

1 **Sea level extremes and compounding marine heatwaves in coastal Indonesia**

2 Weiqing Han^{1*}, Lei Zhang^{1,2}, Gerald A. Meehl³, Shoichiro Kido⁴, Tomoki Tozuka^{4,5}, Yuanlong Li^{1,6},
3 Michael J. McPhaden⁷, Aixue Hu³, Anny Cazenave⁸, Nan Rosenbloom³, Gary Strand³, B. Jason
4 West⁹, and Wen Xing²

5 ¹*Department of Atmospheric and Oceanic Sciences, University of Colorado, UCB 311, Boulder,*
6 *Colorado 80309, USA; whan@colorado.edu; Tel: 303-735-3079*

7 ²*State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology,*
8 *Chinese Academy of Sciences, Guangzhou 510301, China*

9 ³*Climate and Global Dynamics Laboratory, the National Center for Atmospheric Research, Boulder,*
10 *Colorado 80301, USA*

11 ⁴*Application Laboratory, Research Institute for Value - Added - Information Generation, Japan*
12 *Agency for Marine - Earth Science and Technology, Kanagawa, Japan*

13 ⁵*Graduate School of Science, University of Tokyo, Tokyo, Japan*

14 ⁶*CAS Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy*
15 *of Sciences, Qingdao, China*

16 ⁷*Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,*
17 *Seattle, WA, USA*

18 ⁸*Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS), 18 Av. E. Belin,*
19 *31401 Toulouse cedex 9, France*

20 ⁹Precipitation Processing System and KBR, Inc., NASA Goddard Space Flight Center, Greenbelt,
21 MD, USA

22 **Abstract**

23 **Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs).**
24 **When compounded by marine heatwaves, HEXs have larger ecological and societal impact.**
25 **Here we combine observations with model simulations, to investigate the HEXs and**
26 **Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in**
27 **recent decades. We find that anthropogenic sea level rise combined with decadal climate**
28 **variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are**
29 **driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs,**
30 **which occur during December-March, downwelling favorable northwest monsoon winds are**
31 **enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind**
32 **anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña**
33 **weaken the southeasterlies and cooling from coastal upwelling during May-June and**
34 **November-December. Our findings emphasize the important interplay between**
35 **anthropogenic warming and climate variability in affecting regional extremes.**

36 **Introduction**

37 Extreme sea level events are one of the most consequential manifestations of climate
38 change^{1,2}. Anthropogenic global sea level rise over the past century has magnified flooding and
39 caused clear-sky floods in many coastal regions around the world³. While much emphasis has
40 been placed on sea level extremes induced by storms and high tides on daily time scales⁴, sea

41 level extremes driven by climate variability and their evolution under anthropogenic climate
42 change have received less attention. As the most dominant interannual climate mode, the El
43 Niño - Southern Oscillation (ENSO) has global impacts on climate⁵. Over the tropical Indian
44 Ocean, El Niño (i.e., positive phase of ENSO) often instigates strong marine heatwaves in the
45 Indonesian-Australian basin during boreal winter-spring⁶. The 2015-2016 El Niño initiated a
46 strong and prolonged marine heatwave in the Indonesian-Australian basin that peaked in
47 March 2016, and the 2016 negative Indian Ocean Dipole (IOD⁷) sustained the marine heatwave
48 during the following boreal summer-fall⁸.

49 While sea level Height EXtreme (HEX) events and marine heatwaves can have large ecological,
50 economic, and social consequences individually⁹, in combination they can be much more
51 devastating, like compound extremes over land (e.g., droughts and heatwaves)¹⁰ which are
52 becoming more common in a warming climate¹¹. Yet, integrated studies of HEX and the
53 compounding effect of a marine heatwave – dubbed Compound Height-Heat EXtreme (CHHEX)
54 – are still in their infancy. A better understanding of these extremes will improve risk
55 assessments^{10,12}, and investigating their interplay with anthropogenic climate change and
56 decadal-to-interdecadal climate variability (referred to in short as ‘decadal’ hereafter) may help
57 improve decadal predictions and future projections of these high-impact events.

58 The Indian Ocean rim region hosts one-third of the world’s population, mostly from developing
59 countries with low-lying coastal areas that are highly vulnerable to climate variability and
60 change¹³. Located at the confluence of the tropical east Indian and west Pacific Oceans within
61 the Indo-Pacific warm pool (Fig 1a) and being home for diversified coral reefs, Indonesia is

62 strongly influenced by climate variability associated with monsoons¹⁴, IOD, and ENSO. Rapid
63 urbanization of Java island and population growth in low-lying areas¹⁵, together with fast
64 sinking due to ground water extraction (e.g. Jakarta is the fastest sinking city in the world),
65 further increase vulnerability to climate variability and change^{1,3}, making the problem of rising
66 sea level particularly acute in this region. Therefore, Indonesia is an ideal testbed for
67 understanding HEX and CHHEX events in a changing climate.

68 Here we combine monthly *in situ* and satellite observations to detect climate-driven HEX and
69 CHHEX events around Indonesian coasts of the Indian Ocean in recent decades and to
70 understand their causes. We primarily focus on the satellite altimetry era since 1993 when
71 accelerated global sea level rise has been detected and attributed largely to human-induced
72 climate change¹⁶⁻¹⁸. To put our analysis in a longer-term context, we extend our analysis to the
73 1960s using reanalysis data - model hindcast with assimilated observational data - and model
74 experiments. To help understand the forcing and processes governing HEXs and CHHEXs, we
75 carry out model experiments using the Regional Ocean Modelling System (ROMS¹⁹), which is an
76 ocean general circulation model (OGCM), and the Community Earth System Model version 1
77 (CESM1²⁰), which is a coupled global climate model. To test the model dependence of
78 simulated signals, we perform additional experiments using an independent OGCM, the Hybrid
79 Coordinate Ocean Model (HYCOM²¹). To further assess the roles of remote equatorial Indian
80 Ocean wind versus local longshore wind in generating HEX and CHHEX events, we employ a
81 Bayesian dynamical linear model²². Additionally, the results from large ensemble experiments
82 of the Coupled Model Intercomparison Project phase 6 (CMIP6), which are assessed in the
83 Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6), are also

84 analyzed to estimate the impacts of external forcing (natural plus anthropogenic) on Indonesian
85 regional sea level change. The multi-dataset and multi-model approach is intended to identify
86 signals that are robust to cross-dataset and cross-model differences. See the Methods section
87 for more details.

88 **Results**

89 **Detecting Height Extreme (HEX) & Compound Heat-Height Extreme (CHHEX) events** Satellite
90 altimeter data from 1993-2018²³ show rapid sea level rise along the east coasts of the tropical
91 Indian Ocean, with a rising rate of 5.12 ± 0.17 mm/yr near the tide gauge location on the Java
92 coast (Fig 1b) compared to the 3.1 ± 0.3 mm/yr global mean rise^{16,17,24}. Accompanied with the
93 rapid sea level rise is weak sea surface temperature (SST) warming near Java and stronger
94 warming around the southern coast of Sumatra (Fig 1c). Overlying the rising trend there are
95 large year-to-year variations, as shown by the ~10yr tide gauge record at Java coast²⁵ and
96 satellite altimeter data at the nearest location (Fig 2a). The altimeter data detect fifteen HEX
97 events during the 26yr (1993-2018) period, defined as monthly mean sea level anomalies (SLAs)
98 exceeding the 90th percentile, which is a commonly used threshold for defining extreme events
99 such as marine heatwaves discussed below²⁶. The tide gauge record agrees well with the
100 altimeter data (correlation 0.99), albeit with somewhat larger amplitudes²⁷⁻³⁰ likely because the
101 tide gauge contains long-period tide signals but satellite altimeter data removes them²³. It is
102 also possible that monthly tide gauge data includes signals of storm surges, which cannot be
103 adequately resolved by altimeter data. Additionally, satellite altimeter data have spatial
104 averaging but tide gauge station data do not. Nonetheless, the high consistency suggests that

105 satellite altimeter data can be used to detect HEXs in coastal Indonesia. The SLAs (with and
106 without seasonal cycle) and the SST anomalies (SSTAs) along the entire Indonesian coasts of the
107 south Indian Ocean (i.e., southern Sumatra, Java and Nusa Tenggara) are highly coherent, albeit
108 with some quantitative differences (supplementary Figs 1b and 2), suggesting that similar,
109 large-scale ocean dynamics control the coastal SLA and SSTA. Our discussions below primarily
110 focus on the Java coast.

111 Notably, the majority (ten of fifteen) of the HEXs occur in the 8-year period of 2010-2017, with
112 five other HEXs distributed across 1993-2009 (Fig 2a). The strongest HEX occurs in June 2016,
113 when monthly mean sea level rose by ~0.44m (0.45m) from satellite (tide gauge) observations.
114 This monthly magnitude is comparable to the 0.5-1m surges due to tropical storms and high
115 tides with a return period of 100yrs along the Indonesian coasts^{4,31}. The concentration of HEX
116 events in 2010-2017 is more evident in a longer period of 1960-2017 using the European Centre
117 for Medium-Range Weather Forecasts (ECMWF) ocean analysis/reanalysis system 4 (ORAS4)
118 data³² and ROMS model simulation averaged over Java coastal area (supplementary Fig 3, black
119 curves). Among the fifteen HEX events, six are compounded by marine heatwaves, i.e., CHHEXs,
120 with four CHHEXs occurring during 2010-2017 (Fig 2a; supplementary Table 1). Here, marine
121 heatwaves are defined as anomalously warm water events when monthly SSTAs exceeding the
122 90th percentile²⁶ (see Methods for details and for comparisons with heatwaves defined by daily
123 data).

124 While sea level signals of the CHHEXs encompass the entire Southeast Asian coasts (Fig 3a), the
125 associated marine heatwaves are limited to coastal Indonesia and an area extending a few

126 hundred kilometers offshore (Fig 3c). By contrast, SLAs of the HEX alone events are weaker and
127 confined to the Indonesian coasts without concurrence of marine heatwaves (Figs 3b, 3d).
128 Here, we retain the seasonal cycle when identifying HEX and CHHEX events because coastal
129 inundation depends on full sea level magnitudes, and many marine species (e.g., corals, kelp
130 forest) are sensitive to extreme temperature values^{33,34} (see Methods). With these definitions,
131 the extremes occur throughout the year except for July-October when coastal Indonesia is cold
132 and sea level is low (Figs 2a & supplementary Fig 1c).

133 **HEX concentration in 2010-2017** We hypothesize that anthropogenic global sea level rise
134 combined with decadal increase of SLA during 2010-2017 due to natural climate variability
135 cause the concentration of HEXs in this 8-year period. To test the hypothesis, we perform a
136 suite of model experiments using ROMS and HYCOM. The two models and reanalysis data
137 successfully capture the satellite observed SLAs near the Java coast (correlation 0.90-0.98; Fig
138 2b). HYCOM and reanalysis data, however, underestimate the satellite-observed rising trend
139 from 1993-2017, but ROMS realistically simulates the rising trend, falling in the uncertainty
140 range of satellite observation (Fig 2b; supplementary Table 2). The sea level variability
141 magnitudes from reanalysis and models are all within data uncertainty range (supplementary
142 Table 2; see Methods for details). The time-evolution of HEX strength is also well simulated by
143 ROMS compared to satellite data for their overlapping period (Fig 2c). Both ROMS and HYCOM
144 successfully simulate the spatial patterns and amplitudes of SLA and SSTA for CHHEX and HEX
145 events (compare Fig 3 and supplementary Fig 4). The good agreement between observations
146 and model simulations (including ORAS4 reanalysis) suggests that the signals we identify exceed

147 cross-model and cross-dataset differences, lending us confidence in using the models -
148 especially ROMS - to explore the relevant forcing and processes controlling HEXs and CHEXs.

149 To quantify the effects of anthropogenic sea level rise and natural decadal variability, we
150 remove the anthropogenically-induced global sea level rise estimated from observation-based
151 global-mean sea level dataset^{18,35} (Methods) and natural decadal variability (8yr lowpass
152 filtered SLA) from the ROMS simulation. After removing both effects, the increased HEX
153 occurrence and larger magnitude during 2010-2017 disappear (Fig 4a; supplementary Fig 3c).
154 The same conclusion holds after removing the linear trend and decadal variability from ORAS4
155 reanalysis for 1960-2017 (supplementary Fig 3a). By only excluding anthropogenic global sea
156 level rise, the concentration of HEXs in 2010-2017 remains identifiable even though both
157 frequency and magnitude are reduced (supplementary Fig 3, red curves of b & d). These results
158 confirm our hypothesis that anthropogenic sea level rise combined with decadal increase of SLA
159 during 2010-2017 – rather than randomness of HEX occurrence – causes the concentration of
160 HEXs on the 2010-2017 period. Anthropogenic sea level rise and a decadal increase of SLA
161 contribute roughly equally to the enhanced HEX activities during 2010-2017 (Fig 2c; Fig 4b, dark
162 red and black). Note that the effect of external forcing (natural plus anthropogenic) on
163 dynamical sea level, which is regional sea level variation with global mean sea level rise
164 removed, near the Indonesian coast is weak (< 2cm) with large uncertainties³⁶, based on the
165 large ensemble experiments of multiple CMIP6 models (supplementary Fig 5).

166 **Causes for decadal increase of SLA in 2010-2017** The positive decadal SLA during 2010-2017,
167 which enhances the HEXs, results mainly from surface wind stress forcing (Fig 4b, compare

168 black and cyan curves) associated with decadal variability of ENSO and IOD. The enhanced
169 equatorial westerly winds over the Indian Ocean (Fig 4d) pile up the warm pool water (Fig 1a) in
170 the eastern Indian Ocean and increase sea level along the Indonesian coast; meanwhile,
171 strengthened northwesterly longshore winds near the southern Sumatra and Java coasts cause
172 surface Ekman mass convergence toward the coasts and further enhance sea level rise there
173 (Fig 4d). These arguments are further supported by the Bayesian dynamic linear model forced
174 by remote equatorial zonal wind and local longshore wind over the Indian Ocean, producing
175 decadal SLAs similar to that of ROMS simulations (Fig 4b, compare red, black and cyan lines).

176 The decadal anomalies of surface wind stress, which drive the decadal sea level increase in
177 2010-2017, are largely associated with ENSO decadal variability before 2012. This is because
178 decadal SLAs along Java coast from the 10-member ensemble mean of CESM1 Pacific
179 pacemaker experiments, which are forced by observed tropical Pacific SST (Methods), can
180 explain a large fraction of the total and wind-driven decadal SLAs before 2012 (Fig 4b, compare
181 blue with black and cyan lines) and follow the decadal variability of ENSO index (blue curves in
182 Figs 4b-4c). During the global surface warming slowdown period of ~2003-2012 when the rate
183 of global warming decreased, ENSO decadal variability is La Niña-like with intensified easterly
184 trade winds in the tropical Pacific³⁷. The intense easterly trades enhanced the mass and heat
185 transports into the Indian Ocean from the Indonesian Throughflow (ITF)^{38,39}, likely also
186 contributing to the persistent upward trend of SLA in CESM1 experiments from 2003-2009. The
187 effects of salinity are weak in this coastal area⁴⁰. The tropical Pacific forcing, however, cannot
188 explain the sustained positive SLAs from 2013-2017 (Fig 4b, blue and black). During this period,
189 decadal variability of the Indian Ocean Dipole^{7,41,42} changes from positive to negative phase, as

190 shown by the upward trend of decadal -IOD index (Fig 4c, cyan). Here, -IOD index is shown
191 because negative IODs cause sea level increases along Indonesian coast. The negative IOD
192 transition is associated with equatorial westerly and longshore northwesterly wind anomalies
193 (Fig 4d), which sustain the high SLAs from 2013-2017 (compare cyan curves of Figs 4b-4c).

194 **Individual HEX events: mechanisms** To understand the causes for the fifteen individual SLA
195 peaks, we analyze the seasonal-to-interannual SLA component, obtained by removing the
196 anthropogenic global sea level rise and 8yr-lowpass filtered decadal variability. The results
197 show that wind stress forcing is the deterministic cause for individual HEX events (Fig 5a, black
198 and cyan curves). The equatorial westerly wind anomalies cause Ekman mass convergence to
199 the equator, raising sea level. The high sea level signals propagate eastward as equatorial Kelvin
200 waves, which subsequently propagate poleward as coastally trapped waves upon impinging on
201 the eastern boundary, inducing coherent sea level surges along the Indonesian coasts (Figs 3a-
202 3b; Fig 5b). Meanwhile, the local northwesterly longshore winds induce Ekman mass
203 convergence to the Indonesian coast, enhancing the remotely forced equatorial signals (Figs 3a,
204 3b, and 5b, red and cyan curves).

205 **CHHEX versus HEX-alone events** To understand why some HEXs are accompanied by marine
206 heatwaves (i.e., CHHEXs) while others are not, we first analyze their relationships with climate
207 variability. Note that albeit with the strong rising trend of coastal sea level during the satellite
208 era (Fig 1b), the six CHHEX events remain the same after removing the 1993-2018 trends from
209 satellite SLA and SSTA (supplementary Fig 6a). For the nine HEX alone events, only the Dec 2013
210 HEX falls below the 90th percentile after detrending. ROMS SLAs after removing the 1993-2017

211 trend are close to that after removing the 1960-2017 anthropogenic global sea level rise and
212 decadal variability ($r=0.99$; supplementary Fig 6b), so the latter is used for our following
213 discussions.

214 All six CHHEXs occur during negative IOD years, of which five co-occurred with La Niña (the
215 negative phase of ENSO) although in June 2016 La Niña is developing and -ENSO index is below
216 1 standard deviation (Fig 5c; supplementary Table 1a). A negative IOD typically develops in June
217 and peaks in September-November with warm (cold) sea surface temperature anomalies in
218 tropical southeast (west) Indian Ocean^{7,41}. An exception is 2013 when the IOD index is negative
219 from April-October, peaks in May and becomes positive in November. The May 2013 CHHEX
220 has no co-occurring La Niña, and its seasonal-to-interannual SLA is smaller than other CHHEXs'
221 (Figs 5a-5b, 6c).

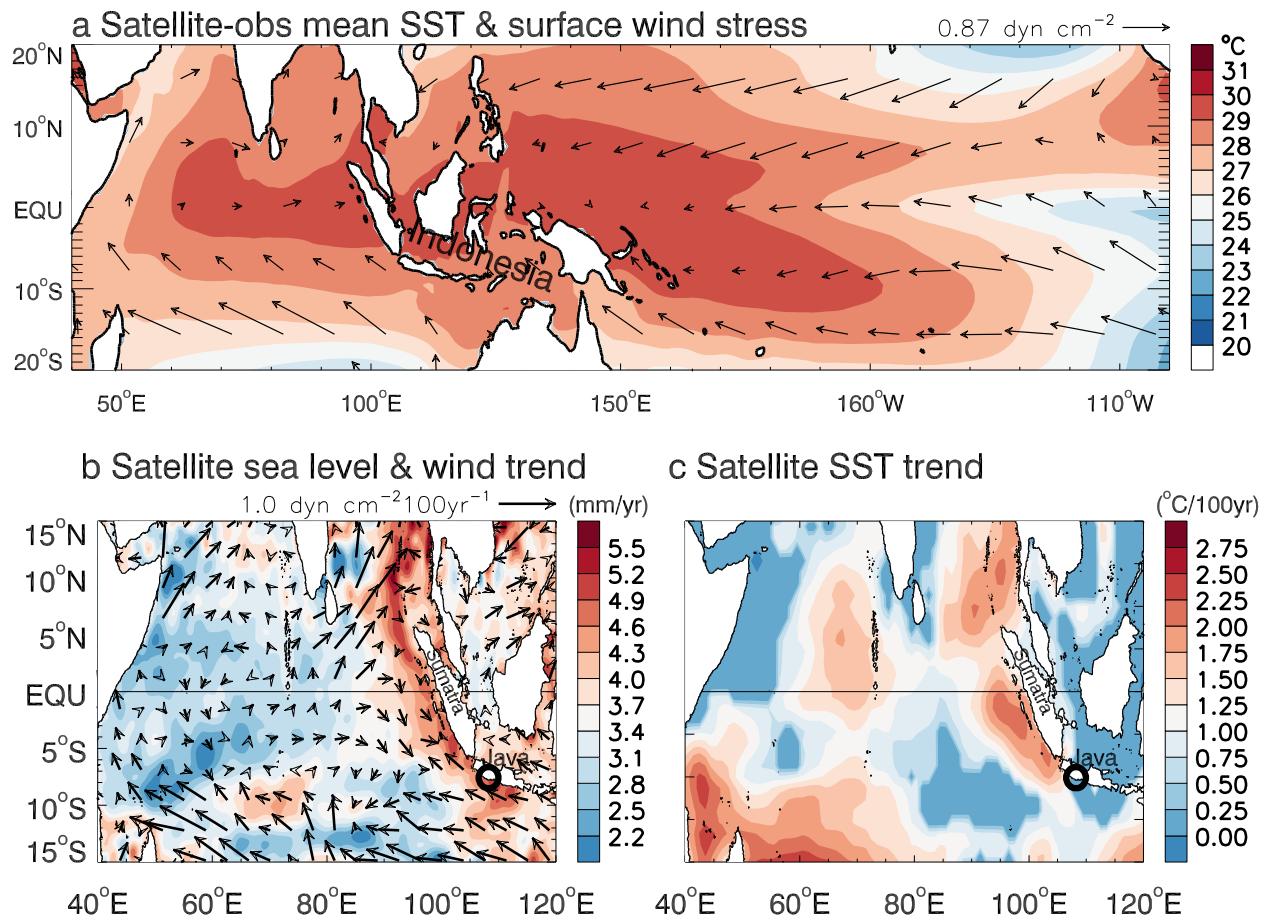
222 The negative IOD and La Niña are associated with similar patterns of surface wind anomalies in
223 tropical Indian Ocean (Fig 6b). Their co-occurrence intensifies the wind anomalies; by
224 interacting with seasonal monsoon winds, they result in CHHEXs. The IOD is phase-locked with
225 boreal summer and fall, during which seasonal southeasterly monsoon winds prevail⁴³
226 (supplementary Figs 7a-b & 8). These winds cause Ekman mass divergence away from the
227 Indonesian coast, which lowers sea level, shoals the thermocline depth (the depth range where
228 temperature decreases the fastest towards the deeper ocean), induces seasonal upwelling of
229 colder subsurface water to the surface, and results in a cooler SST there (supplementary Figs
230 7a-b, 8, 1c and Figs 6c & 6e). The interannual anomalies of equatorial westerly and longshore
231 northwesterly winds associated with negative IOD and La Niña weaken or reverse the

232 seasonally-prevailing southeasterly monsoon winds. These changed winds either reduce or
233 reverse the seasonal coastal Ekman divergence, raise sea level, deepen the thermocline, reduce
234 seasonal upwelling cooling and mixing of colder water from below, causing large-amplitude
235 interannual marine heatwaves that last from June-December (dark red curves of Figs 6c & 6e;
236 supplementary Figs 7 & 9). Meanwhile, the weakened or reversed southeasterly winds also
237 induce anomalous southeastward longshore currents, advecting the warm equatorial water to
238 the Indonesian coast and enhancing the warm SST anomalies.

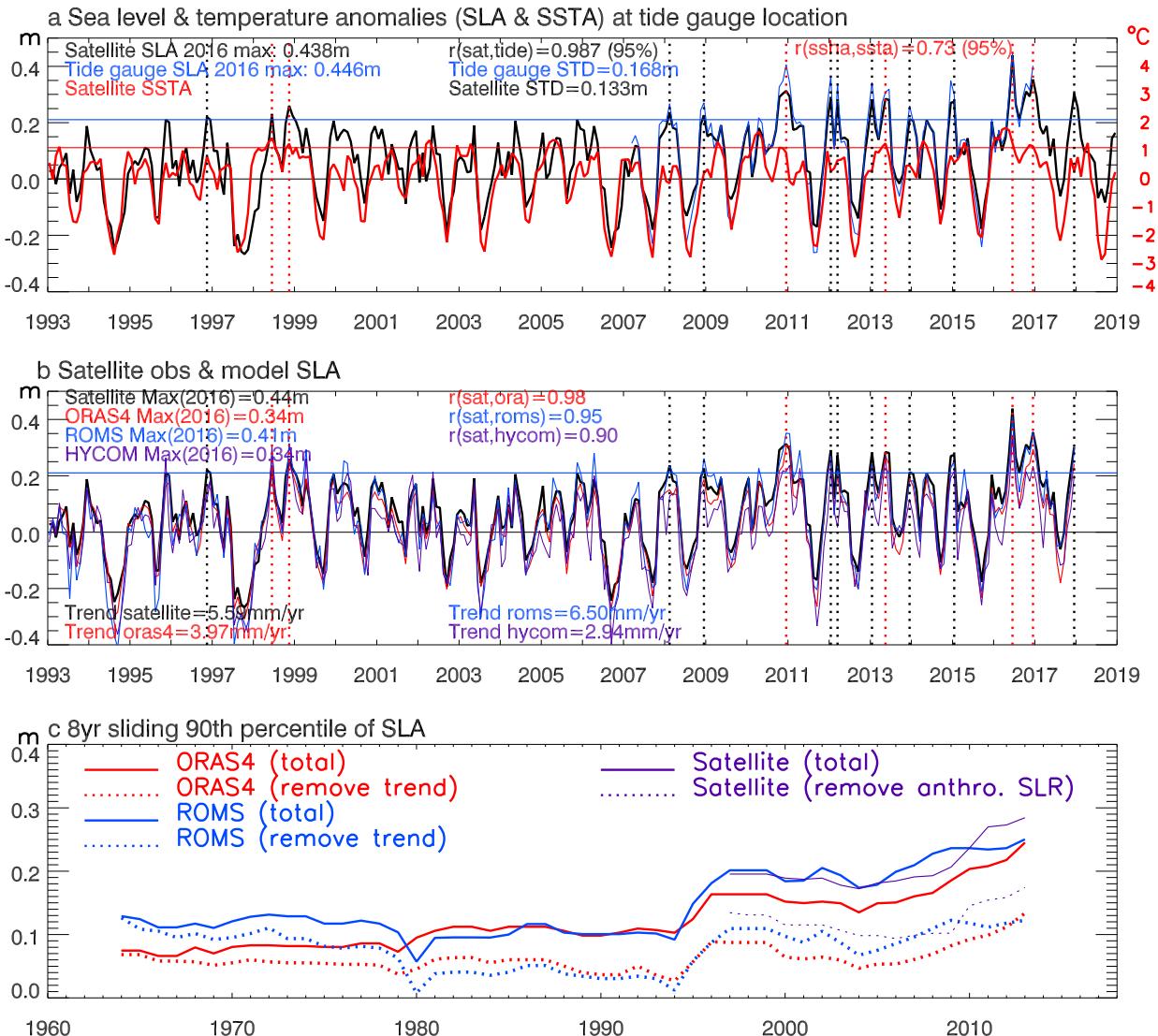
239 While the interannual warm SSTAs are largely compensated by the seasonal cooling during July-
240 October which led to weak total SSTAs (sum of seasonal and interannual SSTAs), they enhance
241 the seasonal warm SSTAs during the IOD initiation in June and peak-to-decay period of
242 November-December (Figs 6c & supplementary Fig 9), causing the CHHEX events (Fig 6). For the
243 May 2013 CHHEX event, northwesterly longshore wind anomalies associated with a negative
244 IOD work against the seasonal southeasterlies (supplementary Fig 8), causing a warm
245 interannual SSTA. The moderate interannual SSTA superimposes on the high seasonal SST in
246 May, leading to a marine heatwave (Fig 6c).

247 The above arguments are further supported by the mixed layer heat budget analysis (Fig 6d).
248 For the 1998, 2010 and 2016 CHHEXs, reduced upwelling & vertical mixing, together with
249 horizontal advection (Fig 6d, dark red and green), cause the interannual warm SSTA and marine
250 heatwaves. For the May 2013 CHHEX, increased surface heat flux together with reduced
251 upwelling and vertical mixing accounts for the warm SSTA.

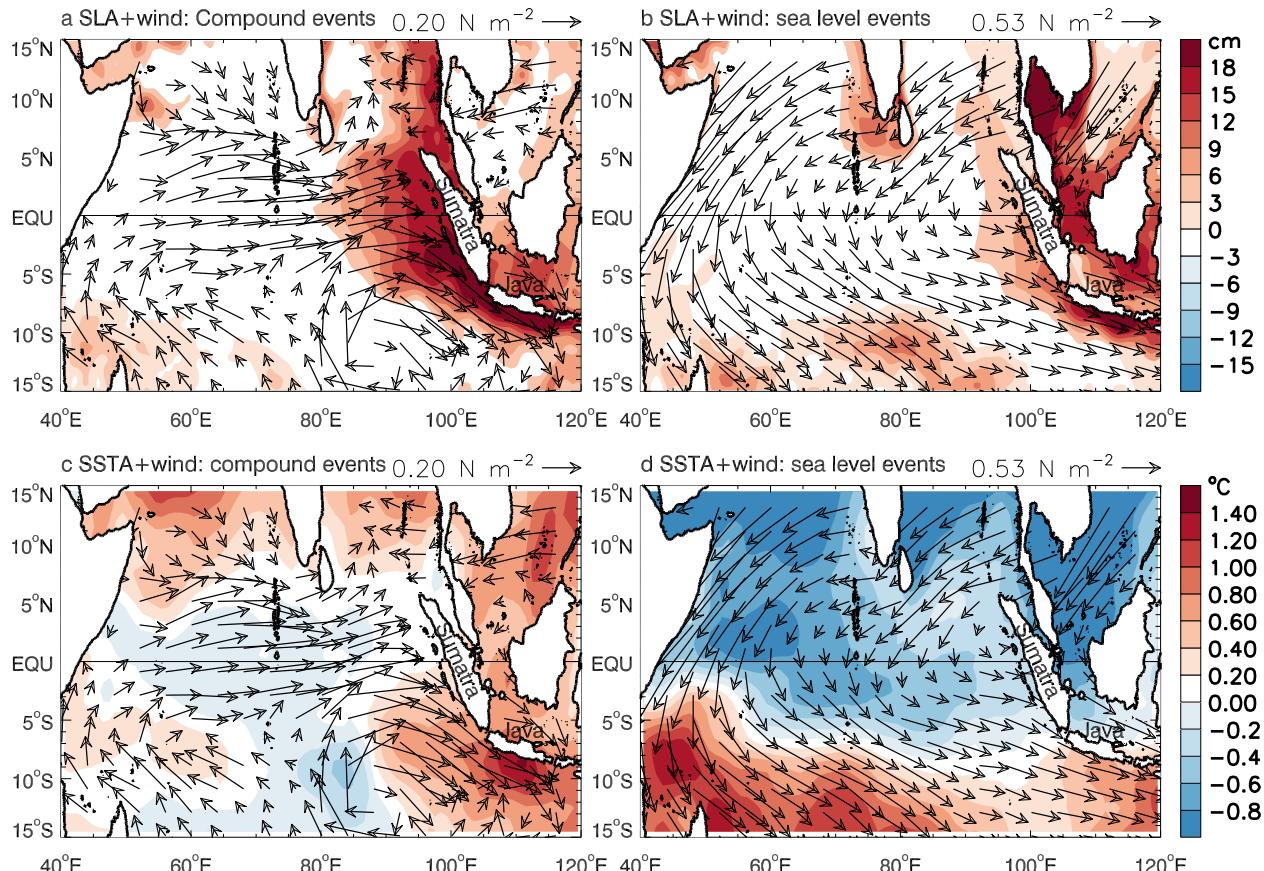
252 By contrast, none of the HEX alone events is associated with co-occurrence of negative IOD and
253 La Niña, and their composite shows little interannual SSTA along the Indonesian coast
254 (supplementary Fig 10). While most HEXs are associated with strong Indian and/or Australian
255 monsoon winds during December-March, one occurs in a negative IOD year and three occur in
256 La Niña years (supplementary Table 1a; Fig 5). The Dec 2013 SLA falls below the 90th percentile
257 with weak interannual SLA associated with monsoon variability, suggesting that with
258 anthropogenic sea level rise and a decadal sea level increase, even weak interannual variability
259 that occurs in the normally high sea level season can become an extreme event.


260 The warm interannual SSTAs associated with either a negative IOD or a La Niña are not strong
261 enough to bring the seasonal-to-interannual SSTAs above the 90th percentile (Fig 6c). The rest
262 of the HEX alone events all occur during December-March; their equatorial westerly and
263 longshore northwesterly wind anomalies associated with monsoon variability enhance the
264 seasonal monsoons (supplementary Figs 8 and 10), causing coastal downwelling, raising sea
265 level and deepening thermocline. However, they increase the surface temperature very little or
266 even slightly decrease it (Figs 6c-6d & supplementary Fig 10) for two reasons. Firstly, when the
267 thermocline is already relatively deep, a further deepening does not cause a significant increase
268 in SSTA by reducing upwelling. Secondly, the northwesterly longshore wind anomalies
269 enhance, rather than weaken, the seasonal monsoon winds, which strengthen the turbulent
270 heat loss and mixing-induced cooling, counteracting the warm SSTA caused by reduced
271 upwelling. Note that SLAs represent changes of mass and heat of the entire water column,
272 whereas SST variability can be controlled by surface heating processes. Therefore, some marine
273 heatwaves are not associated with sea level extremes and vice versa.

274 **Discussion**

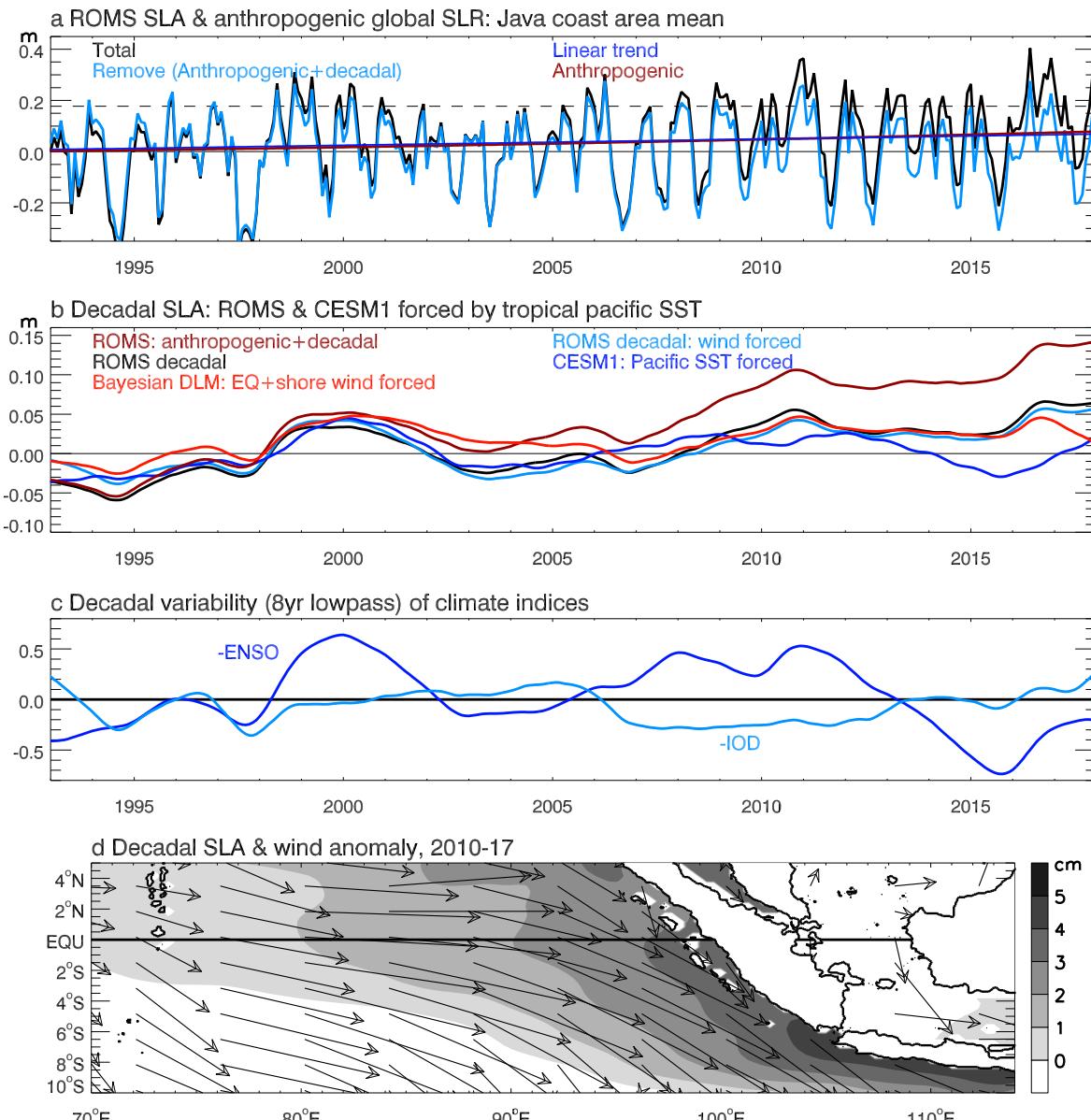

275 Satellite observations, tide gauge data, reanalysis products, and model simulations all have
276 unique error characteristics. The fact that they are highly consistent in detecting and simulating
277 the extreme events in coastal Indonesia demonstrate that the HEX and CHHEX events identified
278 here well exceed data and model uncertainties. The high consistency between satellite
279 altimetry and tide gauge observations points to the importance of continued altimetry missions
280 and tide gauge networks in detecting and understanding sea level extremes for island nations in
281 a changing climate. The agreement among different models on simulating the HEX and CHHEX
282 events lends further confidence in our results. Since the 1960s, anthropogenic global sea level
283 rise has increased the HEX magnitude near the Java coast by 0.7m-0.8m during 2010-2017,
284 comparable to the seasonal increase of sea level. The decadal variability of ENSO and IOD
285 further enhance the SLAs by ~0.7m during the 2010-2017 period, further boosting the
286 frequency and magnitude of HEXs in the past decade. These results indicate our need for
287 reliable decadal predictions of major climate modes, in conjunction with anthropogenic sea
288 level rise, to achieve successful decadal predictions of regional HEX impacts.

289 Climate model projections suggest that continued anthropogenic warming will reduce the
290 number of negative IOD events, which are key for generating the CHHEXs, due to a mean state
291 change toward a shallower (deeper) thermocline in the tropical eastern (western) Indian
292 Ocean⁴⁴⁻⁴⁶; however, the amplitude of the IODs is projected to increase⁴⁷. The shallower
293 thermocline in the eastern pole of the IOD – with continued anthropogenic sea level rise and
294 surface warming albeit with a slower warming rate near Indonesian coast⁴⁵ – makes the upper-


295 ocean temperature more sensitive to wind-induced Ekman convergence and thus favorably
296 preconditions the ocean for stronger HEXs and CHHEXs in coastal Indonesia. This will increase
297 climate change induced social, environmental, and ecological stresses.

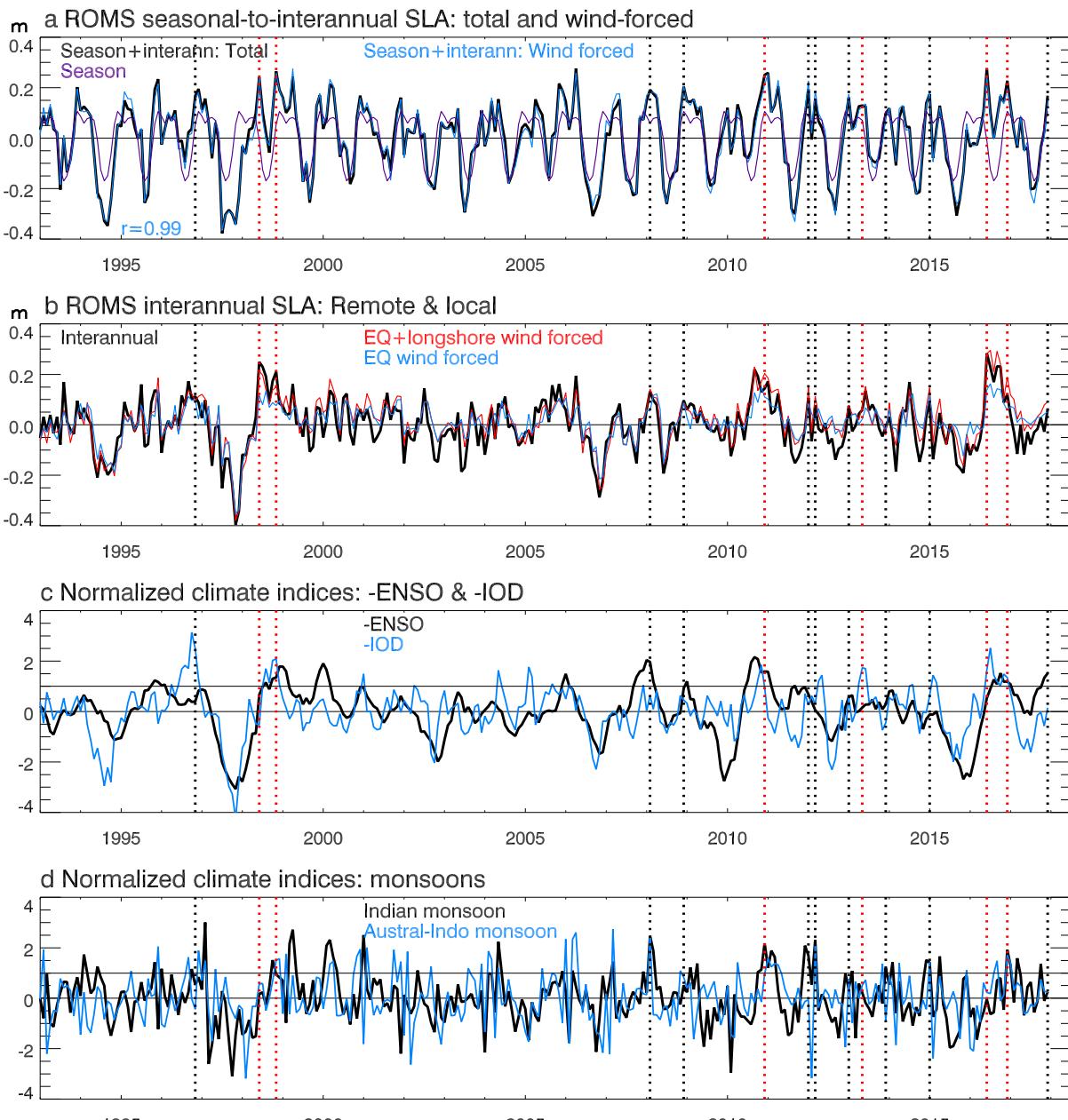
300 Figure 1. Satellite observed sea surface temperature (SST) and surface wind stress together with trend
301 maps of satellite sea level, surface wind, and SST. **a**, Mean SST and surface wind stress for the 1989-
302 2018 period. **b**, Linear trend of satellite sea level and cross-calibrated multiplatform surface wind stress
303 from 1993-2018. **c**, Linear trend of satellite SST for 1993-2018. The tide gauge location at Java coast is
304 marked by "o" in **b** and **c**; its data is shown in Fig 2a.

306
307 **Figure 2.** Time series of observed and model simulated monthly mean sea level anomaly (SLA) and sea
308 surface temperature anomaly (SSTA) from 1993-2018 near the Cilacap B tide gauge location at Java
309 coast (marked by “o” in Figs 1b-1c), together with 90th percentile of 8yr sliding SLA since 1960s. **a**,
310 Monthly mean SLA from tide gauge during 2007-2016 (blue curve) and from the multiple-satellite-merged
311 altimeter data at the nearest grid point (black) together with satellite observed monthly mean SSTA (red
312 curve). The SLAs are relative to a 60yr (1958-2017) mean of ECMWF Ocean Reanalysis System 4
313 (ORAS4) data at the nearest location. Values exceeding the 90th percentile of altimeter data (horizontal
314 blue line) are identified as extreme events (indicated by vertical-dotted lines) and dubbed Height Extreme
315 (HEX). Red dotted lines indicate HEXs co-occurred with marine heatwaves, defined as SSTA (relative to
316 a 30yr mean from 1989-2018) exceeding 90th percentile (horizontal red line). We dub these events
317 Compound Height and Heat Extreme (CHHEX). **b**, Monthly SLAs from satellite (black, same as that of **a**),
318 ORAS4 reanalysis (red), and ocean general circulation model simulations from ROMS and HYCOM (blue
319 and purple). **c**, The time-evolution of 90th percentile of SLA with an 8-year sliding window from ORAS4
320 reanalysis (red) & ROMS simulation (blue) with & without the 1960-2017 linear trend (solid & dashed),
321 and from satellite altimeter data (purple) with & without anthropogenic global sea level rise for 1993-2017
322 (solid and dashed). Note that the last value in 2013 represents the 90th percentile for 2010-2017. See
323 Methods for data and model details.



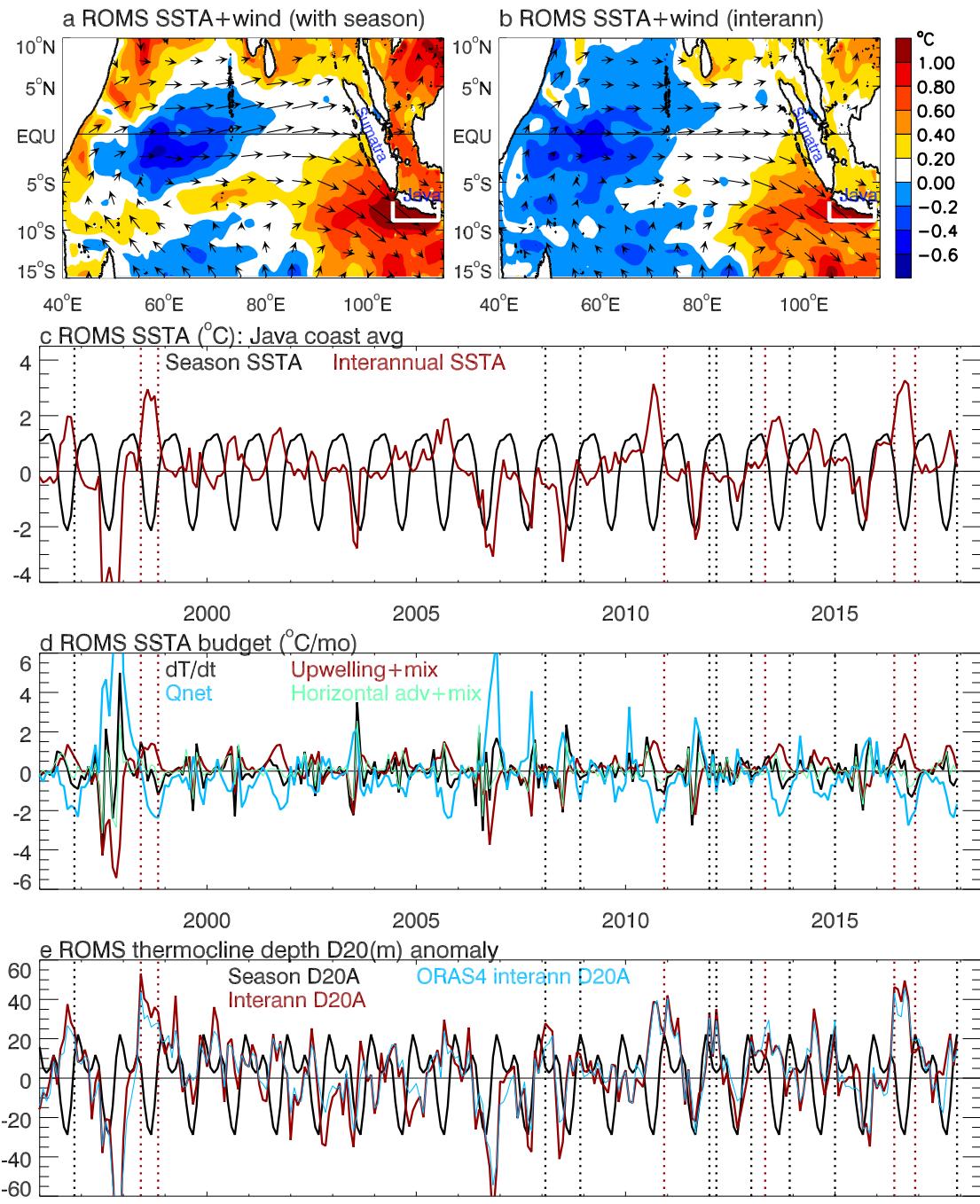
324

325 Figure 3. Composite of satellite-observed monthly sea level anomaly (SLA), surface wind stress anomaly,
 326 and sea surface temperature anomaly (SSTA) for the peak months of the six CHHEX and nine HEX alone
 327 events. All anomalies are relative to 1993–2018 mean. **a & b**, Composites of SLA (color) and surface
 328 wind stress (arrows) for CHHEX & HEX alone events; **c & d**, Composites of SSTA (color) and surface
 329 wind stress (arrows) for CHHEX & HEX alone events. Wind vectors are the average for the event peak
 330 month and the preceding month, considering the propagation time of equatorial Kelvin waves that impact
 331 SLA and SSTA.


332

333

334


335 Figure 4. Time series of monthly sea level anomalies (SLAs) averaged over Java coastal area (supplementary Fig 1)
 336 from model simulations, anthropogenically induced global mean sea level rise (SLR), climate indices, and map of
 337 sea level and surface wind anomalies averaged for 2010-2017. Calculations are done for 1960-2017 but only 1993-
 338 2017 is shown for clarity. The 1960-2017 mean is removed from each time series. **a**, ROMS simulated total SLA
 339 (black) and its linear trend (blue), observational based estimate of anthropogenic SLR (dark red), and ROMS
 340 seasonal-to-interannual SLA with anthropogenic SLR and 8yr lowpass filtered decadal SLA removed (cyan). **b**,
 341 ROMS decadal SLA (black), the sum of decadal SLA and anthropogenic SLR (dark red; which is the difference
 342 between the black and cyan curves in **a**), ROMS SLA forced only by surface wind stress (cyan), ROMS SLA from
 343 Bayesian dynamic linear model (DLM) due to equatorial zonal wind and local longshore wind forcing (red), and SLA
 344 from the 10-member ensemble mean of Pacific Pacemaker experiment using Community Earth System Model
 345 version 1 (CESM1) (blue), which assesses the impacts of tropical Pacific sea surface temperature variability. **c**,
 346 Normalized indices of decadal variability (8yr lowpassed) of reversed El Niño-Southern Oscillation (-ENSO; blue) and
 347 Indian Ocean Dipole (-IOD; cyan). **d**, Maps of ROMS decadal SLAs and its forcing wind stress anomalies averaged
 348 for 2010-2017.

349

350 Figure 5. Time series of ROMS monthly sea level anomalies (SLAs) averaged over Java coastal area
 351 and climate indices. **a**, Seasonal-to-interannual SLA from ROMS main run experiment (total, black) and
 352 from wind-stress forced experiment (blue), together with the mean seasonal cycle of SLA for 1960-2017
 353 (purple). **b**, Interannual SLA (seasonal cycle removed) from ROMS main run (black) and from Bayesian
 354 DLM due to remote equatorial zonal wind and local longshore wind forcing (red), and due only to remote
 355 equatorial wind forcing (blue). **c**, Normalized reversed indices of seasonal-to-interannual ENSO (-ENSO;
 356 black) and IOD (-IOD; blue); La Niña and negative IOD events are identified when their indices exceed 1
 357 standard deviation. **d**, Indian monsoon wind index (black; one month lead) and Australian-Indonesian
 358 monsoon index (blue). Vertical dotted lines in each panel show the HEX (black) and CHHEX (red) events.
 359 See Methods for definition of each climate mode index.
 360

361

362

363 Figure 6. Composites of ROMS simulated sea surface temperature anomaly (SSTA) and wind anomalies (from
364 JRA55-do reanalysis data that force ROMS) for the six CHEXs and time series of SSTA & its budget terms
365 averaged in Java coastal area (white box). **a**, Composite SSTA (color) and surface wind (arrows) anomalies with the
366 1993-2017 mean removed but seasonal variability retained to be consistent with Fig 2 from observations. **b**, Same as
367 **a** but with seasonal cycle removed. **c**, Timeseries of mean seasonal variability (black) and interannual variability with
368 seasonal anomaly removed (dark red). **d**, Terms of heat budget analysis for mixed layer SSTA (dark red curve in **b**):
369 time changing rate of SSTA from all processes (dT/dt , black), from net surface heat flux (cyan), from subsurface
370 processes (upwelling+mixing, dark red) and horizontal advection+mixing (green). Units: degree per month. **e**, Same
371 as **c** except for depth of 20°C isotherm (D20) from ROMS and ORAS4 interannual D20A, representing thermocline
372 variability.

373 **Methods**

374 **Tide gauge data, satellite observations and ocean reanalysis product**

375

376 The tide gauge data²⁵ at station Calicap B of Java coast from 2007-2016 were downloaded from

377 the Permanent Service for Mean Sea Level (PSMSL) 2020:

378 <https://www.psmsl.org/data/obtaining/>, and were corrected for Glacial Isostatic Adjustment

379 (GIA) and Inverted Barometer (IB) effects that were provided by PSMSL along with the tide

380 gauge data. No land movement correction was done due to the lack of GPS data within 10km of

381 the tide gauge station⁴⁸.

382 The satellite altimeter data²³ (both two-satellite and all-satellite) were download from

383 Copernicus Climate Change Service (C3S) (2018): Sea level daily gridded data on 0.25°x0.25°

384 grids for the global ocean from 1993 to present, European Union, under license agreement V1.2

385 (Nov 2019), [https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview)

386 [global?tab=overview](https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-global?tab=overview). Monthly means of the all-satellite data are used in our analysis, and the

387 timeseries shown in Figure 2 is from the nearest grid point approximately 18km southeast of

388 the Java tide gauge station. Using the two-satellite data yields similar results except for slightly

389 weaker amplitudes for some extreme events.

390 The Cross-Calibrated Multi-Platform (CCMP) Satellite derived winds^{49,50} were downloaded from

391 <http://www.remss.com/measurements/ccmp/>. The National Oceanic and Atmospheric

392 Administration (NOAA) blended satellite sea surface temperature (SST) data⁵¹ on 1°x1° grids at

393 monthly resolution and on 0.25°x0.25° at daily resolution are publicly available at:

394 (<https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html>;
395 <https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html>).

396 The European Centre for Medium-Range Weather Forecasts (ECMWF) operational ocean
397 analysis/reanalysis system version 4 (ORAS4)³² monthly sea level and temperature data at 1°x1°
398 resolution, which are used to infer thermocline depth (as indicated by the depth of 20°C
399 isotherm), from 1958-2017 are obtained from <https://www.ecmwf.int/en/research/climate-reanalysis/ocean-reanalysis>. The ORAS4 data are ocean model hindcasts assimilated
400 observational data, including satellite altimeter data.

402 **Estimates of anthropogenic global sea level rise**

403 First, we obtained the monthly global mean sea level (GMSL) data from CSIRO available for
404 1880-2013, which are adjusted to satellite observations from 1993-2013¹⁸
405 (ftp://ftp.csiro.au/legresy/gmsl_files). Then we use the 1880-1992 GMSL from this dataset and
406 the NASA monthly GMSL data from 1993-2019²⁴ to form a time series from 1880-2019, and
407 choose the 1960-2019 period for our analysis. The NASA GMSL data are downloaded from
408 http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_ALL_V42⁵². Note that the
409 CSIRO and NASA GMSL data are very similar for their overlapping period of 1993-2013. Two
410 methods were used to assess the anthropogenic GMSL rise (GMSLR): (1) Since anthropogenic
411 effect (thermal expansion, land ice melting and land water storage) explains ~90% of the GMSL
412 in recent decades^{35,53}, we use 90% of the quadratic fits of GMSL (i.e., fitted GMSLR*0.9) to
413 represent anthropogenic GMSLR; the quadratic fits are done individually for the 1960-1992 and
414 1993-2019 periods to consider SLR acceleration in recent decades; (2) For the 1993-2019

415 satellite period, we use the climate-change induced acceleration of 0.084mm yr^{-2} ¹⁷ to estimate
416 the anthropogenic GMSLR, and keep the 1960-1992 period the same as in (1). The two curves
417 are almost identical.

418 **CMIP6 climate model simulations**

419 The coupled model intercomparison project phase 6 (CMIP6) large ensemble experiment
420 results, with ensemble members of each model ranging from 10-50 (supplementary Figure 5),
421 were obtained from <https://esgf-node.llnl.gov/projects/cmip6/>. They are used to assess the
422 impacts of external forcing (natural + anthropogenic) on regional sea level near the Indonesian
423 coast.

424 **Climate mode indices**

425 The monthly HadISST data available since 1870⁵⁴ are used to calculate climate mode indices.
426 The climatological seasonal cycle is removed before we calculate the indices. Climate events are
427 defined as indices exceeding one standard deviation. The Niño3.4 index, which is the timeseries
428 of SST anomaly (SSTA) averaged for (120°W-170°W, 5°S-5°N), is used to represent ENSO. ENSO
429 is the most dominant mode of climate variability, which is associated with strong SSTA in the
430 tropical Pacific Ocean and has large impacts on global climate. It develops during boreal
431 summer and peaks during boreal winter (Dec-Feb). Its negative (cold) phase is referred to as La
432 Niña, and positive (warm) phase is called El Niño. The decadal variability of Niño3.4 index,
433 obtained by 8yr lowpass filtering, represents decadal variability of ENSO, which is highly
434 correlated with the Interdecadal Pacific Oscillation (IPO)⁵⁵, with its negative phase being
435 referred to as La Niña-like and positive (warm) phase being El Niño-like SSTA pattern.

436 The dipole mode index, defined as the SSTA difference between tropical western Indian Ocean
437 (50°E-70°E, 10°S-10°N) and tropical eastern Indian Ocean (90°E-110°E, 0°-10°S), represents the
438 Indian Ocean Dipole (IOD⁷). In general, the IOD develops in boreal summer and peaks during
439 boreal fall (Sep-Nov). Its negative phase is associated with warm SSTA and deeper thermocline
440 in the eastern pole and cold SSTA and shallower thermocline in the western pole.

441 The monthly wind shear index⁵⁶ is used to represent Indian monsoon variability, which is the
442 zonal wind U at 850hPa (U850) averaged over (40°E-110°E, EQ-20°N) minus that of 200hPa
443 (U200), i.e. U850(40-110E,EQ-20N)-U200(40-110E,EQ-20N). The Australian-Indonesian
444 monsoon index⁴³ is defined as U850 anomaly averaged over (110°E-130°E, 15°S-5°S). Both are
445 calculated from NCEP1 reanalysis winds from
446 <https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html>⁵⁷.

447 **Definitions of marine heatwave (MHW) and Compound Height-Heat EXtreme (CHHEX)**

448 The NOAA blended satellite SST data⁵¹ are used to detect marine heatwaves (MHWs). The
449 MHWs are defined as monthly SST anomalies relative to the mean of a 30yr baseline period of
450 1989-2018 exceeding the 90th percentile, following the recommended definition of MHWs
451 from previous studies^{26,58,59}. Based on this definition, the mean seasonal variation of SST is
452 retained when we define MHW events because marine ecosystems are sensitive to the total
453 SST magnitude, although interannual variability of SST excluding the mean seasonal cycle is also
454 meaningful for some species^{26,58,59}. Note that there are previous studies using monthly SST to
455 define MHWs²⁶. Although a general recommendation on MHW definition has been given, the
456 choice of threshold and calculation of SST anomalies should be based on the study purpose.

457 Comparing to the MHWs identified using daily data, which are defined as discrete prolonged
458 anomalously warm water events when daily SSTAs exceed the 90th percentile for the 30yr
459 baseline period of 1989-2018 and persist for at least 5 days²⁶, we see that most MHWs
460 identified by monthly SST data correspond to a series of MHWs defined by daily SST data
461 (supplementary Fig 12), except for Nov 1998 and Dec 2016. The stronger and longer-lasting
462 MHWs based on monthly data correspond to a series of more intense and/or more frequent
463 MHWs from daily data (supplementary Fig 12).

464 Using monthly data, a CHHEX event is identified when a MHW (i.e., monthly SSTA > 90th
465 percentile) is detected during a HEX event. Note that for the December 2010 event, SSTA
466 merely reaches the 90th percentile two months before the HEX peak but remains close to the
467 90th percentile when HEX peaks. Thus, we also count this event as a CHHEX. A gap of at least
468 one month is required between two consecutive HEX (or MHW) events.

469 **Ocean general circulation models (OGCMs), experiments and validation**

470 To ensure the HEX and CHHEX events detected here exceed cross-model differences, we use
471 two independent OGCMs with somewhat different surface forcing fields to carry out
472 experiments: The Regional Ocean Modeling System (ROMS¹⁹) and the HYbrid Coordinate Ocean
473 Model (HYCOM²¹). The ROMS is configured for the global tropical oceans (25°S to 25°N) with a
474 horizontal resolution of 1/3° × 1/3° and 40 vertical sigma layers⁶⁰, and forced by 3hourly
475 Japanese 55-year atmospheric reanalysis - drive ocean (JRA55-do⁶¹) fields (e.g., surface wind,
476 heat flux and precipitation) from 1958-2017, which are the JRA55 reanalysis surface fields
477 adjusted relative to reference datasets. Along the northern and southern open ocean

478 boundaries, the mixed radiation - nudging boundary condition is used, where temperature,
479 salinity, and horizontal velocity are relaxed to the monthly values of ORAS4 reanalysis data with
480 the nudging time scale of 360 days (3 days) for the outflow (inflow) case. The open ocean
481 boundary conditions allow the influence of global sea level rise on Indonesian coast because
482 ORAS4 reanalysis assimilated observed data (including satellite altimeter data), and there is no
483 constraint for volume conservation over a specific ocean basin.

484 Two experiments were performed for the 1958-2017 period: *ROMS main run (MR) & ROMS*
485 *WSTRESS* run. The MR is the complete solution, and the WSTRESS run is the same as the MR
486 except for fixing the forcing fields used to calculate heat and freshwater fluxes to their
487 climatology but keeping 3hourly wind stress forcing as in the MR. Therefore, ROMS WSTRESS
488 run isolates oceanic variability driven only by surface wind stress.

489 A recent version of HYCOM was set up for the global ocean with 50 hybrid layers, $1/2^\circ \times 1/2^\circ$
490 resolution, and daily surface forcing fields from JRA55 reanalysis dataset from 1958-2017. Note
491 that global sea level rise due to land ice melting, which contributes ~44% during the satellite
492 altimetry era¹⁶, is not included in the model.

493 Overall, the reanalysis data and model simulations successfully capture the satellite observed
494 SLAs near the Java coast, with correlation with satellite SLA being 0.98 for ORAS4 reanalysis,
495 0.95 for ROMS and 0.90 for HYCOM (Fig 2b; supplementary Table 2). The linear trend of ROMS
496 main run SLA is 6.50 ± 1.16 mm/yr, which is within the uncertainty range of satellite SLA trend of
497 5.59 ± 0.99 mm/yr for the 1993-2017 period. The ORAS4 reanalysis data – which assimilate
498 satellite SLA – underestimates the sea level rise trend, as does HYCOM, with both exceeding the

499 uncertainty range of satellite data. This is likely due to the coarser $1^\circ \times 1^\circ$ resolution of ORAS4
500 reanalysis data with the nearest grid point being farther away from the tide gauge location
501 compared to the $0.25^\circ \times 0.25^\circ$ satellite observation. The global HYCOM significantly
502 underestimates the sea level rising trend along the Indonesian coast, in part due to the missing
503 land ice melting effect in the model. The underestimation of the sea level rise trend in HYCOM
504 without including land ice melting, and the adequate simulation of sea level rise trend in ROMS
505 that includes the effect of land ice melting by using ORAS4 reanalysis data as boundary
506 conditions, further confirm the impact of global sea level rise on Indonesian coastal sea level
507 change.

508 Despite errors in simulating the sea level rise trend in HYCOM and ORAS4 reanalysis, the
509 increased occurrence of HEX events during 2010-2017 is consistent in all datasets. Since ROMS
510 applies open boundary conditions with 3hourly forcing fields, it contains global sea level rise
511 and storm surge signals like the tide gauge data. This is probably why the ROMS SLAs are
512 somewhat larger than satellite data, as the tide gauge observation (Figs 2a-2b). Due to the
513 stronger amplitudes, more HEXs are identified in the tide gauge record and the ROMS
514 simulation based on the 90th percentile threshold of satellite data. Since this study aims for
515 climate-driven longer timescale extremes, we focus on the events identified using monthly
516 satellite altimeter data.

517 After removing the 1993-2017 trend, the standard deviation of satellite SLA is 0.12m, compared
518 to the 0.13m in ORAS4, 0.15m ROMS, and 0.13m in HYCOM. All of them are within the 0.04m
519 difference between tide gauge and satellite data (supplementary Table 2), suggesting that the

520 sea level variability magnitudes in both reanalysis data and model simulations fall in the
521 uncertainty range of observations.
522 The time-evolution of HEX strength, represented by the 90th percentile of SLAs with an 8-year
523 sliding window, is well simulated by ROMS compared to satellite data for their overlapping
524 period (Fig 2c, solid blue and purple curves). In comparison, the ORAS4 reanalysis data
525 underestimate the HEX magnitude during the satellite era (Fig 2c, solid red), likely due to its
526 underestimation of the rising trend. The spatial patterns and amplitudes of SLA and SSTA
527 associated with the CHHEX and HEX events from ROMS and HYCOM (supplementary Fig 4)
528 agree well with those of satellite observations (Fig 3). The good agreement between
529 observations and model simulations (including ORAS4 reanalysis) suggests that the signals we
530 identify exceed cross-model and cross-dataset differences, which give us confidence in using
531 the models - especially the ROMS - to explore the relevant forcing and processes controlling the
532 HEXs and CHHEXs.

533 **Coupled global climate model experiments using CESM1**

534 To assess the role played by ENSO and its decadal variability in affecting Indian Ocean sea level,
535 we perform a ten-member ensemble of the tropical Pacific Ocean pacemaker experiments
536 using the National Center for Atmospheric Research (NCAR) Community Earth System Model
537 version 1 (CESM1²⁰) from 1920-2019. In this experiment ensemble, SST in the central and
538 eastern tropical Pacific is restored to observations but is fully coupled to the atmosphere
539 elsewhere. The 10-member ensemble mean fields of the pacemaker experiments estimate the
540 Pacific impacts on the Indian Ocean through both atmospheric bridge and oceanic connection

541 via the Indonesian Throughflow. Even though the model has some biases⁶², its results provide
 542 valuable assessments of remote forcing from the Pacific especially in the context of analyzing
 543 these results with observations and standalone OGCM simulations.

544 **ROMS mixed layer heat budget analysis**

545 Time evolution of the mixed layer temperature, T_{mix} , is governed by the following equation:

546

$$\frac{\partial T_{mix}}{\partial t} = \underbrace{\frac{Q_{net}}{\rho C_p h} - \frac{Q_{sw}(z = -h)}{\rho C_p h}}_{\text{Surface heat flux}}$$

547

$$\underbrace{-\frac{1}{h} \int_{-h}^0 \left(u \frac{\partial T}{\partial x} \right) dz - \frac{1}{h} \int_{-h}^0 \left(v \frac{\partial T}{\partial y} \right) dz + \frac{1}{h} \int_{-h}^0 \nabla_h \cdot (\kappa_h \nabla_h T) dz}_{\text{horizontal advection \& mixing}}$$

548

$$\underbrace{-\frac{1}{h} \int_{-h}^0 \left(w \frac{\partial T}{\partial z} \right) dz - \frac{1}{h} (\kappa_v \frac{\partial T}{\partial z})_{z=-h} - \frac{\Delta T}{h} \frac{\partial h}{\partial t}}_{\text{Subsurface process}}. \quad (1)$$

549 where T is the sea water temperature, ρ represents the sea water density, C_p is the specific
 550 heat of the sea water, (u, v, w) denote zonal, meridional and vertical velocity, respectively, and
 551 h is the mixed layer depth. The mixed layer depth h is defined as a depth at which the potential
 552 density increases by 0.01 kg/m^3 from the sea surface. Q_{net} is the net surface heat flux and
 553 $Q_{sw}(z = -h)$ is the shortwave radiation at the bottom of the mixed layer. Additionally, κ_h and
 554 κ_v are horizontal and vertical mixing coefficients, and ΔT is the temperature difference
 555 between the mixed layer and upper thermocline. The first two terms on the right-hand side
 556 represent the surface heat flux forcing; the third-to-fifth terms are zonal advection, meridional
 557 advection, and horizontal mixing. The last three terms represent subsurface processes: vertical

558 advection, vertical mixing, and entrainment, respectively. The mixed layer heat budget is closed
559 in the ROMS experiment^{60,63}.

560 **The Bayesian dynamical linear model**

561 To quantify forcing by remote equatorial wind and local longshore wind on sea level variability
562 along the Indonesian coast, we apply the Bayesian dynamic linear model (DLM) with two
563 predictors. The Bayesian DLM consists of two equations: an “observation equation” analogous to
564 the conventional multiple linear regression model (equation (2) below), and a “state equation”
565 that controls the dynamical evolution of coefficients b_i ($i=0,1,2$) represented by equation (3).

566
$$Y(t) = b_0(t) + b_1(t)X_1(t) + b_2(t)X_2(t) + \varepsilon(t), \quad \varepsilon(t) \sim N(0, V(t)), \quad (2)$$

567
$$b_i(t) = b_i(t-1) + w_i(t), \quad w_i(t) \sim N(0, W_i(t)). \quad (3)$$

568 In equation (2), X_1 and X_2 are the predictors, and $Y(t)$ is the predictand. The state equation
569 (3) means that the predictive distribution of b_i at each time step t (i.e., *posterior*) is updated based
570 on its previous step $t-1$ distribution (i.e., *prior*) and the probability of observations Y conditional
571 on b_i at time t (i.e., the *likelihood*) using Bayes theorem²². Coefficients b_i are obtained by applying
572 Kalman filtering and smoothing, with the regression coefficient of conventional linear regression
573 as its initial guess^{64,65}. The $b_0(t)$ term represents a time-varying “intercept” whose variability is
574 unexplained by the predictors X_i , while the b_i terms represent the non-stationary influence of X_i
575 on Y , which is superior to the conventional regression model with stationary b_i which can only
576 estimate stationary impacts of the predictors⁶⁴. Terms $\varepsilon(t)$ and $w_i(t)$ are independent white noise
577 or errors, distributed normally with a mean of 0 and variances of $V(t)$ and $W_i(t)$. Here, we use

578 zonal wind stress anomalies averaged over the equatorial area (65°E - 95°E , 5°S - 5°N) and
579 longshore wind stress averaged along Sumatra and Java coast (supplementary Figure 2) as the
580 two predictors (X_1 and X_2) and sea level anomalies along Indonesian coast as the predictand, $Y(t)$.
581 Time series of the equatorial wind (X_1) leads Java coast sea level anomaly by one month to
582 consider the propagation time of equatorial Kelvin wave, but the local longshore wind has no lag.

583

584 **Data availability**

585 All the observational data sets used in this research are publicly available from links provided in
586 the Methods section. The model data generated in this study, including the OGCM experiments
587 using ROMS and HYCOM, CESM1 Pacific Pacemaker experiments and the Bayesian dynamic
588 linear model that were used to produce the Figures in the main text (Figures 1-6) have been
589 deposited at the University of Colorado Scholar database (doi: <https://doi.org/10.25810/mzt8-wg6o>).
590

591 **Code availability**

592 The IDL and MATLAB codes for carrying out the analyses and producing the figures are
593 deposited at a public repository at the University of Colorado Scholar (doi:
594 <https://doi.org/10.25810/mzt8-wg6o>).

595

596 **References**

597 1 Church, J. A. *et al.* Sea Level Change. *Climate Change 2013: The Physical Science Basis*, 1137-
598 1216 (2014).

599 2 Oppenheimer, M. *et al.* Sea level rise and implications for low lying Islands, coasts and
600 communities. (2019).

601 3 Sweet, W. W. V., Dusek, G., Obeysekera, J. & Marra, J. J. Patterns and projections of high tide
602 flooding along the US coastline using a common impact threshold. (2018).

603 4 Muis, S., Verlaan, M., Winsemius, H. C., Aerts, J. C. & Ward, P. J. A global reanalysis of storm
604 surges and extreme sea levels. *Nat Commun* **7**, 1-12 (2016).

605 5 McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in earth science.
606 *science* **314**, 1740-1745 (2006).

607 6 Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J. & Zinke, J. Opposite polarities of ENSO drive
608 distinct patterns of coral bleaching potentials in the southeast Indian Ocean. *Sci Rep-Uk* **7**, 1-10 (2017).

609 7 Saji, N., Goswami, B., Vinayachandran, P. & Yamagata, T. A dipole mode in the tropical Indian
610 Ocean. *Nature* **401**, 360-363 (1999).

611 8 Benthuysen, J. A., Oliver, E. C., Feng, M. & Marshall, A. G. Extreme marine warming across
612 tropical Australia during austral summer 2015–2016. *Journal of Geophysical Research: Oceans* **123**,
613 1301-1326 (2018).

614 9 Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological
615 relevance: a review. *Philosophical Transactions of the Royal Society B: Biological Sciences* **372**, 20160135
616 (2017).

617 10 Zscheischler, J. *et al.* Future climate risk from compound events. *Nature Climate Change* **8**, 469-
618 477 (2018).

619 11 Mukherjee, S. & Mishra, A. K. Increase in Compound Drought and Heatwaves in a Warming
620 World. *Geophysical Research Letters*, e2020GL090617 (2020).

621 12 Nicholls, N. *et al.* in *Managing the risks of extreme events and disasters to advance climate
622 change adaptation* 109-230 (Cambridge University Press Cambridge, UK, and New York, NY, USA,
623 2012).

624 13 Beal, L. *et al.* A roadmap to IndOOS-2: Better observations of the rapidly-warming Indian Ocean.
625 *Bulletin of the American Meteorological Society*.

626 14 Webster, P. J. *et al.* Monsoons: Processes, predictability, and the prospects for prediction.
627 *Journal of geophysical research* **103**, 14451-14510 (1998).

628 15 Muis, S., Güneralp, B., Jongman, B., Aerts, J. C. & Ward, P. J. Flood risk and adaptation strategies
629 under climate change and urban expansion: A probabilistic analysis using global data. *Science of the
630 Total Environment* **538**, 445-457 (2015).

631 16 Group, W. Global sea-level budget 1993–present. *Earth Syst. Sci. Data* **10**, 1551-1590 (2018).

632 17 Nerem, R. S. *et al.* Climate-change–driven accelerated sea-level rise detected in the altimeter
633 era. *Proceedings of the National Academy of Sciences* **115**, 2022-2025 (2018).

634 18 Chen, X. *et al.* The increasing rate of global mean sea-level rise during 1993–2014. *Nature
635 Climate Change* **7**, 492-495 (2017).

636 19 Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): a split-
637 explicit, free-surface, topography-following-coordinate oceanic model. *Ocean Model* **9**, 347-404 (2005).

638 20 Hurrell, J. W. *et al.* The community earth system model: a framework for collaborative research.
639 *Bulletin of the American Meteorological Society* **94**, 1339-1360 (2013).

640 21 Bleck, R. An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates.
641 *Ocean Modell.* **4**, 55-88 (2002).

642 22 Petris, G., Petrone, S. & Campagnoli, P. in *Dynamic Linear Models with R* 31-84 (Springer,
 643 2009).

644 23 Taburet, G. *et al.* DUACS DT2018: 25 years of reprocessed sea level altimetry products. (2019).

645 24 Beckley, B. D., Callahan, P. S., Hancock III, D., Mitchum, G. & Ray, R. On the “Cal - Mode”
 646 Correction to TOPEX Satellite Altimetry and Its Effect on the Global Mean Sea Level Time Series. *Journal*
 647 *of Geophysical Research: Oceans* **122**, 8371-8384 (2017).

648 25 Holgate, S. J. *et al.* New data systems and products at the permanent service for mean sea level.
 649 *J Coastal Res* **29**, 493-504 (2013).

650 26 Hobday, A. J. *et al.* A hierarchical approach to defining marine heatwaves. *Progress in*
 651 *Oceanography* **141**, 227-238 (2016).

652 27 Hamlington, B. D., Milliff, R. F., van Loon, H. & Kim, K. Y. A Southern Hemisphere sea level
 653 pressure-based precursor for ENSO warm and cold events. *J Geophys Res-Atmos* **120**, 2280-2292,
 654 doi:10.1002/2014jd022674 (2015).

655 28 Iskandar, I., Mardiansyah, W., Masumoto, Y. & Yamagata, T. Intraseasonal Kelvin waves along
 656 the southern coast of Sumatra and Java. *Journal of Geophysical Research: Oceans* **110** (2005).

657 29 Han, W. *et al.* in *Integrative study of the mean sea level and its components* 221-254 (Springer,
 658 2017).

659 30 Mitchum, G. T. Comparison of TOPEX sea surface heights and tide gauge sea levels. *Journal of*
 660 *Geophysical Research: Oceans* **99**, 24541-24553 (1994).

661 31 Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. The international best
 662 track archive for climate stewardship (IBTrACS) unifying tropical cyclone data. *Bulletin of the American*
 663 *Meteorological Society* **91**, 363-376 (2010).

664 32 Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis
 665 system ORAS4. *Q. J. R. Meteorol. Soc.* **139**, 1132-1161 (2013).

666 33 Glynn, P. & D'croz, L. Experimental evidence for high temperature stress as the cause of El Nino-
 667 coincident coral mortality. *Coral reefs* **8**, 181-191 (1990).

668 34 Wernberg, T. *et al.* Climate-driven regime shift of a temperate marine ecosystem. *Science* **353**,
 669 169-172 (2016).

670 35 Church, J. *et al.* Sea level change. Climate change 2013: the physical science basis. Contribution
 671 of working group I to the fifth assessment report of the intergovernmental panel on climate change.
 672 *Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA*, 1137-1216 (2013).

673 36 Carson, M. *et al.* Coastal sea level changes, observed and projected during the 20th and 21st
 674 century. *Climatic Change* **134**, 269-281 (2016).

675 37 Xie, S.-P. Oceanography: Leading the hiatus research surge. *Nature Climate Change* **6**, 345-346
 676 (2016).

677 38 Lee, S.-K. *et al.* Pacific origin of the abrupt increase in Indian Ocean heat content during the
 678 warming hiatus. *Nature Geosci* **8**, 445-449, doi:10.1038/ngeo2438
<http://www.nature.com/ngeo/journal/v8/n6/abs/ngeo2438.html#supplementary-information> (2015).

679 39 Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific
 680 heating. *Science* **349**, 532-535, doi:10.1126/science.aaa4521 (2015).

681 40 Llovel, W. & Lee, T. Importance and origin of halosteric contribution to sea level change in the
 682 southeast Indian Ocean during 2005-2013. *Geophysical Research Letters* **42**, 1148-1157,
 683 doi:10.1002/2014gl062611 (2015).

684 41 Webster, P. J., Moore, A. M., Loschnigg, J. P. & Leben, R. R. Coupled ocean-atmosphere
 685 dynamics in the Indian Ocean during 1997-98. *Nature* **401**, 356-360 (1999).

686 42 Ashok, K., Chan, W.-L., Motoi, T. & Yamagata, T. Decadal variability of the Indian Ocean dipole.
 687 *Geophys. Res. Lett.* **31**, L24207, doi:10.1029/2004gl021345 (2004).

689 43 Kajikawa, Y., Wang, B. & Yang, J. A multi - time scale Australian monsoon index. *International*
690 *Journal of Climatology* **30**, 1114-1120 (2010).

691 44 Abram, N. J. *et al.* Palaeoclimate perspectives on the Indian Ocean Dipole. *Quaternary Sci Rev*
692 **237**, 106302 (2020).

693 45 Cai, W. *et al.* Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 C warming.
694 *Nat Commun* **9**, 1419 (2018).

695 46 Cai, W. *et al.* Increased frequency of extreme Indian Ocean Dipole events due to greenhouse
696 warming. *Nature* **510**, 254-258, doi:10.1038/nature13327 (2014).

697 47 Marathe, S., Terray, P. & Karumuri, A. Tropical Indian Ocean and ENSO relationships in a
698 changed climate. *Climate Dynamics* **56**, 3255-3276 (2021).

699 48 Pfeffer, J. & Allemand, P. The key role of vertical land motions in coastal sea level variations: A
700 global synthesis of multisatellite altimetry, tide gauge data and GPS measurements. *Earth and*
701 *Planetary Science Letters* **439**, 39-47 (2016).

702 49 Atlas, R. *et al.* A cross-calibrated, multiplatform ocean surface wind velocity product for
703 meteorological and oceanographic applications. *Bulletin of the American Meteorological Society*
704 **92**, 157-174 (2011).

705 50 Wentz, F. *et al.* Remote Sensing Systems Cross-Calibrated Multi-Platform (CCMP) 6-hourly ocean
706 vector wind analysis product on 0.25 deg grid, Version 2.0. *Remote Sensing Systems, Santa Rosa,*
707 CA (2015).

708 51 Reynolds, R. W. *et al.* Daily high-resolution-blended analyses for sea surface temperature. *J.*
709 *Climate* **20**, 5473-5496 (2007).

710 52 Beckley, B. *et al.* Global mean sea level trend from integrated multi-mission ocean altimeters
711 TOPEX/Poseidon Jason-1 and OSTM/Jason-2 Version 4.2. *NASA Phys Oceanogr DAAC* (2016).

712 53 Cazenave, A. Global sea-level budget 1993-present. (2018).

713 54 Rayner, N. *et al.* Improved analyses of changes and uncertainties in sea surface temperature
714 measured in situ since the mid-nineteenth century: the HadSST2 dataset. *Journal of Climate* **19**,
715 446-469 (2006).

716 55 Trenberth, K. *et al.* Observations: surface and atmospheric climate change. Chapter 3. *Climate*
717 *change*, 235-336 (2007).

718 56 Webster, P. J. & Yang, S. Monsoon and ENSO: Selectively interactive systems. *Quarterly Journal*
719 *of the Royal Meteorological Society* **118**, 877-926 (1992).

720 57 Kalnay, E. *et al.* The NCEP/NCAR 40-year reanalysis project. *Bull. Amer. Meteor. Soc.* **77**, 437-471
721 (1996).

722 58 Oliver, E. C. *et al.* Longer and more frequent marine heatwaves over the past century. *Nat*
723 *Commun* **9**, 1-12 (2018).

724 59 Holbrook, N. J. *et al.* A global assessment of marine heatwaves and their drivers. *Nat Commun*
725 **10**, 1-13 (2019).

726 60 Kido, S., Tozuka, T. & Han, W. Anatomy of salinity anomalies associated with the positive Indian
727 Ocean Dipole. *Journal of Geophysical Research: Oceans* **124**, 8116-8139 (2019).

728 61 Tsujino, H. *et al.* JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do).
729 *Ocean Model* **130**, 79-139 (2018).

730 62 Deser, C. *et al.* ENSO and Pacific decadal variability in the Community Climate System Model
731 version 4. *Journal of Climate* **25**, 2622-2651 (2012).

732 63 Murata, K., Kido, S. & Tozuka, T. Role of Reemergence in the Central North Pacific Revealed by a
733 Mixed Layer Heat Budget Analysis. *Geophysical Research Letters* **47**, e2020GL088194 (2020).

734 64 Han, W. Q. *et al.* Decadal Variability of the Indian and Pacific Walker Cells since the 1960s: Do
735 They Covary on Decadal Time Scales? *Journal of Climate* **30**, 8447-8468, doi:10.1175/Jcli-D-16-
736 0783.1 (2017).

737 65 Zhang, X. & Han, W. Effects of climate modes on interannual variability of upwelling in the
738 tropical Indian Ocean. *Journal of Climate* **33**, 1547-1573 (2020).

739

740 **Acknowledgements**

741 WH and LZ are supported by NASA Ocean Surface Topography Science Team award
742 80NSSC21K1190 and National Science Foundation award NSF-AGS 1935279. YL is supported by
743 the Strategic Priority Research Program of Chinese Academy of Sciences through grant
744 XDB42000000. GAM, AH, NR and GS are supported by the Regional and Global Model Analysis
745 (RGMA) component of the Earth and Environmental System Modeling Program of the U.S.
746 Department of Energy's Office of Biological & Environmental Research (BER) via National
747 Science Foundation IA 1947282. WX is supported by Research Project Program of State Key
748 Laboratory of Tropical Oceanography LTORC2202. This work also was supported by the National
749 Center for Atmospheric Research, which is a major facility sponsored by the National Science
750 Foundation (NSF) under Cooperative Agreement No. 1852977. The ROMS simulation is
751 supported by the Cooperative Research Activities of Collaborative Use of Computing Facility of
752 the Atmosphere and Ocean Research Institute, the University of Tokyo. MJM is supported by
753 NOAA. PMEL contribution no. 5220. The CESM1 Pacemaker experiments supercomputing
754 resources were provided by NSF/CISL/Cheyenne. We thank Qing Hu of Villanova University for
755 carefully reading the MS and providing helpful comments. We would like to acknowledge high-
756 performance computing support from Cheyenne ([doi:10.5065/D6RX99HX](https://doi.org/10.5065/D6RX99HX)) provided by NCAR's
757 Computational and Information Systems Laboratory, sponsored by the National Science
758 Foundation.

759 **Authors contributions**

760 W.H. led the project and did the main analyses and writing, L.Z. analyzed CMIP6 model results
761 and carried out the CESM1 extension experiment from 2013 to 2019, G.A.M., A.H., N.R. and
762 G.S. carried out the CESM1 experiments from 1920-2013, helped setup the CESM1 extension
763 experiments and did the post-processing, S.K. and TT performed the ROMS experiments and
764 provided the mixed layer heat budget analysis results, M.J.M. contributed to the scientific
765 results through stimulating discussions and analysis, A.C. contributed to the analysis and
766 discussion of satellite altimeter data, and B.J.W. helped to confirm the effects of atmospheric
767 intraseasonal oscillations, although this part is not included in the revised MS. W.X. helps with
768 the Bayesian Dynamic Linear Model experiments. W.H., L.Z., G.A.M., S.K., T.T., Y.L., M.J.M., A.H.,
769 A.C., N.R., G.S., B.J.W., and W.X. contributed to reading/writing the paper.

770 **Competing interests**

771 The authors declare no competing interests.

772 **Figure legends**

773 **Figure 1:** Satellite observed sea surface temperature (SST) and surface wind stress together
774 with trend maps of satellite sea level, surface wind, and SST. **a**, Mean SST and surface wind
775 stress for the 1989-2018 period. **b**, Linear trend of satellite sea level and cross-calibrated
776 multiplatform surface wind stress from 1993-2018. **c**, Linear trend of satellite SST for 1993-
777 2018. The tide gauge location at Java coast is marked by “o” in **b** and **c**; its data is shown in Fig
778 2a.

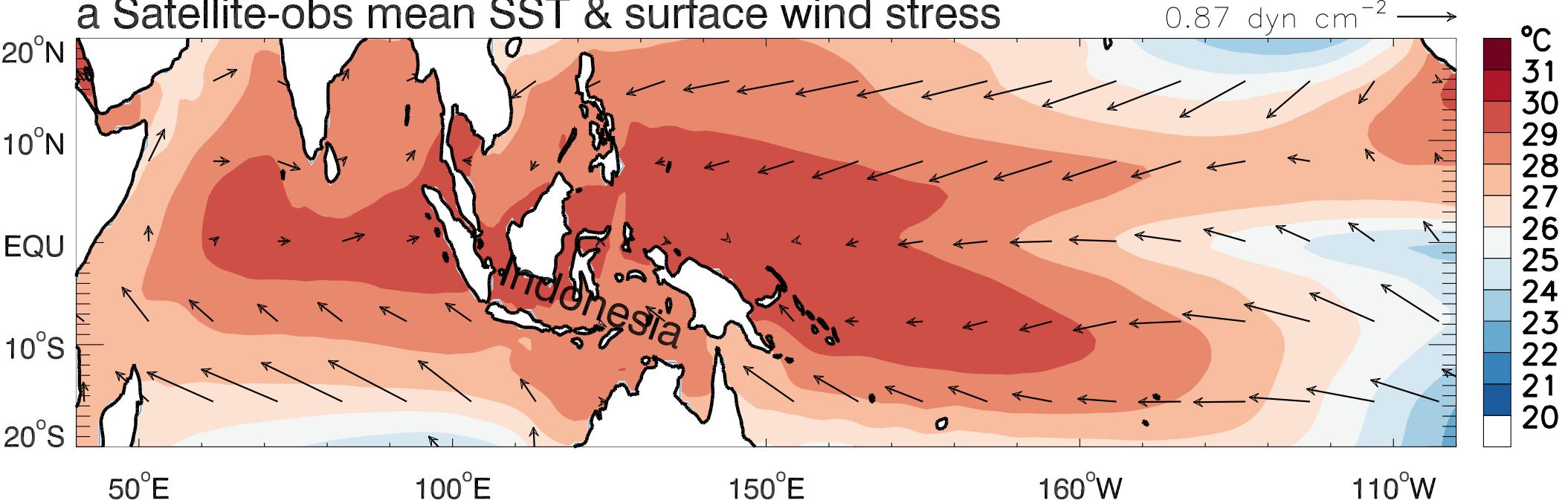
779 **Figure 2.** Time series of observed and model simulated monthly mean sea level anomaly (SLA)
780 and sea surface temperature anomaly (SSTA) from 1993-2018 near the Cilacap B tide gauge
781 location at Java coast (marked by “o” in Figs 1b-1c), together with 90th percentile of 8yr sliding
782 SLA since 1960s. **a**, Monthly mean SLA from tide gauge during 2007-2016 (blue curve) and from
783 the multiple-satellite-merged altimeter data at the nearest grid point (black) together with
784 satellite observed monthly mean SSTA (red curve). The SLAs are relative to a 60yr (1958-2017)
785 mean of ECMWF Ocean Reanalysis System 4 (ORAS4) data at the nearest location. Values
786 exceeding the 90th percentile of altimeter data (horizontal blue line) are identified as extreme
787 events (indicated by vertical-dotted lines) and dubbed Height EXtreme (HEX). Red dotted lines
788 indicate HEXs co-occurred with marine heatwaves, defined as SSTA (relative to a 30yr mean
789 from 1989-2018) exceeding 90th percentile (horizontal red line). We dub these events
790 Compound Height and Heat EXtreme (CHHEX). **b**, Monthly SLAs from satellite (black, same as
791 that of **a**), ORAS4 reanalysis (red), and ocean general circulation model simulations from ROMS
792 and HYCOM (blue and purple). **c**, The time-evolution of 90th percentile of SLA with an 8-year

793 sliding window from ORAS4 reanalysis (red) & ROMS simulation (blue) with & without the 1960-
794 2017 linear trend (solid & dashed), and from satellite altimeter data (purple) with & without
795 anthropogenic global sea level rise for 1993-2017 (solid and dashed). Note that the last value in
796 2013 represents the 90th percentile for 2010-2017. See Methods for data and model details.

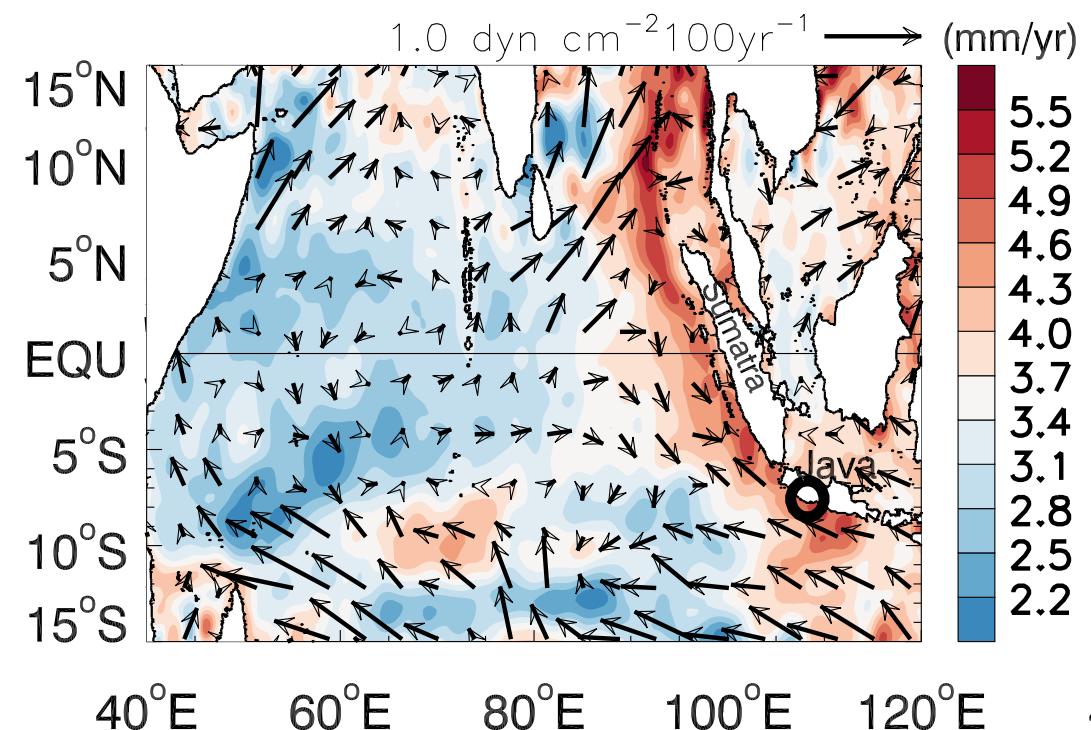
797 **Figure 3.** Composite of satellite-observed monthly sea level anomaly (SLA), surface wind stress
798 anomaly, and sea surface temperature anomaly (SSTA) for the peak months of the six CHHEX
799 and nine HEX alone events. All anomalies are relative to 1993–2018 mean. **a & b**, Composites
800 of SLA (color) and surface wind stress (arrows) for CHHEX & HEX alone events; **c & d**,
801 Composites of SSTA (color) and surface wind stress (arrows) for CHHEX & HEX alone events.
802 Wind vectors are the average for the event peak month and the preceding month, considering
803 the propagation time of equatorial Kelvin waves that impact SLA and SSTA.

804 **Figure 4.** Time series of monthly sea level anomalies (SLAs) averaged over Java coastal area
805 (supplementary Fig 1) from model simulations, anthropogenically induced global mean sea level
806 rise (SLR), climate indices, and map of sea level and surface wind anomalies averaged for 2010-
807 2017. Calculations are done for 1960-2017 but only 1993-2017 is shown for clarity. The 1960-
808 2017 mean is removed from each time series. **a**, ROMS simulated total SLA (black) and its linear
809 trend (blue), observational based estimate of anthropogenic SLR (dark red), and ROMS
810 seasonal-to-interannual SLA with anthropogenic SLR and 8yr lowpass filtered decadal SLA
811 removed (cyan). **b**, ROMS decadal SLA (black), the sum of decadal SLA and anthropogenic SLR
812 (dark red, which is the difference between the black and cyan curves in **a**), ROMS SLA forced
813 only by surface wind stress (cyan), ROMS SLA from Bayesian dynamic linear model (DLM) due to

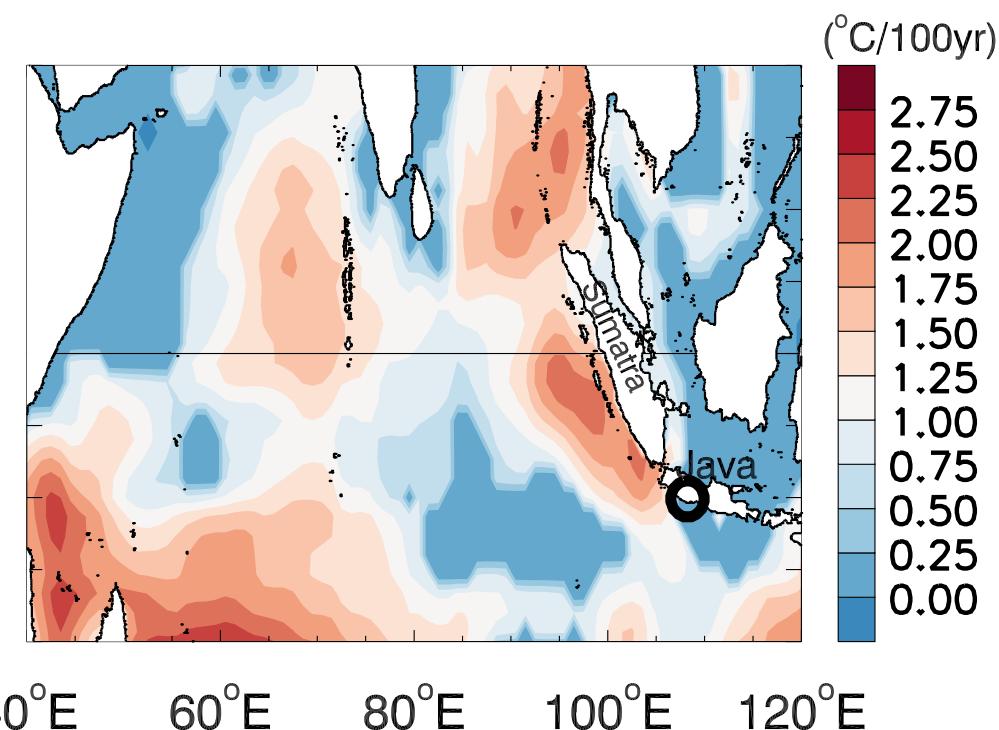
814 equatorial zonal wind and local longshore wind forcing (red), and SLA from the 10-member
815 ensemble mean of Pacific Pacemaker experiment using Community Earth System Model version
816 1 (CESM1) (blue), which assesses the impacts of tropical Pacific sea surface temperature
817 variability. **c**, Normalized indices of decadal variability (8yr lowpassed) of reversed El Niño-
818 Southern Oscillation (-ENSO, blue) and Indian Ocean Dipole (-IOD; cyan). **d**, Maps of ROMS
819 decadal SLAs and its forcing wind stress anomalies averaged for 2010-2017.

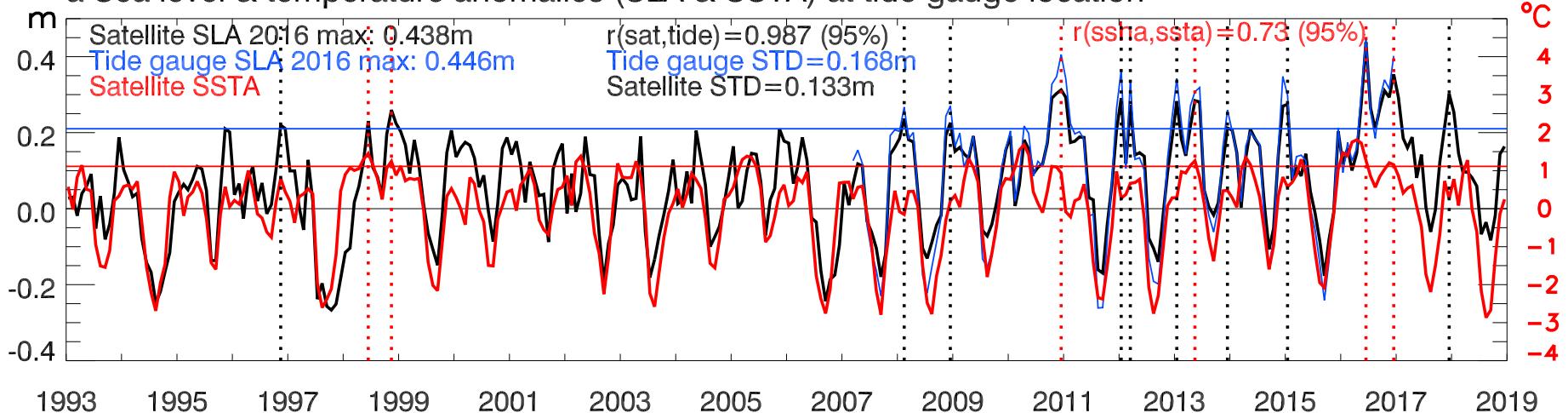

820 **Figure 5.** Time series of ROMS monthly sea level anomalies (SLAs) averaged over Java coastal
821 area and climate indices. **a**, Seasonal-to-interannual SLA from ROMS main run experiment
822 (total, black) and from wind-stress forced experiment (blue), together with the mean seasonal
823 cycle of SLA for 1960-2017 (purple). **b**, Interannual SLA (seasonal cycle removed) from ROMS
824 main run (black) and from Bayesian DLM due to remote equatorial zonal wind and local
825 longshore wind forcing (red), and due only to remote equatorial wind forcing (blue). **c**,
826 Normalized reversed indices of seasonal-to-interannual ENSO (-ENSO; black) and IOD (-IOD;
827 blue). **d**, Indian monsoon wind index (black; one month lead) and Australian-Indonesian
828 monsoon index (blue). Vertical dotted lines in each panel show the HEX (black) and CHHEX (red)
829 events. See Methods for definition of each climate mode index.

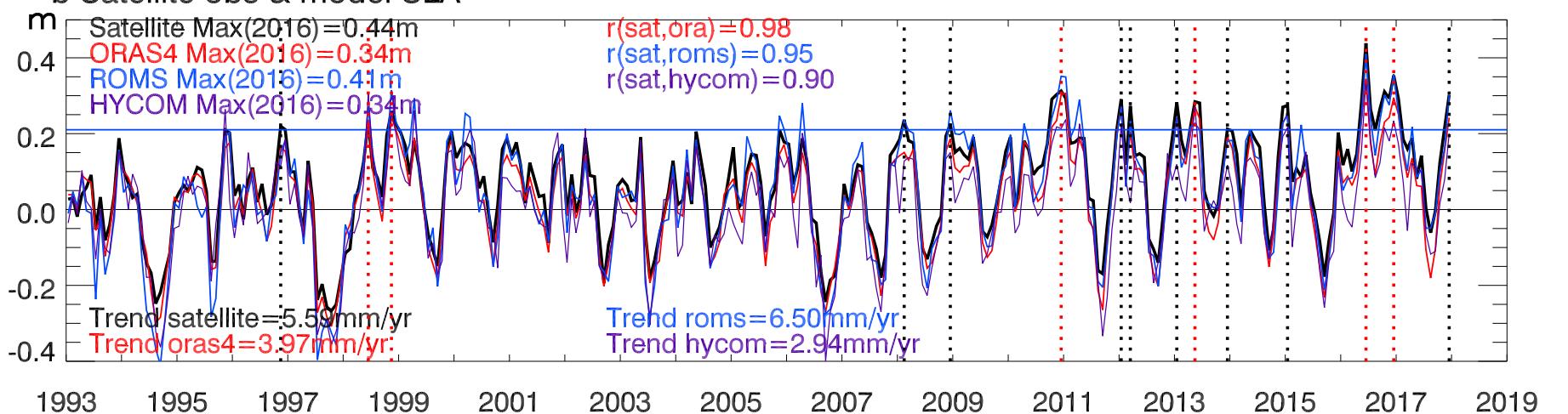
830

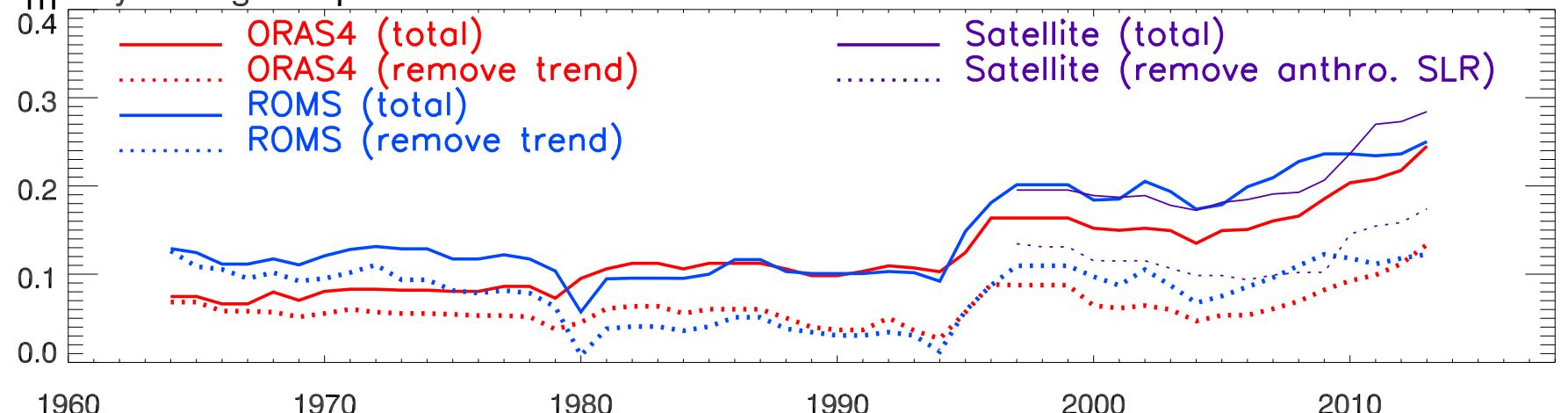

831 **Figure 6.** Composites of ROMS simulated sea surface temperature anomaly (SSTA) and wind
832 anomalies (from JRA55-do reanalysis data that force ROMS) for the six CHHEXs and time series
833 of SSTA & its budget terms averaged in Java coastal area (white box). **a**, Composite SSTA (color)
834 and surface wind (arrows) anomalies with the 1993-2017 mean removed but seasonal

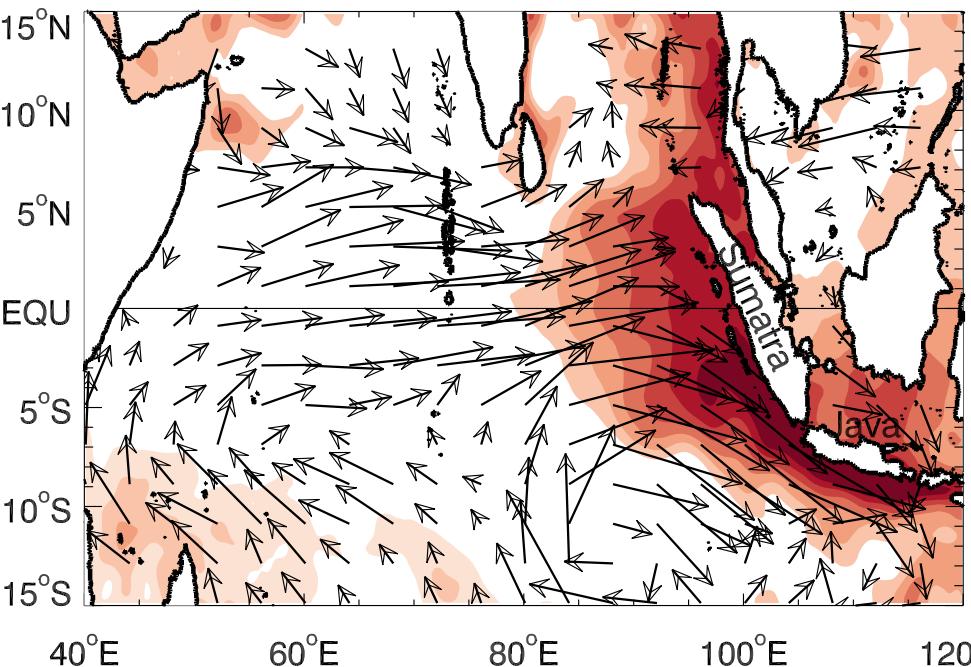
835 variability retained to be consistent with Fig 2 from observations. **b**, Same as **a** but with
836 seasonal cycle removed. **c**, Timeseries of mean seasonal variability (black) and interannual
837 variability with seasonal anomaly removed (dark red). **d**, Terms of heat budget analysis for
838 mixed layer SSTA (dark red curve in **b**): time changing rate of SSTA from all processes (dT/dt,
839 black), from net surface heat flux (cyan), from subsurface processes (upwelling+mixing, dark
840 red) and horizontal advection+mixing (green). Units: degree per month. **e**, Same as **c** except for
841 depth of 20°C isotherm (D20) from ROMS and ORAS4 interannual D20A, representing
842 thermocline variability.


a Satellite-obs mean SST & surface wind stress

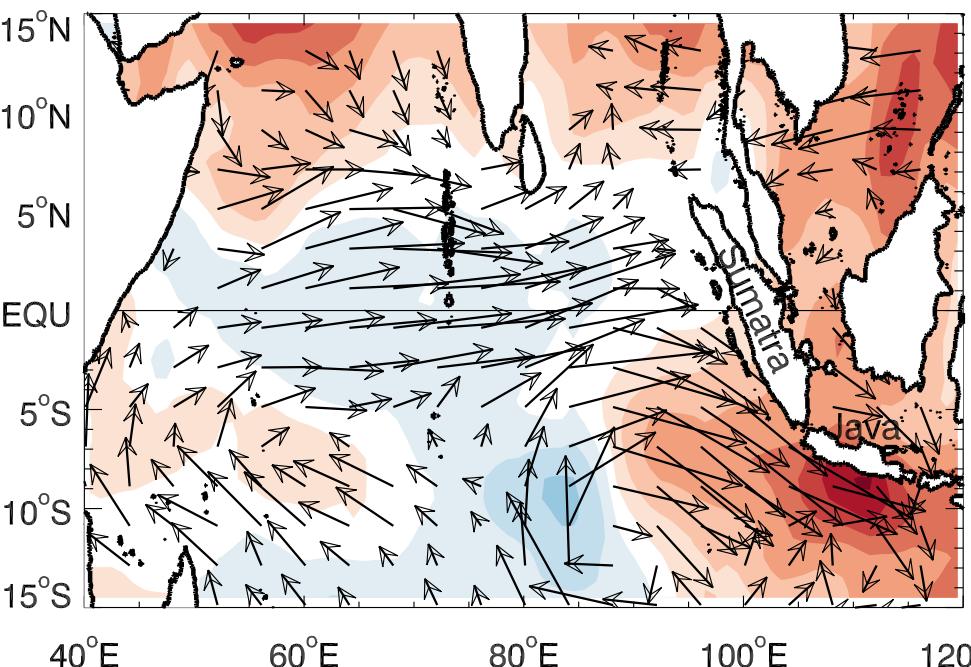

b Satellite sea level & wind trend

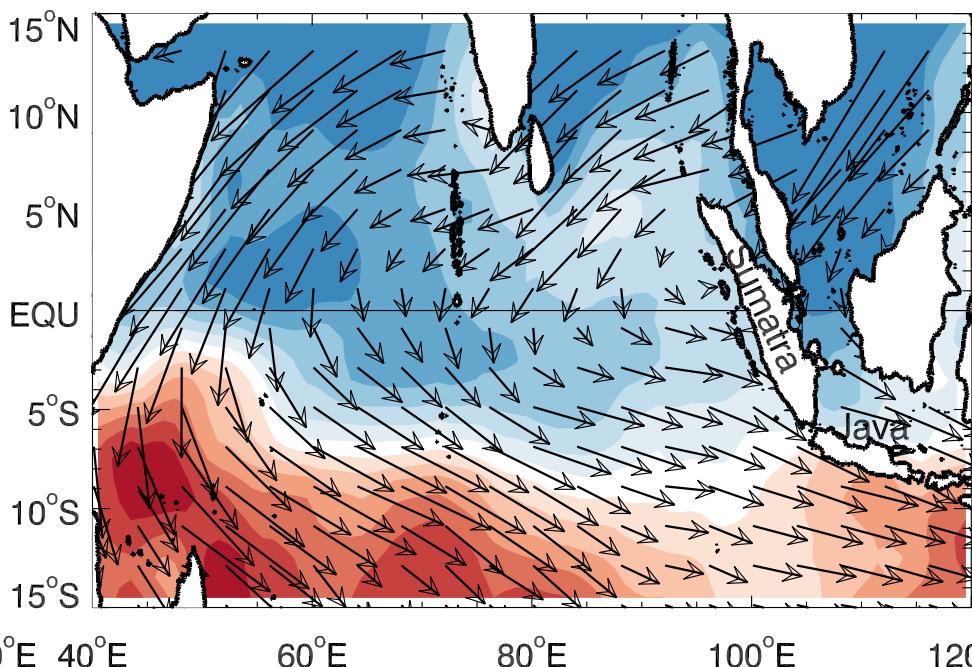

c Satellite SST trend

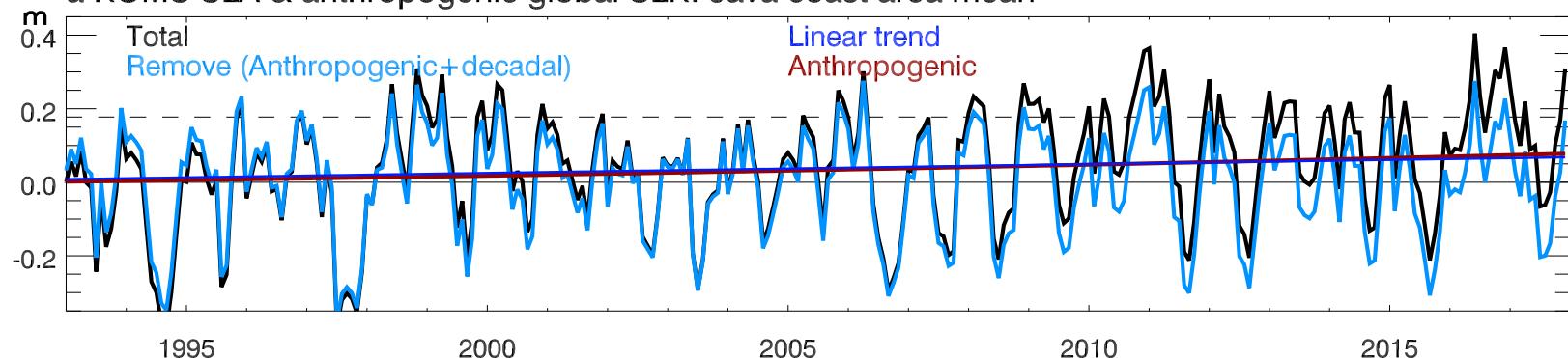

a Sea level & temperature anomalies (SLA & SSTA) at tide gauge location

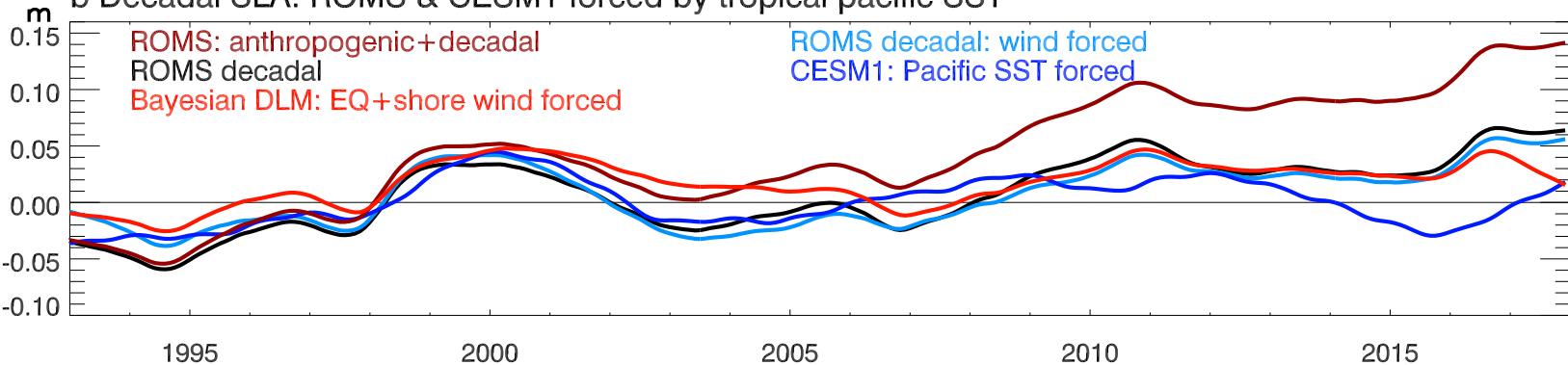

b Satellite obs & model SLA

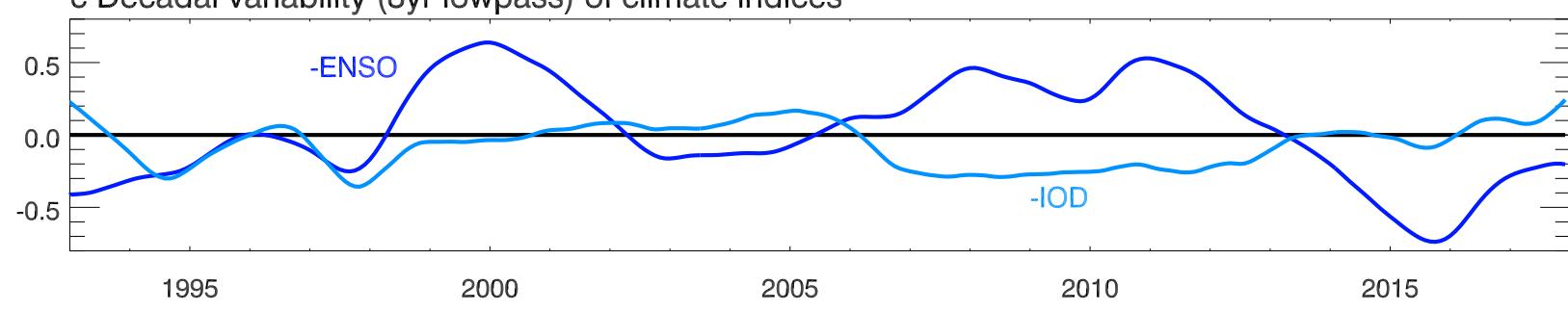
c 8yr sliding 90th percentile of SLA

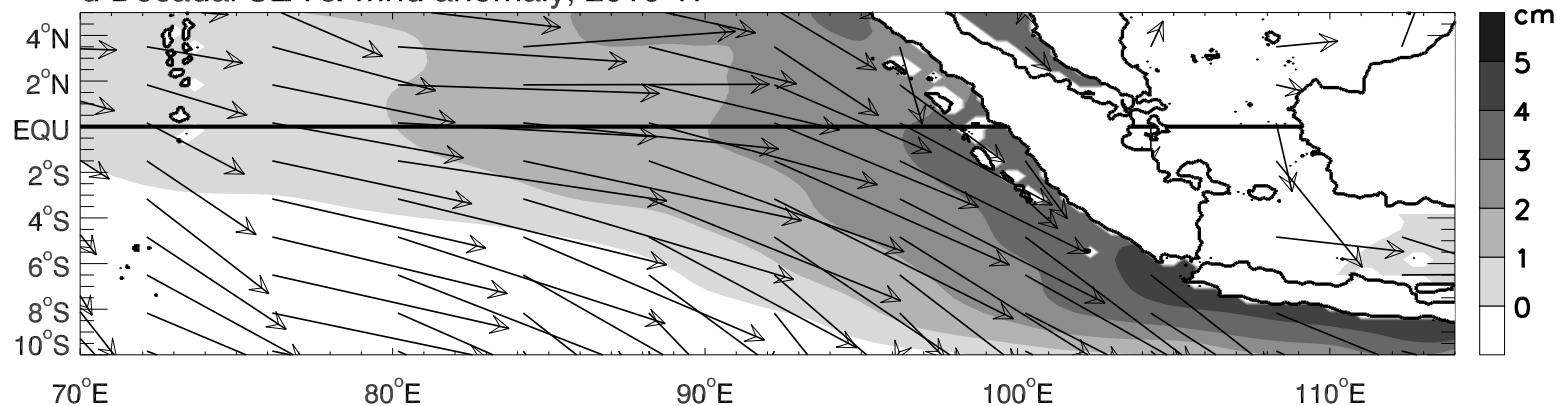

a SLA+wind: Compound events $0.20 \text{ N m}^{-2} \rightarrow$

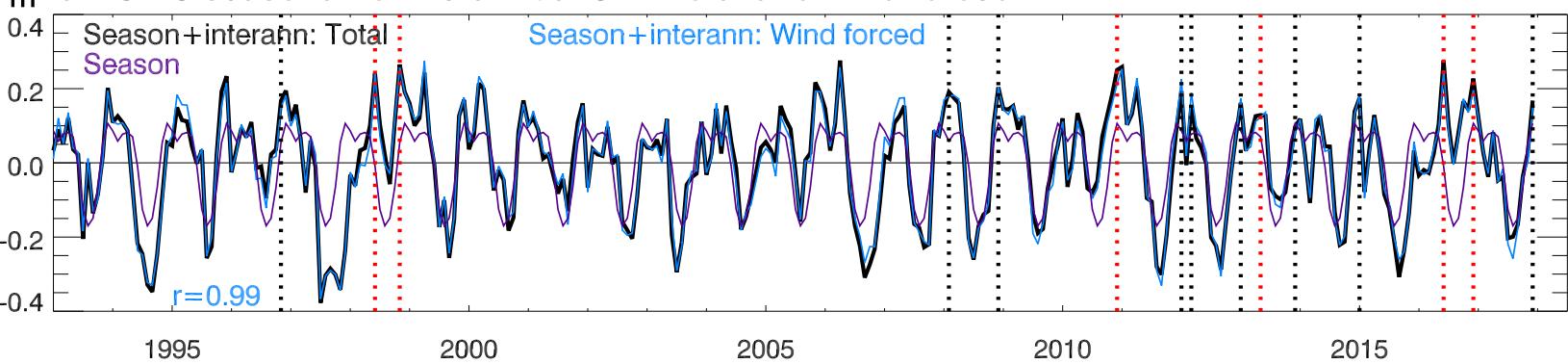

b SLA+wind: sea level events $0.53 \text{ N m}^{-2} \rightarrow$

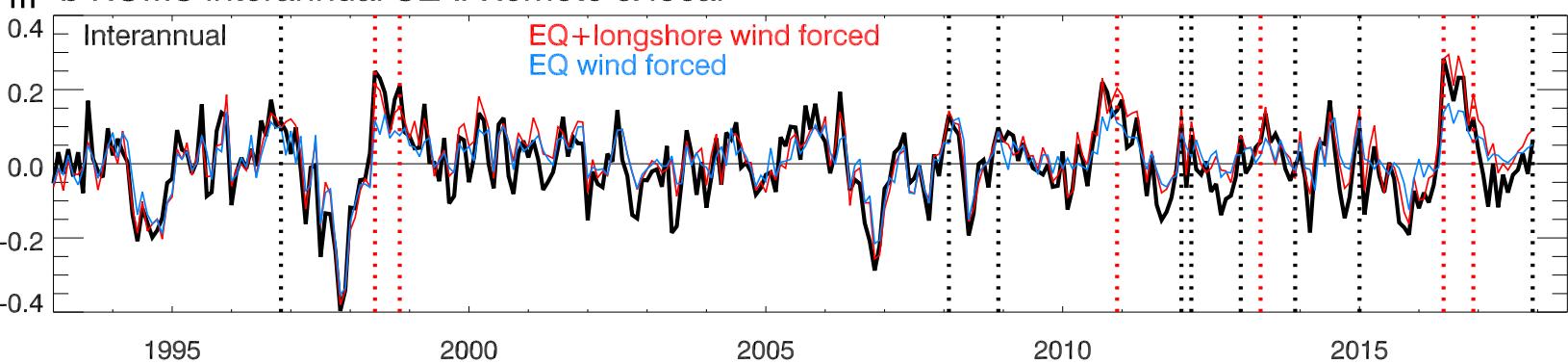

c SSTA+wind: compound events $0.20 \text{ N m}^{-2} \rightarrow$

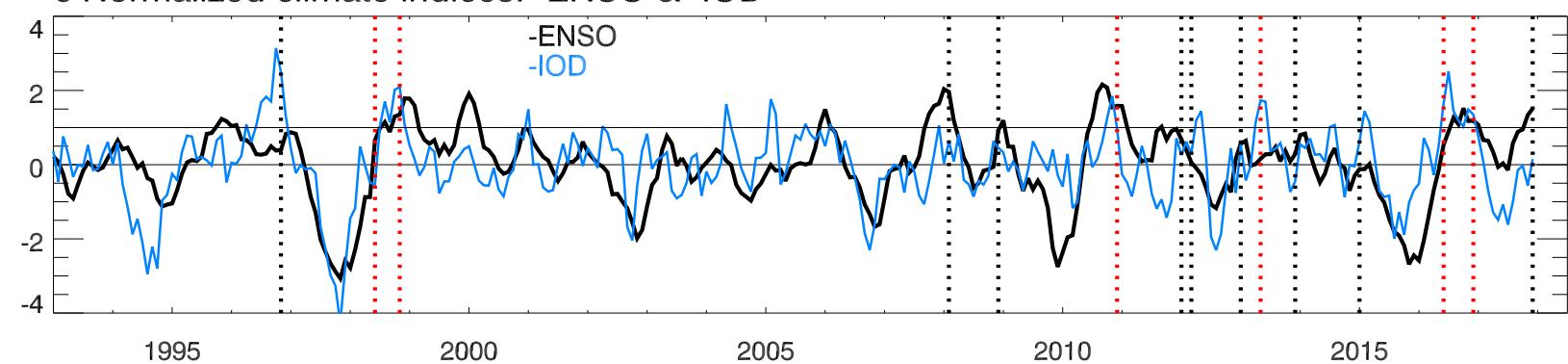

d SSTA+wind: sea level events $0.53 \text{ N m}^{-2} \rightarrow$

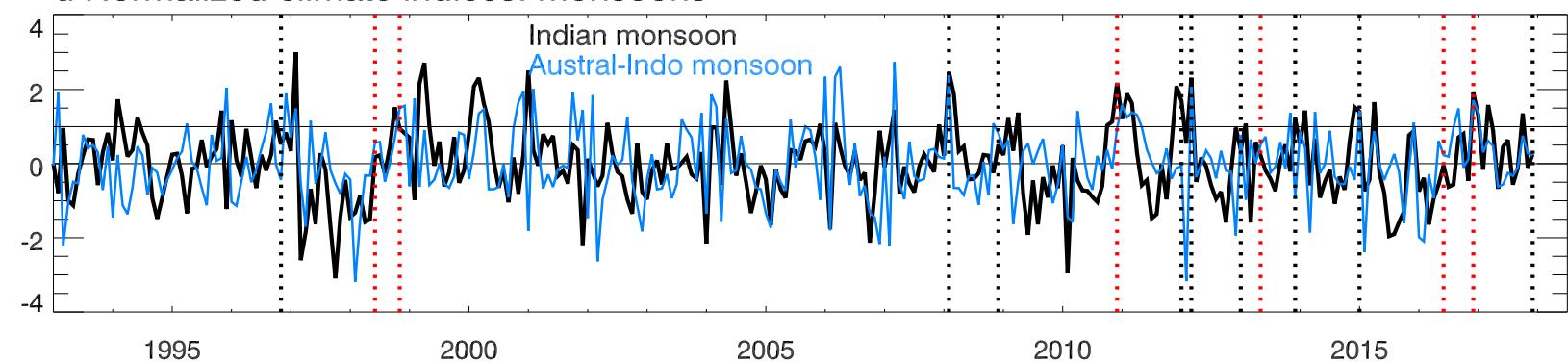

a ROMS SLA & anthropogenic global SLR: Java coast area mean

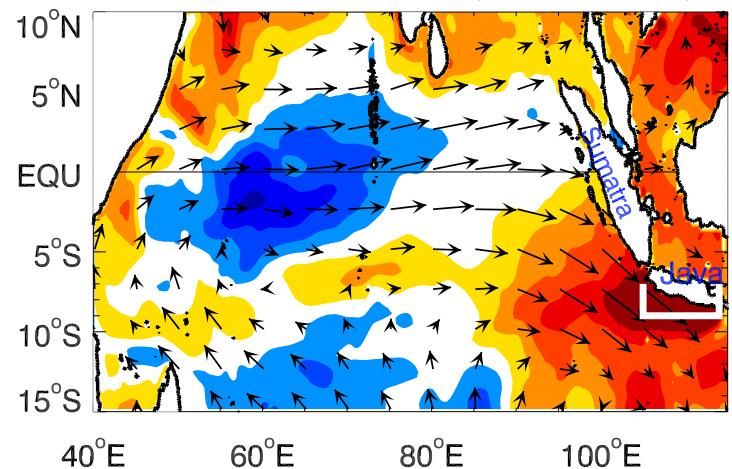

b Decadal SLA: ROMS & CESM1 forced by tropical pacific SST

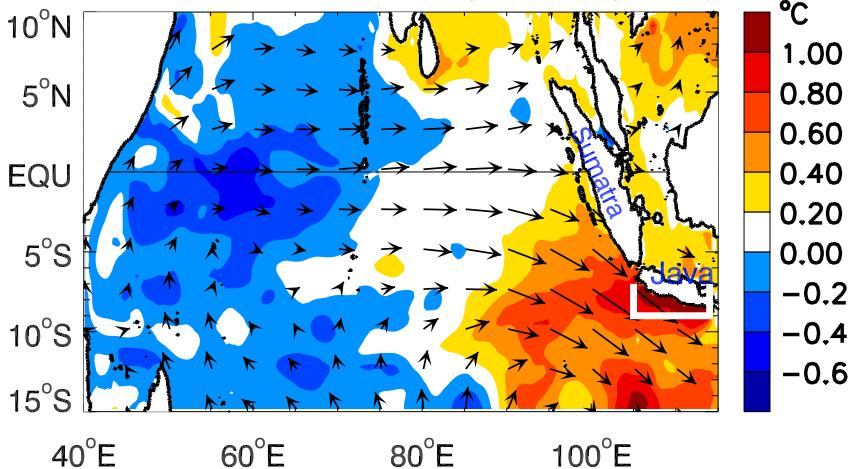

c Decadal variability (8yr lowpass) of climate indices

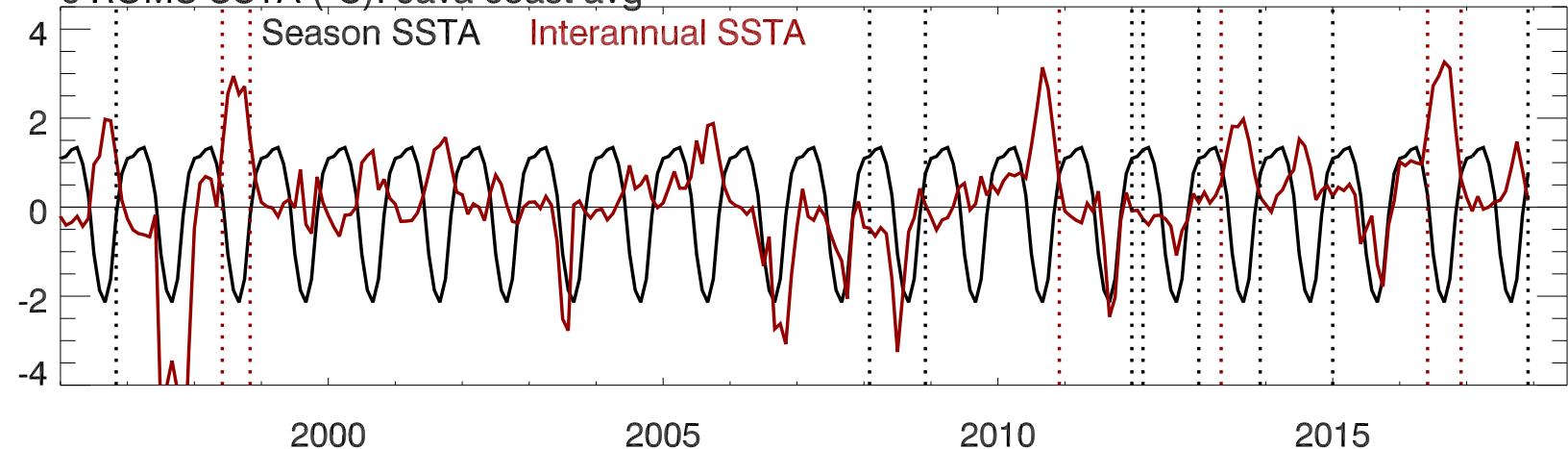

d Decadal SLA & wind anomaly, 2010-17

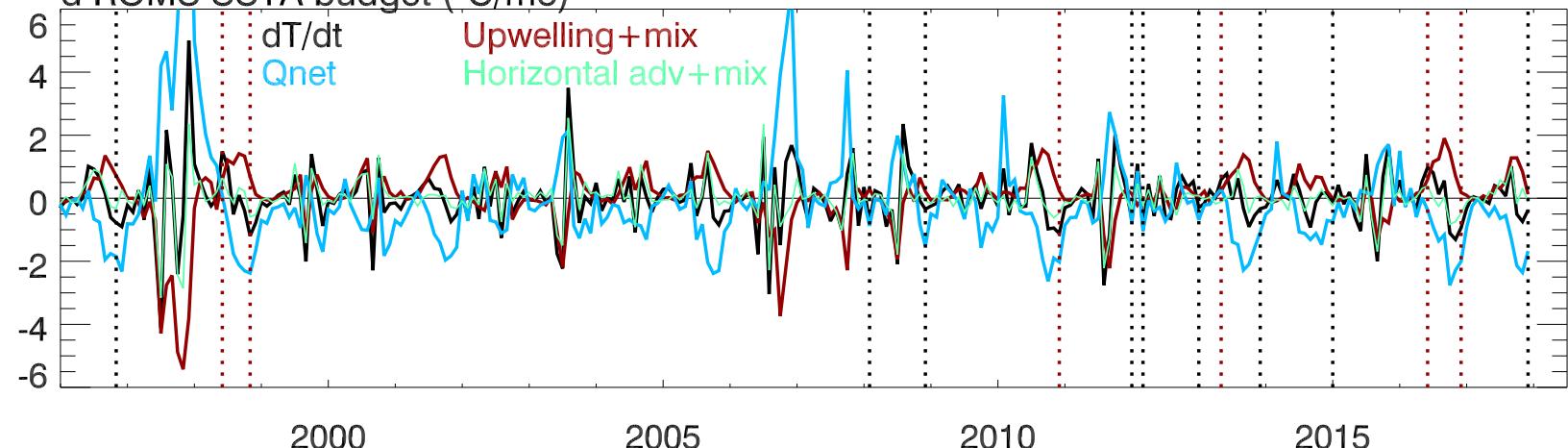

m a ROMS seasonal-to-interannual SLA: total and wind-forced

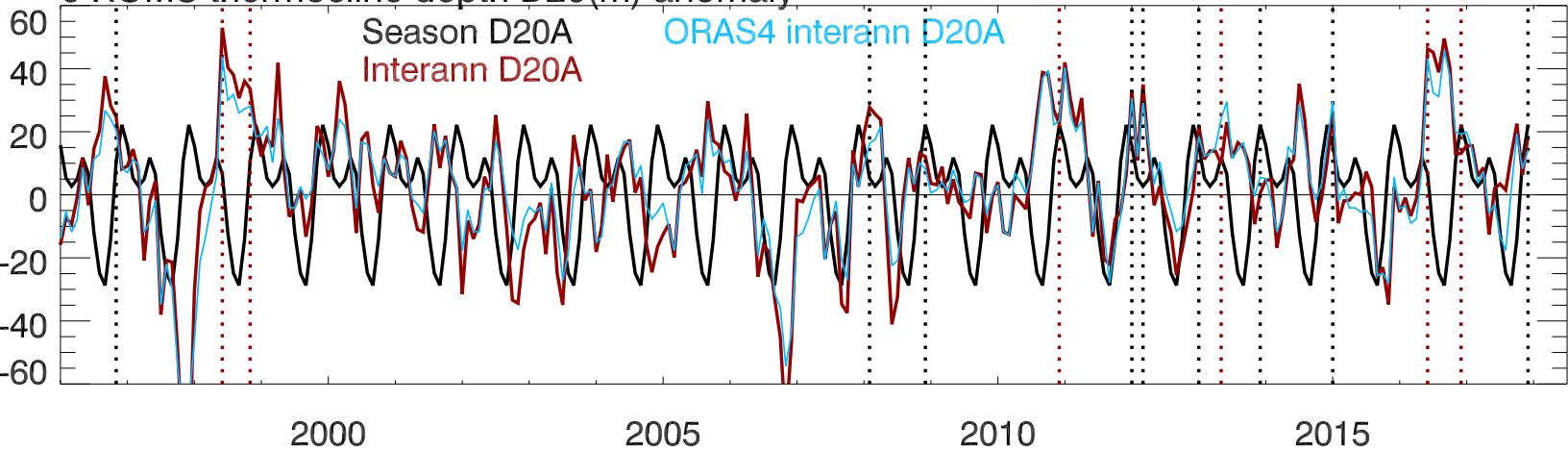

m b ROMS interannual SLA: Remote & local


c Normalized climate indices: -ENSO & -IOD


d Normalized climate indices: monsoons


a ROMS SSTA+wind (with season)


b ROMS SSTA+wind (interann)


c ROMS SSTA (°C): Java coast avg

d ROMS SSTA budget (°C/mo)

e ROMS thermocline depth D20(m) anomaly

