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Abstract 22 

Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). 23 

When compounded by marine heatwaves, HEXs have larger ecological and societal impact. 24 

Here we combine observations with model simulations, to investigate the HEXs and 25 

Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in 26 

recent decades. We find that anthropogenic sea level rise combined with decadal climate 27 

variability causes increased occurrence of HEXs during 2010-2017. Both HEXs and CHHEXs are 28 

driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, 29 

which occur during December-March, downwelling favorable northwest monsoon winds are 30 

enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind 31 

anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña 32 

weaken the southeasterlies and cooling from coastal upwelling during May-June and 33 

November-December. Our findings emphasize the important interplay between 34 

anthropogenic warming and climate variability in affecting regional extremes.   35 

Introduction 36 

Extreme sea level events are one of the most consequential manifestations of climate 37 

change1,2.  Anthropogenic global sea level rise over the past century has magnified flooding and 38 

caused clear-sky floods in many coastal regions around the world3. While much emphasis has 39 

been placed on sea level extremes induced by storms and high tides on daily time scales4, sea 40 
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level extremes driven by climate variability and their evolution under anthropogenic climate 41 

change have received less attention. As the most dominant interannual climate mode, the El 42 

Niño - Southern Oscillation (ENSO) has global impacts on climate5. Over the tropical Indian 43 

Ocean, El Niño (i.e., positive phase of ENSO) often instigates strong marine heatwaves in the 44 

Indonesian-Australian basin during boreal winter-spring6. The 2015-2016 El Niño initiated a 45 

strong and prolonged marine heatwave in the Indonesian-Australian basin that peaked in 46 

March 2016, and the 2016 negative Indian Ocean Dipole (IOD7) sustained the marine heatwave 47 

during the following boreal summer-fall8.  48 

While sea level Height EXtreme (HEX) events and marine heatwaves can have large ecological, 49 

economic, and social consequences individually9,  in combination they can be much more 50 

devastating, like compound extremes over land (e.g., droughts and heatwaves)10 which are 51 

becoming more common in a warming climate11. Yet, integrated studies of HEX and the 52 

compounding effect of a marine heatwave  – dubbed Compound Height-Heat EXtreme (CHHEX) 53 

– are still in their infancy. A better understanding of these extremes will improve risk 54 

assessments10,12, and investigating their interplay with anthropogenic climate change and 55 

decadal-to-interdecadal climate variability (referred to in short as ‘decadal’ hereafter) may help 56 

improve decadal predictions and future projections of these high-impact events.  57 

The Indian Ocean rim region hosts one-third of the world’s population, mostly from developing 58 

countries with low-lying coastal areas that are highly vulnerable to climate variability and 59 

change13. Located at the confluence of the tropical east Indian and west Pacific Oceans within 60 

the Indo-Pacific warm pool (Fig 1a) and being home for diversified coral reefs, Indonesia is 61 
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strongly influenced by climate variability associated with monsoons14, IOD, and ENSO.  Rapid 62 

urbanization of Java island and population growth in low-lying areas15, together with fast 63 

sinking due to ground water extraction (e.g. Jakarta is the fastest sinking city in the world), 64 

further increase vulnerability to climate variability and change1,3, making the problem of rising 65 

sea level particularly acute in this region. Therefore, Indonesia is an ideal testbed for 66 

understanding HEX and CHHEX events in a changing climate.  67 

Here we combine monthly in situ and satellite observations to detect climate-driven HEX and 68 

CHHEX events around Indonesian coasts of the Indian Ocean in recent decades and to 69 

understand their causes. We primarily focus on the satellite altimetry era since 1993 when 70 

accelerated global sea level rise has been detected and attributed largely to human-induced 71 

climate change16-18. To put our analysis in a longer-term context, we extend our analysis to the 72 

1960s using reanalysis data - model hindcast with assimilated observational data - and model 73 

experiments. To help understand the forcing and processes governing HEXs and CHHEXs, we 74 

carry out model experiments using the Regional Ocean Modelling System (ROMS19), which is an 75 

ocean general circulation model (OGCM), and the Community Earth System Model version 1 76 

(CESM120), which is  a coupled global climate model. To test the model dependence of 77 

simulated signals, we perform additional experiments using an independent OGCM, the Hybrid 78 

Coordinate Ocean Model (HYCOM21). To further assess the roles of remote equatorial Indian 79 

Ocean wind versus local longshore wind in generating HEX and CHHEX events, we employ a 80 

Bayesian dynamical linear model22. Additionally, the results from large ensemble experiments 81 

of the Coupled Model Intercomparison Project phase 6 (CMIP6), which are assessed in the 82 

Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6), are also 83 
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analyzed to estimate the impacts of external forcing (natural plus anthropogenic) on Indonesian 84 

regional sea level change. The multi-dataset and multi-model approach is intended to identify 85 

signals that are robust to cross-dataset and cross-model differences. See the Methods section 86 

for more details. 87 

Results  88 

Detecting Height Extreme (HEX) & Compound Heat-Height Extreme (CHHEX) events Satellite 89 

altimeter data from 1993-201823 show rapid sea level rise along the east coasts of the tropical 90 

Indian Ocean, with a rising rate of 5.12±0.17 mm/yr near the tide gauge location on the Java 91 

coast (Fig 1b) compared to the 3.1±0.3 mm/yr global mean rise16,17,24. Accompanied with the 92 

rapid sea level rise is weak sea surface temperature (SST) warming near Java and stronger 93 

warming around the southern coast of Sumatra (Fig 1c). Overlying the rising trend there are 94 

large year-to-year variations, as shown by the ~10yr tide gauge record at Java coast25 and 95 

satellite altimeter data at the nearest location (Fig 2a). The altimeter data detect fifteen HEX 96 

events during the 26yr (1993-2018) period, defined as monthly mean sea level anomalies (SLAs) 97 

exceeding the 90th percentile, which is a commonly used threshold for defining extreme events 98 

such as marine heatwaves discussed below26. The tide gauge record agrees well with the 99 

altimeter data (correlation 0.99), albeit with somewhat larger amplitudes27-30 likely because the 100 

tide gauge contains long-period tide signals but satellite altimeter data removes them23. It is 101 

also possible that monthly tide gauge data includes signals of storm surges, which cannot be 102 

adequately resolved by altimeter data. Additionally, satellite altimeter data have spatial 103 

averaging but tide gauge station data do not. Nonetheless, the high consistency suggests that 104 
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satellite altimeter data can be used to detect HEXs in coastal Indonesia. The SLAs (with and 105 

without seasonal cycle) and the SST anomalies (SSTAs) along the entire Indonesian coasts of the 106 

south Indian Ocean (i.e., southern Sumatra, Java and Nusa Tenggara) are highly coherent, albeit 107 

with some quantitative differences (supplementary Figs 1b and 2), suggesting that similar, 108 

large-scale ocean dynamics control the coastal SLA and SSTA. Our discussions below primarily 109 

focus on the Java coast.    110 

Notably, the majority (ten of fifteen) of the HEXs occur in the 8-year period of 2010-2017, with 111 

five other HEXs distributed across 1993-2009 (Fig 2a). The strongest HEX occurs in June 2016, 112 

when monthly mean sea level rose by ~0.44m (0.45m) from satellite (tide gauge) observations. 113 

This monthly magnitude is comparable to the 0.5-1m surges due to tropical storms and high 114 

tides with a return period of 100yrs along the Indonesian coasts4,31. The concentration of HEX 115 

events in 2010-2017 is more evident in a longer period of 1960-2017 using the European Centre 116 

for Medium-Range Weather Forecasts (ECMWF) ocean analysis/reanalysis system 4 (ORAS4) 117 

data32 and ROMS model simulation averaged over Java coastal area (supplementary Fig 3, black 118 

curves). Among the fifteen HEX events, six are compounded by marine heatwaves, i.e., CHHEXs, 119 

with four CHHEXs occurring during 2010-2017 (Fig 2a; supplementary Table 1). Here, marine 120 

heatwaves are defined as anomalously warm water events when monthly SSTAs exceeding the 121 

90th percentile26 (see Methods for details and for comparisons with heatwaves defined by daily 122 

data).  123 

While sea level signals of the CHHEXs encompass the entire Southeast Asian coasts (Fig 3a), the 124 

associated marine heatwaves are limited to coastal Indonesia and an area extending a few 125 
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hundred kilometers offshore (Fig 3c). By contrast, SLAs of the HEX alone events are weaker and 126 

confined to the Indonesian coasts without concurrence of marine heatwaves (Figs 3b, 3d). 127 

Here, we retain the seasonal cycle when identifying HEX and CHHEX events because coastal 128 

inundation depends on full sea level magnitudes, and many marine species (e.g., corals, kelp 129 

forest) are sensitive to extreme temperature values33,34 (see Methods). With these definitions, 130 

the extremes occur throughout the year except for July-October when coastal Indonesia is cold 131 

and sea level is low (Figs 2a & supplementary Fig 1c). 132 

HEX concentration in 2010-2017 We hypothesize that anthropogenic global sea level rise 133 

combined with decadal increase of SLA during 2010-2017 due to natural climate variability 134 

cause the concentration of HEXs in this 8-year period. To test the hypothesis, we perform a 135 

suite of model experiments using ROMS and HYCOM. The two models and reanalysis data 136 

successfully capture the satellite observed SLAs near the Java coast (correlation 0.90-0.98; Fig 137 

2b). HYCOM and reanalysis data, however, underestimate the satellite-observed rising trend 138 

from 1993-2017, but ROMS realistically simulates the rising trend, falling in the uncertainty 139 

range of satellite observation (Fig 2b; supplementary Table 2). The sea level variability 140 

magnitudes from reanalysis and models are all within data uncertainty range (supplementary 141 

Table 2; see Methods for details). The time-evolution of HEX strength is also well simulated by 142 

ROMS compared to satellite data for their overlapping period (Fig 2c). Both ROMS and HYCOM 143 

successfully simulate the spatial patterns and amplitudes of SLA and SSTA for CHHEX and HEX 144 

events (compare Fig 3 and supplementary Fig 4). The good agreement between observations 145 

and model simulations (including ORAS4 reanalysis) suggests that the signals we identify exceed 146 
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cross-model and cross-dataset differences, lending us confidence in using the models - 147 

especially ROMS - to explore the relevant forcing and processes controlling HEXs and CHHEXs. 148 

To quantify the effects of anthropogenic sea level rise and natural decadal variability, we 149 

remove the anthropogenically-induced global sea level rise estimated from observation-based 150 

global-mean sea level dataset18,35 (Methods) and natural decadal variability (8yr lowpass 151 

filtered SLA) from the ROMS simulation.  After removing both effects, the increased HEX 152 

occurrence and larger magnitude during 2010-2017 disappear (Fig 4a; supplementary Fig 3c). 153 

The same conclusion holds after removing the linear trend and decadal variability from ORAS4 154 

reanalysis for 1960-2017 (supplementary Fig 3a). By only excluding anthropogenic global sea 155 

level rise, the concentration of HEXs in 2010-2017 remains identifiable even though both 156 

frequency and magnitude are reduced (supplementary Fig 3, red curves of b & d). These results 157 

confirm our hypothesis that anthropogenic sea level rise combined with decadal increase of SLA 158 

during 2010-2017 – rather than randomness of HEX occurrence – causes the concentration of 159 

HEXs on the 2010-2017 period. Anthropogenic sea level rise and a decadal increase of SLA 160 

contribute roughly equally to the enhanced HEX activities during 2010-2017 (Fig 2c; Fig 4b, dark 161 

red and black). Note that the effect of external forcing (natural plus anthropogenic) on 162 

dynamical sea level, which is regional sea level variation with global mean sea level rise 163 

removed, near the Indonesian coast is weak (< 2cm) with large uncertainties36, based on the 164 

large ensemble experiments of multiple CMIP6 models (supplementary Fig 5).   165 

Causes for decadal increase of SLA in 2010-2017 The positive decadal SLA during 2010-2017, 166 

which enhances the HEXs, results mainly from surface wind stress forcing (Fig 4b, compare 167 
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black and cyan curves) associated with decadal variability of ENSO and IOD. The enhanced 168 

equatorial westerly winds over the Indian Ocean (Fig 4d) pile up the warm pool water (Fig 1a) in 169 

the eastern Indian Ocean and increase sea level along the Indonesian coast; meanwhile, 170 

strengthened northwesterly longshore winds near the southern Sumatra and Java coasts cause 171 

surface Ekman mass convergence toward the coasts and further enhance sea level rise there 172 

(Fig 4d). These arguments are further supported by the Bayesian dynamic linear model forced 173 

by remote equatorial zonal wind and local longshore wind over the Indian Ocean, producing 174 

decadal SLAs similar to that of ROMS simulations (Fig 4b, compare red, black and cyan lines).  175 

The decadal anomalies of surface wind stress, which drive the decadal sea level increase in 176 

2010-2017, are largely associated with ENSO decadal variability before 2012. This is because 177 

decadal SLAs along Java coast from the 10-member ensemble mean of CESM1 Pacific 178 

pacemaker experiments, which are forced by observed tropical Pacific SST (Methods), can 179 

explain a large fraction of the total and wind-driven decadal SLAs before 2012 (Fig 4b, compare 180 

blue with black and cyan lines) and follow the decadal variability of ENSO index (blue curves in 181 

Figs 4b-4c). During the global surface warming slowdown period of ~2003-2012 when the rate 182 

of global warming decreased, ENSO decadal variability is La Niña-like with intensified easterly 183 

trade winds in the tropical Pacific37. The intense easterly trades enhanced the mass and heat 184 

transports into the Indian Ocean from the Indonesian Throughflow (ITF)38,39, likely also 185 

contributing to the persistent upward trend of SLA in CESM1 experiments from 2003-2009. The 186 

effects of salinity are weak in this coastal area40. The tropical Pacific forcing, however, cannot 187 

explain the sustained positive SLAs from 2013-2017 (Fig 4b, blue and black). During this period, 188 

decadal variability of the Indian Ocean Dipole7,41,42 changes from positive to negative phase, as 189 
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shown by the upward trend of decadal -IOD index (Fig 4c, cyan). Here, -IOD index is shown 190 

because negative IODs cause sea level increases along Indonesian coast. The negative IOD 191 

transition is associated with equatorial westerly and longshore northwesterly wind anomalies 192 

(Fig 4d), which sustain the high SLAs from 2013-2017 (compare cyan curves of Figs 4b-4c).  193 

Individual HEX events: mechanisms To understand the causes for the fifteen individual SLA 194 

peaks, we analyze the seasonal-to-interannual SLA component, obtained by removing the 195 

anthropogenic global sea level rise and 8yr-lowpass filtered decadal variability. The results 196 

show that wind stress forcing is the deterministic cause for individual HEX events (Fig 5a, black 197 

and cyan curves). The equatorial westerly wind anomalies cause Ekman mass convergence to 198 

the equator, raising sea level. The high sea level signals propagate eastward as equatorial Kelvin 199 

waves, which subsequently propagate poleward as coastally trapped waves upon impinging on 200 

the eastern boundary, inducing coherent sea level surges along the Indonesian coasts (Figs 3a-201 

3b; Fig 5b). Meanwhile, the local northwesterly longshore winds induce Ekman mass 202 

convergence to the Indonesian coast, enhancing the remotely forced equatorial signals (Figs 3a, 203 

3b, and 5b, red and cyan curves).  204 

CHHEX versus HEX-alone events To understand why some HEXs are accompanied by marine 205 

heatwaves (i.e., CHHEXs) while others are not, we first analyze their relationships with climate 206 

variability. Note that albeit with the strong rising trend of coastal sea level during the satellite 207 

era (Fig 1b), the six CHHEX events remain the same after removing the 1993-2018 trends from 208 

satellite SLA and SSTA (supplementary Fig 6a). For the nine HEX alone events, only the Dec 2013 209 

HEX falls below the 90th percentile after detrending.  ROMS SLAs after removing the 1993-2017 210 
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trend are close to that after removing the 1960-2017 anthropogenic global sea level rise and 211 

decadal variability (r=0.99; supplementary Fig 6b), so the latter is used for our following 212 

discussions.  213 

All six CHHEXs occur during negative IOD years, of which five co-occurred with La Niña (the 214 

negative phase of ENSO) although in June 2016 La Niña is developing and -ENSO index is below 215 

1 standard deviation (Fig 5c; supplementary Table 1a). A negative IOD typically develops in June 216 

and peaks in September-November with warm (cold) sea surface temperature anomalies in 217 

tropical southeast (west) Indian Ocean7,41. An exception is 2013 when the IOD index is negative 218 

from April-October, peaks in May and becomes positive in November. The May 2013 CHHEX 219 

has no co-occurring La Niña, and its seasonal-to-interannual SLA is smaller than other CHHEXs’ 220 

(Figs 5a-5b, 6c).  221 

The negative IOD and La Niña are associated with similar patterns of surface wind anomalies in 222 

tropical Indian Ocean (Fig 6b). Their co-occurrence intensifies the wind anomalies; by 223 

interacting with seasonal monsoon winds, they result in CHHEXs. The IOD is phase-locked with 224 

boreal summer and fall, during which seasonal southeasterly monsoon winds prevail43 225 

(supplementary Figs 7a-b & 8). These winds cause Ekman mass divergence away from the 226 

Indonesian coast, which lowers sea level, shoals the thermocline depth (the depth range where 227 

temperature decreases the fastest towards the deeper ocean), induces seasonal upwelling of 228 

colder subsurface water to the surface, and results in a cooler SST there (supplementary Figs 229 

7a-b, 8, 1c and Figs 6c & 6e). The interannual anomalies of equatorial westerly and longshore 230 

northwesterly winds associated with negative IOD and La Niña weaken or reverse the 231 
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seasonally-prevailing southeasterly monsoon winds. These changed winds either reduce or 232 

reverse the seasonal coastal Ekman divergence, raise sea level, deepen the thermocline, reduce 233 

seasonal upwelling cooling and mixing of colder water from below, causing large-amplitude 234 

interannual marine heatwaves that last from June-December (dark red curves of Figs 6c & 6e; 235 

supplementary Figs 7 & 9). Meanwhile, the weakened or reversed southeasterly winds also 236 

induce anomalous southeastward longshore currents, advecting the warm equatorial water to 237 

the Indonesian coast and enhancing the warm SST anomalies. 238 

While the interannual warm SSTAs are largely compensated by the seasonal cooling during July-239 

October which led to weak total SSTAs (sum of seasonal and interannual SSTAs), they enhance 240 

the seasonal warm SSTAs during the IOD initiation in June and peak-to-decay period of 241 

November-December (Figs 6c & supplementary Fig 9), causing the CHHEX events (Fig 6). For the 242 

May 2013 CHHEX event, northwesterly longshore wind anomalies associated with a negative 243 

IOD work against the seasonal southeasterlies (supplementary Fig 8), causing a warm 244 

interannual SSTA. The moderate interannual SSTA superimposes on the high seasonal SST in 245 

May, leading to a marine heatwave (Fig 6c).   246 

The above arguments are further supported by the mixed layer heat budget analysis (Fig 6d). 247 

For the 1998, 2010 and 2016 CHHEXs, reduced upwelling & vertical mixing, together with 248 

horizontal advection (Fig 6d, dark red and green), cause the interannual warm SSTA and marine 249 

heatwaves. For the May 2013 CHHEX, increased surface heat flux together with reduced 250 

upwelling and vertical mixing accounts for the warm SSTA. 251 
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By contrast, none of the HEX alone events is associated with co-occurrence of negative IOD and 252 

La Niña, and their composite shows little interannual SSTA along the Indonesian coast 253 

(supplementary Fig 10). While most HEXs are associated with strong Indian and/or Australian 254 

monsoon winds during December-March, one occurs in a negative IOD year and three occur in 255 

La Niña years (supplementary Table 1a; Fig 5). The Dec 2013 SLA falls below the 90th percentile 256 

with weak interannual SLA associated with monsoon variability, suggesting that with 257 

anthropogenic sea level rise and a decadal sea level increase, even weak interannual variability 258 

that occurs in the normally high sea level season can become an extreme event.  259 

The warm interannual SSTAs associated with either a negative IOD or a La Niña are not strong 260 

enough to bring the seasonal-to-interannual SSTAs above the 90th percentile (Fig 6c). The rest 261 

of the HEX alone events all occur during December-March; their equatorial westerly and 262 

longshore northwesterly wind anomalies associated with monsoon variability enhance the 263 

seasonal monsoons (supplementary Figs 8 and 10), causing coastal downwelling, raising sea 264 

level and deepening thermocline. However, they increase the surface temperature very little or 265 

even slightly decrease it (Figs 6c-6d & supplementary Fig 10) for two reasons.  Firstly, when the 266 

thermocline is already relatively deep, a further deepening does not cause a significant increase 267 

in SSTA by reducing upwelling.  Secondly, the northwesterly longshore wind anomalies 268 

enhance, rather than weaken, the seasonal monsoon winds, which strengthen the turbulent 269 

heat loss and mixing-induced cooling, counteracting the warm SSTA caused by reduced 270 

upwelling. Note that SLAs represent changes of mass and heat of the entire water column, 271 

whereas SST variability can be controlled by surface heating processes. Therefore, some marine 272 

heatwaves are not associated with sea level extremes and vice versa. 273 
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Discussion  274 

Satellite observations, tide gauge data, reanalysis products, and model simulations all have 275 

unique error characteristics. The fact that they are highly consistent in detecting and simulating 276 

the extreme events in coastal Indonesia demonstrate that the HEX and CHHEX events identified 277 

here well exceed data and model uncertainties. The high consistency between satellite 278 

altimetry and tide gauge observations points to the importance of continued altimetry missions 279 

and tide gauge networks in detecting and understanding sea level extremes for island nations in 280 

a changing climate. The agreement among different models on simulating the HEX and CHHEX 281 

events lends further confidence in our results.  Since the 1960s, anthropogenic global sea level 282 

rise has increased the HEX magnitude near the Java coast by 0.7m-0.8m during 2010-2017, 283 

comparable to the seasonal increase of sea level. The decadal variability of ENSO and IOD 284 

further enhance the SLAs by ~0.7m during the 2010-2017 period, further boosting the 285 

frequency and magnitude of HEXs in the past decade. These results indicate our need for 286 

reliable decadal predictions of major climate modes, in conjunction with anthropogenic sea 287 

level rise, to achieve successful decadal predictions of regional HEX impacts.  288 

Climate model projections suggest that continued anthropogenic warming will reduce the 289 

number of negative IOD events, which are key for generating the CHHEXs, due to a mean state 290 

change toward a shallower (deeper) thermocline in the tropical eastern (western) Indian 291 

Ocean44-46; however, the amplitude of the IODs is projected to increase47. The shallower 292 

thermocline in the eastern pole of the IOD – with continued anthropogenic sea level rise and 293 

surface warming albeit with a slower warming rate near Indonesian coast45 – makes the upper-294 
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ocean temperature more sensitive to wind-induced Ekman convergence and thus favorably 295 

preconditions the ocean for stronger HEXs and CHHEXs in coastal Indonesia.  This will increase 296 

climate change induced social, environmental, and ecological stresses.  297 
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Figures 298 

 299 

Figure 1. Satellite observed sea surface temperature (SST) and surface wind stress together with trend 300 
maps of satellite sea level, surface wind, and SST. a, Mean SST and surface wind stress for the 1989-301 
2018 period. b, Linear trend of satellite sea level and cross-calibrated multiplatform surface wind stress 302 
from 1993-2018. c, Linear trend of satellite SST for 1993-2018. The tide gauge location at Java coast is 303 
marked by “o” in b and c; its data is shown in Fig 2a. 304 

  305 
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306 
Figure 2. Time series of observed and model simulated monthly mean sea level anomaly (SLA) and sea 307 
surface temperature anomaly (SSTA) from 1993-2018 near the Cilacap B tide gauge location at Java 308 
coast (marked by “o” in Figs 1b-1c), together with 90th percentile of 8yr sliding SLA since 1960s. a, 309 
Monthly mean SLA from tide gauge during 2007-2016 (blue curve) and from the multiple-satellite-merged 310 
altimeter data at the nearest grid point (black) together with satellite observed monthly mean SSTA (red 311 
curve). The SLAs are relative to a 60yr (1958-2017) mean of ECMWF Ocean Reanalysis System 4 312 
(ORAS4) data at the nearest location. Values exceeding the 90th percentile of altimeter data (horizontal 313 
blue line) are identified as extreme events (indicated by vertical-dotted lines) and dubbed Height EXtreme 314 
(HEX). Red dotted lines indicate HEXs co-occurred with marine heatwaves, defined as SSTA (relative to 315 
a 30yr mean from 1989-2018) exceeding 90th percentile (horizontal red line). We dub these events 316 
Compound Height and Heat EXtreme (CHHEX). b, Monthly SLAs from satellite (black, same as that of a), 317 
ORAS4 reanalysis (red), and ocean general circulation model simulations from ROMS and HYCOM (blue 318 
and purple). c, The time-evolution of 90th percentile of SLA with an 8-year sliding window from ORAS4 319 
reanalysis (red) & ROMS simulation (blue) with & without the 1960-2017 linear trend (solid & dashed), 320 
and from satellite altimeter data (purple) with & without anthropogenic global sea level rise for 1993-2017 321 
(solid and dashed). Note that the last value in 2013 represents the 90th percentile for 2010-2017. See 322 
Methods for data and model details. 323 
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 324 

Figure 3. Composite of satellite-observed monthly sea level anomaly (SLA), surface wind stress anomaly, 325 
and sea surface temperature anomaly (SSTA) for the peak months of the six CHHEX and nine HEX alone 326 
events.  All anomalies are relative to 1993–2018 mean. a & b, Composites of SLA (color) and surface 327 
wind stress (arrows) for CHHEX & HEX alone events; c & d, Composites of SSTA (color) and surface 328 
wind stress (arrows) for CHHEX & HEX alone events . Wind vectors are the average for the event peak 329 
month and the preceding month, considering the propagation time of equatorial Kelvin waves that impact 330 
SLA and SSTA.  331 

 332 
  333 
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 334 

Figure 4. Time series of monthly sea level anomalies (SLAs) averaged over Java coastal area (supplementary Fig 1) 335 
from model simulations, anthropogenically induced global mean sea level rise (SLR),  climate indices, and map of 336 
sea level and surface wind anomalies averaged for 2010-2017.  Calculations are done for 1960-2017 but only 1993-337 
2017 is shown for clarity. The 1960-2017 mean is removed from each time series. a, ROMS simulated total SLA 338 
(black) and its linear trend (blue), observational based estimate of anthropogenic SLR (dark red), and ROMS 339 
seasonal-to-interannual SLA with anthropogenic SLR and 8yr lowpass filtered decadal SLA removed (cyan). b, 340 
ROMS decadal SLA (black), the sum of decadal SLA and anthropogenic SLR (dark red; which is the difference 341 
between the black and cyan curves in a), ROMS SLA forced only by surface wind stress (cyan), ROMS SLA from 342 
Bayesian dynamic linear model (DLM) due to equatorial zonal wind and local longshore wind forcing (red), and SLA 343 
from the 10-member ensemble mean of Pacific Pacemaker experiment using Community Earth System Model 344 
version 1 (CESM1) (blue), which assesses the impacts of tropical Pacific sea surface temperature variability.  c, 345 
Normalized indices of decadal variability (8yr lowpassed) of reversed El Niño-Southern Oscillation (-ENSO, blue) and 346 
Indian Ocean Dipole (-IOD; cyan). D, Maps of ROMS decadal  SLAs and its forcing wind stress anomalies averaged 347 
for 2010-2017.  348 
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 349 

Figure 5.  Time series of ROMS monthly sea level anomalies (SLAs) averaged over Java coastal area 350 
and climate indices. a, Seasonal-to-interannual SLA from ROMS main run experiment (total, black) and 351 
from wind-stress forced experiment (blue), together with the mean seasonal cycle of SLA for 1960-2017 352 
(purple). b, Interannual SLA (seasonal cycle removed) from ROMS main run (black) and from Bayesian 353 
DLM due to remote equatorial zonal wind and local longshore wind forcing (red), and due only to remote 354 
equatorial wind forcing (blue). c, Normalized reversed indices of seasonal-to-interannual ENSO (-ENSO; 355 
black) and IOD (-IOD; blue); La Niña and negative IOD events are identified when their indices exceed 1 356 
standard deviation. d, Indian monsoon wind index (black; one month lead) and Australian-Indonesian 357 
monsoon index (blue). Vertical dotted lines in each panel show the HEX (black) and CHHEX (red) events. 358 
See Methods for definition of each climate mode index.  359 
 360 

 361 
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 362 

Figure 6. Composites of ROMS simulated sea surface temperature anomaly (SSTA) and wind anomalies (from 363 
JRA55-do reanalysis data that force ROMS) for the six CHHEXs and time series of SSTA & its budget terms 364 
averaged in Java coastal area (white box). a, Composite SSTA (color) and surface wind (arrows) anomalies with the 365 
1993-2017 mean removed but seasonal variability retained to be consistent with Fig 2 from observations. b, Same as 366 
a but with seasonal cycle removed. c, Timeseries of mean seasonal variability (black) and interannual variability with  367 
seasonal anomaly removed (dark red). d, Terms of heat budget analysis for mixed layer SSTA (dark red curve in b): 368 
time changing rate of SSTA from all processes (dT/dt, black), from net surface heat flux (cyan), from subsurface 369 
processes (upwelling+mixing, dark red) and horizontal advection+mixing (green). Units: degree per month.  e, Same 370 
as c except for depth of 20°C isotherm (D20) from ROMS and ORAS4 interannual D20A, representing thermocline 371 
variability. 372 
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Methods 373 

Tide gauge data, satellite observations and ocean reanalysis product 374 
 375 
The tide gauge data25 at station Calicap B of Java coast from 2007-2016 were downloaded from 376 

the Permanent Service for Mean Sea Level  (PSMSL) 2020: 377 

https://www.psmsl.org/data/obtaining/, and were corrected for Glacial Isostatic Adjustment 378 

(GIA) and Inverted Barometer (IB) effects that were provided by PSMSL along with the tide 379 

gauge data. No land movement correction was done due to the lack of GPS data within 10km of 380 

the tide gauge station48.  381 

The satellite altimeter data23 (both two-satellite and all-satellite) were download from 382 

Copernicus Climate Change Service (C3S) (2018): Sea level daily gridded data on 0.25°x0.25° 383 

grids for the global ocean from 1993 to present, European Union, under license agreement V1.2 384 

(Nov 2019), https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-level-385 

global?tab=overview. Monthly means of the all-satellite data are used in our analysis, and the 386 

timeseries shown in Figure 2 is from the nearest grid point approximately 18km southeast of 387 

the Java tide gauge station. Using the two-satellite data yields similar results except for slightly 388 

weaker amplitudes for some extreme events.  389 

The Cross-Calibrated Multi-Platform (CCMP) Satellite derived winds49,50 were downloaded from 390 

http://www.remss.com/measurements/ccmp/. The National Oceanic and Atmospheric 391 

Administration (NOAA) blended satellite sea surface temperature (SST) data51 on 1°x1° grids at 392 

monthly resolution and on 0.25°x0.25° at daily resolution are publicly available at: 393 
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(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.html; 394 

https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html). 395 

The European Centre for Medium-Range Weather Forecasts (ECMWF) operational ocean 396 

analysis/reanalysis system version 4 (ORAS4)32 monthly sea level and temperature data at 1°x1° 397 

resolution, which are used to infer thermocline depth (as indicated by the depth of 20ºC 398 

isotherm), from 1958-2017 are obtained from https://www.ecmwf.int/en/research/climate-399 

reanalysis/ocean-reanalysis. The ORAS4 data are ocean model hindcasts assimilated 400 

observational data, including satellite altimeter data.  401 

Estimates of anthropogenic global sea level rise  402 

First, we obtained the monthly global mean sea level (GMSL) data from CSIRO available for 403 

1880-2013, which are adjusted to satellite observations from 1993-201318 404 

(ftp://ftp.csiro.au/legresy/gmsl_files).  Then we use the 1880-1992 GMSL from this dataset and 405 

the NASA monthly GMSL data from 1993-201924 to form a time series from 1880-2019, and 406 

choose the 1960-2019 period for our analysis. The NASA GMSL data are downloaded from 407 

http://podaac.jpl.nasa.gov/dataset/MERGED_TP_J1_OSTM_OST_ALL_V4252. Note that the 408 

CSIRO and NASA GMSL data are very similar for their overlapping period of 1993-2013. Two 409 

methods were used to assess the anthropogenic GMSL rise (GMSLR):  (1) Since anthropogenic 410 

effect (thermal expansion, land ice melting and land water storage) explains ~90%  of the GMSL 411 

in recent decades35,53, we use 90% of the quadratic fits of GMSL (i.e., fitted GMSLR*0.9) to 412 

represent anthropogenic GMSLR; the quadratic fits are done individually for the 1960-1992 and 413 

1993-2019 periods to consider SLR acceleration in recent decades; (2) For the 1993-2019 414 
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satellite period, we use the climate-change induced acceleration of 0.084mm yr-2 17 to estimate 415 

the anthropogenic GMSLR, and keep the 1960-1992 period the same as in (1). The two curves 416 

are almost identical.  417 

CMIP6 climate model simulations 418 

The coupled model intercomparison project phase 6 (CMIP6) large ensemble experiment 419 

results, with ensemble members of each model ranging from 10-50 (supplementary Figure 5), 420 

were obtained from https://esgf-node.llnl.gov/projects/cmip6/. They are used to assess the 421 

impacts of external forcing (natural + anthropogenic) on regional sea level near the Indonesian 422 

coast.  423 

Climate mode indices  424 

The monthly HadISST data available since 187054 are used to calculate climate mode indices. 425 

The climatological seasonal cycle is removed before we calculate the indices. Climate events are 426 

defined as indices exceeding one standard deviation. The Niño3.4 index, which is the timeseries 427 

of SST anomaly (SSTA) averaged for  (120°W-170°W, 5°S-5°N), is used to represent ENSO. ENSO 428 

is the most dominant mode of climate variability, which is associated with strong SSTA in the 429 

tropical Pacific Ocean and has large impacts on global climate. It develops during boreal 430 

summer and peaks during boreal winter (Dec-Feb). Its negative (cold) phase is referred to as La 431 

Niña, and positive (warm) phase is called El Niño. The decadal variability of Niño3.4 index, 432 

obtained by 8yr lowpass filtering, represents decadal variability of ENSO, which is highly 433 

correlated with the Interdecadal Pacific Oscillation (IPO)55, with its negative phase being 434 

referred to as La Niña-like and positive (warm) phase being El Niño-like SSTA pattern.  435 
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The dipole mode index, defined as the SSTA difference between tropical western Indian Ocean 436 

(50°E-70°E, 10°S-10°N) and tropical eastern Indian Ocean (90°E-110°E, 0°-10°S), represents the 437 

Indian Ocean Dipole (IOD7). In general, the IOD develops in boreal summer and peaks during 438 

boreal fall (Sep-Nov). Its negative phase is associated with warm SSTA and deeper thermocline 439 

in the eastern pole and cold SSTA and shallower thermocline in the western pole.  440 

The monthly wind shear index56 is used to represent Indian monsoon variability, which is the 441 

zonal wind U at 850hPa (U850) averaged over (40°E-110°E, EQ-20°N) minus that of 200hPa 442 

(U200), i.e. U850(40-110E,EQ-20N)-U200(40-110E,EQ-20N). The Australian-Indonesian 443 

monsoon index43 is defined as U850 anomaly averaged over (110°E-130°E, 15°S-5°S). Both are 444 

calculated from NCEP1 reanalysis winds from 445 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html 57.  446 

Definitions of marine heatwave (MHW) and Compound Height-Heat EXtreme (CHHEX) 447 

The NOAA blended satellite SST data51 are used to detect marine heatwaves (MHWs). The 448 

MHWs are defined as monthly SST anomalies relative to the mean of a 30yr baseline period of 449 

1989-2018 exceeding the 90th percentile, following the recommended definition of MHWs 450 

from previous studies26,58,59. Based on this definition, the mean seasonal variation of SST is 451 

retained when we define MHW events because marine ecosystems are sensitive to the total 452 

SST magnitude, although interannual variability of SST excluding the mean seasonal cycle is also 453 

meaningful for some species26,58,59. Note that there are previous studies using monthly SST to 454 

define MHWs26. Although a general recommendation on MHW definition has been given, the 455 

choice of threshold and calculation of SST anomalies should be based on the study purpose. 456 
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Comparing to the MHWs identified using daily data, which are defined as discrete prolonged 457 

anomalously warm water events when daily SSTAs exceed the 90th percentile for the 30yr 458 

baseline period of 1989-2018 and persist for at least 5 days26, we see that most MHWs 459 

identified by monthly SST data correspond to a series of MHWs defined by daily SST data 460 

(supplementary Fig 12), except for Nov 1998 and Dec 2016. The stronger and longer-lasting 461 

MHWs based on monthly data correspond to a series of more intense and/or more frequent 462 

MHWs from daily data (supplementary Fig 12).  463 

Using monthly data, a CHHEX event is identified when a MHW (i.e., monthly SSTA > 90th 464 

percentile) is detected during a HEX event. Note that for the December 2010 event, SSTA 465 

merely reaches the 90th percentile two months before the HEX peak but remains close to the 466 

90th percentile when HEX peaks. Thus, we also count this event as a CHHEX. A gap of at least 467 

one month is required between two consecutive HEX (or MHW) events.  468 

Ocean general circulation models (OGCMs), experiments and validation 469 

To ensure the HEX and CHHEX events detected here exceed cross-model differences, we use 470 

two independent OGCMs with somewhat different surface forcing fields to carry out 471 

experiments: The Regional Ocean Modeling System (ROMS19) and the HYbrid Coordinate Ocean 472 

Model (HYCOM21). The ROMS is configured for the global tropical oceans (25°S to 25°N) with a 473 

horizontal resolution of 1/3° × 1/3° and 40 vertical sigma layers60, and forced by 3hourly 474 

Japanese 55-year atmospheric reanalysis - drive ocean (JRA55-do61) fields (e.g., surface wind, 475 

heat flux and precipitation) from 1958-2017, which are the JRA55 reanalysis surface fields 476 

adjusted relative to reference datasets. Along the northern and southern open ocean 477 
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boundaries, the mixed radiation‐nudging boundary condition is used, where temperature, 478 

salinity, and horizontal velocity are relaxed to the monthly values of ORAS4 reanalysis data with 479 

the nudging time scale of 360 days (3 days) for the outflow (inflow) case. The open ocean 480 

boundary conditions allow the influence of global sea level rise on Indonesian coast because 481 

ORAS4 reanalysis assimilated observed data (including satellite altimeter data), and there is no 482 

constraint for volume conservation over a specific ocean basin.   483 

Two experiments were performed for the 1958-2017 period: ROMS main run (MR) & ROMS 484 

WSTRESS run. The MR is the complete solution, and the WSTRESS run is the same as the MR 485 

except for fixing the forcing fields used to calculate heat and freshwater fluxes to their 486 

climatology but keeping 3hourly wind stress forcing as in the MR. Therefore, ROMS WSTRESS 487 

run isolates oceanic variability driven only by surface wind stress.  488 

A recent version of HYCOM was set up for the global ocean with 50 hybrid layers, 1/2°x1/2° 489 

resolution, and daily surface forcing fields from JRA55 reanalysis dataset from 1958-2017. Note 490 

that global sea level rise due to land ice melting, which contributes ~44% during the satellite 491 

altimetry era16, is not included in the model. 492 

Overall, the reanalysis data and model simulations successfully capture the satellite observed 493 

SLAs near the Java coast, with correlation with satellite SLA being 0.98 for ORAS4 reanalysis, 494 

0.95 for ROMS and 0.90 for HYCOM (Fig 2b; supplementary Table 2). The linear trend of ROMS 495 

main run SLA is 6.50±1.16 mm/yr, which is within the uncertainty range of satellite SLA trend of 496 

5.59±0.99 mm/yr for the 1993-2017 period. The ORAS4 reanalysis data – which assimilate 497 

satellite SLA – underestimates the sea level rise trend, as does HYCOM, with both exceeding the 498 
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uncertainty range of satellite data. This is likely due to the coarser 1°x1° resolution of ORAS4 499 

reanalysis data with the nearest grid point being farther away from the tide gauge location 500 

compared to the 0.25°x0.25° satellite observation. The global HYCOM significantly 501 

underestimates the sea level rising trend along the Indonesian coast, in part due to the missing 502 

land ice melting effect in the model. The underestimation of the sea level rise trend in HYCOM 503 

without including land ice melting, and the adequate simulation of sea level rise trend in ROMS 504 

that includes the effect of land ice melting by using ORAS4 reanalysis data as boundary 505 

conditions, further confirm the impact of global sea level rise on Indonesian coastal sea level 506 

change.  507 

Despite errors in simulating the sea level rise trend in HYCOM and ORAS4 reanalysis, the 508 

increased occurrence of HEX events during 2010-2017 is consistent in all datasets. Since ROMS 509 

applies open boundary conditions with 3hourly forcing fields, it contains global sea level rise 510 

and storm surge signals like the tide gauge data. This is probably why the ROMS SLAs are 511 

somewhat larger than satellite data, as the tide gauge observation (Figs 2a-2b). Due to the 512 

stronger amplitudes, more HEXs are identified in the tide gauge record and the ROMS 513 

simulation based on the 90th percentile threshold of satellite data. Since this study aims for 514 

climate-driven longer timescale extremes, we focus on the events identified using monthly 515 

satellite altimeter data.  516 

After removing the 1993-2017 trend, the standard deviation of satellite SLA is 0.12m, compared 517 

to the 0.13m in ORAS4, 0.15m ROMS, and 0.13m in HYCOM. All of them are within the 0.04m 518 

difference between tide gauge and satellite data (supplementary Table 2), suggesting that the 519 
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sea level variability magnitudes in both reanalysis data and model simulations fall in the 520 

uncertainty range of observations.   521 

The time-evolution of HEX strength, represented by the 90th percentile of SLAs with an 8-year 522 

sliding window, is well simulated by ROMS compared to satellite data for their overlapping 523 

period (Fig 2c, solid blue and purple curves). In comparison, the ORAS4 reanalysis data 524 

underestimate the HEX magnitude during the satellite era (Fig 2c, solid red), likely due to its 525 

underestimation of the rising trend. The spatial patterns and amplitudes of SLA and SSTA 526 

associated with the CHHEX and HEX events from ROMS and HYCOM (supplementary Fig 4) 527 

agree well with those of satellite observations (Fig 3). The good agreement between 528 

observations and model simulations (including ORAS4 reanalysis) suggests that the signals we 529 

identify exceed cross-model and cross-dataset differences, which give us confidence in using 530 

the models - especially the ROMS - to explore the relevant forcing and processes controlling the 531 

HEXs and CHHEXs. 532 

Coupled global climate model experiments using CESM1 533 

To assess the role played by ENSO and its decadal variability in affecting Indian Ocean sea level, 534 

we perform a ten-member ensemble of the tropical Pacific Ocean pacemaker experiments 535 

using the National Center for Atmospheric Research (NCAR) Community Earth System Model 536 

version 1 (CESM120) from 1920-2019. In this experiment ensemble, SST in the central and 537 

eastern tropical Pacific is restored to observations but is fully coupled to the atmosphere 538 

elsewhere. The 10-member ensemble mean fields of the pacemaker experiments estimate the 539 

Pacific impacts on the Indian Ocean through both atmospheric bridge and oceanic connection 540 
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via the Indonesian Throughflow. Even though the model has some biases62, its results provide 541 

valuable assessments of remote forcing from the Pacific especially in the context of analyzing 542 

these results with observations and standalone OGCM simulations.  543 

ROMS mixed layer heat budget analysis 544 

Time evolution of the mixed layer temperature, ௠ܶ௜௫, is governed by the following equation:  545 

߲ ௠ܶ௜௫

ݐ߲
=
ܳ௡௘௧
௣ℎܥߩ

−
ܳ௦௪ሺݖ = −ℎሻ

௣ℎᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥܥߩ
ୗ୳୰୤ୟୡୣ ୦ୣୟ୲ ୤୪୳୶
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where ܶ is the sea water temperature, ߩ represents the sea water density, ܥ௣ is the specific 549 

heat of the sea water, (ݑ,  denote zonal, meridional and vertical velocity, respectively, and 550 (ݓ,ݒ

ℎ is the mixed layer depth. The mixed layer depth ℎ is defined as a depth at which the potential 551 

density increases by 0.01 ݇݃/݉ଷ from the sea surface. ܳ௡௘௧ is the net surface heat flux and 552 

ܳ௦௪(ݖ = −ℎ) is the shortwave radiation at the bottom of the mixed layer. Additionally, ߢு and 553 

 ௩ are horizontal and vertical mixing coefficients, and ∆ܶ is the temperature difference 554ߢ

between the mixed layer and upper thermocline. The first two terms on the right-hand side 555 

represent the surface heat flux forcing; the third-to-fifth terms are zonal advection, meridional 556 

advection, and horizontal mixing. The last three terms represent subsurface processes: vertical 557 
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advection, vertical mixing, and entrainment, respectively. The mixed layer heat budget is closed 558 

in the ROMS experiment60,63.  559 

The Bayesian dynamical linear model 560 

To quantify forcing by remote equatorial wind and local longshore wind on sea level variability 561 

along the Indonesian coast, we apply the Bayesian dynamic linear model (DLM) with two 562 

predictors. The Bayesian DLM consists of two equations: an “observation equation” analogous to 563 

the conventional multiple linear regression model (equation (2) below), and a “state equation” 564 

that controls the dynamical evolution of coefficients bi (i=0,1,2) represented by equation (3).  565 

Y(t) = b0(t)+b1(t)X1 (t)+b2(t)X2 (t) + ε(t), ε(t) ~N(0,V(t)), (2)  566 

bi(t)= bi(t-1)+wi(t),     wi(t) ~N(0,Wi(t)). (3) 567 

In equation (2), X1 and X2 are the predictors, and Y(t) is the predictand. The state equation 568 

(3) means that the predictive distribution of bi at each time step t (i.e., posterior) is updated based 569 

on its previous step t-1 distribution (i.e., prior) and the probability of observations Y conditional 570 

on bi  at time t (i.e., the likelihood) using Bayes theorem22. Coefficients bi are obtained by applying 571 

Kalman filtering and smoothing, with the regression coefficient of conventional linear regression 572 

as its initial guess64,65. The b0(t) term represents a time-varying “intercept” whose variability is 573 

unexplained by the predictors Xi, while the bi  terms represent the non-stationary influence of Xi 574 

on Y, which is superior to the conventional regression model with stationary bi  which can only 575 

estimate stationary impacts of the predictors64. Terms ε(t) and wi(t) are independent white noise 576 

or errors, distributed normally with a mean of 0 and variances of V(t) and Wi(t). Here, we use 577 
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zonal wind stress anomalies averaged over the equatorial area (65ºE-95ºE, 5ºS-5ºN) and 578 

longshore wind stress averaged along Sumatra and Java coast (supplementary Figure 2) as the 579 

two predictors (X1 and X2) and sea level anomalies along Indonesian coast as the predictand, Y(t). 580 

Time series of the equatorial wind (X1) leads Java coast sea level anomaly by one month to 581 

consider the propagation time of equatorial Kelvin wave, but the local longshore wind has no lag.  582 

 583 

Data availability 584 

All the observational data sets used in this research are publicly available from links provided in 585 
the Methods section. The model data generated in this study, including the OGCM experiments 586 
using ROMS and HYCOM, CESM1 Pacific Pacemaker experiments and the Bayesian dynamic 587 
linear model that were used to produce the Figures in the main text (Figures 1-6) have been 588 
deposited at the University of Colorado Scholar database (doi: https://doi.org/10.25810/mzt8-589 
w960).  590 

Code availability 591 

The IDL and MATLAB codes for carrying out the analyses and producing the figures are 592 
deposited at a public repository at the University of Colorado Scholar (doi: 593 
https://doi.org/10.25810/mzt8-w960).  594 

  595 
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Figure legends 772 

Figure 1: Satellite observed sea surface temperature (SST) and surface wind stress together 773 

with trend maps of satellite sea level, surface wind, and SST. a, Mean SST and surface wind 774 

stress for the 1989-2018 period. b, Linear trend of satellite sea level and cross-calibrated 775 

multiplatform surface wind stress from 1993-2018. c, Linear trend of satellite SST for 1993-776 

2018. The tide gauge location at Java coast is marked by “o” in b and c; its data is shown in Fig 777 

2a. 778 

Figure 2. Time series of observed and model simulated monthly mean sea level anomaly (SLA) 779 

and sea surface temperature anomaly (SSTA) from 1993-2018 near the Cilacap B tide gauge 780 

location at Java coast (marked by “o” in Figs 1b-1c), together with 90th percentile of 8yr sliding 781 

SLA since 1960s. a, Monthly mean SLA from tide gauge during 2007-2016 (blue curve) and from 782 

the multiple-satellite-merged altimeter data at the nearest grid point (black) together with 783 

satellite observed monthly mean SSTA (red curve). The SLAs are relative to a 60yr (1958-2017) 784 

mean of ECMWF Ocean Reanalysis System 4 (ORAS4) data at the nearest location. Values 785 

exceeding the 90th percentile of altimeter data (horizontal blue line) are identified as extreme 786 

events (indicated by vertical-dotted lines) and dubbed Height EXtreme (HEX). Red dotted lines 787 

indicate HEXs co-occurred with marine heatwaves, defined as SSTA (relative to a 30yr mean 788 

from 1989-2018) exceeding 90th percentile (horizontal red line). We dub these events 789 

Compound Height and Heat EXtreme (CHHEX). b, Monthly SLAs from satellite (black, same as 790 

that of a), ORAS4 reanalysis (red), and ocean general circulation model simulations from ROMS 791 

and HYCOM (blue and purple). c, The time-evolution of 90th percentile of SLA with an 8-year 792 
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sliding window from ORAS4 reanalysis (red) & ROMS simulation (blue) with & without the 1960-793 

2017 linear trend (solid & dashed), and from satellite altimeter data (purple) with & without 794 

anthropogenic global sea level rise for 1993-2017 (solid and dashed). Note that the last value in 795 

2013 represents the 90th percentile for 2010-2017. See Methods for data and model details. 796 

Figure 3. Composite of satellite-observed monthly sea level anomaly (SLA), surface wind stress 797 

anomaly, and sea surface temperature anomaly (SSTA) for the peak months of the six CHHEX 798 

and nine HEX alone events.  All anomalies are relative to 1993–2018 mean. a & b, Composites 799 

of SLA (color) and surface wind stress (arrows) for CHHEX & HEX alone events; c & d, 800 

Composites of SSTA (color) and surface wind stress (arrows) for CHHEX & HEX alone events. 801 

Wind vectors are the average for the event peak month and the preceding month, considering 802 

the propagation time of equatorial Kelvin waves that impact SLA and SSTA.  803 

Figure 4. Time series of monthly sea level anomalies (SLAs) averaged over Java coastal area 804 

(supplementary Fig 1) from model simulations, anthropogenically induced global mean sea level 805 

rise (SLR),  climate indices, and map of sea level and surface wind anomalies averaged for 2010-806 

2017.  Calculations are done for 1960-2017 but only 1993-2017 is shown for clarity. The 1960-807 

2017 mean is removed from each time series. a, ROMS simulated total SLA (black) and its linear 808 

trend (blue), observational based estimate of anthropogenic SLR (dark red), and ROMS 809 

seasonal-to-interannual SLA with anthropogenic SLR and 8yr lowpass filtered decadal SLA 810 

removed (cyan). b, ROMS decadal SLA (black), the sum of decadal SLA and anthropogenic SLR 811 

(dark red, which is the difference between the black and cyan curves in a), ROMS SLA forced 812 

only by surface wind stress (cyan), ROMS SLA from Bayesian dynamic linear model (DLM) due to 813 
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equatorial zonal wind and local longshore wind forcing (red), and SLA from the 10-member 814 

ensemble mean of Pacific Pacemaker experiment using Community Earth System Model version 815 

1 (CESM1) (blue), which assesses the impacts of tropical Pacific sea surface temperature 816 

variability.  c, Normalized indices of decadal variability (8yr lowpassed) of reversed El Niño-817 

Southern Oscillation (-ENSO, blue) and Indian Ocean Dipole (-IOD; cyan). d, Maps of ROMS 818 

decadal  SLAs and its forcing wind stress anomalies averaged for 2010-2017.  819 

Figure 5.  Time series of ROMS monthly sea level anomalies (SLAs) averaged over Java coastal 820 

area and climate indices. a, Seasonal-to-interannual SLA from ROMS main run experiment 821 

(total, black) and from wind-stress forced experiment (blue), together with the mean seasonal 822 

cycle of SLA for 1960-2017 (purple). b, Interannual SLA (seasonal cycle removed) from ROMS 823 

main run (black) and from Bayesian DLM due to remote equatorial zonal wind and local 824 

longshore wind forcing (red), and due only to remote equatorial wind forcing (blue). c, 825 

Normalized reversed indices of seasonal-to-interannual ENSO (-ENSO; black) and IOD (-IOD; 826 

blue). d, Indian monsoon wind index (black; one month lead) and Australian-Indonesian 827 

monsoon index (blue). Vertical dotted lines in each panel show the HEX (black) and CHHEX (red) 828 

events. See Methods for definition of each climate mode index.  829 

 830 

Figure 6. Composites of ROMS simulated sea surface temperature anomaly (SSTA) and wind 831 

anomalies (from JRA55-do reanalysis data that force ROMS) for the six CHHEXs and time series 832 

of SSTA & its budget terms averaged in Java coastal area (white box). a, Composite SSTA (color) 833 

and surface wind (arrows) anomalies with the 1993-2017 mean removed but seasonal 834 
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variability retained to be consistent with Fig 2 from observations. b, Same as a but with 835 

seasonal cycle removed. c, Timeseries of mean seasonal variability (black) and interannual 836 

variability with  seasonal anomaly removed (dark red). d, Terms of heat budget analysis for 837 

mixed layer SSTA (dark red curve in b): time changing rate of SSTA from all processes (dT/dt, 838 

black), from net surface heat flux (cyan), from subsurface processes (upwelling+mixing, dark 839 

red) and horizontal advection+mixing (green). Units: degree per month.  e, Same as c except for 840 

depth of 20°C isotherm (D20) from ROMS and ORAS4 interannual D20A, representing 841 

thermocline variability.  842 
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