
objects and the path reflection noise should be removed.



Fig. 3: Illustration of the data collection scenario/location, where Unit 1 (TX) and Unit 2 (RX) were deployed at the two sides of the street.
The right subfigure shows the equipment used in our dataset collection.

The aim of pre-processing is mainly to eliminate the cluster
static noise points. We first use a field of view based filtering
to erase the LiDAR sensory data collected from directions
outside the field of view of interest (Section VI-A). Next, we
use a dictionary based cluster removal method to remove the
unnecessary clusters in Section VI-B.

A. Field of View Based Filtering

Since the objects of interest are between the transmitter
and receiver, any LiDAR-detected object on the other side
of this communication link need to be filtered out so that it
does not distract the blockage prediction model. Assuming
that the LiDAR device collects P samples at every time
instance, and each LiDAR sample has 2 values, angle φ
in radians and distance d in meters, the set of samples is
L(t) = {(φ, d)p}Pp=1, L denotes the raw LiDAR dataset, t is
the index of time instance. We use the field of view filter to
clean the points outside the range Φ1 to Φ2. In this paper,
we define Φ1 = −π/6, Φ2 = π based on real measurements.
We choose P = 460 at each time instance, since our LiDAR
sensor collects 460 samples for a 360 degree point cloud.

B. Dictionary Based Cluster Removal

After the field of view based filtering, some of the static
clusters in the LiDAR point cloud are eliminated. We now
develop a static cluster removal (SCR) method to remove the
rest. The SCR method is implemented in five steps: i) sorting
the LiDAR data by their angle; ii) quantizing these angles; iii)
quantizing the distance of the LiDAR data; iv) generating a
static cluster dictionary from samples that contain no moving
objects, and v) eliminating the static clusters according to
the constructed dictionary. The sorting and quantization are
needed to establish the mapping between points at different
time instances.

Step 1 Sorting: Although the number of collected LiDAR
samples at each time instance is the same, they are not
ordered by either their angles or distances. So the first step
is to sort the LiDAR samples by their angles. In the sorting
process, we append the zero-distance points at the end of

the sorted important points, since these zero-distance points
cannot provide effective information.

Step 2 Angle Quantization: After sorting, the angle is in
ascending order. We uniformly quantize the angle space to
ensure that the points in one time instance can be mapped
to those in other time instances within the same quantization
step. This establishes a relation between the points at different
time instances. We define Q as the total number of angle
quantization levels and q as the index of the angle quantization
level. The quantization angle is from Φ1 to Φ2 and the step
size is denoted as ∆Φ. If there are multiple points at the same
quantization level, we choose the median index of the points
whose angle lay in the same quantization level and discard
others. In this paper, we choose Q = 216.

Step 3 Distance Quantization: After angle quantization,
the number of important points is Q for each time instance.
However, due to the measurement error of the device, the
measured distance corresponding to an angle may not be
exactly the same from one time instance to the next, so
the distance values are also quantized. We choose the total
distance quantization levels (Qd) to be 500, the step size
is 0.034m which provides sufficient accuracy for our 17m
LiDAR range.

Step 4 Dictionary Generation: For the static cluster
dictionary, we choose the samples from Nd time instances
(Nd = 5000 in our case) which have no moving objects and
remove the repeat points.

Step 5 Residual Cluster Removal: Next, we compare
every point in the dataset with every point in the static cluster
dictionary. If the point in the dataset is in the static cluster
dictionary, this indicates that it corresponds to a static cluster.
Then it gets eliminated by assigning 0 to the distance and
keeping the angle unchanged.

Fig. 4c plots the LiDAR point cloud after applying our
static cluster removal algorithm. This figure shows that most
of the static clusters are removed and the traces of the moving
objects are now clear.

VII. EXPERIMENTAL RESULTS

In this section, we describe the development dataset and
ML model parameters and then present our experimental
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Fig. 4: (a) A moving blockage captured by the RGB camera. (b) The point cloud generated using the raw LiDAR data. It contains the trace
of the moving object, static objects, and distracting path reflection points. (c) The LiDAR point cloud after SCR processing. It contains the
trace of the moving object and fewer distracting path reflection points.

TABLE II: CNN Model Parameters

Name Value
Original SCR

Input sequence dimension 16×460×2 16×216×2
Predicted future time steps 1-10 1-10

Stack 1
Conv 1 2-8-3-1 2-8-3-1
Conv 2 8-16-3-1 8-16-3-1

Max pooling 1 (2,23) (2,9)

Stack 2
Conv 3 16-16-3-1 16-16-3-1
Conv 4 16-32-3-1 16-32-3-1

Max pooling 2 (2,5) (2,6)
FC (512,2) (512,2)

Dropout rate 0.2 0.2
Epoch 1000 1000

Total Parameters 9306 6883

results for the LiDAR-aided blockage prediction problem.

A. Development Dataset and Machine Learning Parameters

Development Dataset: We use the seed dataset of scenario
24-27, described in Section V-B, to construct the development
dataset for the LiDAR-aided blockage prediction task follow-
ing two steps: (i) Constructing the time sequences from the
seed dataset. We follow the same footsteps in [14] to extract
the time sequences based on the link status labels. We have
1718 sequences, and each sequence has LiDAR data and its
corresponding link status. (ii) Generating development dataset
for CNN: we use YP = {(Lob, bTp

)u}Uu=1 to denote the
development dataset. We use (2) to generate bTp

based on
like status, and we apply the sliding window methods [14] to
generate Lob with time instance length Tob. The total number
of sequences in this dataset is U = 3436.

CNN Parameter Selection: The hyper-parameters and
parameters of each layer of our CNN model are shown in
Table II. After SCR processing, the dimension of LiDAR data
changes, resulting in parameter changes in the max pooling
layer. We show the parameter format of a CNN layer as input
channel - output channel - kernel size - padding, and show
the kernel size of the max-pooling layer. All parameters are
based on the empirical experiments.

Performance Metric: We adopt the Top-1 accuracy as our
main evaluation metric. It is defined as the complement of
the prediction error [15].
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Fig. 5: Performance of the proposed blockage occurrence prediction
approaches; the LiDAR SCR solution achieves the best performance,
espeically for long future prediction intervals.

B. Results

We evaluate the performance of our blockage prediction
model using the LiDAR data and compare it with the
mmWave signature based blockage prediction approach in
[14]. For the LiDAR data, we use both the original and SCR
processed data (using our developed approach in Section VI).
First, we plot the top-1 blockage prediction accuracy versus
the future prediction interval (the time before the blockage
actually happens) in Fig. 5. This figure shows that the LiDAR-
aided blockage prediction accuracy greatly improves with the
SCR processing. Specifically, our model can predict the
incoming blockage with more than 80% accuracy one
second before the link is blocked, providing sufficient time
for proactive network management.

A comparison of the blockage prediction accuracy using
our LiDAR data and using the mmWave signatures in [14] is
also captured by Fig. 4. This figure shows that the approach
using wireless signatures outperforms the LiDAR solution
when the prediction interval is less than 0.2s. With longer
prediction intervals, the wireless signature based solution
drops rapidly. This is mainly due to the relatively short
(in time) wireless pre-blockage signature compared to the
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Fig. 6: Average latency of the proposed proactive hand-off solutions
compared to the conventional reactive approaches.

LiDAR pattern. Based on that, the prediction accuracy with
the LiDAR data degrades very slowly; even at a prediction
interval of 0.6s, the proposed model achieves ∼ 0.75.

To draw some insights about the potential gains of the
proposed methods for the initial access latency in 3GPP
5G NR, we adopt the approach in [8] for analyzing the
results. According to the 3GPP specifications, a conventional
reactive hand-off results in an overall delay of 222.8ms. If
the blockage is predicted proactively, a successful proactive
hand-off scenario results in 11.4ms latency associated with
the contention free random access [8]. Based on the prediction
accuracy and the latency given by the average latency for the
user hand-off, the average latency δ for the user is given by
δ = p̂ × 11.4 + (1 − p̂) × 222.8, where, p̂ is the blockage
prediction accuracy at 0.1s, 0.5s and 1s.

Fig. 6 shows the average latency improvement of the
proposed methods compared to reactive hand-off. By applying
our proposed methods, we can achieve an average latency
of 13.12ms using mmWave data, 21.48ms using raw LiDAR
data, and 20.68ms using LiDAR SCR data when the pre-
diction length is 0.1s. As the prediction interval increases,
the LiDAR SCR based approach consistently maintains low
latency compared to the other two solutions. Compared to the
reactive hand-off latency, our approaches realize more than 10
times improvement in latency.

VIII. CONCLUSION AND TAKEAWAYS

In this paper, we explored the potential of leveraging Li-
DAR sensory data to proactively predict dynamic blockages in
mmWave systems and allowing the network to make proactive
management, e.g., hand-off, decisions. We formulated the
LiDAR-aided blockage prediction problem and developed an
efficient machine learning model for this task based on a CNN
architecture. To validate the feasibility of the proposed ap-
proach, we constructed a large-scale real-world mmWave-and-
LiDAR dataset. Then, we designed a LiDAR data denoising
(static cluster removal) algorithm that can enhance the data
quality obtained from low-cost LiDAR sensors. Evaluating
our developed solutions on this real-world dataset yields the
following takeaways:

• For predicting future moving blockages that are within a
short window (200ms), using the mmWave pre-blockage
signature approach in [14] might be sufficient to achieve
high accuracy (> 90%).

• For predicting moving blockages that are further in the
future (up to 1s before they happen), our LiDAR-aided
blockage prediction approach achieves more than 80%
top-1 accuracy.

• Applying static cluster removal/denoising processing can
significantly improve the prediction accuracy, especially
with low-cost LiDAR sensors.

• In terms of 3GPP 5G NR latency, the proposed proac-
tive blockage prediction approaches can achieve 10x
improvement for the hand-off/beam switching tasks.

These results highlight a promising solution for overcoming
the blockage challenges in mmWave/THz networks.
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