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Abstract

In reinforcement learning, the classic objectives of maxi-
mizing discounted and finite-horizon cumulative rewards are
PAC-learnable: There are algorithms that learn a near-optimal
policy with high probability using a finite amount of sam-
ples and computation. In recent years, researchers have intro-
duced objectives and corresponding reinforcement-learning
algorithms beyond the classic cumulative rewards, such as
objectives specified as linear temporal logic formulas. How-
ever, questions about the PAC-learnability of these new ob-
jectives have remained open.

This work demonstrates the PAC-learnability of general
reinforcement-learning objectives through sufficient condi-
tions for PAC-learnability in two analysis settings. In partic-
ular, for the analysis that considers only sample complexity,
we prove that if an objective given as an oracle is uniformly
continuous, then it is PAC-learnable. Further, for the analy-
sis that considers computational complexity, we prove that if
an objective is computable, then it is PAC-learnable. In other
words, if a procedure computes successive approximations of
the objective’s value, then the objective is PAC-learnable.

We give three applications of our condition on objectives
from the literature with previously unknown PAC-learnability
and prove that these objectives are PAC-learnable. Overall,
our result helps verify existing objectives’ PAC-learnability.
Also, as some studied objectives that are not uniformly con-
tinuous have been shown to be not PAC-learnable, our results
could guide the design of new PAC-learnable objectives.

1 Introduction

In reinforcement learning, we situate an agent in an environ-
ment with unknown dynamics. The agent acts in the environ-
ment by executing its current policy. Executing a policy in
an environment induces an infinite-length path of states and
actions. We specify an objective, a function that maps each
possible infinite-length path to a real number—a score—for
that path. Moreover, we request the agent learn a good policy
that nearly maximizes the expected score over the distribu-
tion of paths induced by the environment and the policy.

PAC-learnability of Objectives. The classic reinforce-
ment-learning objectives include infinite-horizon discounted
cumulative rewards and finite-horizon cumulative rewards.
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These objectives are well-studied and have a desirable prop-
erty: There are reinforcement-learning algorithms that learn
a near-optimal policy with high probability with number of
samples depending only on the parameters known by the al-
gorithm. We call these algorithms probably approximately
correct (PAC), and these objectives PAC-learnable under re-
inforcement learning.

PAC-learnability is essential. Specifically, we aim to spec-
ify an objective and let the agent learn a good policy on its
own. Thus, we necessarily need some form of assurance of
how close to optimal the learned policy is. If an objective
is not PAC-learnable, then the hope of ensuring learning a
near-optimal policy is lost, and the objective is effectively
intractable to learn under reinforcement learning.

General Objectives. In recent years, researchers have
introduced various objectives beyond the two classic re-
wards objectives (Henriques et al. 2012; Sadigh et al. 2014;
Littman et al. 2017; Hasanbeig et al. 2019; Hahn et al. 2019;
Camacho et al. 2019; Giacomo et al. 2019; Jothimurugan,
Alur, and Bastani 2019; Bozkurt et al. 2020; Ronca and
De Giacomo 2021). For example:

• Camacho et al. (2019) introduced the reward machine
objective. A reward machine augments classic rewards with
an automaton that makes the rewards history dependent.

• Bozkurt et al. (2020) introduced an objective based
on limit deterministic Buchi Automaton (LDBA).1 The ob-
jective features history-dependent discount factors, history-
dependent rewards, and an augmented action space.

Researchers introduced reinforcement-learning algorithms
for these objectives and showed that they empirically learn
well-behaving policies with finitely many samples.

PAC-learnability of General Objectives. Despite the ad-
vances on empirical algorithms for these objectives, not all
objectives are PAC-learnable: Recent work (Yang, Littman,
and Carbin 2022) proved that infinite-horizon linear tem-
poral logic objectives, a class of general objectives, are not
PAC-learnable. Therefore, to the end of having assurance on
the outcomes of learning, we desire to understand the PAC-
learnability of general objectives.

Some previous work (Ashok, Křetı́nský, and Weininger
2019; Henriques et al. 2012; Fu and Topcu 2014; Ronca

1We summarize works along the same line in Appendix A.



and De Giacomo 2021) address the PAC-learnability of par-
ticular objectives. However, these analyses give reinforce-
ment-learning algorithms for particular objectives and do
not generalize to other objectives. Previous work (Alur et al.
2021) gave a framework of reductions between objectives
whose flavor of generality is most similar to our work; how-
ever, they did not give a condition for when an objective is
PAC-learnable. To our knowledge, the PAC-learnability of
the objectives in Sadigh et al. (2014); Littman et al. (2017);
Hasanbeig et al. (2019); Hahn et al. (2019); Camacho et al.
(2019); Jothimurugan, Alur, and Bastani (2019); Bozkurt
et al. (2020) are not known.

Relevant to model-based reinforcement learning, Bazille
et al. (2020) showed that it is impossible to learn the transi-
tions of a Markov chain such that the learned and true mod-
els agree on all first-order behaviors. However, this result
does not apply to the general reinforcement-learning setting.

We thus raise a research question: When is a reinforce-
ment-learning objective PAC-learnable?

Our Approach. We address the question by giving suffi-
cient conditions for PAC-learnability. Specifically, we ana-
lyze PAC-learnability in both the information-theoretic set-
ting, that only considers sample complexity, and the com-
putation-theoretic setting, that also considers computability.
We prove that, in the information-theoretic setting (resp.
computation-theoretic setting), an objective is PAC-learn-
able if it is uniformly continuous (resp. computable). These
conditions simplify proving objectives’ PAC-learnability. In
particular, our conditions avoid constraints on environments,
policies, or reinforcement-learning algorithms but only re-
quire reasoning about the objective itself.

We give example applications of our conditions to three
objectives in the literature whose PAC-learnability was pre-
viously unknown and prove that they are PAC-learnable.

Contributions. We make the following contributions
about reinforcement-learning objectives:

• In the information-theoretic setting, we prove that a uni-
formly continuous objective is PAC-learnable.

• In the computation-theoretic setting, we prove that a
computable objective is PAC-learnable.

• We apply our theorem to three objectives (Camacho
et al. 2019; Bozkurt et al. 2020; Littman et al. 2017) from the
literature whose PAC-learnability was previously unknown
and show that they are PAC-learnable.

Our result makes checking the PAC-learnability of existing
objectives easier. It also potentially guides the design of new
PAC-learnable objectives.

2 Reinforcement Learning and Objectives

This section reviews reinforcement learning and defines
general objectives and their learnability.

2.1 Markov Processes

A Markov decision process (MDP) is a tuple M =
(S,A, P, s0), where S and A are finite sets of states and
actions, P : (S × A) → ∆(S) is a transition probability

function that maps a current state and an action to a distri-
bution over next states, and s0 ∈ S is an initial state. The
MDP is sometimes referred to as the environment MDP to
distinguish it from any specific objective.

A policy for an MDP is a function π : ((S ×A)
∗ × S) →

∆(A) mapping a history of states and actions to a dis-
tribution over actions. 2 An MDP and a policy induce a
discrete-time Markov chain (DTMC). A DTMC is a tuple
D = (S, P, s0), where S is the set of states, P : S → ∆(S)
is a transition-probability function mapping states to distri-
butions over next states, and s0 ∈ S is an initial state. The
DTMC induces a probability space over the infinite-length
sequences w ∈ Sω.2

2.2 Objective

Environment-specific Objective. An environment-spe-
cific objective for an MDP (S,A, P, s0) is a measurable
function κ : (S ×A)ω → R. We say such an objective is
environment-specific since it is associated with MDPs with
a fixed set of states and actions.

The value of an environment-specific objective for an
MDP M and a policy π is the expectation of the objective
under the probability space of the DTMC D induced by M
and π: V π

M,κ = Ew∼D[κ (w)]. We consider only bounded
objectives to ensure that the expectation exists and is finite.
The optimal value is the supremum of the values achievable
by all policies: V ∗

M,κ = supπ V
π
M,κ. A policy π is ǫ-optimal

if its value is ǫ-close to the optimal value: V π
M,κ ≥ V ∗

M,κ−ǫ.

Environment-generic Objective. An objective defined
above is environment-specific because it is associated with
a fixed set of states and actions. However, we would also
like to talk about objectives in a form decoupled from any
MDP. For example, the discounted classical cumulative re-
wards objective is not bound to any particular reward func-
tion. Further, the objective of “reaching the goal state” in a
grid world environment is not bound to the size of the grid or
the allowed actions. Such decoupling is desirable as it allows
one to specify objectives independent of environments.

To that end, we define environment-generic objectives.
The idea of such objectives is that a labeling function inter-
faces between the environment and the environment-generic
objective. The definition decouples an environment-generic
objective from environments by requiring different labeling
functions for different environments.

Formally, an environment-generic objective is a measur-
able function: ξ : Fω → R, where F is a set called features.
A labeling function maps the MDP’s (current) states and ac-
tions to the features: L : (S × A) → F . Composing ξ and
the element-wise application of L induces an environment-
specific objective. For example, the discounted cumulative
rewards objective ξ : Qω → R is ξ(w) =

∑∞

i=0 γ
i · w[i].

For each MDP, the labeling function is a classical reward
function L : (S ×A) → Q. 3

2 X∗ denotes all finite-length sequences of the elements of X .
Xω denotes all infinite-length sequences of the elements of X .

3For simplicity of analysis, we will let objective specifications
use rationals instead of reals so that they admit a finite representa-



The value of ξ for an MDP M, a policy π, and a labeling
function L is the value of the environment-specific objective
induced by ξ, M, π, and L.

2.3 Learning Model

A reinforcement learning agent has access to a sampler of
the MDP’s transitions but does know the underlying proba-
bility values. The agent learns in two phases: sampling and
learning. In the sampling phase, the agent starts from the ini-
tial state and follows a sequence of decision steps to collect
sampled environment transitions. At every step, the agent
may (1) act from the current state to sample the next state or
(2) reset to the initial state. In the learning phase, it learns a
policy from the collected sampled transitions.

Formally, a reinforcement-learning algorithm is a tuple
(AS ,AL), where AS is a sampling algorithm that drives
how the environment is sampled, and AL is a learning
algorithm that learns a policy from the samples obtained
by the sampling algorithm. Let Areset = A ∪ {reset}
be the set of actions with an additional reset opera-
tion, the sampling algorithm AS : ((S × Areset)

∗ × S) →
Areset maps from sampled transitions to the next opera-
tion. The learning algorithm AL : ((S × Areset)

∗ × S) →
(((S × A)∗ × S) → ∆(A)) maps from the sampled transi-
tions to the learned policy.

2.4 Learnability of Objectives

A good reinforcement-learning algorithm should learn the
optimal policy that maximizes the given objective. In par-
ticular, we let the algorithm seek a near-optimal policy with
high probability.

Definition 1 (PAC Algorithm for Environment-specific Ob-
jective). Given an objective κ, a reinforcement-learning al-

gorithm (AS,AL) is κ-PAC (probably approximately correct
for objective κ) in an environment MDP M withN samples
if, with the sequence of transitions T of length N sampled

using the sampling algorithm AS, the learning algorithm AL

outputs an ǫ-optimal policy with probability at least 1−δ for
any given ǫ > 0 and 0 < δ < 1. That is:

P
T∼〈M,AS〉

N

(

V
A

L(T )
M,κ ≥ V

∗
M,κ − ǫ

)

≥ 1− δ.

We use T∼
〈

M,AS
〉

N
to denote that the probability space

is over the set of length-N transition sequences sampled
from the environment M using the sampling algorithm AS.
We will simply write PT(.) when it is clear from the context.

We will consider two settings: the information-theoretic
setting that considers only sample complexity and the
computation-theoretic setting that considers computability.

Definition 2 (PAC-learnable Environment-specific Ob-
jective). In the information-theoretic setting (resp.
computation-theoretic setting), an environment-specific
objective κ is κ-PAC-learnable if there exists a function
C : (R × R × N × N) → N such that, for all consistent
environment MDPs for κ (i.e., the domain of κ uses the
same set of states and actions as the MDP), there exists

tion. Nonetheless, our analyses also generalize to objective specifi-
cations that contain reals.

a κ-PAC reinforcement-learning algorithm with less than
C(1

ǫ
, 1
δ
, |S|, |A|) samples (resp. computation steps).

Our definition focuses on the core tractability issue. Fail-
ure to respect our definition implies that PAC-learning is not
achievable with finitely many samples (in the information-
theoretic setting) or not computable (in the computation-
theoretic setting). To that end, we have set the parameters of
C to be the only quantities available to an algorithm under
the standard assumptions of reinforcement learning. Specif-
ically, since the transition dynamics are unknown, they are
not parameters ofC. Moreover, while some variants of PAC-
learnability require C to be a polynomial to capture the no-
tion of learning efficiency, we have dropped this requirement
to focus on the core tractability issue.

We also define the PAC-learnability of environment-
generic objectives, for both information- and computation-
theoretic settings:

Definition 3 (PAC-learnable Environment-generic Objec-
tive). An environment-generic objective ξ is ξ-PAC-
learnable if for all labeling functions L, the objective κ in-
duced by ξ and L is κ-PAC-learnable.

Note that in the information-theoretic setting, we assume
that the objectives κ and ξ are given as oracles: they take
infinite-length inputs and return infinite-precision output
with no computation overhead.

2.5 Established PAC-Learnable Objectives

The standard discounted cumulative rewards objective
∑∞

i=0 γ
iw[i] and the finite-horizon cumulative rewards ob-

jective
∑H

i=0 w[i] are known to be PAC-learnable. The folk-
lore intuition is that these objectives “effectively terminate”
in an expected finite-length horizon, and rewards farther out
of the horizon diminish quickly. This paper formalizes this
intuition by connecting it to the standard definition of the
objective function’s uniform continuity and computability.
Later in Section 4, we will prove that uniformly continuous
and computable objectives are PAC-learnable.

3 Example: The Reward Machine Objective

This section gives an example general objective: the simple
reward machine objective (Camacho et al. 2019). We will
later use this objective as one of the examples to apply our
core theorem and prove its PAC-learnability.

The Simple Reward Machine Specification. Simple re-
ward machines generalize from classic Markovian rewards
to non-Markovian rewards. In particular, a simple reward
machine is a kind of deterministic finite automaton. Each
automaton transition has a reward value and a tuple of truth
values for a set of propositions about the environment’s
state. The simple reward machine starts from an initial state.
As the agent steps through the environment, a labeling func-
tion classifies the environment’s current state to a tuple of
truth values of a set of propositions. The simple reward ma-
chine then transits to the next states according to the tuple.
During each transition, the agent collects a scalar reward
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Figure 1: Left: simple reward machine. Right: environment.

along the transition of the simple reward machine. The over-
all objective is to maximize the γ-discounted sum of col-
lected rewards. The formal definition of a simple reward ma-
chine given by Camacho et al. (2019) is:

Definition 4 (Simple Reward Machine). Given a finite set
Π called the propositions, a simple reward machine over Π
is a tuple (U, δu, δr, u0, γ), where U is a finite set of states,
δu : (U × 2Π) → U is a deterministic state transition func-
tion, δr : (U × U) → Q is a deterministic reward function,
u0 is an initial state, and γ ∈ Q is a discount factor.

Figure 1 shows an example simple reward machine and
an accompanying grid environment. The states of the simple
reward machine are {u1, u2, u3}. The labeling function for
this particular environment maps grid locations (1, 0) and
(2, 0) to “fire” ( ) and (3, 0) to “goal” ( ). Each transition
of the simple reward machine is labeled by a tuple of truth
values of the two propositions (“fire” and “goal”). For exam-
ple, u1 transits to u2 and produces a reward of 1 if the envi-
ronment’s current state is labeled as “goal” but not “fire”.

The Simple Reward Machine Objective. Formally, a
simple reward machine R specifies an environment-generic

objective JRK :
(

2Π
)

ω

→ R given by:

JRK(w) =
∞
∑

k=1

γ
k
δr(uk, uk+1), ∀k ≥ 0. uk+1 = δu(uk, w[k]).

The set of features F corresponding to this environment-
generic objective is the possible truth values of the propo-
sitions Π, that is F = 2Π. The labeling function classifies
each environment’s current state and action to these features.

4 Condition for PAC-Learnability

This section presents our main result: sufficient conditions
for an objective’s learnability. The first two subsections ana-
lyze learnability in the information-theoretic setting. Specif-
ically, we show that an objective given as an oracle is PAC-
learnable if it is uniformly continuous. The next two sub-
sections analyze learnability in the computation-theoretic
setting. Specifically, using a standard result from computa-
tional analysis, we show that a computable objective is PAC-
learnable. Appendix E complements our result by showing
that our conditions are sufficient but not necessary.

4.1 Uniform Continuity

We first recall the following standard definition of a uni-
formly continuous function.

Definition 5 (Uniformly Continuous Function). A function
f : X → Y with metric spaces (X, dX) and (Y, dY ) is uni-
formly continuous if, for any ǫ > 0, there exists δ > 0 so

that f maps δ-close elements in the domain to ǫ-close ele-

ments in the image 4 :

∀ǫ > 0.∃δ > 0.∀x1 ∈ X.∀x2 ∈ X :

dX(x1, x2) ≤ δ ⇒ dY (f(x1), f(x2)) ≤ ǫ.

To specialize the above definition to an objective, we next
note the metric space of the domain of an objective. An ob-
jective’s domain is the set of infinite-length sequences Xω,
where X = (S × A) for an environment-specific objective
and X = F for an environment-generic objective. The do-
main forms a metric space by the standard distance function

dXω(w1, w2) = 2−Lprefix(w1,w2), where Lprefix(w1, w2) is the
length of the longest common prefix of w1 and w2 (Manna
and Pnueli 1987). We are now ready to specialize the defini-
tion of uniform continuity to objectives.

Definition 6 (Uniformly Continuous Objective). An
objective (environment-specific or environment-generic)
f : Xω → R is uniformly continuous if, for any ǫ> 0,
there exists a finite horizon H so that the objective maps all
infinite-length sequences sharing the same prefix of length
H to ǫ-close values:

∀ǫ > 0.∃H ∈ N.∀w ∈ X
ω
.∀w′ ∈ X

ω :

Lprefix(w,w
′) ≥ H ⇒ |f(w) − f(w′)| ≤ ǫ.

Note that since the domain of an objective is compact,
the Heine–Cantor theorem guarantees that a continuous ob-
jective is also uniformly continuous. This paper only uses
uniform continuity since it is more relevant to our theorem
and proof. Nonetheless, theorems presented in the following
section also hold for continuous objectives.

4.2 Continuity Implies PAC-learnability

Environment-specific Objectives. We give a sufficient
condition for a learnable environment-specific objective:

Theorem 1. An environment-specific objective κ is κ-PAC-
learnable in the information-theoretic setting if it is uni-
formly continuous.

We will prove the theorem by constructing a κ-PAC rein-
forcement-learning algorithm for any uniformly continuous
κ. To that end, we reduce κ to a finite-horizon cumulative
rewards problem; we then prove the theorem by invoking
an existing PAC reinforcement-learning algorithm for finite-
horizon cumulative rewards problems.

Proof of Theorem 1. For any ǫ′ > 0, since κ is uniformly
continuous, there exists a bound H such that infinite-length
sequences sharing a length-H prefix are all mapped to ǫ′-
close values.

For concreteness, let us pick any ṡ∈S and any ȧ∈A. For

each length-H sequence u∈ (S × A)H , we pick the repre-
sentative infinite-length sequence [u; (ṡ, ȧ)ω] that starts with
the prefix u and ends in an infinite repetition of (ṡ, ȧ). Us-
ing these representatives, we construct a finite-horizon re-
wards objective κ̃ǫ′ of horizon H . The construction assigns
each infinite-length sequence with the value of the original

4Note that textbook definitions commonly use < instead of ≤:
our definition is equivalent. We use ≤ to match with the compari-
son operators in the PAC definitions.



κ at the chosen representative. That is, let w[:H ] denote the
length-H prefix of w, we define κ̃ǫ′ as:

κ̃ǫ′(w) , κ([w[:H ]; (ṡ, ȧ)ω]), ∀w ∈ (S ×A)ω.

By construction, κ̃ǫ′ is ǫ′-close to κ, meaning that for any
infinite-length input, their evaluations differ by at most ǫ′:

|κ̃ǫ′(w)− κ(w)| ≤ ǫ
′
, ∀w ∈ (S ×A)ω.

Thus, an ǫ′-optimal policy for κ̃ǫ′ is 2ǫ′-optimal for κ.
We then reduce the approximated objective κ̃ǫ, which as-

signs a history-dependent reward at the horizon H , into a
finite-horizon cumulative rewards objective, which assigns
a history-independent reward at each step. To that end,
we lift the state space to U =

⋃H

t=1(S × A)t. Each state
ut =(S × A)tat step t in the lifted state space is the length-
t history of states and actions encountered in the environ-
ment. For any state before step H , we assign a reward of
zero. For any state uH =(S × A)H at step H , we assign
a reward of κ̃ǫ([uH ; (ṡ, ȧ)ω]). The lifted state space and the
history-independent reward function above form the desired
finite-horizon cumulative rewards problem.

Dann et al. (2019) introduced ORLC, a PAC reinforce-
ment-learning algorithm for finite-horizon cumulative re-
wards problems.5 Applying ORLC to the above finite-
horizon cumulative rewards problem produces an 2ǫ′-
optimal policy for κ. Finally, for any ǫ, choosing ǫ′ = ǫ

2
gives a κ-PAC reinforcement-learning algorithm for κ.

Environment-generic Objectives. Theorem 1 states a
sufficient condition for when an environment-specific objec-
tive is PAC-learnable. The following corollary generalizes
the condition to environment-generic objectives.

Corollary 2. An environment-generic objective ξ is ξ-PAC-
learnable in the information-theoretic setting if ξ is uni-
formly continuous.

To the end of proving Corollary 2, we first observe the
following lemma, which we prove in Appendix B.

Lemma 3. If an environment-generic objective is uniformly
continuous, then, for all labeling functions, the induced en-
vironment-specific objective is also uniformly continuous.

With Lemma 3, Corollary 2 is straightforward. Since each
induced environment-specific objective κ is uniformly con-
tinuous, each κ is κ-PAC-learnable by Theorem 1. Thus, the
objective ξ is ξ-PAC-learnable by definition.

4.3 Computability

We now define the computability of an objective f : Xω →
R. The standard definition of computability of such func-
tions depends on Type-2 Turing machines (Weihrauch 2000,
Chapter 2, Definition 2) and a representation of the reals by
an infinite sequence of rational approximations, called the
Cauchy-representation (Weihrauch 2000, Chapter 3, Defi-
nition 3). Informally, a Type-2 Turing machine is a Turing
machine with an infinite-length input tape and a one-way
infinite-length output tape. The machine reads the input tape
and computes forever writing to the output tape.

5ORLC provides an individual policy certificates (IPOC) guar-
antee. Dann et al. showed that IPOC implies our PAC definition,
which they called “supervised-learning style PAC”.

Definition 7 (Computable Objective). An objective f is
computable if a Type-2 Turing machine reads w from the
input tape and writes to the output tape a fast-converging
Cauchy sequence [q0, q1, . . . ] ∈ Qω of rational approxima-
tions to f(w), that is: ∀n ∈ N, |f(w)− qn| ≤ 2−n.

When proving computability, this definition is tedious to
work with since it requires implementing the function on a
Turing machine. Instead, we will use pseudocode to formu-
late an algorithm that takes in an infinite-stream input w and
a natural number n and outputs the n-th rational approxima-
tion qn. Repeatedly invoking the algorithm by enumerating
n produces the Cauchy sequence of rational approximations.

A classic result in computable analysis is that computable
functions are continuous (Weihrauch 2000, Theorem 2.5 and
4.3). Since an objective’s domain is compact, by the Heine-
Cantor theorem, this result also holds for uniform continu-
ity. Even stronger, the following theorem, modified from
Weihrauch (2000, Theorem 6.4) for our context, guaran-
tees that for a computable objective, for any rational ǫ >
0, we can compute a horizon H that satisfies the defini-
tion of uniform continuity. Define the modulus of continu-
ity of an objective as a function m : Q → N that satisfies
∀ǫ ∈ Q, ∀w1 ∈ Xω,∀w2 ∈ Xω : Lprefix (w1, w2) ≥ m(ǫ) ⇒
|f (w1)− f (w2)| ≤ ǫ. Then, we have:

Theorem 4. A computable objective is uniformly continu-
ous. Further, its modulus of continuitym is computable.

For completeness, Appendix C gives pseudocode that
computes the modulus of continuity for any computable ob-
jective specified by the interface described above.

4.4 Computability Implies PAC-learnability

We now extend our result in Section 4.2 from the
information-theoretic to the computation-theoretic setting.

Theorem 5. An (environment-generic or environment-spe-
cific) objective f is f -PAC-learnable in the computation-
theoretic setting if f is computable.

Proof. Combining theorems in Section 4.2 and Theorem 4,
a computable objective f is uniformly continuous, therefore
f -PAC-learnable in the information-theoretic setting. In the
computational-theoretic setting, we need to further construct
a computable reinforcement-learning algorithm. Note that
our proof of Corollary 2 is already constructive of an algo-
rithm. However, we need to:

• compute the boundH from the given ǫ′ and
• computably evaluate the approximated objective κ̃ǫ′ .

A computable objective resolves both points:

• By Theorem 4, the bound H is computable for any ǫ.
• Evaluating the approximate objective is computable, since

the approximated objective only depends on the length-H
prefix of the input.

Appendix D provides pseudocode for an f -PAC rein-
forcement-learning for any computable objective f .



5 Theorem Applications

This section applies the core theorem and corollary to two
objectives in the existing literature and proves each ob-
jective’s PAC-learnability. Due to space, we give the third
objective from Littman et al. (2017) and prove its PAC-
learnability in Appendix G.

5.1 Reward Machine

Proof of PAC-learnability. We prove that the reward-
machine objective reviewed in Section 3 is PAC-learnable.

Proposition 6. The objective JRK of a simple reward ma-
chine R is JRK-PAC-learnable.

Proof. By Theorem 5, it is sufficient to show that a simple
reward-machine objective is computable. Consider the pseu-
docode with Python-like syntax in Listing 1.

Listing 1: Computation of the simple reward objective

# Given reward machine (U, δu, δr , u0, γ)

def SRM(w: (2Π)ω, n: N) → Q:

u: U, value: Q = u0, 0

rmax: Q = max(abs(δr(u1, u2)) for u1, u2 in U2
))

H: N = (log2floor(1 - γ) -n - log2ceil(rmax))) \

/ log2ceil(γ)

for k in range(H):

u’ = δu(u, w[k])

value += γ**k * δr(u, u’)

u = u’

return value

Listing 1 defines an algorithm for computing the simple
reward-machine objective. It first initializes the state vari-
able u to the initial state u0. It then computes a horizon
H = (⌊log2(1 − γ)⌋ − n− ⌈log2 rmax⌉) /⌈log2 γ⌉, where
rmax = max (|δr(·)|) is the maximum magnitude of all pos-
sible rewards. It iterates through the first H indices of the
input and transits the reward machine’s state according to
the transitions δu. For each input w and n, the algorithm ac-
cumulates the discounted cumulative rewards truncated to
the first H-terms:

∑H−1
k=0 γkδr(uk, uk+1).

By definition of a computable objective, we need to show
that the returned values for all n form a fast-converging
Cauchy sequence: ∀n ∈ N, |SRM(w, n) − JRK(w)| ≤
2−n. To see this, let ∆ , |SRM(w, n)− JRK (w)| =
∣

∣

∑∞

k=H γkδr(uk, uk+1)
∣

∣. Then, we have ∆ ≤ rmax·γ
H

/1−γ

by upper bounding the rewards by rmax, then simplifying the
infinite sum into a closed form. By plugging in the value of
H and simplifying the inequality, we have ∆ ≤ 2−n. Thus,
the objective is computable and JRK-PAC-learnable.

5.2 LTL-in-the-limit Objectives

Linear temporal logic (LTL) objectives are measurable
Boolean objectives that live in the first two-and-half levels of
the Borel hierarchy (Manna and Pnueli 1987). Various works
(Hasanbeig et al. 2019; Hahn et al. 2019; Bozkurt et al.
2020) considered LTL objectives for reinforcement learn-
ing and empirical algorithms for learning. A common pat-
tern of these algorithms is that they convert a given LTL for-
mula to an intermediate specification that takes in additional
hyper-parameters. They show that in an unreachable limit

of these hyper-parameters, the optimal policy for this in-
termediate specification becomes the optimal policy for the
given LTL formula. We call such intermediate specifications
LTL-in-the-limit specifications. Due to space, we will focus
on Bozkurt et al. (2020) and give the objective specified by
their LTL-in-the-limit-specification. We will show that this
objective is PAC-learnable. The same process, namely writ-
ing down the LTL-in-the-limit specification and then prov-
ing that the specified objective is PAC-learnable, also applies
to the approaches in Sadigh et al. (2014); Hasanbeig et al.
(2019); Hahn et al. (2019).

Bozkurt et al.’s LTL-in-the-limit Specification. Given
an LTL formula, Bozkurt et al. first convert the formula into
a limit deterministic Buchi Automaton (LDBA) by a stan-
dard conversion algorithm (Sickert et al. 2016) with two
additional discount factor parameters. An LDBA is a non-
deterministic finite automaton. It is bipartite by two sets of
states, those in an initial component and those in an accept-
ing component. Transitions in the automaton can only go
from the initial component to the accepting component, but
not the reverse. An LDBA is “deterministic in the limit”: it
only has non-deterministic ǫ-transitions in the initial compo-
nent, but it is deterministic in the accepting component. The
formal definition of LDBA is:

Definition 8 (LDBA). For an LTL formula over propo-
sitions Π, an LDBA converted from the formula is a tu-
ple (U, E , δu, u0, B), where U is a finite set of states,

δu :
(

U × (2Π ∪ {ǫ})
)

→ 2U is a non-deterministic tran-
sition function, u0 is an initial state, and B ⊆ U is a set
of accepting states. Additionally, U has a bi-partition of
an initial component with states UI and an accepting com-
ponent with states UB . An LDBA satisfies the conditions:
(1) δu(u, ǫ) = ∅ for all u ∈ UB , (2) δu(u, 2

Π) ⊆ UB for all
u ∈ UB , and (3) B ⊆ UB .

The agent and environment models are similar to a simple
reward machine: At each step, the agent chooses an envi-
ronment’s action and steps in the environment. A labeling
function classifies the current state of the environment to a
tuple of truth values of the set of propositions Π.

At each step, an LDBA takes either a non-deterministic
ǫ-transitions (if such transition is available) or the transition
along the tuple of the truth values of the propositions. Each
time the LDBA enters an accepting state, the agent receives a
reward of 1−γ1, and discounts all future rewards by γ1. Each
time the LDBA enters a non-accepting state, the agent re-
ceives no reward and discounts all future rewards by γ2. An
oracle controls the ǫ-transitions. In words, the objective is
to maximize the (state-dependent) discounted cumulative re-
wards, assuming the oracle always makes the optimal choice
that helps to maximize the cumulative rewards.

Bozkurt et al.’s LTL-in-the-limit Objective. Bozkurt
et al.’s LTL-in-the-limit specification is a tuple
(L, γ1, γ2): the LDBA L and the two hyper-parameters
γ1, γ2 ∈ Q. It specifies an environment-generic objective

J(L, γ1, γ2)K : (2
Π)ω → R. Let E+ = E ∪ {⊥}, where E

is the set of ǫ-transitions and ⊥ is a non-ǫ-transition (i.e.,
following a transition with a tuple classified by the labeling



function), the objective is:

J(L, γ1, γ2)K(w) = max
wE∈Eω

g(wE , w) where

g(wE , w) =

∞
∑

i=1

R(ui)

i−1
∏

j=1

Γ(uj),

R(u) = (1− γ1)1{u ∈ B},

Γ(u) = γ11{u ∈ B}+ γ21{u 6∈ B},

∀k ≥ 0: uk+1 = δu(uk, w
+
k
),

tk =

k
∑

i=1

1{wE [i] = ⊥ or (uk , wE [i]) 6∈ δu},

w+
k

=

{

w[tk] if wE [k] = ⊥ or (uk, wE [k]) 6∈ δu

wE [k] otherwise

. (1)

Here, tk is the step count of the environment when the
LDBA takes its k-th step. Note that tk ≤ k, since the envi-
ronment does not step when LDBA takes an ǫ-transition. The
value w[tk] is the tuple of truth values of the input infinite-

length sequence w at tk. We define w+
k as the transition la-

bel taken by the LDBA at the k-th step: It is either (1) a
tuple of truth values w[k], if wE [k] is a non-ǫ-transition or
an ǫ-transition that is not available from the current LDBA
state uk, or (2) the ǫ-transition wE [k]. By its definition,

w+
k is always a valid transition of the LDBA, and it al-

ways leads to a deterministic next state. Therefore, we write
uk+1 = δu(uk, w

+
k ) to denote that the LDBA state uk+1

follows this deterministic transition to the next state.

Proof of PAC-learnability. We now prove that the ob-
jective specified by an LTL-in-the-limit specification in
Bozkurt et al. (2020) is PAC-learnable. Although this sec-
tion aims to show an example, as we mentioned, the proof
strategy here also applies to the approaches in Sadigh et al.
(2014); Hasanbeig et al. (2019); Hahn et al. (2019).

Proposition 7. Bozkurt et al.’s LTL-in-the-limit objective
J(L, γ1, γ2)K is J(L, γ1, γ2)K-PAC-learnable.

Proof. By Theorem 5, it is sufficient to show that Bozkurt
et al.’s objective is computable. Consider the pseudocode
with Python-like syntax in Listing 2.

Listing 2 gives pseudocode for computing Bozkurt
et al.’s objective. The pseudocode contains two pro-
cedures. The procedure bozkurt helper com-
putes g but truncates the sum to the first H =
(⌊log2(1−max(γ1, γ2)⌋ − n) /⌈log2 max(γ1, γ2)⌉ terms.
The procedure bozkurt objective then computes
the n-th rational approximation of the objective’s value. It
invokes the helper function for all ŵǫ ∈ En and calculates
the value of maxŵǫ∈En bozkurt helper(ŵǫ, w, n).

Appendix F proves that the return values of
bozkurt objective for all n ∈ N form a fast-
converging Cauchy sequence:

|bozkurt objective(w, n) − J(L, γ1, γ2)K(w)| ≤ 2−n
.

Therefore, the objective is computable and consequently
J(L, γ1, γ2)K-PAC-learnable.

Listing 2: Computation of Bozkurt et al.’s objective

# Given LDBA (U, E, δu, u0, B) and γ1, γ2

def bozkurt_objective(w: (2Π)ω, n: N) → Q:

gamma_max: Q = max(γ1, γ1)

H: N = (log2floor(1 - gamma_max) - n) \

/ log2ceil(gamma_max)

v: Q = 0

for w_e in E
H
:

v = max(v, bozkurt_helper(H, w_e, w))

return v

def bozkurt_helper(H: N, w_e: E
H
, w: Sω

) → Q:

v: Q, u: U, discount: Q = 0, u0, 1

for k in range(H):

if u in B:

reward, gamma = 1, γ1

else:

reward, gamma = 0, γ2

v += reward * discount

discount *= gamma

if w_e[k] == ⊥ or (u, w_e[k]) not in δu:

w_k_plus = w[k]

else:

w_k_plus = we[k]

u = δu(u, w_k_plus)

return v

6 Conclusion

This work studies the PAC-learnability of general reinforce-
ment-learning objectives and gives the first sufficient condi-
tion of PAC-learnability of an objective. We use examples to
show the applicability of our condition on various existing
objectives whose learnability were previously unknown.

Applications to Existing Objectives. Although we only
demonstrated three examples, our theorem also applies
to other objectives in the literature. Some examples are
(1) modifications to the simple reward machine such as the
(standard) reward machine (Camacho et al. 2019) (where
rewards depend on not only the reward machine’s state
but also the environment’s state) and the stochastic reward
machine (Corazza, Gavran, and Neider 2022), (2) other
LTL-in-the-limit objectives (Sadigh et al. 2014; Hahn et al.
2019; Hasanbeig et al. 2019), and (3) various finite-horizon
objectives (Henriques et al. 2012; Jothimurugan, Alur, and
Bastani 2019; Giacomo et al. 2019).

Moreover, we gave an example objective in Appendix E
showing our condition is sufficient but not necessary. How-
ever, to our knowledge, no previous objective has a similar
pattern to our example. Therefore, we conjecture that our
condition applies to most, if not all, existing PAC-learnable
objectives in the literature. Nonetheless, verifying each ob-
jective’s PAC-learnability is out of scope of this work.

Guiding The Design of New Objectives. Our main result
could also help the design of new objectives. With our suffi-
cient condition, researchers can create continuous and com-
putable objectives by design, and our condition will ensure
the PAC-learnability of such objectives.
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Appendices

A Summary of Works on LTL-in-the-Limit Objectives
This section briefly reviews the literature on LTL-in-the-limit objectives. 1

To our knowledge, Sadigh et al. (2014) first proposed LTL as an objective for model-free reinforcement learning. They
transformed LTL formulas into Rabin automata that give out rewards to the agent. Although the approach was appealing, Hahn
et al. (2019) identified counterexamples demonstrating that the translation was not entirely correct. Subsequently, both Hahn
et al. (2019) and Hasanbeig et al. (2019) proposed to use LDBA-based reward schemes, and Hahn et al. (2019)’s approach
addressed the issues in Sadigh et al. (2014). Later, Bozkurt et al. (2020) proposed an LDBA-based reward scheme that was less
sparse than previous LDBA-based reward schemes—meaning this scheme provides rewards not only at the sink states of the
LDBA, but also at intermediate states. In the same year, Hahn et al. (2020) proposed a dense reward scheme and conducted
experimental comparisons of various approaches.

Note that although all the above approaches attempt to use LTL as reinforcement-learning objectives, Yang, Littman, and
Carbin (2022) proved that PAC learning is only possible for a subset of LTL formulas called the finitary formulas. Nonetheless,
approaches in the previous paragraph all fall into a common pattern that they convert a given LTL formula to an intermediate
specification (Rabin automaton or LDBA) that takes in additional hyper-parameters. They show that in an unreachable limit of
these hyper-parameters, the optimal policy for this intermediate specification becomes optimal for the given LTL formula. As
mentioned in Section 5.2, we view these approaches as introducing LTL-in-the-limit objectives and using them as proxies to
the true LTL objectives.

B Proof of Lemma 3
Proof. Since ξ is uniformly continuous, by definition, we have:

∀ǫ > 0.∃H ∈ N.∀w3 ∈ Fω.∀w4 ∈ Fω.

Lprefix(w3, w4) ≥ H ⇒ |ξ(w3)− ξ(w4)| ≤ ǫ.

Let κ = ξ ◦ L be the environment-specific objective induced by ξ and the labeling function L. By rewriting w3 as L(w1) and
w4 as L(w2), we get:

∀ǫ > 0.∃H ∈ N.∀w1 ∈ (S ×A)ω.∀w2 ∈ (S ×A)ω.

Lprefix (L (w1) ,L (w2)) ≥ H ⇒ |κ(w1)− κ(w2)| ≤ ǫ.
(B.1)

Consider any w ∈ (S × A)ω and w′ ∈ (S × A)ω. If w and w′ share a prefix of length H , then the labeling function also
maps them to infinite-length paths sharing a prefix of length at least H , that is:

∀H ∈ N.∀w1 ∈ (S ×A)ω.∀w2 ∈ (S ×A)ω. Lprefix(w1, w2) ≥ H ⇒ Lprefix(L(w1),L(w2)) ≥ H. (B.2)

By chaining the implications in Equation (B.1) and Equation (B.2), we get:

∀ǫ > 0.∃H ∈ N.∀w1 ∈ (S ×A)ω.∀w2 ∈ (S ×A)ω.

Lprefix (w1, w2) ≥ H ⇒ |κ(w1)− κ(w2)| ≤ ǫ.

Therefore, κ is uniformly continuous by definition.

C Computing the Modulus-of-Continuity
Listing C.1 gives pseudocode for computing the modulus of continuity of any computable objective given by the interface
(Xω × N) → Q (described in Section 4.3).

Listing C.1: Computation of the modulus-of-continuity of a computable objective

def modulus_of_continuity(objective: (Xω × N) → Q, ǫ: Q) → N:

H = 1

while True:

try:

for w in XH
:

objective(w, log2ceil(ǫ))

return H

except OutOfBound:

H += 1

The algorithm enumerates H from 0. It forms finite-length words w for each XH and invokes the objective on w and n =
⌈log2(ǫ)⌉. If the computation of the objective attempts to read w[k] for some k greater than H , an exception is thrown. The
exception terminates the enumeration of XH and returns the control to the outer loop. The algorithm essentially finds the first
H such that the objective only needs to inspect the first H indices of w to calculate an ǫ-close approximation to the objective’s
value.

1We acknowledge the valuable input from an anonymous reviewer that helped us with this summary.



Listing D.1: Pseudocode for a reinforcement-learning algorithm for computable objectives

def rl_general_objective(epsilon, delta, objective, mdp, label_fn):

epsilon’ = epsilon / 2

H = modulus_of_continuity(objective, epsilon’)

def lifted_transition(state, action):

# current MDP state is the last state in the history

if len(state) == 1:

mdp_state = state[-1]

else:

last_action, mdp_state = state[-1]

next_mdp_state = mdp.step(mdp_state, action) # step to sample the environment

next_state = state + ((action, next_mdp_state), ) # append next MDP state

return next_state

def reward_fn(state, action):

if len(state) == H:

# If current state is the last state in the horizon H

# then give reward of the value of the approximated objective

return objective(state, epsilon’)

else:

return 0 # reward 0 otherwise

# Invoke existing PAC reinforcement-learning algorithm for finite-horizon cumulative rewards

policy = rl_finite_horizon_cumulative_rewards(

epsilon’,

delta

horizon=H,

mdp=MDP(step=lifted_transition,

reward_fn=reward_fn,

init_state=(mdp.init_state,))

)

return policy

D PAC Reinforcement-Learning Algorithm for Computable Objectives

Listing D.1 gives pseudocode for a reinforcement-learning algorithm for any computable objective given by the interface
(Xω × N) → Q (described in Section 4.3). The algorithm first computes a sufficient horizon bound H for achieving ǫ

2 -
approximation to the objective’s value. It then constructs the lifted MDP with finite-horizon cumulative rewards as described in
the proof of Theorem 1. Finally, it invokes rl finite horizon cumulative rewards, an existing PAC reinforcement-
learning algorithm for finite-horizon cumulative rewards problem to obtain a ǫ

2 -optimal policy. Overall, the obtained policy is
an ǫ-optimal policy to the computable objective.

E Proof of Unnecessity

We complement our result and prove that our conditions are only sufficient but not necessary. To that end, we give an ob-
jective that is not uniformly continuous (or computable) but is PAC-learnable. Consider an environment-generic objective
ξ : {a, b}ω → R with features F = {a, b}, given by:

ξ(w) = 1{w 6= ŵ} where ŵ = abaabaaab . . .

That is, the objective assigns a value of 0 for ŵ, which is an infinite-length path with a naturally increasing number of as
between infinitely many bs, and 1 otherwise. Any finite state DTMC has zero probability of generating ŵ, since the pattern of
ŵ necessarily requires an infinite memory to generate. Thus, this objective’s value is 1 for any environment and any policy. In
other words, for any environment, all policies are equally optimal. Therefore, the objective is trivially PAC-learnable. However,
due to discontinuity at ŵ, the objective is neither uniformly continuous nor computable.

Although our condition is only sufficient, to the best of our knowledge, no existing objectives in the literature have a similar
nature to the above example, which would make our conditions inapplicable.

F Proof of Computability of Listing 2

Let ga:b(wǫ, w) ,
∑b

i=aR(ui)
∏i−1
j=1 Γ(uj) denote the partial sum of g in Equation (1) from a to b. Let zh be the sequence of

ǫ-moves of length-h that maximizes g0:h, that is: zh , argmaxŵǫ∈Eh g0:h(ŵǫ, w). Similarly, let z∞ ∈ Eω be the infinite-length



path of ǫ-moves that maximizes g. Then we can write ∆ as:

∆ , |J(L, γ1, γ2)K(w)− bozkurt objective(w, n)|

=

∣

∣

∣

∣

max
wǫ∈Eω

g(wǫ, w)− max
ŵǫ∈EH

gH(ŵǫ, w)

∣

∣

∣

∣

= |g(z∞, w)− g0:H(zH , w)|

Observe that g(z∞, w) ≥ g0:H(zH , w). To see this inequality, let w̃ǫ ∈ Eω be any infinite-length path of ǫ-moves with zH as
the prefix. Then we must have g(w̃ǫ, w) ≤ g(z∞, w), since z∞ maximizes g. Moreover, since g0:H(zH , w) is just a partial sum
of g(w̃ǫ, w) and since each term of the summation is positive (becauseR and Γ are postive), we have g0:H(zH , w) ≤ g(w̃ǫ, w).
We chain the inequalities to get g(z∞, w) ≥ g0:H(zH , w). Therefore we may drop the absolute value: ∆ = g(z∞, w) −
g0:H(zH , w).

We now bound ∆ by bounding g(z∞, w):

∆ = g(z∞, w)− g0:H(zH , w)

= g0:H(z∞, w) + gH:∞(z∞, w)− g0:H(zH , w)

≤ gH:∞(z∞, w)

The second equality holds by splitting the summation in g. The last inequality holds since zH maximizes g0:H : g0:H(zH , w) ≥
g0:H(z∞, w).

Therefore, after expanding the definition of gH:∞, we have ∆ ≤
∑∞
i=H R(ui)

∏i−1
j=1 Γ(uj). Since R(ui) < 1 and Γ(uj) ≤

max(γ1, γ2), we have ∆ ≤
∑∞

i=H max(γ1, γ2)
i−1. Simplifying the sum, we get ∆ ≤ max(γ1,γ2)

H−1

1−max(γ1,γ2)
. Finally, we plug in the

value of H = (⌊log2(1−max(γ1, γ2))⌋ − n) /⌈log2 max(γ1, γ2)⌉ and get ∆ ≤ 2−n. Therefore, the objective is computable
and consequently J(L, γ1, γ2)K-PAC-learnable.

G Geometric Linear Temporal Logic

Littman et al. (2017) introduced geometric linear temporal logic (GLTL), a variant of linear temporal logic with expiring
temporal operators. This section formalizes the objective specified by a GLTL formula and proves that the objective is PAC-
learnable.

G.1 GLTL Specification

A GLTL formula is built from a finite set of atomic propositions Π, logical connectives ¬,∧,∨, temporal next X, and expiring
temporal operators G θ (expiring always), F θ (expiring eventually), and Uθ (expiring until). Equation (G.1) gives the grammar
of a GLTL formula φ over the set of atomic propositions Π:

φ ··= a
∣

∣ ¬φ
∣

∣ φ ∧ φ
∣

∣ φ ∨ φ
∣

∣ Xφ
∣

∣ G θφ
∣

∣ F θφ
∣

∣ φ Uθ φ, a ∈ Π, θ ∈ Q. (G.1)

Each temporal operator (i.e., G , F and U) has a rational expiration probability θ in range (0, 1). For example, F 0.9goal ∧
G 0.9lava is a valid GLTL formula.

The semantics of GLTL is similar to that of LTL (which we review in Appendix I), except that each operator expires at every
step with the given probability θ associated with the operator. In particular, for the expiring operator G θφ, if φ is always true
prior to an expiration event, then the overall formula evaluates to true; otherwise, φ is ever false prior to the expiration event,
then the overall formula evaluates to false. Conversely, for the expiring operator F θφ, if φ is ever true prior to an expiration
event, then the overall formula evaluates to true; otherwise, φ is always false prior to the expiration event, then the overall
formula evaluates to false.

We give the formal semantics of GLTL below.
We first define the event form of a GLTL formula. An event-form of a GLTL formula is an LTL formula. This LTL for-

mula contains the propositions in the GLTL formula and an additional set of propositions called expiration events. We define
the event-form of a GLTL formula in such a way that, when an expiration event triggers at time t, the entire sub-formula
corresponding to this event expires. The event form T (φ) of a GLTL formula φ is defined recursively as:

T (φ) ,











































¬T (ψ) φ = ¬ψ

T (ψ1) ∧ T (ψ2) φ = ψ1 ∧ ψ2

T (ψ1) ∨ T (ψ2) φ = ψ1 ∨ ψ2

XT (ψ) φ = Xψ

T (ψ) U (T (ψ) ∧ eφ) φ = G θψ

¬eφ U T (ψ) φ = F θψ

(T (ψ1) ∧ ¬eφ) U T (ψ2) φ = ψ1 Uθ ψ2

(G.2)

Here, each eφ is a fresh proposition corresponding to the sub-formula φ. In words:



• If the outer formula is logical connective or temporal next, the operator T simply recursively converts the sub-formula(s)
while preserving the outer formula’s operator.

• If the outer formula is G θ , it recursively converts the sub-formula. It outputs the LTL formula T (ψ) U (T (ψ2) ∧ eφ) that
requires the converted sub-formula to hold until the expiration event eφ expires.

• If the outer formula is F θ , it recursively converts the sub-formula. It outputs the LTL formula ¬T (ψ) U eφ that requires the
converted sub-formula to become true at least once before the expiration event expires.

• If the outer formula is ψ1Uθψ2, it recursively converts the sub-formula and outputs the LTL formula (T (ψ1) ∧ ¬eφ)UT (ψ2)
that requires the converted sub-formula T (ψ1) to hold until T (ψ2) becomes true, all before the expiration event expires.

For example, the event form of the GLTL formula φ = G 0.9(a ∧ F 0.9b) is

T (φ) = (a ∧ (¬eψ U b)) U ((a ∧ (¬eψ U b)) ∧ eφ) , where ψ is the sub-formula F 0.9b.

During an evaluation of a GLTL formula, each expiration event eφ corresponds to an infinite stream of independently dis-
tributed Bernoulli random variables, each triggering with probability θ, the expiration probability associated with the outermost
expiring temporal operator of φ. Given an infinite-length path of propositionsw, the probability ofw satisfying a GLTL formula
φ is the probability of w satisfying the event-form LTL formula T (φ), with stochasticity due to the expiration events.

G.2 GLTL Objective

We now give the objective specified by a GLTL formula. A GLTL formula φ over propositions Π specifies an environment-
generic objective JφK : (2Π)ω → R, given by:

JφK(w) = Pe∼Bernoulli(θ)((zip (w,we) � T (φ))). (G.3)

Here, e is the set of all the expiration events in φ, and each is a random variable following an infinite stream of Bernoulli
distribution. We use zip (w,we) : (2

Π∪e)ω to denote the element-wise combination of w and the we. We write zip (w,we) �
T (φ) to denote that the infinite-length path zip (w,we) satisfies the LTL formula T (φ) according to the LTL semantics, which
we review in Appendix I. The objective is then the probability of this infinite-length path satisfying the LTL formula T (φ),
with stochasticity due to the expiration events.

G.3 Proof of PAC-learnability

We now prove that the objective specified by a GLTL formula is PAC-learnable.

Proposition G.1. The objective JφK specified by a GLTL formula φ is JφK-PAC-learnable.

Proof Outline. The strategy of our proof is as follows.
• First, we will prove that a GLTL objective is uniformly continuous. In particular, for any ǫ ∈ Q, we will give an upper bound
H , so that the objective maps infinite-length paths inputs sharing a prefix of H to ǫ-close values.

• Then, we give a pseudocode that computes a GLTL objective. In particular, to give the n-th rational approximation, the
pseudocode first computes the upper bound H from ǫ = 2−n. It then computes a lower bound of the objective value after
observing the first H indices of the input. It returns the lower bound value as the n-th rational approximation.

• Finally, we show that the rational approximations form a fast-converging Cauchy sequence, which proves that the objective
is computable. Therefore by Theorem 4, the objective is PAC-learnable.

GLTL Objective is Uniformly Continuous. First, we give the following Lemma G.2 that if all expiration events simultane-
ously trigger at step H , then the evaluation of the event-form of the GLTL formula only depends on the length-H prefix of the
infinite-length path input.

Lemma G.2 (Simultaneous Expiration). Given a GLTL formula φ, the satisfaction of its event-form depends on the input
infinite-length path up to a horizon that all expiration events are simultaneously triggered. That is:

∀we ∈ (2e)ω.∀w1 ∈ (2Π)ω.∀w2 ∈ (2Π)ω :

if
(

we[H ] = ~1 ∧ w1[:H ] = w2[:H ]
)

then
(

zip (w1, we) � T (φ) ⇔ zip (w2, we) � T (φ)
) (G.4)

Then, we utilize Lemma G.2 to prove the following lemma that a GLTL objective is uniformly continuous.

Lemma G.3. A GLTL objective JφK is uniformly continuous.

Proof. For any input word w, we rewrite the value of the objective in Equation (G.3) by unrolling the first H steps. Then, we
condition the objective (which is a probability) on if all expirations expire simultaneously at each step. In particular, let Ek
denote the event that all expirations trigger simultaneously at step k and let ¬E1...H denote the event that all expiration never
simultaneously trigger before step H . We expand Equation (G.3) as:

JφK(w) =

H
∑

k=1

P(Ek) · P(zip (w,we) � T (φ) | Ek)+

P(¬E1...H) · P( zip (w,we) � T (φ) | ¬E1...H )

(G.5)



Then, consider two paths w1 and w2 sharing a prefix of length H . By Lemma G.2, the satisfaction of T (φ) depends only on
the first H steps of w1 and w2. Thus, for all 0 ≤ k ≤ H , P(zip (w1, we) � T (φ) | Ek) = P(zip (w2, we) � T (φ) | Ek).
Therefore, for the difference ∆ = |JφK(w1)− JφK(w2)|, we cancel the first H terms in the sum to get:

∆ = P(¬E1...H) · |P( zip (w1, we) � T (φ) | ¬E1...H )− P( zip (w2, we) � T (φ) | ¬E1...H )|

≤ P(¬E1...H)

Since P(¬E1...H) is the probability of the all the expirations not triggering simultaneously for the first H steps, we have:
P(¬E1...H) = (1 −

∏

θi∈φ
θi)

H . Consequently, we obtain the upper bound ∆ ≤ (1−
∏

θi∈φ
θi)

H .

Given any ǫ > 0, we can always choose H = log(ǫ)
log(1−

∏
θi∈φ

θi)
so that ∆ ≤ ǫ. Therefore, JφK is uniformly continuous.

Listing G.1: Computation of a GLTL objective

# Given GLTL formula φ

def GLTL(w: (2Π)ω, n: N) → Q:

theta = prod(φ.thetas) # take product of all the expiration probabilities in φ

H = -n / log2ceil(1 - theta)

v = 0

for w_e in e
H
:

if w_e has a simultaneously trigger:

w’ = [zip (w[: H], w e) ; ·ω]

if w′
� T (φ):

e_prob = 1

for e_i in e: # enumerates all the events in the formula

w_e_i = w_e[e_i]

for j in range(H): # enumerates the values in the length-H stream of an event

e_prob *= w_e_i.theta if w_e_i[j] == 1 else (1 - w_e_i.theta) # event triggers with probability w_e_i’s

theta

v += e_prob

return v

Computation of a GLTL Objective. We give pseudocode for computing a GLTL objective in Listing G.1. The code in
Listing G.1 first computes a horizonH = −n

⌈log
2
(1−

∏
θi∈φ θi)⌉

. It then computes the sum of H-terms in Equation (G.5):

H
∑

k=1

P(Ek) · P(zip (w,we) � T (φ) | Ek). (G.6)

To compute this sum, it enumerates all combinations of expiration events of lengthH . If a simultaneous expiration ever happens
in this length H events, it tests if the input word is accepted or rejected by T (φ). In particular, to perform the test, it forms any
eventual cyclic path w′ = [zip (w[: H ], we) ; ·

ω] that starts with the first H indices of the input w and the length-H sequence of
events we and ends in an arbitrarily chosen cycle. It then test if w′ satisfies T (φ) by a standard LTL model checking algorithm
(Baier and Katoen 2008, Chapter 5.2). Due to Lemma G.2, this test is equivalent to testing if zip (w,we) satisfies T (φ). Finally,
it sums the probability of all length-H sequence of expiration events that pass this test. This produces the desired sum in
Equation (G.6).

Conclusion. By the proof of Lemma G.3, the sum in Equation (G.6) is at most ǫ = 2−n smaller than the objective’s value.
Therefore, the return values of Listing G.1 for all n ∈ N form a fast-converging Cauchy sequence that converges to the
objective’s value. Thus, the objective is computable and JφK-PAC-learnable.

H Proof of Lemma G.2

We perform our proof inductively. Specifically, given any GLTL formula φ, we pose the inductive hypothesis that each sub-
formula of φ satisfies Lemma G.2. Given this inductive hypothesis, we prove that φ also satisfies Lemma G.2.

If the outer formula of φ is ¬ψ. Suppose that we is true at step H and that w1 and w2 match up to step H :

we[H ] = ~1 ∧ w1[:H ] = w2[:H ].

By the induction hypothesis, the evaluations of the sub-formula ψ are the same for the two inputs w1 and w2:

zip (w1, we) � T (ψ) ⇔ zip (w2, we) � T (ψ).

Therefore, we can prepend negations to both sides:

zip (w1, we) � ¬T (ψ) ⇔ zip (w2, we) � ¬T (ψ).

By definition of T , we have: zip (w1, we) � T (φ) ⇔ zip (w2, we) � T (φ), which proves this case.



If the outer formula of φ is ψ1 ∧ ψ2 or ψ1 ∨ ψ2. We will prove for the case of φ = ψ1 ∧ ψ2. The case of φ = ψ1 ∨ ψ2 is
essentially the same by changing the logical connective from ∧ to ∨.

Suppose that we is true at step H and that w1 and w2 match up to step H :

we[H ] = ~1 ∧ w1[:H ] = w2[:H ].

By the induction hypothesis, the evaluations of each of the sub-formula ψ1 and ψ2 are the same for the two inputs w1 and w2,
that is:

zip (w1, we) � T (ψ1) ⇔ zip (w2, we) � T (ψ1) and zip (w1, we) � T (ψ2) ⇔ zip (w2, we) � T (ψ2).

Therefore, we can join the two equivalences by the logical connective: zip (w1, we) � T (ψ1) ∧ T (ψ2) ⇔ zip (w2, we) �

T (ψ1) ∧ T (ψ2). By definition of T , we have: zip (w1, we) � T (φ) ⇔ zip (w2, we) � T (φ), which proves this case.

If the outer formula of φ is G θψ. Suppose that we is true at step H and that w1 and w2 match up to step H :

we[H ] = ~1 ∧ w1[:H ] = w2[:H ].

Consider the infinite-length paths wi1 , w1[i:], w
i
2 , w2[i:] and wi

e
, we[i:], the suffixes of w1, w2 and we beginning at some

step i where 0 ≤ i ≤ H . The expiration event triggers at step H − i for we[i:], that is: wi
e
[H − i] = ~1. Further, wi1 and wi2

match up to length H − i, that is: wi1[H − i:] = wi2[H − i:]. Therefore, by the induction hypothesis, the evaluations of the
sub-formula ψ are the same for all pairs of suffix inputs wi1 and wi2 for all i, that is:

∀0 ≤ i ≤ H.zip (w1, we) [i:] � T (ψ) ⇔ zip (w2, we) [i:] � T (ψ). (H.1)

Since we is fixed on both sides, conjuncting both sides with eφ, we also have:

∀0 ≤ i ≤ H.zip (w1, we) [i:] � (T (ψ) ∧ eφ) ⇔ zip (w2, we) [i:] � (T (ψ) ∧ eφ) . (H.2)

To summarize Equations (H.1) and (H.2): The satisfaction relations in the above equations are equal between w1 and w2 up to
step H .

By defintion of T and the semantics of LTL (reviewed in Appendix I), zip (w,we) � T (φ) iff:

∃j ≥ 0, zip (w,we) [j:] � (T (ψ) ∧ eφ) and ∀k. 0 ≤ k < j ⇒ zip (w,we) [k:] � T (ψ). (H.3)

If zip (w1, we) [j:] � (T (ψ)∧eφ) and zip (w1, we) [j:] � (T (ψ)∧eφ) are both true for any j ≤ H , then zip (w1, we) � T (φ)
equals zip (w2, we) � T (φ) due to all satisfaction relations in Equation (H.3) match between w1 and w2 up to step H .

On the other hand, if zip (w1, we) [j:] � (T (ψ) ∧ eφ) and zip (w1, we) [j:] � (T (ψ) ∧ eφ) are never true for some j ≤ H ,
zip (w1, we) � T (φ) andzip (w2, we) � T (φ) both equal false. That is because, since eφ is true at step H , in order for
zip (w,we) [H :] � (T (ψ) ∧ eφ) to be false, T (ψ) must be false at step H — which in turn implies that there is no j such that
T (ψ) will hold until T (ψ) ∧ eφ becomes true at step j.

In both scenarios, we have zip (w1, we) � T (φ) equivalent to zip (w2, we) � T (φ), which proves this case.

If the outer formula of φ is ψ1 Uθ ψ2. Suppose that we is true at step H and that w1 and w2 match up to step H :

we[H ] = ~1 ∧ w1[:H ] = w2[:H ].

Consider the infinite-length paths wi1 = w1[i:], w
i
2 = w2[i:] and wi

e
= we[i:], the suffixes of w1, w2 and we beginning at some

step i where 0 ≤ i ≤ H . The expiration event triggers at step H − i for we[i:], that is: wie[H − i] = ~1. Further, wi1 and wi2
match up to length H − i, that is: wi1[H − i:] = wi2[H − i:]. Therefore, by the induction hypothesis, the evaluations of each of
the sub-formulas ψ1 and ψ2 are the same for all pairs of suffix inputs wi1 and wi2 for all i, that is:

∀0 ≤ i ≤ H.zip (w1, we) [i:] � T (ψ1) ⇔ zip (w2, we) [i:] � T (ψ1) and

∀0 ≤ i ≤ H.zip (w1, we) [i:] � T (ψ2) ⇔ zip (w2, we) [i:] � T (ψ2).
(H.4)

Since we is fixed on both sides, conjuncting both sides with eφ, we also have:

∀0 ≤ i ≤ H.zip (w1, we) [i:] � (T (ψ1) ∧ eφ) ⇔ zip (w2, we) [i:] � (T (ψ1) ∧ eφ) . and

∀0 ≤ i ≤ H.zip (w1, we) [i:] � (T (ψ2) ∧ eφ) ⇔ zip (w2, we) [i:] � (T (ψ2) ∧ eφ) .
(H.5)

To summarize Equations (H.4) and (H.5): The satisfaction relations in the above equations are equal between w1 and w2 up to
step H .

By definition of T and the semantics of LTL (reviewed in Appendix I), zip (w,we) � T (φ) iff:

∃j ≥ 0, zip (w,we) [j:] � T (ψ2) and ∀k. 0 ≤ k < j ⇒ zip (w,we) [k:] � (T (ψ1) ∧ ¬eφ) . (H.6)

If zip (w1, we) [j:] � T (ψ2) and zip (w1, we) [j:] � T (ψ2) are both true for any j ≤ H , then zip (w1, we) � T (φ) equals
zip (w2, we) � T (φ) due to all satisfaction relations in Equation (H.6) match between w1 and w2 up to step H .

On the other hand, if zip (w1, we) [j:] � T (ψ2) and zip (w1, we) [j:] � T (ψ2) are never true for some j ≤ H , zip (w1, we) �
T (φ) andzip (w2, we) � T (φ) both equal false. That is because, since eφ is true at step H , T (ψ2) ∧ ¬eφ is false at step H —
which in turn implies that there is no j such that T (ψ1) ∧ ¬eφ will hold until T (ψ2) becomes true at step j.

In both scenarios, we have zip (w1, we) � T (φ) equivalent to zip (w2, we) � T (φ), which proves this case.



If the outer formula of φ is F θψ. By definition of the conversion operator T , it is the case that T (F θψ) = T (true Uθ ψ).
Therefore the proof of the case of φ = F θψ is the same as the proof of the case of φ = ψ1 Uθ ψ2, by specializing ψ1 = true

and ψ2 = ψ.

I LTL Semantics

This section reviews linear temporal logic (LTL) and its semantics. For a more in-depth introduction of LTL, we refer readers
to Baier and Katoen (2008).

An LTL formula is built from a finite set of atomic propositions Π, logical connectives, temporal next X, and temporal
operators G (always), F (eventually), and U (until). Equation (I.1) gives the grammar of an LTL formula φ over the set of
atomic propositions Π: Equation (G.1) gives the grammar of an LTL formula φ over the set of atomic propositions Π:

φ ··= a
∣

∣ ¬φ
∣

∣ φ ∧ φ
∣

∣ φ ∨ φ
∣

∣ Xφ
∣

∣ Gφ
∣

∣ Fφ
∣

∣ φ U φ, a ∈ Π (I.1)

LTL is a logic over infinite-length paths. For an LTL formula φ, we write w � φ to denote that the infinite-length path w
satisfies φ. The following Equation (I.2) fully defines this satisfaction relation:

Definition I.1 (LTL Semantics).

w � a iff a ∈ w[i] a ∈ Π

w � ¬φ iff w 2 φ

w � φ ∧ ψ iff w � φ and w � ψ

w � φ ∨ ψ iff w � φ or w � ψ

w � Xφ iff w[1:] � φ

w � Gφ iff ∀i ≥ 0, w[i:] � φ

w � Fφ iff ∃i ≥ 0, w[i:] � φ

w � φ U ψ iff ∃j ≥ 0, w[j:] � ψ and ∀k. 0 ≤ k < j ⇒ w[k:] � φ.

(I.2)

In words, the semantics of each temporal operator is:
• Xφ: the sub-formula φ is true in the next time step.
• Gφ: the sub-formula φ is always true in all future time steps.
• Fφ: the sub-formula φ is eventually true in some future time steps.
• φUψ: the sub-formula φ is always true until the sub-formulaψ eventually becomes true, after which φ is allowed to become

false.
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