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Abstract—Adjusting the narrow beams at millimeter wave
(mmWave) and terahertz (THz) MIMO communication systems
is associated with high beam training overhead, which makes
it hard for these systems to support highly-mobile applica-
tions. This overhead can potentially be reduced or eliminated
if sufficient awareness about the transmitter/receiver locations
and the surrounding environment is available. In this paper,
efficient deep learning solutions that leverage radar sensory
data are developed to guide the mmWave beam prediction and
significantly reduce the beam training overhead. Our solutions
integrate radar signal processing approaches to extract the rele-
vant features for the learning models, and hence optimize their
complexity and inference time. The proposed machine learning
based radar-aided beam prediction solutions are evaluated using
a large-scale real-world mmWave radar/communication dataset
and their capabilities were demonstrated in a realistic vehicular
communication scenario. In addition to completely eliminating
the radar/communication calibration overhead, the proposed
algorithms are able to achieve around 90% top-5 beam prediction
accuracy while saving 93% of the beam training overhead. This
highlights a promising direction for addressing the training
overhead challenge in mmWave/THz communication systems.

I. INTRODUCTION

Millimeter wave (mmWave) and terahertz (THz) communi-
cations systems rely on the beamforming gains of the narrow
beams to achieve sufficient receive signal power. Finding the
best narrow beam (or beam pair), however, requires high beam
training overhead, which makes it hard for these systems to
support highly mobile applications such as vehicular, drone, or
augmented/virtual reality communications [1]. One important
observation here is that the beam selection problem highly
relies on the transmitter/receiver locations and the geome-
try/characteristics of the surrounding environment. This means
that acquiring some awareness about the surrounding environ-
ment and the transmitter/receiver locations could potentially
help the mmWave beam selection problem. An efficient way to
acquire this awareness is by using the low-cost radar sensors
such as those initially designed for automotive applications
[2]. With this motivation, this paper investigates the potential
of leveraging radar sensory data to guide the beam selection
problem and provides the first machine learning based real-
world demonstration for radar-aided beam prediction in a
practical vehicular communication scenario.

Leveraging sensory data to guide the mmWave beam se-
lection problem has gained increasing interest in the last few
years [3]-[7]. In [3], [4], the authors proposed to leverage
the sub-6GHz channels that are relatively easier to acquire to
guide the beam selection problem. Acquiring sub-6GHz chan-

nels, however, still requires allocating wireless communication
resources and probably additional control signaling. In [5],
the position information of the user was leveraged by the base
station to select the mmWave beam. The position information,
though, may not be sufficient to accurately determine the best
beam, which is also a function of the surrounding environment,
especially in the non-line-of-sight scenarios. Further, acquiring
accurate enough position information to adjust the narrow
beams (i) may require expensive positioning systems at the
user for the outdoor scenarios, and (ii) is hard to achieve
for indoor communication. This motivated leveraging other
data modalities for beam selection such as vision [6], which
could be acquired at low-cost and without consuming any
wireless communication/control resources, or radar data [7]
which may operate at a different band than that used by the
mmWave communication system. The proposed solution in
[7], however, did not leverage machine learning and relied
only on classical calibration techniques for the radar and
communication systems, which could be expensive and hard
to implement in reality. Further, the results in [7] relied only
on simple computer simulations and are hard to scale to real-
world scenarios and practical hardware.

In this work, we develop machine learning based algorithms
for radar-aided mmWave beam prediction and demonstrate
their performance using a real-world dataset in a realistic
vehicular communication scenario. The main contributions of
the paper can be summarized as follows: (i) We formulate
the radar-aided beam prediction problem considering practical
radar and communication models, (ii) we then develop efficient
machine learning algorithms that leverage classical signal pre-
processing approaches for extracting the relevant features such
as range-velocity, range-angle, and range-angle-velocity maps,
(iii) leveraging a large-scale dataset that is collected using a
77 GHz frequency-modulated continuous wave (FMCW) radar
and communication mmWave phased arrays, we evaluate and
demonstrate the performance of the proposed radar-aided beam
prediction approaches in a realistic vehicular communication
scenario and draw some insights about the various algorithms
in terms of prediction accuracy, processing time, inference
latency, and complexity overhead.

II. SYSTEM MODEL

The considered system in this paper consists of a base
station and a mobile user. The base station employs two
main components: (i) A mmWave communication terminal
equipped with a phased array that is used to communicate with



the mobile user, and (ii) an FMCW radar that is leveraged
to aid the selection of the mmWave communication beam.
The system model is illustrated in Fig. 1. In the next two
subsections, we briefly describe the system and signal models
of the communication and radar components.

A. Radar Model

In our system, the base station adopts an FMCW radar. The
objective of this radar is to provide observations of the environ-
ment. The FMCW radar achieves this objective by transmitting
chirp signals whose frequency changes continuously with time.
More formally, the FMCW radar transmits a linear chirp signal
starting at an initial frequency f. and linearly ramping up to
fe + pt, given by

sin(2r[fet+ 5 ¢2]) if0<t<T,
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where = B/T, is the slope of the linear chirp signal with B
and T, representing the bandwidth and duration of the chirp.

A single radar measurement is obtained from the frame of
duration 7. In each frame, L chirp waves are transmitted with
T, waiting time between them. After the transmission of the
last chirp, no other signals are transmitted until the completion
of the frame. Mathematically, we can write the transmitted
signal of the radar frame as

(1
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where /&; is the transmitter gain. The given transmitted signal
is reflected from the objects in the environment, and received
back at the radar.

At the receiver, the signal obtained from an antenna is
passed through a quadrature mixer that combines the transmit
with receive signals resulting in the in-phase and quadrature
samples. After that, a low-pass filter is applied to the mixed
signals. The resulting signal, referred to as intermediate fre-
quency (IF) signal, reflects the frequency and phase difference
between the transmit and receive signals. If a single object
exists in the environment, then the receive IF signal of a single
chirp can be written as

Shin(t) = VEE exp (j2mlurt + for = £7%) . )

where /&, is the channel gain of the object which depends on
the radar cross section (RCS) and the path-loss, 7 = 2d/c is
the round-trip delay of the reflected signal through the object
with d denoting the distance between the object and the radar,
and c representing the speed of light.

The receive IF signal, sg;, () is then sampled at the
sampling rate of the analog to digital converter (ADC), fs,
producing S samples for each chirp. Finally, the ADC samples
from each frame are collected. For an FMCW radar with M,
receive antennas, each having the described RF receive chain,
the resulting measurements (raw-data) of one frame can be
denoted by X € CM*S*L T the following subsection, we
describe the communication model.
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Fig. 1. The system model where the FMCW radar information at the
basestation is leveraged to select the beam that serves the mobile user.

B. Communication Model

The considered base station employs a mmWave transceiver
with M, antennas and use it to communicate with a single-
antenna mobile user. Adopting a narrowband channel model,
the channel between the user and the base station can be
expressed as

P—-1
h =" a,a(¢y,0,) &)
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where «,, denotes the complex gain, ¢, and 6, represent
transmit azimuth and elevation angles of the p-th path at the
base station, and a(gbp, 9p) is the array response vector of these
angles. In the downlink, the base station transmits the data
symbol s4 to the user via the beamforming vector f € CMe,
The receive signal at the user can be written as

y=+Ehfsy+n 5)

where n ~ CN(0, 0%) is the additive white Gaussian noise and
/&, is the transmitter gain of the basestation. For the selection
of the beamforming vectors, we define the beamforming
codebook of N vectors by F, where the n-th beamforming
vector is denoted by f,, € F, Vn € {0,..., N — 1}. Hence,
f in (5) is restricted to the beams in the codebook. With this
model, the index of the optimal beam, n*, can be obtained by
the SNR maximization problem, i.e.,

n* = argmax |g"f,[? st f, € F (6)
n

where the optimal solution can be obtained by an exhaustive

search over the possible beamforming vectors.

III. MACHINE LEARNING AND RADAR AIDED
BEAMFORMING

In this section, we formally define the radar based beam-
forming problem, building upon the described system model
in Section II. Then, we present the proposed solution.

A. Problem Definition

In this paper, we seek to leverage the radar measurements
X in determining the optimal communication beamforming
vector f,,. First, let us introduce the subscript k to indicate the
k-th radar frame. The radar measurements during this frame
will then be denoted as Xj,. Further, we add this subscript &
to the beamforming index and the beamforming vector used
in this k-th frame, to be ng, f,,. If a single-user exists in
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Fig. 2. The figure illustrates the radar processing procedures for the three
proposed approaches. The results of these processing procedures, X, R,V
are the inputs to the neural networks.

the line-of-sight (LOS) of the base station, then the radar
measurements could potentially include useful information Xy
about its position/orientation with respect to the base station.
This position/orientation information could be leveraged to
guide the optimal beam selection. To formulate that, we define
the mapping function g to capture the mapping from the
radar observations to the optimal beamforming index, given
by

Vg : {Xk} — {TLZ} (7

Our objective is then to design the mapping function Ve
to be able to map the radar measurements to the optimal
beam index n*. Towards this objective, we investigate the
possible designs of the mapping function, and learn the set of
parameters ®. Mathematically, we can express this objective
by the following optimization problem that aims at finding the
mapping function and the optimal set of parameters @, that
maximizes the accuracy in predicting the optimal beam:

K
1
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Yo k=1
where 1 is the indicator function of the event F, ie., 1 =1
if E occurs, and 1z = 0 otherwise. Next, we present our
machine learning aided solution.

B. Proposed Framework

In this section, we present our deep learning and radar aided
beam prediction approach. Our solution integrates radar pre-
processing and deep neural networks. This targets reducing the
complexity of the learning task and enables efficient training
with reasonable dataset sizes. To formalize our approach, we
first decompose the radar to beam mapping function into three
components: (i) The pre-processing function W¥(.), (ii) the
neural network function of the parameters ©, ¥ (.), and (iii)
the evaluation function \IJE() Then, we can write the radar to
beam mapping function as Vg (X) = ¥E(¥F (VF(X))). With
the decomposition, we can define our solution in terms of the
pre-processing, neural networks, and evaluation functions. In
the following, we present our approach via the subsections of
each function. First, we describe the proposed pre-processing
approach.

1) Preprocessing: In pricipal, given the radar raw measure-
ments X € CMrxSxL  three important features that could
be extracted are the range, the angles, and the velocity of

TABLE I
COMPLEXITY AND MEMORY REQUIREMENTS OF DIFFERENT INPUTS
Network Input Preprocessing Complexity Input Size
X O(M,SL(log S +log L + log M;)) | M,SL
R O(M,SLlog S+ MpSLlog Mp) MpS
\Y O(M,-SL(log S +log L)) SL

the moving objects in the environment. Based on that, we
propose three different pre-processing approaches, as illus-
trated in Fig. 2. Each approach leverages a certain set of
these quantities. To mathematically define the pre-processing
approaches, let us denote the 2D and 3D Fourier transforms
by Fop(.) and F3p(.), respectively. Next, we describe the three
pre-processing approaches.

Range-Angle Maps: The first approach aims at utilizing
the range and angle information. For this purpose, first, with
an FFT in the direction of the time samples, referred to as
the Range FFT, we obtain the chirp signal in the frequency
domain. With an another FFT in the direction of the receive
antenna samples, referred to as the Angle FFT, the angular
information can be obtained. An FFT of a larger size, Mp,
can be applied with zero-padding to over-sample the angles.
Finally, we can construct the final range-angle map by combin-
ing resulting range-angle information for each chirp sample,
ie, R=WE(X) =Y, |Fp(X. .0l

Range-Velocity Maps: Alternatively, we consider the
range-velocity maps. To construct these maps from the radar
measurements, two FFTs through the time samples and chirp
samples are applied. Similarly to the previous approach, first,
the Range FFT is utilized. Differently, the second FFT is
applied through the chirp samples, referred to as the Velocity
FFT. It simply returns the phase shift over the consecutive
chirp samples. This phase shift is caused by the Doppler
shift, and it contains the velocity information. Finally, again
by combining the range-velocity information of the different
receive antenna samples, we obtain the final range-velocity
map by V = UD(X) = M | Fop (X ).

Radar Cube: The previous approaches combine the angle
or velocity dimensions, reducing the information to a 2D map.
Without a dimensionality reduction, we apply the range, veloc-
ity, and angle FTTs, and obtain the radar cube. The resulting
radar cube contains all the information of the range, velocity,
and angle of the targets. It can be considered as the stack of
range-angle maps of each velocity value. The operation can
be mathematically described as X = WF(X) = | Fip(X)].

After the alternative modalities of the radar information
are extracted, the data is fed into the neural networks. The
described radar processing approaches bring different pre-
processing complexity and input size. In particular, while the
radar cube requires a 3D FFT presenting the most detailed
information, it suffers from the high number of dimensions.
In contrast, the range-angle and range-velocity images only
require 2D FFTs and provide smaller input sizes. The further
evaluation of the complexity is carried out in Section V. In
Table I, we summarize the pre-processing complexity and size
of each data entry. Next, we present the deep neural networks



TABLE II
DEEP NEURAL NETWORK ARCHITECTURES FOR DIFFERENT INPUT TYPES

NN Layers | Radar Cube (X) | Range-Velocity (V) | Range-Angle-64 (R) | Range-Angle-4 (R)
Input 4 x 256 x 128 1 x 256 x 128 1 x 256 x 64 1x 256 x4
CNN-1 Output Channels: 8, Kernel: (3, 3), Activation: ReLU
CNN-2 Output Channels: 16, Kernel: (3, 3), Activation: ReLU

AvgPool-1 Kernel: (2, 1) N/A
CNN-3 Output Channels: 8, Kernel: (3, 3), Activation: ReLU

AvgPool-2 Kernel: (2, 2) ‘ Kernel: (2, 1)
CNN-4 Output Channels: 4, Kernel: (3, 3), Activation: ReLU

AvgPool-3 Kernel: (2, 2) \ Kernel: (2, 1)
CNN-5 Output Channels: 2, Kernel: (3, 3), Activation: ReLU

AvgPool-4 Kernel: (2, 2) ‘ Kernel: (2, 1)
FC-1 Input Size: 512, Output Size: 256, Activation: ReLU
FC-2 Input Size: 256, Output Size: 128, Activation: ReLU
FC-3 Input Size: 128, Output Size: 64

adopted for each modality of the data.

2) Neural Network Modeling: For the neural networks,
to keep the complexity of the approach low, we rely on a
comparably simple deep learning model with a design with
convolutional and fully-connected (FC) layers. Specifically, the
deep neural networks DNNs comprise 8 total layers. The first
five layers are the convolutional layers with the rectified linear
unit (ReLU) activation functions. In addition, the average
pooling is applied after the activation of the convolutional
layers to decrease the size of the data. Finally, the output of
the fifth convolutional layer is connected to a set of three
FC layers, providing N outputs. The each entry of the output
indicates a beam.

As the proposed inputs of the neural networks are of differ-
ent size and dimensions, the same network cannot be applied
to the all types of the inputs. Therefore, for different modalities
of the radar data, the input, output and kernel size of the
DNN layers are adjusted to keep the network size reasonable
and similar while providing a comparably good performance.
Specifically, we adjust the networks for our dataset, which
will be described in Section IV. In this dataset, the system
parameters are given by S = 256, L = 128, M, = 4 and
N = 64. With these parameters and Mr € {4,64}, the
designed DNN architectures are summarized in Table II.

Neural Network Objective: To train the neural networks
with the aim of finding the optimal parameters @*, we
can write the following optimization problem that aims at
minimizing the loss between the output of the network and
the optimal beam values, nj € {0,..., N —1}:

K
o1 X
e = arg min ’;:1 L(TS (" (Xy)),np) 9)

where L(.,.) denotes the loss function. As our problem is a
multi-class classification problem, we utilize the cross-entropy
loss given by L(b,b) = —L """ log(b,) where b =
[bo,...,bn—1] is the one-hot encoded vector of the optimal
beam n} and b, = UY (¥F(X},)) is the output of the neural
network.

3) Evaluation: To evaluate the output of the neural network
in terms of the objective function in (8), we need to select
a single beam from the soft output of the neural network.

Fig. 3. Data collection system setup equipped with a TT AWR2243 mmWave
FMCW radar working at 77 GHz operating frequency and a mmWave MIMO
antenna array operating at 60 GHz.

For this purpose, the maximum of the neural network output
can be selected as the prediction of the optimal beamform-
ing vector. This can be mathematically provided by setting
UE()) = arg max(.), completing our solution. In the following
section, we describe our dataset adopted in the training and
evaluation of the solutions.

IV. REAL-WORLD DATASET

To accurately evaluate the performance of the proposed ma-
chine learning based radar-aided beam prediction approaches
in a realistic environment, we built a real-world dataset with
radar and wireless measurements. In this section, we describe
our testbed and present the dataset collection scenario.

A. Data Collection Testbed

We adopt the Testbed-1 of the DeepSense 6G dataset [8].
The testbed comprises two units: The stationary unit (Unit
1), and the mobile unit (Unit 2). Among other sensors, unit
1 employs an FMCW radar (AWR2243BOOST) which has
3 transmit and 4 receive antennas, and a mmWave receiver
at 60 GHz which adopts a uniform linear array (ULA) with
M. = 16 elements. The unit 2 utilizes a 60 GHz quasi-omni
antenna, acts as a transmitter and is always oriented towards
the receiver antenna of unit 1.

The phased array of unit 1 utilizes an over-sampled beam-
forming codebook of N = 64 vectors, which are designed
to cover the field of view. It captures the receive power by
applying the beamforming codebook elements as a combiner.
The combiner providing the most power is taken as the optimal
beamforming vector. For the radar, we only activated one of
the TX antennas, while the data from M, = 4 RX antennas
were captured. We adopted a set of radar parameters given
by B = 750 MHz, p = 15 MHz/us, L = 128 chirps/frame,
S = 256 samples/chirp. These settings provide the maximum
range of 45m and the maximum velocity of 56 km/h, which are
well-fit for the scenario illustrated in Fig. 4. Next, we present
the dataset and collection scenario.

B. Development Dataset

For the evaluation, we used the testbed described in Sec-
tion I'V-A and adopted Scenario 9 of the DeepSense 6G dataset
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Fig. 4. A sample from the dataset is shown with the current environment image (right) and the corresponding range-angle (middle) and range-velocity (left)
images. The car is on the right part of the camera image, moving away from the vertical angle of the radar device. The range-angle image shows the position
at approximately 9m distance on the right hand side, while the range-velocity image indicates the increasing relative velocity and range.

[8]. In this scenario, a passenger at the back seat of the car
holds the transmitter. As shown in Fig. 4, the car passes by
the stationary unit (Unit 1) which collects the radar and beam
training measurements. During the data collection, the road
was actively used by the other cars, pedestrians and bikers.
Our testbed collected and saved the radar measurements and
the received power at each communication beam.

In the construction of the dataset, the beam providing the
highest power is saved as the optimal beamforming vector. The
data is cleaned by only keeping the samples with the target
car in sight. This cleaning operation is performed manually
through the inspection of the RGB images that are captured
from a camera attached next to the antenna array. The data
samples with the other elements (cars, pedestrians and bikers)
are also kept to reflect the realistic environment. The final
dataset comprises 6319 samples, which are separated with a
70/20/10% split for the training, validation and testing. A
sample from the dataset through the extracted range-angle and
range-velocity images are shown in Fig. 4.

V. RESULTS

In this section, we evaluate and compare the performance
of the proposed solutions. In particular, we compare the
DNN based solutions adopting the radar cube, range-velocity
and range-angle maps, respectively, and a simple baseline
algorithm. Adopting our dataset described in Section IV, the
solutions are compared in terms of their prediction accuracy,
complexity/inference time, and the required dataset sizes.

Baseline Algorithm: As the baseline algorithm, we adopt
a look-up table mapping the given position of the maximum
point in the range-angle image to the most-likely beams. For
the top-K accuracy, we select K different beams correspond-
ing to the largest points in the range-angle map.

Training and Evaluation: For the evaluation of the neural
networks, we trained the DNN models summarized in Table 11
using the Adam algorithm [9] with a learning rate 0.001, batch
size 32, and a decay factor v = 0.1 which is applied after every
10 epochs. The networks are trained for 40 epochs and the
network parameters showing the best top-1 accuracy over the
validation dataset is saved for evaluation. The network training
operation is carried out for 5 separate instances, and the

average performance is shown in the following results. Next,
we compare the beam prediction accuracy of the solutions.

Beam Prediction Accuracy: As shown in Fig. 5, the range-
angle map based deep learning solutions over-perform the
range-velocity and radar cube solutions. In comparison to
the deep learning solutions, the baseline solutions show an
inferior performance. Specifically, the baseline with 64-point
angle FFT provides 33% accuracy, while the deep learning
models provide at least 8% better top-1 accuracy. This shows
the robustness and applicability of the deep learning models
to the real-world data. The radar cubes contain the range-
angle maps of different velocity values, however, it cannot
perform similarly to the 4-point range-angle solution. This is
potentially due to the large size and complexity of the input
and comparable simplicity of the deep learning model.

For top-5 accuracy, the baseline solution only reaches up to
63% and has a smaller gain when increasing the K values.
In comparison, the top-3 and top-5 accuracy of the range-
angle images reach up to 79.7% and 93.5%, outperforming the
baseline solution by a large margin. The other deep learning
based approaches show improvements similar to the range-
angle based deep learning solutions with increasing K values.
Based on the presented results, we conclude that the deep
learning solutions show clear potential for real applications,
especially with the top-3 and top-5 results. Moreover, the
comparison of the range-angle solutions with different angle
FFT sizes show the advantage of the maps generated with
higher resolution, which shows the advantages of generating
maps with higher resolution for deep learning solutions.

Complexity: In Fig. 6, we compare the complexity of the
DNNs in terms of the number of parameters, preprocessing
and network inference durations. First, in the design of the
DNN models, we aimed to keep the number of parameters
similar. To that end, the radar cube, range-velocity and range-
angle based solutions are comprised of approximately 175k
parameters. The baseline solutions only require 1024 and
16384 parameters for 4- and 64-point angle FFTs. These
values correspond to each pixel in the range-angle maps, each
of which is utilized to represent the most likely beam for
each point. Second, we compare the inference duration of the
neural networks as shown on the left part of Fig. 6. The deep
learning solutions show similar inference durations since the
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Fig. 6. The complexity of the proposed radar-aided beam prediction ap-
proaches are compared in terms of the network inference time, preprocessing
duration, and number of (neural network) parameters.

number of parameters and network architectures are designed
similarly. Third, the middle figure in Fig. 6 illustrates the radar
preprocessing durations, where the larger angle FFT adopted
in the range-angle maps causes a significant additional time.
This present a trade-off between the beam prediction accuracy
and complexity of the solution. Depending on the hardware
availability, one may prefer to design a solution with higher
resolution maps and better accuracy. Without an oversampling
of the angle FFT dimension, all the approaches show similar
durations, presenting an advantage for the better performing
solutions.

Impact of Dataset Size: In Fig. 7, we show the average
accuracy of the trained networks on the same test samples,
while only a subset of the training samples are utilized.
The lines of the same input for different K values show
similar behavior with different scaling and accuracy levels.
In the figure, the performance of the 64-point range-angle
solution requires 10 — 20% of the data for starting to saturate
with a better accuracy, while the other solutions need around
20 — 30% of the training data. This might be due to the easier
interpretability of the high-resolution range-angle maps for the
beam prediction task, potentially requiring less learning and
transformation. The radar-cube starts to saturate particularly
late, and may slightly increase with more data, indication
a potential benefit from a larger dataset or more complex
models. Nevertheless, the range angle/velocity based solutions
generalize the problem well and can perform well with smaller
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Fig. 7. Top-1 and Top-5 beam prediction accuracies of the proposed radar-

aided beam prediction approaches when a fixed percentage of the training
dataset is utilized.

datasets.

VI. CONCLUSIONS

In this paper, we developed machine learning based radar-
aided mmWave beam prediction approaches and evaluated
their performance using a real-world dataset. In a practi-
cal vehicular communication scenario and using a low-cost
radar, we demonstrated that capability to efficiently pre-
dict the mmWave communication beam with reasonable pre-
processing/inference latency. In particular, out of a 64-beam
codebook, our approaches achieves around 90% top-5 beam
prediction accuracy while requiring only a few milliseconds
in pre-processing the radar data and inferring the best beams.
This highlights a promising approach for enabling highly-
mobile mmWave/THz communication applications.
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