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Abstract

Linear temporal logic (LTL) offers a simplified

way of specifying tasks for policy optimization

that may otherwise be difficult to describe with

scalar reward functions. However, the standard

RL framework can be too myopic to find maxi-

mally LTL satisfying policies. This paper makes

two contributions. First, we develop a new value-

function based proxy, using a technique we call

eventual discounting, under which one can find

policies that satisfy the LTL specification with

highest achievable probability. Second, we de-

velop a new experience replay method for gener-

ating off-policy data from on-policy rollouts via

counterfactual reasoning on different ways of sat-

isfying the LTL specification. Our experiments,

conducted in both discrete and continuous state-

action spaces, confirm the effectiveness of our

counterfactual experience replay approach.

1. Introduction

In the standard reinforcement learning (RL) framework, the

goal is to develop a strategy that maximizes a reward func-

tion in an unknown environment. In many applications of

RL, a practitioner is responsible for generating the reward

function so that the agent will behave desirably after the

learning process. However, it can be challenging to con-

vey real-world task specifications through scalar rewards

(Randløv & Alstrøm, 1998; Toromanoff et al., 2019; Ibarz

et al., 2018; Zhang et al., 2021; Ng et al., 1999). Collo-

quially known as reward-shaping, practitioners often resort

to using heuristic ”breadcrumbs” (Sorg, 2011) to guide the

agent towards intended behaviors. Despite the “reward func-

tion is enough” hypothesis (Sutton & Barto, 2018; Silver

et al., 2021)), some tasks may not be reducible to scalar

rewards (Abel et al., 2021).

In response to these challenges, alternative RL frameworks

using Linear Temporal Logic (LTL) to specify agent behav-
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ior have been studied (see Section 7). LTL can express de-

sired characteristics of future paths of a system (Baier & Ka-

toen, 2008), allowing for precise and flexible task/behavior

specification. For example, we may ask for a system to

repeatedly accomplish a set of goals in specific succession

(see Section 2 for more examples).

Without significant assumptions, there is no precise sig-

nal on the probability of a policy satisfying an LTL ob-

jective. Existing work overwhelmingly uses Q-learning

with a sparse RL heuristic (Bozkurt et al., 2020; Cai et al.,

2021a) meant to motivate an agent to generate trajectories

that appear to satisfy the task. First, these heuristics involve

complicated technical assumptions obscuring access to non-

asymptotic guarantees, even in finite state-action spaces.

Second, sparse reward functions pose substantial challenges

to any gradient-based RL algorithm since they provide poor

signal to adequately solve credit assignment. Resolving

sparsity involves using a hierarchical approach (Bozkurt

et al., 2020) or re-introducing reward-shaping (Hasanbeig

et al., 2018). See Section 7 for further elaboration on prior

work.

Our contributions. In this paper, we focus on model-free

policy learning of an LTL specified objective from online

interaction with the environment. We make two technical

contributions. First, we reformulate the RL problem with

a modified value-function proxy using a technique we call

eventual discounting. The key idea is to account for the

fact that optimally satisfying the LTL specification may not

depend on the length of time it takes to satisfy it (e.g., “even-

tually always reach the goal”). We prove in Section 4 that

the optimal policy under eventual discounting maximizes

the probability of satisfying the LTL specification.

Second, we develop an experience replay method to ad-

dress the reward sparsity issue. Namely, any LTL formula

can be converted to a fully known specialized finite state

automaton from which we can generate multiple counter-

factual trajectories from a single on-policy trajectory. We

call this method LTL-guided counterfactual experience re-

play. We empirically validate the performance gains of our

counterfactual experience replay approach using both finite

state/action spaces as well as continuous state/action spaces

using both Q-learning and Policy Gradient approaches.
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2. Preliminaries

We give the necessary background and examples to un-

derstand our problem statement and solution approach.

An atomic proposition is a variable that takes on a truth

value. An alphabet over a set of atomic propositions AP

is given by Σ = 2AP. For example, if AP = {x, y} then

Σ = {{}, {x}, {y}, {x, y}}. ∆(A) represents the set of

probability distributions over a set A.

2.1. Running Example

We will be using the environment illustrated in Figure 1

(First) as a running example. The agent is given by a green

dot and there are 3 circular regions in the environment col-

ored yellow, blue and red. The AP are given by {y, b, r},
referring to the respective colored zones. Elements of Σ
indicate which zone(s) the agent is in.

2.2. MDPs with Labelled State Spaces

Following a similar notation as Voloshin et al. (2022), we as-

sume that the environment follows the discounted, labelled

Markov Decision Process (MDP) framework given by the

tupleM = (SM,AM, PM, dM0 , γ, LM) consisting of a

state space SM, an action space AM, an unknown tran-

sition function PM : SM × AM → ∆(SM), an initial

state distribution dM0 ∈ ∆(SM), and a labelling function

LM : SM → Σ. Let AM(s) to be the set of available

actions in state s.

Unlike traditional MDPs,M has a labeling function LM

which returns the atomic propositions that are true in that

state. For example, in Figure 1 (First), when the agent enters

a state s ∈ SM such that it is both in the yellow and blue

zone then LM(s) = {y, b}.

2.3. Linear Temporal Logic (LTL)

Here we give a basic introduction to LTL. For a more com-

prehensive overview, see Baier & Katoen (2008).

Definition 2.1 (LTL Specification, ϕ). An LTL specifica-

tion ϕ is the entire description of the task, constructed from a

composition of atomic propositions with logical connectives:

not (¬), and (&), and implies (→); and temporal operators:

next (X), repeatedly/always/globally (G), eventually (F ),

and until (U ).

Examples. For AP = {x, y}, some basic task specifi-

cations include safety (G¬x), reachability (Fx), stability

(FGx), response (x→ Fy), and progress (x & XFy).

Consider again the environment in Figure 1 (First) where

AP = {y, r, b}. If the task is to eventually reach the yellow

zone and stay there (known as stabilization) then we write

ϕ = FGy. Or, if we would like the agent to infinitely loop

between the yellow and red zone while avoiding the blue

zone then ϕ = GF (y & XFr) & G¬b, a combination of

safety, reachability, and progress.

2.4. LTL Satisfaction

LTL has recursive semantics defining the meaning for logi-

cal connective satisfaction. Without loss of generality, we

will be using a specialized automaton, an LDBA Bϕ (Sickert

et al., 2016), defined below to keep track of the progression

of ϕ satisfaction. More details for constructing LDBAs are

in Hahn et al. (2013); Baier & Katoen (2008); Křetı́nskỳ

et al. (2018). We drop ϕ from Bϕ for brevity.

Definition 2.2. (Limit Deterministic Büchi Automaton,

LDBA (Sickert et al., 2016)) An LDBA is a tuple B =
(SB,Σ ∪ AB, P

B,SB
∗

, bB−1) consisting of (i) a finite set

of states SB, (ii) a finite alphabet Σ = 2AP, AB is a

set of indexed jump transitions (iii) a transition function

PB : SB×(Σ∪AB)→ S
B, (iv) accepting states SB

∗

⊆ SB,

and (v) initial state bB−1. There exists a mutually exclusive

partitioning of SB = SBD ∪ S
B
N such that SB

∗

⊆ SBD, and

for b ∈ SB
D, a ∈ Σ then PB(b, a) ⊆ SBD, closed. AB(b) is

only (possibly) non-empty for b ∈ SBN and allows B to tran-

sition to SBD without reading an AP. A path ̺ = (b0, b1, . . .)
is a sequence of states in B reached through successive

transitions under PB.

Definition 2.3. (B accepts)B accepts a path ̺ if there exists

some state b ∈ SB
∗

in the path that is visited infinitely often.

Examples. Consider again the environment in Figure 1

(First) where AP = {y, r, b}. If we would like to make

an LDBA for ϕ = FGy (reach and stabilize at y) then we

would get the state machine seen in Figure 1 (Second). In

this state machine, the agent starts at state 0. The accepting

set is given by SB
∗

= {1}. The transition between state 0
and state 1 is what is formally referred to as a jump transi-

tion: AB(0) = {ǫ} while AB(·) = ∅ otherwise. Whenever

the agent is in state 0 of the LDBA, there is a choice of

whether to stay at state 0 or transition immediately to state

1. This choice amounts to the agent believing that it has sat-

isfied the “eventually” part of the LTL specification. When

the agent takes this jump, then it must thereafter satisfy y
to stay in state 1. The agent gets the decision of when it

believes it is capable of satisfying y thereafter. When the

agent takes the jump, if it fails to stay in y, it immediately

transitions to the sink, denoted state 2. The LDBA accepts

when the state 1 is reached infinitely often, meaning the

agent satisfies “always y” eventually, as desired.

Another example, this time without jump transitions, would

be for ϕ = GF (y & XFr) & G¬b (oscillate between y
and r forever while avoiding b). The LDBA can be seen

in Figure 1 (Third). In this state machine, the agent starts

at state 1 and the accepting set is given by SB
∗

= {1}. To

make a loop back to state 1, the agent must visit both r and y.
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Figure 1. Examples. First: Illustration of the Flatworld environment. The agent is a green dot and there are 3 zones: yellow, blue

and red. Second: LDBA B for “FGy”. SB∗

= {1}, denoted by green circle. The initial state is b−1 = 0. Third: LDBA B for

“GF (y & XFr) & G¬b”. SB∗

= {1}, denoted by green circle. The initial state is b−1 = 1. Fourth: For this example, an agent starting

in state 0 and solving argmaxπ∈Π Eτ∼TP
π
[
∑∞

i=0
γi
1{bi∈SB∗

}] where SB∗

is illustrated as the green circles would choose to take action

B with probability 1 if α ∈ (1/2, 1) for any γ ∈ [0, 1]. Such a policy has P[π |= ϕ] = α < 1. However the probability optimal policy

deterministically takes action A, with P[π∗ |= ϕ] = 1. This illustrates catastrophic myopic behavior.

Doing so infinitely often satisfies the LDBA condition and

therefore the specification. If at any point b is encountered

then the agent transitions to the sink, denoted state 3.

3. Problem Formulation

We first introduce slightly more notation. Let Z = SM ×
SB. Let Π : Z × A → ∆([0, 1]) be a (stochastic) policy

class over the product space of the MDP and the LDBA

(defined below), where A((s, b)) = AM(s) ∪ AB(b), to

account for jump transitions in B.

Synchronizing the MDP with the LDBA. For any (s, b) ∈
Z , a policy π ∈ Π is able to select an action in AM(s) or

an action in AB(b), if available. We can therefore generate

a trajectory as the sequence τ = (s0, b0, a0, s1, b0, a1, . . .)
under a new probabilistic transition relation given by

P (s′, b′|s, b, a) =










PM(s, a, s′) a ∈ AM(s), b′ ∈ PB(b, L(s′))

1, a ∈ AB(b), b′ ∈ PB(b, a), s = s′

0, otherwise

(1)

Let the LDBA projection of τ be the subsequence τB =
(b0, b1, . . .). Elements of τB can be thought of as tracking

an agent’s LTL specification satisfaction:

Definition 3.1 (Run Satisfaction, τ |= ϕ). We say a trajec-

tory satisfies ϕ if B accepts τB, which happens if ∃b ∈ τB
infinitely often with b ∈ SB

∗

.

Let TP
π = Ez∼dM

0
×{b−1}[T

P
π (z)] be the distribution over

all possible trajectories starting from any initial state z ∈
dM0 × {b−1} where TP

π (z) is the (conditional) distribution

over all possible trajectories starting from z ∈ Z generated

by π under relation P (given in (1)). The probability of

LTL satisfaction results from counting how many of the

trajectories satisfy the LTL specification:

Definition 3.2 (State Satisfaction, z |= ϕ). Pπ[z |= ϕ] =
Eτ∼TP

π (z)[1{τ |=ϕ}] = Eτ∼TP
π
[1{τ |=ϕ}|z0 = z]

Definition 3.3 (Policy Satisfaction, π |= ϕ). P[π |= ϕ] =
Eτ∼TP

π
[1{τ |=ϕ}] where 1X is the indicator for X .

Ideally we would like to find a policy with highest probabil-

ity of LTL specification satisfaction: one that generates the

most number of LTL-satisfying runs. Formally,

π∗ ∈ argmax
π∈Π

P[π |= ϕ]. (2)

We note that Eq (2) is the standard starting point for formu-

lating policy optimization for LTL satisfaction (Yang et al.,

2021; Bozkurt et al., 2020; Cai et al., 2021a; Hasanbeig

et al., 2018; 2020; Voloshin et al., 2022).

4. RL-Friendly Form: Eventual Discounting

Unfortunately, the maximization problem in Eq (2) is not

easily optimized since we dont have a direct signal on P[π |=
ϕ]. Without any additional assumptions (such as structured

knowledge of the MDP), any finite subsequence can only

give evidence on whether τ |= ϕ but not a concrete proof.

Eventual Discounting. To address the above issue, we de-

velop a modified value-function based surrogate as follows.

Given a trajectory τ = (s0, b0, a0, . . .), we keep track of

how often bi ∈ S
B∗

and incentivize an agent to visit SB
∗

as many times as possible. In particular, under eventual

discounting, the value function will give the agent a reward

of 1 when in a state bi ∈ S
B∗

and not discount length of

time between visits to SB
∗

. Formally, we will be seeking

π∗
γ ∈ argmax

π∈Π
Eτ∼TP

π
[

∞
∑

i=0

Γi1{bi∈SB∗}] (≡ V γ
π ), (3)

where Γ0 = 1 and

Γi =

i−1
∏

t=0

γ(bt), γ(bt) =

{

γ, bt ∈ S
B∗

1, otherwise
. (4)
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Intuition for Γi. At first glance setting Γi = γi to be

the traditional RL exponential discount rate would seem

reasonable. Unfortunately, ∄γ ∈ [0, 1] with Γi = γi that

avoids catastrophic myopic behavior. In particular, take

Figure 1 (Fourth). The agent starts in state 0 and only has

two actions A and B. Taking action A transitions directly

to an accepting state from which point the accepting state is

visited every 2 steps. On the other hand, action B transitions

to an accepting state with probability α and a sink state with

probability 1 − α. The accepting state reached by action

B is revisited every step. Suppose β = π(A) = 1− π(B)
then we can calculate:

Eτ∼TP
π
[

∞
∑

i=0

γi
1{bi∈SB∗}] =

β

1− γ2
+

(1− β)α

1− γ
. (5)

For α > 1/2, the optimal choice β is β = 0 implying that

P (π |= ϕ) = α. When α ∈ (1/2, 1) then this implies that

π is not probability optimal. Indeed, P (π |= ϕ) = α < 1
when β = 0 but P (π∗ |= ϕ) = 1 by selecting β = 1. The

intuition here, which can be formalized by taking γ → 1, is

that the average reward for taking action A is 1
2 while the

average reward for taking action B is 1 with probability α,

which is worth the risk for large α > 1/2.

To avoid this myopic behavior, we must avoid discriminating

between return times between good states. The number steps

(on average) it takes to return to SB
∗

is irrelevant: we only

require that the system does return. For this reason we do

not count time (hence γ = 1) in our definition of Γi when

the system is not in SB
∗

. We call this eventual discounting.

4.1. Analysis of π∗
γ

In this section we analyze how the probability of π∗
γ satisfy-

ing ϕ compares to that of the best possible one π∗.

Let the set O(τ) = {i : bi ∈ S
B∗

} denote the occurences

(time steps) when a good state is reached. This quantity is

natural since |O(τ)| =∞ if and only if τ |= ϕ.

Lemma 4.1. For any π ∈ Π and γ ∈ (0, 1), we have

|(1− γ)V γ
π − P[π |= ϕ]| ≤ log(

1

γ
)Oπ

where Oπ = Eτ∼TP
π

[

|O(τ)|

∣

∣

∣

∣

τ 6|= ϕ

]

is the expected num-

ber of visits to an accepting state for the trajectories that do

not satisfy ϕ.

Proof. Fix some state z = (s, b) ∈ Z .

V γ
π (z) = Eτ∼TP

π
[

∞
∑

i=0

Γi1{bi∈SB∗}|z0 = z]

= Eτ∼TP
π





|O(τ)|
∑

j=0

γj |z0 = z





Using the fact that
∑k

j=0 γ
j = 1−γk

1−γ
, we have

V γ
π (z) = Eτ∼TP

π

[

1− γ|O(τ)|

1− γ

∣

∣

∣

∣

τ |=ϕ
z0=z

]

Pπ[z |= ϕ]

+ Eτ∼TP
π

[

1− γ|O(τ)|

1− γ

∣

∣

∣

∣

τ 6|=ϕ
z0=z

]

Pπ[z 6|= ϕ] (6)

Since |O(τ)| =∞ for any τ |= ϕ,

Eτ∼TP
π

[

1− γ|O(τ)|

1− γ

∣

∣

∣

∣

τ |=ϕ
z0=z

]

=
1

1− γ
(7)

together with Pπ[z 6|= ϕ] ≥ 0 implies

V γ
π (z) ≥

1

1− γ
Pπ[z |= ϕ]. (8)

Taking the expectation over initial states we have

V γ
π ≥

1

1− γ
P[π |= ϕ]. (9)

Now we find an upper bound. Let Mπ(t) =

Eτ∼TP
π

[

et|O(τ)|

∣

∣

∣

∣

τ 6|= ϕ

]

. Starting again with Eq (6) and

using Eq (7), we have

V γ
π (z) ≤

Pπ[z |= ϕ]

1− γ
+

1− Eτ∼TP
π

[

elog(γ)|O(τ)|

∣

∣

∣

∣

τ 6|=ϕ
z0=z

]

1− γ
(10)

where we have used that Pπ[z 6|= ϕ] ≤ 1 for any z ∈
Z . Taking the expectation with respect to the initial state

distribution then we have

(1− γ)V γ
π ≤ P[π |= ϕ] + 1−Mπ(log(γ)) (11)

In particular, Mπ(t) is convex and therefore it lies above its

tangents:

Mπ(t) ≥Mπ(0) + tM ′
π(0) = 1 + tEτ∼TP

π

[

|O(τ)|

∣

∣

∣

∣

τ 6|= ϕ

]

= 1 + tOπ

Plugging this inequality into Eq (11), together with Eq (9),

P[π |= ϕ] ≤ (1− γ)V γ
π ≤ P[π |= ϕ] + log(

1

γ
)Oπ (12)

Subtracting P[π |= ϕ] from both sides and taking the abso-

lute value completes the proof.

Theorem 4.2. (Non-asymptotic guarantee) For any γ ∈
(0, 1),

sup
π∈Π

P[π |= ϕ]− P[π∗
γ |= ϕ] ≤ 2 log(

1

γ
) sup
π∈Π

Oπ (13)

where Oπ = Eτ∼TP
π

[

|O(τ)|

∣

∣

∣

∣

τ 6|= ϕ

]

.
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Proof. Consider any sequence {πi}
∞
i=1 such that P[πi |=

ϕ]→ supπ P[π |= ϕ] as i→∞. Then we have for any πi,

P[πi |= ϕ]− P[π∗
γ |= ϕ] = P[πi |= ϕ]− (1− γ)V γ

πi

+ (1− γ)V γ
πi
− (1− γ)V γ

π∗
γ

+ (1− γ)V γ
π∗
γ
− P[π∗

γ |= ϕ]

(a)

≤ |P[πi |= ϕ]− (1− γ)V γ
πi
|

+ |P[π∗
γ |= ϕ]− (1− γ)V γ

π∗
γ
|

(b)

≤ log(
1

γ
)(Oπi

+Oπ∗
γ
)

(c)

≤ 2 log(
1

γ
) sup
π∈Π

Oπ

where (a) is triangle inequality together with removing the

term (1 − γ)V γ
πi
− (1 − γ)V γ

π∗
γ

since it is nonpositive by

definition of π∗
γ , (b) is an application of Lemma 4.1, and (c)

is a supremum over all policies. Taking the limit on both

sides as i→∞ completes the proof.

Corollary 4.3. If the number of policies in Π is finite then

supπ∈Π Oπ = m <∞ is attained, is a finite constant and

sup
π∈Π

P[π |= ϕ]− P[π∗
γ |= ϕ] ≤ 2m log(

1

γ
)

Corollary 4.4. In the case that SM andAM are finite, then

Z and A are finite. It is known that optimal policies are

deterministic (Puterman, 2014) and therefore there we need

only consider deterministic policies, for which there are a

finite number. Thus supπ∈Π Oπ = m <∞ is attained, is a

finite constant and

sup
π∈Π

P[π |= ϕ]− P[π∗
γ |= ϕ] ≤ 2m log(

1

γ
)

4.2. Interpretation

Theorem 4.2 relies on the quantity supπ∈Π Oπ to be finite

for the bound to have meaning. In fact, we need only make

requirements on Mπ(log(γ)) but the requirements are more

easily understood on Oπ. As an aside, Mπ(log(γ)) can be

interpreted as the moment generating function of the random

variable which is the number of visits to SB
∗

. Instead we

consider the equally natural quantity Oπ . Oπ is the (average)

number of times that a good state is visited by a trajectory

that does not satisfy the specification. Ideally, this number

would be small and it would be easy to discriminate against

good and bad policies.

The bad news. In the case that Π is an infinite class, con-

ditions for ensuring supπ∈Π Oπ is finite is nontrivial and is

dependent on the landscape of the transition function P of

the MDP and Π.

Algorithm 1 Learning with LCER

Param: Maximum horizon T . Replay buffer D = {}.
1: for k = 1, 2, . . . do

2: Run πk−1 in the MDP for T timesteps and collect

τ = (s0, b0, a0, . . . , sT−1, bT−1, aT−1, sT , bT )
3: Dk ← LCER(Dk−1, τ)
4: πk ← Update(πk−1, Dk) // Q-learn/Policy grad.

5: end for

Let us suppose supπ∈Π Oπ is infinite. This means there are

policies that induce bad trajectories that eventually fail to

reach SB
∗

, but along the way visited SB
∗

an arbitrarily large

(but finite) number of times. In other words, they are policies

that are indistinguishable from actual probability-optimal

policies until the heat death of the universe.

Consider the specification in Figure 1 (right), given by in-

finitely often cycle between red and yellow while avoiding

blue. A good-looking bad policy is one that accomplishes

the task frequently but, amongst the times that it fails, it

would cycle between red and yellow many times before fail-

ing. supπ∈Π Oπ being infinite means that there are policies

that will cycle arbitrarily many times before failing.

The good news. Corollary 4.4 reveals that discretization

suffices to generate probability optimal policies, with sub-

optimality shrinking at a rate of log( 1
γ
). This suggests that

compactness of P and Π and continuity of P may very

well be enough but we leave these conditions for future

work. Finally, since all computers deal with finite precision,

the number of policies is finite and therefore Corollary 4.3

similarly applies.

5. LTL Counterfactual Experience Replay

One can optimize the formulation in Eq (3) using any Q-

learning or policy gradient approach, as seen in Algorithm

1 (Line 4). However, doing so is challenging since it suffers

from reward sparsity: the agent only receives a signal if it

reaches a good state.

We combat reward sparsity by exploiting the LDBA: PB is

completely known. By knowing PB, we can generate multi-

ple off-policy trajectories from a single on-policy trajectory

by modifying which stats in the LDBA we start in, which

notably does not require any access to the MDP transition

function PM. We call this approach LTL-guided Counter-

factual Experience Replay, LCER (Algorithm 1, Line 3),

as it is a modification of standard experience replay (Lin,

1992; Mnih et al., 2013; 2015) to include counterfactual

experiences elsewhere in the LDBA. LCER is most simply

understood through Q-learning, and needs careful modifica-

tion for policy gradient methods.

Q-learning with LCER. See Algorithm 2 for a synopsis of
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Algorithm 2 LCER for Q-learning

Param: Dataset D. Trajectory τ of length T .

1: for (st, at, st+1) ∈ τ do

2: for b ∈ SB do

3: Set b̃← PB(b, LM(st+1))
4: D ← D ∪ (st, b, at,1b̃∈B∗ , st+1, b̃)

5: for ǫ ∈ AB(s) do

6: Set b̃← PB(b, ǫ)
7: D ← D ∪ (st, b, ǫ,1b̃∈B∗ , st, b̃)
8: end for

9: end for

10: end for

11: return D

LCER for Q-learning. Regardless of whatever state s ∈ SM

the agent is in, we can pretend that the agent is in any

b ∈ SB. Then for any action the agent takes we can store

experience tuples:

{(s, b, a, r, s′, b̃′) | ∀b ∈ SB} (14)

where b̃′ = PB(b, LM(s′)) is the transition that would

have occurred from observing labelled state L(s′) in state

(s, b) and r = 1b̃′∈B∗ . Furthermore we can add all jump

transitions:

{(s, b, ǫ, r, s, b̃′) | ∀b ∈ SB, ∀ǫ ∈ AB(b)} (15)

since jumps also do not affect the MDP. Notice when we

add the jumps that s′ = s, since only the LDBA state shifts

in a jump.

Policy Gradient with LCER. See Algorithm 3 for a sum-

mary of LCER for policy gradient. For policy gradient,

unlike Q-learning, it is necessary to calculate future reward-

to-go: Rk(τ) =
∑T

i=k Γi1{bi∈SB∗}. Thus, we have to gen-

erate entire trajectories that are consistent with PB rather

than independent transition tuples as in Eq (14). We will

show how to generate all feasible trajectories.

Consider a trajectory τ = (s0, b0, a0, . . . , sT , bT ) was col-

lected. Let us remove jump transitions (si, bi, ai) where

ai ∈ A
B(bi) and consider the projection of the trajectory

to the MDP τM = (s0, s1, . . . , sT ). We should only have

control over the initial LDBA state b0 as all other automaton

states (b1, . . . , bT ) in a trajectory sequence are determined

by τM and bi+1 = PB(bi, L
M(si)).

Therefore we add

T̃ (τ) = {(s0, b̃0, a0, . . . , sT , b̃T ) |

∀b̃0 ∈ S
B, b̃i = PB(b̃i−1, L

M(si))} (16)

where only the LDBA states are different between the tra-

jectories.

Algorithm 3 LCER for Policy Gradient

Param: Dataset D. Trajectory τ of length T .

1: Set T̃0 ← T̃ (τ)
2: for k = 1, . . . , T − 1 do

3: T̃k ← E(T̃k−1)
4: if T̃k == T̃k−1 then

5: Set T̃T−1 ← T̃k
6: break

7: end if

8: end for

9: Set D ← D ∪ T̃T−1

10: return D

Now we handle jump transitions. Consider some τ̃ ∈ T̃ (τ).
Recall, a jump transition can occur wheneverAB(b̃i) is non-

empty. This involves adding a trajectory that is identical to τ̃
all the way until the jump occurs. The jump occurs and then

the same action sequence and MDP state sequence follows

but with different LDBA states. Specifically, suppose b̃i had

an available jump transitions, ǫ ∈ AB(b̃i). Then:

τ̃i,ǫ = (s0, b̃
′
i, a0, . . . , si, b̃

′
i, ǫ, si, b̃

′
i+1, ai, . . . , sT , b̃

′
T )
(17)

where b̃′k = b̃i for k ≤ i and b̃′k = PB(b̃′k−1, L
M(sk))

otherwise.

We have to add all possible τ̃ ′i,ǫ that exist. Let E be the

operator that adds jumps to existing sequences:

E(T̃ (τ)) = T̃ (τ) ∪ {τ̃i,ǫ from Eq (17)|

∀τ̃ ∈ T̃ (τ), ∃bi ∈ τ̃ s.t. ∃ǫ ∈ AB(bi)}. (18)

We can only apply E(E(. . . (E(T̃ (τ))))) at most T times

since the original length of τ is T .

Remark 5.1. The length of τ has to be sufficiently large

to make sure the LDBA has opportunity to reach SB
∗

. A

sufficient condition is T ≥ |{b|AB(b) 6= ∅}|, the number

of LDBA states with jump transitions.

It is possible to constructively generate feasible trajectories

during the rollout of a policy rather than after-the-fact, see

Appendix B.

6. Experiments

We perform experiments in four domains with varying LTL

formulas, state spaces, action spaces, and environment

stochasticity summarized in the following section. Our

aim is to answer the following two questions: (1) Can we

achieve policies that behave the way we expect an LTL-

satisfying policy to behave? (2) How does LCER impact the

performance of learning.
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Figure 2. Results. Each column is an environment and a LTL formula we’d like an agent to satisfy. The environment and a trajectory from

the final policy is illustrated in the center of the column (except for Pacman, which is the initial state). The learning curves at the bottom

of each column show that adding off-policy data using LCER has strong benefits for empirical performance. First Column: Minecraft,

where an agent should visit the yellow and blue areas while avoiding the red. The final policy is illustrated via blue dots. Second Column:

Pacman, where an agent should collect the food while avoiding a ghost. Third Column: Flatword, where an agent should eventually

stabilize in the yellow region. When the actions are discrete we use Q-learning, when the actions are continuous we use PPO. Fourth

Column: Same as the third column except an agent should oscillate between the yellow and red regions while avoiding the blue. Fifth

Column: Carlo, where an agent should drive in a circle without crashing by visiting the blue regions labelled 1 and 2 infinitely often.

6.1. Environment Details

Minecraft The Minecraft environment is a 10 × 10 deter-

ministic gridworld with 5 available actions: left, right, up,

down, nothing. The agent, given by a red triangle starts in

the cell (9, 2). The environment, as well as the final behav-

ior of the agent (given by blue dots) can be seen in Figure 2

(First).

Pacman The Pacman environment is a 5× 8 deterministic

gridworld with 5 available actions: left, right, up, down,

nothing. The agent, given by a red triangle starts in the cell

(0, 3). The ghost chases the agent with probability 0.8 and

takes a random action with probability 0.2, for this reason

the environment is stochastic. The starting position of the

environment can be seen in Figure 2 (Second).

Flatworld The Flatworld environment (seen in Figure 2

Third and Fourth) is a two dimensional continuous world.

The agent (given by a green dot) starts at (−1,−1). The

dynamics of the world are given by x′ = x+ a/10 where

both x ∈ R2 and a ∈ [0, 1]2. We also allow the action space

to be discrete by letting there be 5 actions (right, up, left,

down, nothing) where the agent takes a full-throttle action

in each respective direction.

Carlo The Carlo environment (seen in Figure 2 Fifth)is a

simplified self-driving simulator that uses a bicycle model

for the dynamics. The agent observes its position, velocity,

and heading in radians for a total of 5 dimensions. The

agent has control over its heading and throttle, for an action

space of [−1, 1]2. For this domain, we have chosen to use a

circular track where the agent starts in the center of the road

at an angle of {π(1+2i)/4}3i=0 and drive counterclockwise

around in a circle without crashing.

6.2. Methods and Baseline

When the action space is discrete, we use Q-learning with

LCER otherwise we use PPO with LCER. The baseline we

compare against is the same method without LCER. This

allows us to verify the extent to which LCER impacts per-

formance. We also plot a trajectory from the final policy

for each environment in the middle of each column of Fig-

ure 2, except for Pacman as it is difficult to visualize the

interaction between the ghost and pacman outside of video.

Dealing with A. For PPO, the agent’s policy is a Gaussian

(as in standard implementations) over the continuous action

space. In order to deal with jump transitions (in the LDBA)

when in a continuous action space (in the MDP), we first

let the agent decide whether to execute a jump transition or

not (ie. a probabilistic coin flip). If the agent chooses to

not, then we take the action according to the Gaussian. The

coin flip probability is learned, as well as the Gaussian. For

the importance sampling term of PPO, the density of π is

modified to account for the coin flip. For more details see

Appendix A.

6.3. Results

Can we achieve desired behavior? The answer here is

a resounding yes. For each environment (except Pacman)
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we illustrate the trajectory of the final policy above each

learning curve in Figure 2. Determining the probability of

satisfaction of the final policy is currently a challenging open

problem (except in finite-state action spaces). Nevertheless,

in each environment the agent qualitatively accomplishes

the task. Even for challenging tasks with continuous action

spaces, the agent is able to learn to accomplish the LTL

specification.

Does LCER help in the learning process? According to

the learning curves in the last row of Figure 2, LCER demon-

strably expedites learning. In every environment with the

exception of Carlo, LCER generates significant lift over lack

of experience replay.

Intuition for why LCER helps? One way of viewing an

LDBA is as a curriculum for what steps need to be taken in

order to accomplish a task. By replacing the LDBA state of

the agent with some other dream LDBA state, we are allow-

ing the agent to “pretend” that it has already accomplished

some portion of the task.

As an example, consider the Flatworld example in Figure

2 with ϕ = GF (y & XF (r)) & (G¬b). A baseline agent

(without LCER) would need to accomplish the entirety of

the task in order to see any reward. However, an agent with

counterfacual data, need only visit y from state 0 of the

LDBA (see figure 1 for the LDBA). Then once the agent is

really good at getting to y, it needs to learn how to reach

r from state 2. After both of these tasks are accomplished,

independently, the agent has solved the whole task. By

placing the agent in state 0 of the LDBA, we are effectively

letting the agent pretend that it has already visited r. In this

sense, part of the task has been accomplished.

7. Related Work

Finding LTL-satisfying policies. Among the attempts at

finding LTL-satisfying policies, Q-learning approaches have

been the primary method of choice when the dynamics are

unknown and Linear Programming methods when the dy-

namics are known (Sadigh et al., 2014; Hasanbeig et al.,

2018; Bozkurt et al., 2020; Cai et al., 2021b; Ding et al.,

2014). The Q-learning approaches are predominantly con-

strained to finite state-action spaces. Among the works that

extend to continuous action spaces (Hasanbeig et al., 2020),

DDPG is used and takes the form of hierarchical RL which

is known to potentially find myopic policies (Toro Icarte

et al., 2022).

Handling a subset of LTL specifications involving those

expressible as finite expressions can also be addressed with

Reward machines (Toro Icarte et al., 2022; Camacho et al.,

2019; Vaezipoor et al., 2021). Our work handles ω-regular

expressions, subsuming regular expressions. Many prob-

lems are ω-regular problems, but not regular, such as live-

ness (something good will happen eventually) and safety

(nothing bad will happen forever).

On the formulation in Eq (3). Notable prior work on defin-

ing the value function as a function of the number of visits to

SB and a state-dependent Γi function include Bozkurt et al.

(2020); Cai et al. (2021a). Most notably, these authors use

multiple different state-dependent discount rates that have

a complicated relationships between them that needs to be

satisfied in the limit as γ → 1−. Our work drastically sim-

plifies this, getting rid of the technical assumptions, while

strengthening the guarantees. This allows us to find a non-

asymptotic dependence on the suboptimality of a policies’

probability of LTL satisfaction as a function of γ.

Off-policy data. One may view the counterfactual samples

in Toro Icarte et al. (2022) as an instantiation of LCER,

limited to finite LTL expressions and discrete action spaces.

Extension to continuous action space and full LTL requires

a careful treatment. In the continuous action and full LTL

setting, (Wang et al., 2020) incorporate starting the agent

from a different initial LDBA state (than b−1) which is still

on-policy but from a different starting state and doesn’t take

advantage of the entire LDBA structure. This work can be

seen as complimentary to our own.

Theory. Works with strong theoretical guarantees on policy

satisfaction include Fu & Topcu (2014); Wolff et al. (2012);

Voloshin et al. (2022) but are once again limited to discrete

state/action spaces. Extensions of these work to continuous

state space is not trivial as they make heavy use of the

discrete Markov chain structure afforded to them.

8. Discussion

Our work, to the best of our knowledge, is the first to make

full use of the LDBA as a form of experience replay and first

to use policy gradient to learn LTL-satisfying policies. Our

eventual discounting formulation is unrestricted to Finitary

fragments of LTL like most prior work.

Despite the guarantees afforded to us by eventual discount-

ing, in general the problem given in Eq (2) is not PAC

learnable (Yang et al., 2021). Though, like SAT solvers, it is

still useful to find reasonable heuristics to problems that are

difficult. We show that under particular circumstances, even-

tual discounting gives a signal on the quantity of interest in

(2) and even when it fails, it selects a policy that is difficult

to differentiate from a successful one. Further, the bad news

discussed in Section 4.2 we speculate is unavoidable in gen-

eral LTL specifications, without significant assumptions on

the MDP. For example, for stability problems in LTL and

assuming control-affine dynamics then Lyapunov functions

can serve as certificates for a policies’ LTL satisfaction. A

reasonable relaxation to this would be require a system to

behave a certain way for a long, but finite amount of time.
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A. Experiments

A.1. Environment Details

The environment and experiment details are summarized in Table 1.

Table 1. Environment Details

Environment Experiment SM AM Dynamics LTL Formula

Minecraft Q-learning Discrete Discrete Deterministic GF (y & XF (b)) & (G¬r)
Pacman Q-learning Discrete Discrete Stochastic F (food) & (G¬ghost)
Flatworld 1 Q-learning R2 Discrete Deterministic FGy
Flatworld 2 Q-learning R2 Discrete Deterministic GF (y & XF (r)) & (G¬b)
Flatworld 3 PPO R2 [0, 1]2 Deterministic FGy
Flatworld 4 PPO R2 [0, 1]2 Deterministic GF (y & XF (r)) & (G¬b)
Carlo PPO R5 [−1, 1]2 Deterministic GF (zone1 & XF (zone2)) & (G¬crash)

A.2. Experiment Setup

Each experiment is run with 10 random seeds. Results from Figure 2 are from an average over the seeds.

Q-learning experiments. Let k be the greatest number of jump transitions available in some LDBA state k =
maxb∈SB |AB(b)|. Let m = maxs∈SM |AM(s)|. The neural network Qθ(s) takes as input s ∈ SM and outputs

R(m+k)×|SB| a (m+ k)-dim vector for each b ∈ SB. For our purposes, we consider Qθ(s, b) to be the single (m+ k)-dim

vector cooresponding to the particular current state of the LDBA b.

When SM is discrete then we parametrize Qθ(s, b) as a table. Otherwise, Qθ(s, b) is parameterized by 3 linear layers with

hidden dimension 128 with intermediary ReLU activations and no final activation. After masking for how many jump

transitions exist in b, we can select argmaxi∈[0,...,|AB(b)|] Qθ(s, b)i the highest Q-value with probability 1− η and uniform

with η probability. Here, η is initialized to η0 and decays linearly (or exponentially) at some specified frequency (see Table

2).

At each episode (after a rollout of length T ), we perform K gradient steps with different batches of size given in Table 3.

We use Adam optimizer (Kingma & Ba, 2015) with a learning rate also specified by the table.

When in a continuous state space, we implement DDQN (Hasselt et al., 2016) (rather than DQN) with a target network that

gets updated at some frequency specified by Table 3.

Table 2. Hyperparameters for Q-learning experiments (Discrete Action Space)

η η Decay

Experiment η0 Min η Type Rate Freq Batch size K (# batches) LR Target update T γ

Minecraft .3 0 Exponential .9 100 128 20 - - 100 .99
Pacman .4 0 Linear .05 400 512 200 - - 100 .999
Flatworld 1 .8 .15 Exponential .9 100 128 5 .001 15 20 .95
Flatworld 2 .8 .15 Exponential .9 100 128 5 .001 15 50 .95

PPO experiments. Let k be the greatest number of jump transitions available in some LDBA state k = maxb∈SB |AB(b)|.

The neural network fθ(s) takes as input s ∈ SM and outputs R(k+2)×|SB| is a (k + 2)-dim vector for each b ∈ SB. For our

purposes, we consider fθ(s, b) to be the single (k+ 2)-dim vector cooresponding to the particular current state of the LDBA

b.

fθ(s, b) is parameterized by 3 linear layers with hidden dimension 64 with intermediary ReLU activations. The first

dimension corresponds to sampling a Gaussian action a ∼ N (fθ(s, b)[0], diag(σ2)) where σ is initialized to σ0 (see Table

3) and decays exponentially (at a rate given in the table) every 10 episodes. The remaining k + 1 dimensions (after proper

masking to account for the size of |AB(b)| and softmax) represent the probability p = [pa, pǫ0 , . . . , pǫk ] of taking either

the MDP action a or a some jump transition ǫi. We sample from a Categorical(p) variable to select whether to return
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a ∼ N (Tanh(fθ(s, b)[0]), diag(σ2)) or a = ǫi for some i. The density can be calculated by multiplying pa by the Gaussian

density when a is selected, and pǫi otherwise.

For the critic, we have a parametrized network fφ(s, b)→ R of 3 linear layers with hidden dimension 64 with intermediary

Tanh activations and no final activation.

At each episode (after a rollout of length T ), we perform 5 gradient steps with different batches of size given in Table 3. The

importance sampling term in PPO is clipped to 1± .4. The critic learning rate is .01. We use Adam optimizer (Kingma &

Ba, 2015) for both the actor and critic.

Table 3. Hyperparameters for PPO experiments (Continuous Action Space)

Experiment σ0 σ Decay Rate Min σ Batch size LR Actor T

Flatworld 3 1.8 .98 .3 128 .001 20
Flatworld 4 1.8 .99 .1 128 .001 50
Carlo .5 .999 .3 16 .0001 500
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B. Constructing feasible trajectories for policy gradient during rollout

Suppose we wanted to generate feasible trajectories in realtime while the policy is being rolled out. That is, we have a partial

trajectory of the form τt = (s0, b0, a0, . . . , st, bt) generated by running π in P . Let at = a ∈ A be the t-th action taken by

π and st+1 = s′ ∈M be the next observed state observed in the MDP.

Let Tt be the current set of feasible (partial) trajectories at timestep t. Elements τk = (s0, b0, a0, . . . , sk, bk) ∈ Tt denote

k-step (partial) trajectory, not necessarily part of the trajectory observed during the course of a rollout of π. Here, k ≥ t.
Then, for each τk ∈ Tt, one of 4 cases holds:

Case 1. Action a is not a jump transition (ie. a ∈ AM(sk)) and there are no jump transitions available in bk (AB(bk) = ∅).

Then we can form the concatenation: τk+1 = τk ∪ (a, s′, bk+1) where bk+1 = PB(bk, L
M(s′)). We set Tǫ = ∅.

Case 2. Action a is a jump transition and is currently feasible in bk (ie. a ∈ AM(bk)). Then we can form the concatenation

τk+1 = τk ∪ (a, s′, bk+1) where bk+1 = PB(bk, a). We set Tǫ = ∅.

Case 3. Action a is a not a jump transition (ie. a ∈ AM(sk)), but there is at least one feasible jump transition in bk (ie.

AB(bk) 6= ∅). Then, in addition to forming τk+1 from Case 1, we have all the possible jumps:

Tǫ = {τk ∪ (ǫ, sk, bk+1, a, s
′, bk+2)|∀ǫ ∈ A

B(bk), bk+1 = PB(bk, ǫ), bk+2 = PB(bk+1, at)}

Case 4. Action a is a jump transition is infeasible in bk (ie. a 6∈ AB(bk)). In this case, we just pass this trajectory. Setting

τk+1 = τk and Tǫ = ∅.

At the end of iterating over each element of τk ∈ Tt and forming τk+1 and Tǫ, we can update our current set of feasible

trajectories:

Tt+1 = ∪τk∈Tt

(

(Tt \ {τk}) ∪ {τk+1} ∪ Tǫ

)

(19)

To put this process simply, we are swapping out τk for τk+1 and also adding in any jump transitions if they are available.

The algorithm can be seen in Algo 4.

Algorithm 4 LCER for Policy Gradient (Option 2)

Param: Dataset D. Trajectory τ of length T .

1: Set T0 ← {(s0, b)|b ∈ B}
2: for (st, at, st+1) ∈ τ do

3: Form Tt according to Eq (19)

4: end for

5: Set D ← D ∪ TT
6: return D


