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Abstract—Millimeter wave (mmWave) and sub-terahertz com-
munication systems rely mainly on line-of-sight (LOS) links
between the transmitters and receivers. The sensitivity of these
high-frequency LOS links to blockages, however, challenges the
reliability and latency requirements of these communication
networks. In this paper, we propose to utilize radar sensors to
provide sensing information about the surrounding environment
and moving objects, and leverage this information to proac-
tively predict future link blockages before they happen. This
is motivated by the low cost of the radar sensors, their ability
to efficiently capture important features such as range, angle,
velocity of the moving scatterers (candidate blockages), and their
capability to capture radar frames at relatively high speed. We
formulate the radar-aided proactive blockage prediction problem
and develop a solution with deep neural networks. To accurately
evaluate the proposed solutions, we build a large-scale real-
world dataset, based on the DeepSense framework, gathering
co-existing radar and mmWave communication measurements of
more than 10 thousand data points and various blockage objects
(vehicles, bikes, humans). The evaluation results, based on this
dataset, show that the proposed approaches can predicted future
blockages 1 second before they happen with more than 90%
F1 score (and more than 90% accuracy). These results, among
others, highlight a promising solution for blockage prediction and
reliability enhancement in future wireless mmWave and terahertz
communication systems.

Index Terms—Radar, blockage prediction, machine learning,
FMCW, mmWave, 6G

I. INTRODUCTION

Future wireless networks attempt to meet the increasing de-
mand on high data rates, low latency, and high reliability. More
extensive usage of the higher frequency bands, millimeter-
wave (mmWave) and sub-terahertz (sub-THz), is one promi-
nent direction [1], [2] for satisfying the high data rate demands.
However, the propagation characteristics at these frequencies
result in two important features for mmWave/sub-THz com-
munication systems: (i) These systems rely mainly on line-of-
sight (LOS) links to guarantee sufficient receive signal power,
and (ii) this dependency on LOS links coupled with the high
penetration loss at mmWave/THz bands make these commu-
nication systems very sensitive to blockages. In particular,
if these links are blocked, for example by moving objects,
this could cause sudden performance degradation or even a
link disconnection, which highly challenges the reliability and
latency of these networks. This motivates the research for
approaches that overcome the blockage challenges in high-
frequency (mmWave/sub-THz) wireless networks.

Given that the LOS link blockages depend heavily on the
positions of the communication terminals and the blockages

in addition to their geometric properties (size, height, etc.),
sensing the environment could potentially provide useful in-
formation for proactively predicting link blockages before they
happen [3]. Predicting future blockages enables the wireless
network to make proactive decisions such as proactively hand-
ing off the user to another basestation or proactively switching
to another beam. In [3], beam sequences and recurrent neural
networks were leveraged to predict future stationary blockages,
and in [4], the sub-6GHz channels were used to infer mmWave
blockages. To enable dynamic (moving) blockage prediction,
[5] proposed to leverage RGB camera data which provide
rich information about the moving objects in the surrounding
environment. While cameras are relatively simple to deploy,
their usage is sometimes associated with privacy concerns and
its operation may be limited in the scenarios with low light or
bad weather conditions.

In this paper, we propose to leverage radar sensors to
obtain useful information about the moving objects (candidate
blockages) in the surrounding environment and use this infor-
mation for proactive mmWave blockage prediction. The use of
radar sensors (such as frequency-modulated continuous-wave
(FMCW) radars) is motivated by (i) their off-the-shelf avail-
ability at relatively low-cost, (ii) their capability to measure
velocity (Doppler) in addition to range and angle, (iii) their
potential high-frequency low-latency measurements and (iv)
the lack of privacy concerns with radar sensory data. With this
motivation, we formalize the radar-aided proactive blockage
prediction problem and present a deep learning solution. In the
our approach, we utilize the range-angle maps obtained from
the radar measurements and develop a deep neural network
based solution to predict future blockages.

To evaluate the performance of the proposed solution, we
build a large-scale real-world dataset for an outdoor scenario,
based on the DeepSense framework [6], with coexisting radar
and mmWave communication data. The constructed dataset
comprises around 10 thousand data points from more than
300 unique blockage trajectories including vehicles, bikes, and
humans. With this dataset, our evaluation results show that the
deep learning approach gives promising blockage prediction
accuracy gains with the advantage of design simplicity. For
example, the results indicate that the developed solutions
could predicted future blockages 1 s before they happen with
more than 90% F1 score (and more than 90% accuracy).
These results, among others, highlight a promising solution
for blockage prediction and reliability enhancement in future
wireless communication systems.
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Fig. 1. An illustration of the adopted system model. The mmWave LOS
communication between the user and basestation is about to be interrupted
by the moving bus due to the potential blockage of the direct communication
path.

II. SYSTEM MODEL

The considered system comprises a basestation commu-
nicating with a stationary user. The basestation adopts two
main components: (i) A mmWave communication transceiver
equipped with a phased array communicating with the sta-
tionary user and (ii) an FMCW radar. The radar is utilized
to sense the environment and predict the LOS link blockages
that are caused by the objects (e.g., vehicles) moving between
the basestation and user. An illustration of the system model
is shown in Fig. 1. In the following two subsections, we
briefly describe the system and signal models of the adopted
communication and radar components.

A. Radar Model

In our system, the basestation is equipped with an FMCW
radar. The radar device provides measurements for the commu-
nication environment around the basestation, which could be
leveraged for predicting future blockages. The radar captures
one measurement every τf seconds. In each measurement, the
FMCW radar transmits a frame of L chirps. Each chirp has
a linearly increasing frequency starting at an initial frequency
fc and ending at a stop frequency fc + µt, given by

stx
chirp(t) =

{
sin(2π[fc t+ µ

2 t
2]) if 0 ≤ t ≤ τc,

0 otherwise,
(1)

where µ = B/τc is the slope of the linear chirp signal with
B and τc representing the bandwidth and duration of the
chirp, respectively. As mentioned, each radar measurement
is collected from a frame of L chirps, and the chirps are
transmitted with a waiting time τs between them. After the
transmission of L chirps, no other signals are transmitted until
the next frame. The transmit signal of the radar frame can be
written as

stx
frame(t) =

√
Et
L−1∑

l=0

schirp(t− (τc + τs) · l), 0 ≤ t ≤ τf (2)

where
√Et is the transmitter gain.

The radar transmit signal is reflected on the different objects
in the environment, and is received back at the radar. At the

receiver, the signal obtained from an antenna is passed through
a quadrature mixer that combines the transmit with receive
signals, producing the in-phase and quadrature components.
After that, a low-pass filter is applied to the mixed signals.
The resulting signal, referred to as intermediate frequency (IF)
signal, reflects the frequency and phase difference between the
transmit and receive signals. If a single object exists in the
environment, then the receive IF signal of a single chirp can
be written as [7]

srx
chirp(t) =

√
EtEr exp

(
j2π

[
µτrtt+ fcτrt −

µ

2
τ2
rt

])
, (3)

where
√Er is the channel gain of the object which depends

on the radar cross section (RCS) and path-loss, τrt = 2d/c
is the round-trip delay of the signal reflected from the object.
The symbol d denotes the distance between the object and the
radar, and c represents the speed of light.

The receive IF signal, srx
chirp(t), is then sampled at the

sampling rate of the ADC, fs, producing S samples for each
chirp. Given the L chirps per frame, and assuming an FMCW
radar with Mr receive antennas (with an RF chain for each
antenna), each radar measurement produces Mr · S · L ADC
samples. We use R ∈ CMr×S×L to denote the receive radar
ADC samples (raw data) of each measurement. Please refer
to [7], [8] for more information about the adopted FMCW
radar and its hardware architecture. Next, we describe the
communication and blockage models.

B. Communication and Blockage Models

The considered basestation employs a mmWave transceiver
with MA antennas and use it to communicate with a single-
antenna mobile user. We adopt a narrowband channel model
and write the channel between the basestation and user as

h̃ = h̃LOS + h̃NLOS, (4)

where hLOS and hNLOS are the channel coefficients due to the
LOS and NLOS paths. At the downlink, the basestation utilizes
the beamforming vector f ∈ CMA to transmit the symbol sd
to the user. With this model, the receive signal at the user can
be expressed as

y =
√
Ec h̃Hfsd + n, (5)

where
√Ec is the transmit gain of the basestation, and n ∼

CN (0, σ2) is the additive white Gaussian noise with σ2 being
the variance. The beamforming vector f is assumed to be
selected from a pre-defined codebook F , i.e., f ∈ F . In par-
ticular, the basestation selects the optimal beamforming vector
f? that maximizes the receive beamforming gain |h̃Hf |2. In
this work, Assuming that f? is selected, we write the effective
channel as

h = h̃Hf? = hLOS + hNLOS, (6)

with hLOS and hNLOS are the effective channel gains of the
LOS and NLOS components.

Incorporating Blockages: Adopting a block fading channel
model, we define h[t] and R[t] as the channel gain and radar
measurements at time instance t ∈ Z+. Now, we can define



the blockage indicator at time instance t by b̃[t] ∈ {0, 1},
which indicates the LOS path being blocked (̃b[t] = 1) or
not (̃b[t] = 0). With the blockage indicator, we can write the
channel gain at time instance t as

h[t] = (1− b̃[t]) · hLOS[t] + hNLOS[t]. (7)

We note that for the mmWave and THz frequency commu-
nication bands considered in this paper, there are usually a
limited number of NLOS paths [9], and the channel gains with
the blockage are comparably smaller, i.e., |hLOS| � |hNLOS|.
Next, we formulate the blockage prediction problem.

III. RADAR AIDED BLOCKAGE PREDICTION:
PROBLEM FORMULATION

In this section, building upon the system model described
in Section II, we define the radar-based blockage prediction
problem. This paper aims to predict future blockages utilizing
the current and previous radar measurements. Formally, we
consider the latest (past and present) To radar observations to
predict a blockage within the next Tp time-slots. Let us denote
the set of the To latest radar measurements by

X[t] = {R[t− To + 1], . . . , R[t]} . (8)

With this information, our purpose is to predict the blockage
status in the following Tp time-slots, i.e., {t+ 1, . . . , t+ Tp}.
If there is any blockage during these slots, the blockage status
for the Tp slots, b[t], is considered as blocked. Mathematically,
we can write

bt =

Tp∨

tp=1

b̃[t+ tp], (9)

where ∨ is the logical OR operation. With this notation,
we define a function ΨΘ that maps the stack of the radar
measurements X[t] to the blockage status b[t]. Mathematically,
we can write

ΨΘ : X[t]→ b[t]. (10)

The function ΨΘ (with its parameters Θ) returns the blockage
status given the radar measurements. Hence, our purpose in
this paper is to design a function ΨΘ that approximates the
function defined in (10) and the optimization of its parameters,
Θ. With the optimal function and parameters being denoted
by Ψ? and Θ?, we can formalize the problem by

Ψ?
Θ? = arg min

ΨΘ

1

T

T∑

t=1

L(ΨΘ(X[t]), b[t]), (11)

where T is the total number of time-slot samples and L(., .)
is the loss function of the predictions. In the next section, we
present our solution.

IV. RADAR AIDED BLOCKAGE PREDICTION:
A DEEP LEARNING SOLUTION

In this section, we propose a deep learning solution for the
radar-aided blockage prediction problem defined in Section III.
The solution learns a mapping function ΨΘ, in (11), and its
variable parameters, Θ, to solve the considered problem. Our
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Fig. 2. The schema of the proposed deep learning solution. The raw data is
first processed to obtain the range-angle maps with pre-processing. The series
of the maps are then jointly fed to a neural network that comprises feature
extraction, LSTM and blockage prediction sub-networks.

solution in this section does not just adopt a deep neural
network model, but also incorporate a domain-knowledge pre-
processing approach to present interpretable inputs to the
learning model. Specifically, the considered approach starts
by pre-processing the radar measurements to extract the range-
angle maps. Then, leveraging the understanding of the object
tracking problem of radars, we construct a deep neural network
architecture, consisting of three stages that aim to extract
the relevant features, exploit the sequential correlation, and
make classification decisions. This is done via a combination
of convolutional neural networks (CNNs), long short-term
memory (LSTM) networks, and fully-connected layers, which
complement each other and present a promising solution. In
particular, the range-angle maps are fed to the developed
model that comprises (i) a CNN-based feature extraction
component to extract the essential information from the maps,
(ii) an LSTM component to take advantage of the time corre-
lations, and (iii) a linear prediction layer to return the blockage
status. The proposed solution, along with its components, are
depicted in Fig. 2. Next, we detail the components of the
developed solution, namely, pre-processing; feature extraction,
LSTM, and prediction layers.

Pre-processing: The radar measurements R[t] are first
processed to obtain range, angle and velocity information. We
apply the pre-processing to initially obtain the radar cube of
the range, angle and velocity, which is used for the detection of
the moving blockage object. To extract the range, angle and
velocity information from a radar measurement R[t], three
fast Fourier transforms (FFTs) are applied. In summary, (i)
an FFT in the direction of the time samples, referred to as
the range FFT, is applied to obtain the range information,
(ii) an FFT through the chirp samples, called as the Doppler
FFT, is applied for the velocity information, and (iii) for the
angle information, an FFT through the direction of the antenna
samples, referred to as the angle FFT, is applied. We consider
the FFTs of size NS , NL, and NM , and denote the resulting
processed radar information by RRC[t] ∈ CNM×NS×NL ,
referred to as the radar cube. If we denote the 3D FFT
operation by F3D(.), the radar cube can be mathematically
expressed as RRC[t] = F3D(R[t]). In the radar cube, the
2D matrices for each chirp sample contains the range-angle
maps, which can be further reduced by summing over different
chirp samples. Thus, we can write the transformation for



TABLE I
ARCHITECTURE OF THE FEATURE EXTRACTION NETWORK

NN Layers Range-Angle (RRA)
Input 1× 256× 64

CNN-1 Output Channels: 4, Kernel: (3, 3), Activation: ReLU
CNN-2 Output Channels: 8, Kernel: (3, 3), Activation: ReLU

AvgPool-1 Kernel: (2, 2)
CNN-3 Output Channels: 16, Kernel: (3, 3), Activation: ReLU

AvgPool-2 Kernel: (2, 2)
CNN-4 Output Channels: 4, Kernel: (3, 3), Activation: ReLU

AvgPool-3 Kernel: (2, 2)
CNN-5 Output Channels: 2, Kernel: (3, 3), Activation: ReLU
FC-1 Input Size: 512, Output Size: 256, Activation: ReLU
FC-2 Input Size: 256, Output Size: 64, Activation: ReLU

the range-angle maps, denoted by RRA ∈ RNM×NS , as
RRA[t] =

∑NL

n=1|RRC[t](:,:,n))|. The resulting range-angle
maps of different time samples are ready for the deep learning.

Feature Extraction: The range-angle maps contain infor-
mation about the receive power levels for each point in the
maps. However, not all of this information is useful for the
prediction of the blockages since only the moving objects
are relevant and may cause a blockage. Hence, the irrelevant
information can be minimized by extracting a smaller number
of features from the range-angle maps. This lower-dimensional
representation helps to ease the complexity of the following
LSTM architecture. To exemplify a similar approach from the
video processing, an object detector network can be adopted to
find the objects before tracking them through the LSTM layers.
In addition, this dimensionality reduction does not necessarily
degrade the performance [10].

Therefore, as the first part of the neural network, we adopt
a CNN architecture to reduce the dimensionality and extract
the essential local features. For this network architecture, we
adopt a sequence of the convolutional, average pooling and
fully-connected layers, similar to the architecture adopted for
radar-aided beamforming in [11]. In our design, this part of the
network does not aim to extract time-dependent information,
and hence, the range-angle maps from different time samples
can be fed to the same network separately. Similarly, the
network can be trained with the gradient due to the each
output separately, providing more samples and faster training
opportunity. Formally, the network takes a single range-angle
map RRA[t] as the input, passes the input through its layers,
and returns the extracted features of this map, rRA[t], as the
output. The architecture of the feature extraction network is
summarized in Table I.

Long-Term Short-Memory Networks: After the feature
extraction, the dependency of the features across the different
time samples can be captured. For this purpose, the family
of recurrent neural networks, which contains sequential con-
nections between the cells of different inputs, can be utilized.
In this work, we adopt the LSTM [12] networks due to their
successful applications with time-sequence data.

To detail, an LSTM network consists of multiple LSTM
cells, each taking a single entry of the time-sequence data.
These LSTM cells are connected to each other in a sequential

manner, and each can return an output vector, resulting in an
output sequence of these vectors. For the blockage prediction,
we only adopt the vector returned from the latest cell. For-
mally, the network takes {rRA[t− v + 1], . . . , rRA[t]} as the
input, and the last cell returns the intermediate output, r̃[t] of
the size of rRA[t], to be utilized by the classification network.

Blockage Prediction: Finally, the output of the LSTM is
fed to another set of fully-connected neural network layers
to obtain the prediction of the blockage. The input of the
blockage prediction layers is of the size of a feature vector
extracted from a single range-angle map. For the prediction
of the blockage, a final set of layers returning the blockage
prediction output is required. For this purpose, we utilize a
simple neural network of a single fully-connected layer. This
final layer only returns a single prediction as a soft informa-
tion, i.e., b̂′[t] ∈ [0, 1], which is later converted to the binary
value of the blockage prediction by b̂[t] = 1{b̂′[t] > 0.5}.

Neural Network Training and Loss Function: The neural
network is trained by adopting the formulation of (11), only
over the parameters Θ. To clarify, as the design of the function
ΨΘ is fixed by the proposed process, we only aim to find the
parameters that minimize the loss over the data samples by

Θ? = arg min
Θ

1

L

T∑

t=1

L
(
b̂′[t], b[t]

)
, (12)

where the loss function is defined as the binary cross-entropy
as the problem is a binary classification problem. For the
neural network objective defined in (12), the error can be
computed at the output of the network, and it can be backprop-
agated through the layers with gradient descent (or alternative)
methods, optimizing the parameters Θ.

V. EXPERIMENTAL SETUP AND REAL-WORLD DATASET

For a realistic evaluation of the proposed radar and machine
learning aided blockage prediction solution, we collected a
large-scale real-world dataset using a hardware testbed with
co-existing radar and wireless mmWave equipment, follow-
ing the DeepSense dataset structure [6]. Using the collected
measurements/raw dataset, we built our development dataset
for the radar-aided blockage prediction task. In this section,
we describe our testbed, raw measurement database, and
development dataset.

A. DeepSense Tesbed-3

We adopt Testbed 3 of the DeepSense 6G dataset [6] for
the data collection. Testbed 3 comprises two units: (i) Unit
1, a fixed receiver acting as a basestation and (ii) Unit 2, a
static transmitter. Unit 1 includes a 60 GHz uniform linear
array (ULA) with MA = 16 elements, and an FMCW radar
board (TI AWR2243BOOST) equipped with 3 transmitter
and 4 receiver antennas. Meanwhile, Unit 2 comprises an
omni-directional static transmitter. The phased array of Unit 1
utilizes an oversampled beamforming codebook of 64 receive
beams. In the radar, only a single transmit antenna along
with the 4 receive antennas are activated. The radar (chirp)
parameters are selected based on the short-range radar example



(a) The basestation antenna array and radar device on the setup (b) The system setup with a car on sight (c) Satellite image of the scenario

Fig. 3. The testbed and scenario details are shown from (a) the front-view, (b) the back-view with a potential blockage car on sight, (c) the satellite. In (a), a
closer look on the testbed with mmWave array and FMCW radar is provided. As shown in (b) and (c), the transmitter is located on the east side of the road.

of TI [8], providing a maximum range of 45m and velocity of
56 km/s. The bandwidth of the utilized chirp frame covers B =
750 MHz bandwidth with a chirp slope of µ = 15 MHz/µs
over L = 128 chirps/frame and S = 256 samples/chirp. Next,
we detail the collection scenario and development dataset. In
Fig. 3(a), a picture of the testbed is presented.

B. DeepSense Scenario 30

To evaluate our solution, we construct Scenario 30 of the
DeepSense 6G dataset [6]. In this scenario, a basestation
is placed on the sidewalk of a road, directed towards the
transmitter, which is placed on the other side of the road. The
transmission is blocked when the buses, cars, bicycles and
pedestrians are passing through the LOS path. The received
power via each beamforming vector and radar measurements
are saved continuously to be processed later. In the construc-
tion of the dataset, the beam providing the most power and
the corresponding power level are saved as the optimal beam-
forming vector and the maximum power level. For labeling
the blockage status of the samples, first, a threshold level for
the maximum receive power level is determined. The samples
providing power level below this threshold are considered as
blockages, which are further confirmed manually through the
inspection of the RGB images that are captured from the
camera of Unit-1. The sampling periodicity is determined as 9
samples/s. We illustrate the scenario details with the pictures
in Fig. 3.

C. Development Dataset

To build the development dataset for the considered block-
age prediction task, we reduce the number of measurements
by keeping only the data points relevant to the blockage, and
generate the data samples of sub-sequences for the blockage
task. In the following, we refer to each measurement as
the data point, and each set of measurements for blockage
prediction task as a sample. For the development dataset, we
first filtered the raw dataset to keep only 36 data points before
a blockage and 10 data points after a blockage, including the
first blockage instance. The filtered dataset comprises 14624
data points. These data points consist of 307 unique blockage
sequences, which are later utilized to construct the input

time-series samples and blockage/status labels of different
lengths. For the training, validation and test samples, the
sequences are split via 70/20/10% ratio to provide unseen
blockage sequences in the test and validation sets. Further,
with an observation window of To = 8 and a prediction
window of Tp = 10, we generate the sub-sequences of data.
These sub-sequences are later utilized to be fed into the
machine learning model and to generate the labels, b, from
the individual blockage status, b̃. To emphasize, Tp = 10 is
a soft selection and used for the generation of the samples
(sub-sequences), i.e., X[t] and b̃[t + tp] ∀tp ∈ {1, . . . , Tp}.
The final development dataset comprises 6965 training, 1808
validation and 907 test samples. The final labels, b[t] are later
generated for each sample based on the selected Tp value, as
presented in the section Section VI.

VI. EVALUATION RESULTS

In this section, we evaluate the proposed deep learning
based blockage prediction solution. In the evaluations, we
adopt the prepared sub-sequences with To = 8, as described
in Section V. For different values of simulation parameters,
a different deep learning model is trained. The training is
carried out for up to 30 epochs with the Adam algorithm [13]
using a learning rate of 10−3. An early stopping criterion of
5 epochs is adopted to stop the training and save the model
with minimum validation loss. As the sampling periodicity of
the scenario is designed as 9 data points/s, the frame duration
is taken as τf ≈ 110 ms. We also note that, in the following
results, only the results related to the test set are illustrated.

Balance of the labels: The balance of the labels is important
for the machine learning tasks. It is usually preferable to
have a balanced dataset. In the case it is not provided,
different methods and metrics may be applied for a better
performance and its evaluation. In the blockage prediction
task, it is expected to have an imbalanced dataset with mostly
unblocked samples. Although only the relevant samples are
kept in our development dataset, the labels are generated
based on the blockage interval, and the balance of the dataset
changes with this value. To evaluate the balance, we first
investigate the balance for different blockage interval values
(Tp). There are 951 sub-sequences (samples) in test set. The
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Fig. 4. Distribution of the blockage status labels in the test dataset for different
blockage interval values, corresponding to Tp ∈ {1, . . . , 10}.
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Fig. 5. The performance of the proposed approach for different blockage
intervals given by Tp ∈ {1, . . . , 10} instances of τf = 110 ms.

percentage of the blocked (true) and unblocked (false) labels
are illustrated in Fig. 4. As seen in the figure, the dataset
is imbalanced, especially for small blockage intervals, and a
careful evaluation is required. For this purpose, we adopt F1

score as an evaluation metric. Specifically, F1 score is defined
as the harmonic mean of the precision and recall given by

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

, (13)

where TP, FP and FN represent true positives, false positives
and false negatives, respectively. The F1 score provides a
better metric for the evaluation of the imbalanced classification
problems by penalizing the extreme values of precision and
recall, which indicates the accuracy of true predictions and
accuracy for predicting true labels.

Performance versus blockage interval: In Fig. 5, we show
the accuracy and F1 score of the methodologies for different
time blockage interval values (Tp). In the figure, the accuracy
of the predictions present high-values with around 92− 97%.
However, the F1 scores does not reflect similar results due
the imbalance of the dataset. The F1 score increases with
the larger blockage interval. With smaller prediction intervals,
the solution performs poorly, potentially due to the low-
angular resolution with 4 radar receive antennas. It essentially
shows more successful predictions into the future. The results
highlights the significant potential of radar aided blockage
prediction approach and the proposed deep learning solution.

Complexity: In our deep learning solution, the neural
network adopted in the evaluations only consists of 184, 015
parameters and presents a very small overhead to the system,
especially with the specialized devices for deep learning.

VII. CONCLUSION

In this paper, we proposed radar aided blockage prediction
approaches for mmWave and terahertz wireless networks.
In particular, we developed an LSTM based deep learning
solution using the range-angle maps. We evaluated our so-
lution based on a real-world dataset comprising co-existing
radar and mmWave communication measurements. The results
showed the promising performance of the solution with a low-
complexity. For example, the results indicated that the pro-
posed approach can predict future blockages 1 second before
they happen with an F1 score and accuracy more than 90%.
These results, among others, demonstrate the promising gains
of leveraging low-cost radar sensors to proactively predict
blockages and enhance the reliability of mmWave networks.
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