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Abstract

Forward invariance is a long-studied property in
control theory that is used to certify that a dy-
namical system stays within some pre-specified
set of states for all time, and also admits robust-
ness guarantees (e.g., the certificate holds under
perturbations). We propose a general framework
for training and provably certifying robust for-
ward invariance in Neural ODEs. We apply this
framework in two settings: certified adversarial
robustness for image classification, and certified
safety in continuous control. Notably, our method
empirically produces superior adversarial robust-
ness guarantees compared to prior work on cer-
tifiably robust Neural ODEs (including implicit-
depth models).

1. Introduction

Deployment of neural networks in the real-world increas-
ingly demands formal certificates of performance. Examples
of certified behaviors include correctly classifying samples
despite perturbations on the neural network inputs (Wong &
Kolter, 2018b; Raghunathan et al., 2018; Cohen et al., 2019),
and controlling a dynamical system to stay inside a safe set
(Jin et al., 2020). We often need provable certificates given
that even impressive empirical robustness often fails under
unforeseen stronger attacks (Athalye et al., 2018), and we
desire assurances that can be useful in applications with
strong reliability requirements.

Forward invariance has been extensively used in control
theory to certify dynamical systems for safety (Ames et al.,
2016) and robustness under adversarial perturbations (Khalil
et al., 1996). To repurpose this concept for Machine Learn-
ing, we focus on the Neural Ordinary Differential Equation
(NODE) function class (Haber & Ruthotto, 2017; E, 2017;
Chen et al., 2018), which is a natural starting point for in-
corporating control-theoretic tools (cf. (Yan et al., 2020;
Kang et al., 2021; Liu et al., 2020; Jimenez Rodriguez et al.,
2022)). In this new setting, forward invariance guarantees
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that NODE trajectories never leave a desirable set which can
produce robustness guarantees for classification or safety
guarantees for control.

Our contributions: We present FI-ODE, a general ap-
proach for training certifiably forward invariant NODE:s.
We provide a robustness guarantee using the forward in-
variance of sub-level sets of Lyapunov functions. One can
train a NODE such that a task-specific cost function (e.g.,
cross-entropy loss in image classification, or state-based
cost in continuous control) becomes the Lyapunov function
for the ODE. We train with a variant of Lyapunov train-
ing (Jimenez Rodriguez et al., 2022) that focuses on states
that are crucial for certifying robust forward invariance. To
make certification practical, we constrain the hidden states
of a NODE to evolve on a compact set by projecting the
dynamics of NODE to satisfy certain barrier conditions. We
provably verify our method through a combination of ef-
ficient sampling and a new interval propagation technique
compatible with optimization layers.

We empirically show superior /5 certified robustness com-
pared to all other certifiably robust ODE-based models (in-
cluding implicit depth models such as Deep-Equilibrium
models (Chen et al., 2021)) on MNIST and CIFAR-10. We
also demonstrate the generality of our approach by apply-
ing it to nonlinear control problems, where we train and
certify NODE policies to keep the system within a safe re-
gion. Our code is avaiable at https://github.com/
yvjhuangcd/FI-ODE.git.

2. Preliminaries

Consider training data of the form (x, y), where x € R™
is the input, and y € R" is a prediction target (e.g., a
classification label, or a desired state for a controller). Let
0 € © C R! denote the parameters of the learned model.

Neural ODE (NODE) Model Class.

1n(0) = no, (initial condition) (1a)

d

dit? = fo(n(t),x) (continuum of hidden layers). (1b)
The hidden states of the NODE are n € ‘H C R"™ where
‘H is compact and connected. In general, we assume the

overparameterized setting, where 0 is expressive enough to
fit the dataset.
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In order to make predictions, one needs to define a mapping
from 1) to the prediction output y. We consider the special
case where that mapping is the identity function.! The
system evolves over ¢t € [0,7T] and, although n(t) can be
evaluated on any ¢ in this range, the final prediction is n(T").
Thus, the goal is to train a NODE such that n(T) = y.

2.1. Forward Invariance

Forward Invariance refers to sets of states of a dynamical
system (e.g., Equation (1b)) where the system can enter but
never leave. Formally:

Definition 1 (Forward Invariance). A set S C H is for-
ward invariant if n(t) € S = n(t') € S,Vt' > t.

Forward invariance can be applied generally in NODEs: we
can choose the dynamics in Equation (1b) to render almost
any set we choose forward invariant. In classification we
will be concerned with the set of states that produce a correct
classification, while in control we want to keep the system
safe. In both cases, we start from a set and then shape the
dynamics to achieve forward invariance of that set.

Trajectory-wise versus Point-wise Analysis. Figure 1 de-
picts two ways of analyzing forward invariance. On the left
we consider entire trajectories that result from running the
ODE (i.e., running the forward pass) and determine forward
invariance by checking whether the trajectories leave the
target set (whose boundary is depicted by the yellow line).
Such trajectory-level analyses are computationally expen-
sive due to running ODE integration to generate trajectories.
This approach also poses a challenge for verification since
trajectories can only be integrated for finite time 7" and the
dynamics may be close to leaving the set shortly thereafter
(T + ¢€), which translates into vulnerability to perturbations.

An alternative approach, depicted on the right in Figure 1,
relies on point-wise conditions: we look at the dynamics
point-wise over the state-space and infer whether the set
above the yellow line is forward invariant. In this situation
robust certification can be significantly easier because we
only need to verify that perturbations to the dynamics are
point-wise still pointing in the right direction, rather than
analyzing the effect of perturbed dynamics over an entire
trajectory (i.e., we do not need to do ODE integration).

Lyapunov Sublevel Sets. W use Lyapunov potential func-
tions from control theory to define sets to render forward
invariant. A potential function V' : H — R>¢ is a Lyapunov
function for the ODE if for all reachable states 7 we have:

DV (1)) < (V) @

"This is analogous to the final layer of a standard neural net-
work being the identity matrix, which typically does not lead to a
meaningful reduction in model expressiveness.

FI Level Set
M Not FI
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M Nominal

Correct /
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Figure 1. Showing depictions of trajectories (Left) and dynamics
(Right) of the state-space of a NODE. The top corner corresponds
to the correct prediction. The contours show a quadratic potential
function centered on the correct prediction. The yellow-line is the
upper bound of a forward invariant sublevel set of the potential
function. Left: visualizing trajectories (i.e., full inferences of the
NODE that either violate (orange) or satisfy (blue) the forward
invariance condition. Right: visualizing the flow field (i.e., dynam-
ics) of the NODE, including under both nominal and perturbed
inputs. In this example, the perturbed flow field is still gener-
ates trajectories that satisfy forward invariance, meaning that the
forward invariance certificate is robust to perturbations.

Here x : R>g — Rx( is a so-called class K function,
which means that it is strictly increasing, £(0) = 0, and
lim, _, oo k(1) = co. Intuitively, Equation (2) implies a V'
that decreases exponentially quickly, which we formalize in
Theorem B.1 that was first introduced in Ames et al. (2014).

A Lyapunov sublevel set is the set of states 1 where
V(n) < c for some constant c. Since a Lyapunov func-
tion V is always decreasing in time, once a state enters a
Lyapunov sublevel set it remains there for all time. The
potential function depicted in Figure 1 can be viewed as a
Lyapunov function, and the yellow line the boundary of the
corresponding Lyapunov sublevel set.

In practice, one often chooses V' to be a standard training
loss, such as cross entropy loss for classification. Assuming
the NODE is trained such that V' is a Lyapunov function
for the NODE (discussed in Section 2.3), then one can de-
fine an appropriate sublevel set to characterize (via forward
invariance) always making the correct prediction.

2.2. Connections to Adversarial Robustness

Suppose € € R™ with ||€|| < € adversarially corrupts the in-
put part of the input-output pair (x, y). Certified robustness
(Wong & Kolter, 2018a) requires that if  produces a correct
prediction then & + € also produces a correct prediction (e.g.,
the correct label in multi-class classification). The standard
approach for training certifiably robust models bounds the
output range with € (Pabbaraju et al., 2020; Lopez et al.,
2022), which requires integrating the NODE. In contrast,
our approach uses a point-wise analysis. We train and verify
that both the nominal and the perturbed dynamics of states
at the boundary of the desired set point inwards. This im-
plies that both the nominal and perturbed trajectories will
stay within the desired set (Figure 1, right). This allows
us to only enforce conditions on the point-wise dynamics
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Figure 2. Overview of our FI-ODE framework. We first pick a Lyapunov function based on the shape of the forward invariant set: the
boundaries of the Lyapunov sublevel sets are parallel to the boundary of the forward invariant set. For efficient training and certification,
we evolve the system on a compact set (e.g. probability simplex). We train the dynamics to satisfy Lyapunov conditions via certifiable
Lyapunov training. To certify the forward invariance property, we sample points on the boundary of the forward invariant set and verify

conditions hold everywhere on the boundary.

without considering the integration time.

2.3. Lyapunov Training of NODEs

One way to train NODEs to satisfy the Lyapunov condition
in Equation (2) is to define a loss that penalizes point-wise
violations of it. This idea was first developed in the LyaNet
framework (Jimenez Rodriguez et al., 2022), which uses a
hinge-like loss on violations of Equation (2).

Definition 2 (Lyapunov Loss (Jimenez Rodriguez et al.,
2022)). For the ODE defined in Equations (1a) and (1b) and
a dataset of input-output pairs (x,y) ~ D the Lyapunov
Loss is defined as £(0) =

T T
/0 max {O, g—‘; fo(n,x) + nV(n)} dt] .
3)

It is straightforward to check that Equation (3) being zero
implies satisfying Equation (2). In practice, we employ
sampling to approximate the internal integral in Equation (3).
It turns out that for certified robust forward invariance, it is
important to focus the sampling along the boundary of the
Lyapunov sublevel set, which we discuss in Section 3.3.

E
(z,y)~D

3. Forward Invariance for NODEs

We now present our FI-ODE framework to enforce forward
invariance on NODEs (see Figure 2). We define forward
invariance using Lyapunov sublevel sets, and show that
robust forward invariance implies a standard adversarial
robustness condition for classification (Section 3.1). To
enforce forward invariance, we first train to encourage the
Lyapunov conditions to hold on the boundary of the target
Lyapunov sublevel set (e.g., the yellow line in Figure 1),
and then verify. For the verification algorithm to run in a
finite time, we constrain the state space to be a compact set

(Section 3.2). We train our model using certifiable Lyapunov
training (Section 3.3). Building upon the LyaNet framework
(Jimenez Rodriguez et al., 2022), we develop an adaptive
sampling strategy that focuses on the crucial region of the
state space for forward invariance, and control the Lipschitz
constant of our dynamics. However, the empirical Lyapunov
loss is based on a finite sample, so minimizing it does not
guarantee satisfying the Lyapunov condition. Therefore, we
develop certification tools to verify the Lyapunov conditions
everywhere in the region of interest (Section 3.4).

3.1. Robust FI Implies Adversarial Robustness

Forward invariance for correct classification. Focusing
on multi-class classification in this subsection, we first de-
fine correct classification for NODEs. For an input  with
label y, the output of a NODE after integrating for 7 time
isn(T). If y = argmax n(T), we say the NODE correctly
classifies . We define the correct classification region for
class y to be Sy = {nn € A,y = argmaxn} (green
region in Figure 3(a)), where A stands for the n-class proba-
bility simplex: { € R"| >\, m; = 1,n; > 0}. Then for
a NODE starting with (0) = 11, a sufficient condition for
correctly classifying @ is that the trajectories never escape
from S, i.e., S, should be a forward invariant set.

(a) Vy=1—(n, - gﬁ/xm) (b) Level sets of (a).

Figure 3. The Lyapunov function and its level sets on a 3-class
probability simplex. The red star is the correct class.
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Forward invariance criteria. To make S, forward invari-
ant, first, we need to make 7) evolve in the probability sim-
plex A (Section 3.2), since enforcing n to evolve on a
compact set is required for practical certification (and the
simplex is a natural choice). Second, we need to make
{n|y = argmax n} forward invariant. We achieve this by
defining a (Lyapunov) potential function whose level sets
are parallel to the decision boundary:

Vy =1—(ny —maxmn;) 4
i#y

Usually, Lyapunov stability uses a potential function to
prove the stability of a given dynamical system. In our
setting, the potential function is pre-defined to be positive
definite (Equation (4)), and we find a dynamical system that
is stable with respect to this potential function (i.e. making
this potential function a Lyapunov function). This is possi-
ble because the NODEs are typically overparameterized.

We first check that V, is positive definite: since 0 <n; <1
for all ¢, we have V;, > 0. In addition, V,, = 0 only when
ny = 1l and n; = 0 for i # y. Furthermore, the 1-level
set of V,,, {m € A|V,(n) = 1} equals the decision bound-
ary Dy = {n € A|n, = max;x, n;}. Then according to
Nagumo’s theorem (Nagumo, 1942), if the following con-
dition holds for all n € D,, then S, is forward invariant:

.
A

an fo(n, ) <0. (&)

Using Lyapunov training (Jimenez Rodriguez et al., 2022),
we can train the NODE dynamics to satisfy this condition.

Robust forward invariance for robust classification. Ro-
bust classification says that if a model can correctly classify
x, it can also correctly classify & + €, where € is some
bounded perturbation. We showed earlier that the dynamics
fo(n, x) must satisfy Equation (5) for correct classification.
To ensure robust forward invariance, the dynamics for the
perturbed input fg(1, € + €) also needs to satisfy the same
condition (as informally depicted in Figure 1, right). In
other words, Equation (5) needs to hold in a neighborhood
of x for robust classification. Thanks to the Lipschitz con-
tinuity of V}, and fp, this can be achieved by a more strict
condition than Equation (5) on the dynamics (Theorem 3.1).

Theorem 3.1 (Robust FI Implies Robust Classification).

Consider the dynamical system in Equations (1a) and (1b)

with dynamics restricted to the probability simplex /\ and

initial condition 1(0) = 1L. If the following conditions

hold, then n(T) will produce a robust classification of x:
v, "

-y

< —
an fe(,rhm) _— H?

K > €Ly, LY. (7)

VneD, (6)

where € is the perturbation magnitude on the input, Ly, is
the Lipschitz constant of the Lyapunov function, and L7 is
the Lipschitz constant of the dynamics with respect to x.

See supplementary material B.1 for proof.

3.2. Forward Invariance on a Probability Simplex

For the purposes of certification
and training, it is often useful
to make the state space H be a
bounded set, as certifying over
unbounded sets is typically in-
tractable. For multi-class classi-
fication, a natural choice is the
probability simplex. Since we
initialize ) within the simplex,
it suffices to render the simplex
to be forward invariant. We ex-
plicitly constrain the states to a probability simplex using a
Control-Barrier Function based Quadratic Program (CBF-
QP)’? (Ames et al., 2016), implemented as a differentiable
optimization layer (Agrawal et al., 2019).

Figure 4. The color con-
tours show level-sets of
a barrier function in a 3-
class probability simplex.

Barrier functions can be viewed as a variant of Lyapunov
functions that only require the state to stay within a set rather
than always make progress towards some minimum. Specif-
ically, we choose a potential function i with a O-super level
set (i.e. {n € H|h(n) > 0}) equal to the desired forward
invariant set S (see Figure 4 for an example). Similarly to
the Lyapunov case, there is a point-wise inequality condition
that must be true over the forward invariant set:

Shin(®) = ~a(h(n) ®

where o : R>¢ — R is another class K, function. In-
tuitively, all the flows on the boundary of the forward in-
variant set must have a positive time-derivative (otherwise
there could be a point on the boundary that decreases the
value of h and thus exits the forward invariant set). This
is the essence of Nagumo’s theorem (Nagumo, 1942). Bar-
riers extend this idea with a condition that can be applied
everywhere in the target forward invariant set without being
overly conservative. As trajectories approach the boundary
of the set, Equation (8) ensures the time derivative increases
until it is positive at the boundary. We use a variation of
barrier functions called Control Barrier Functions (CBF).
We formalize this concept with Theorem B.2.

In our case, the unconstrained dynamics is the output of a
neural network and we denote it as f (n, x). To make the
dynamics satisfy the barrier conditions, we use a Control
Barrier Function Quadratic Program (CBF-QP) Safety Filter

2This is analogous to projected gradient descent (PGD) where
we project the dynamics instead of the states.
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(Gurriet et al., 2018):

~ 1 ~
f(f) = avgmin o[£ — I3 (9a)
feR™
st 1T£=0 (9b)
> —a(n) 9¢)

where the arguments to the function f are omitted for brevity.
Equation (9b) ensures that the sum of the state stays to be
1 and Equation (9c¢) is the barrier condition that guaran-
tees the state to be non-negative. We provide the detailed
explanation in Appendix B.3.

3.3. Certifiable Lyapunov Training

Algorithm 1 Certifiable Lyapunov Training
Input

: Lyapunov function V, Sampling scheduler,
dataset D, perturbation magnitude €.

Initialize : Model parameters 6.

for i=1:M do

(z,y) ~D
> Sample 7 based on the training progress and the level sets
of Vim ~ Sampling_scheduler (¢, V)
> Set x based on the Lipschitz and € (Equation (7))
> Update model parameters to minimize Lyapunov loss
Z(0) (Equation (10)).
0 60— pVeZL(0)

return 0

Our learning algorithms build upon the LyaNet framework
for Lyapunov training (Jimenez Rodriguez et al., 2022), and
are summarized in Algorithm 1. The key modifications we
make are adaptive sampling to focus on the states that are
crucial for certifying forward invariance and controlling the
Lipschitz constant of the dynamics.

Training loss. Our training loss is designed to encour-
age the dynamics to satisfy the conditions in Theorem 3.1.
Specifically, we use the Monte Carlo Lyapunov loss in
(Jimenez Rodriguez et al., 2022):

ZO)~ E
(z,y)~D
n~p(H)

.
max {0, 887‘2’ fo(n,x) + HVy(U)H

(10)

Adaptive sampling. To minimize the Lyapunov loss (Equa-
tion (10)), we need to sample from a distribution . This was
simply a uniform distribution in (Jimenez Rodriguez et al.,
2022) and may require an intractable number of samples to
minimize Equation (10) everywhere in the state space.

We address this challenge with an adaptive sampling strat-
egy that focuses the training samples on regions of the state
space that are crucial for satisfying forward invariance: the

boundary of the Lyapunov sub-level set. We adapt the sam-
pling distribution as training progresses. We start by sam-
pling uniformly in a hypercube or hypersphere towards the
origin as in (Jimenez Rodriguez et al., 2022) since trajec-
tories an untrained NODE can visit anywhere in the state
space (see example in Figure 7). As training progresses,
we gradually switch to sample within the forward invari-
ant set (the sublevel set of the Lyapunov function), with the
switching time as a hyper-parameter defined by the sampling
scheduler. This process focuses the sampling on regions that
are most important for certifying robust forward invariance.

Restricting Lipschitz constant. Another challenge to ob-
tain a non-vacuous robustness bound is to ensure that x
is larger than a threshold which depends on L7 (see the
robust forward invariance condition in Equation (7)). In
practice, the Lipschitz bound of a small neural network for
image classification can be on the order of 108 (Huang et al.,
2021), and it is unfeasible to train with such a large x in
the Lyapunov loss. Therefore, we need to restrict the Lips-
chitz constants of the learned dynamics with respect to the
input . In addition, since we rely on the smoothness of
the dynamics to verify the Lyapunov condition holds on the
region of interest (Section 3.4), we also need to restrict the
Lipschitz constant with respect to 77 to ensure the dynamics
do not change excessively for two states that are close.

To control the Lipschitz constant of our neural network
dynamics, we use orthogonal layers (Trockman & Kolter,
2021) and training with a Lipschitz bound in the loss
(Tsuzuku et al., 2018). We find that both methods perform
similarly, but using orthogonal layers is more computation-
ally efficient and less sensitive to hyper-parameters.

3.4. Certification

In the previous section, we minimize the empirical Lya-
punov loss on some finite sample to encourage the dynamics
to satisfy conditions in Theorem 3.1. However, zero em-
pirical Lyapunov loss does not guarantee the conditions to
hold everywhere on the boundary of the forward invariant
set since it only takes finite number of samples. In this sec-
tion, we develop tools to certify that the forward invariance
conditions hold everywhere on the boundary of the safe set.

Certification procedure. The certification procedure is as
follows: 1) sampling points on the boundary of the forward
invariant set (blue dots in Figure 5), and check Lyapunov
condition holds on all the sampled points; 2) perturb around
each sampled point and verify the condition holds in a small
neighborhood around those points.

Sampling techniques (Procedure 1). The key challenge
to make the sampling approach rigorous for certification is:
the set of samples and their neighborhoods need to cover
the whole boundary of the forward invariant set. During
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training, we do random sampling on the forward invariant
set, however, there is no guarantee that the sampled points
cover the boundary of the safe set with their neighborhoods.
On the other hand, deterministically uniform sampling in
a hypercube can cover the whole cube and thus cover the
boundary of forward invariant set. However, the sampling
efficiency is low since most of the sampled points are not
on the boundary. Therefore, we need to develop tools for
efficient sampling on the boundary of forward invariant set.

For image classification tasks, the
boundary of the Lyapunov level set
is the decision boundary in a simplex.
In Theorem 3.2, we construct a set,
and show that the constructed set can

cover the decision boundary. ] ]
Figure 5. Sampling

to cover the decision
boundary.

Theorem 3.2 ( Sampling on the de-
cision boundary). For N € Z,
N =0 (mod 2) and N # 1 (mod n),
let Sy = {s € Z"| Y, si = N,8, = max;x, 8;,8; >
0,¥i=1,..,n},and S, = {§ € R"|§ = & ,s € S,}. For
any n € 9y, there exists an § € Sy such that |m; — 8;| < %
foralli=1,...,n.

Remark. The constructed set is sufficient for certification
because given any point on the simplex or decision boundary
(red dot in Figure 5), there exists a sampled point close by
(blue dot), which is shown in Theorem 3.2.

Verification in a neighborhood around sampled points
(Procedure 2). After checking the conditions hold on the
sampled points, we need to verify them hold in a small
neighborhood around those points. The general idea is to
bound the range of values of the output given the range of the
input. A direct way of doing so is estimating the Lipschitz
constant of the left hand side of Equation (6). By definition
of the Lipschitz constant, the norm of output difference can
be bounded by the norm of the input difference. Another
way is to use linear relaxation based perturbation analysis
(LiRPA) (Xu et al., 2020), which is relatively tight and still
computationally feasible.

The dynamics of our NODE is parameterized by a neural
network followed by a CBF-QP layer. Let f(n) be the
dynamics output by the neural network, and let f( f) be
the dynamics after CBF-QP layer. Given perturbed input
in an interval bound n; < n; < 7;, we first use a popu-

lar linear relaxation based verifier named CROWN (Zhang
et al., 2018) to get an interval bound for f : fl < fl < f;
However, CROWN does not support perturbation analysis
on differentiable optimization layers such as our CBF-QP
layer and deriving linear relaxation for CBF-QP can be hard.
However, it is possible to derive interval bounds (a special
case of linear bounds in CROWN) through CBF-QP. Con-
sider a QP in the form of Equations (9a) to (9¢), we can

bound each dimension of f(f) in O(n) by solving the QP
with the corresponding element of the input set to the lower
or upper bound. Mathematically, define function h; to be

h; : (n, f) = f(f)i. Given input interval bound on 7 and

f, we have
hi(my, £i) < F(F)i < ha(ny, £i) (11)

where n;b, nlib are defined as follows and A,zw flzb are de-
fined in the same way (see Appendix B.5 for proof):

i n, j=1t Ny, J=1
= . . = —_ . . 12
MNub {nj, jAq M {m’ i (12)

4. Experiments

We evaluate our FI-ODE approach on two applications: 1)
certified robustness for image classification (section 4.2),
and 2) safety in continuous control (section 4.3). We discuss
the computational costs of our method in section 4.4.

4.1. Experimental Setup

For image classification, we first use a neural neural network
with 4 convolutional layers and 3 linear layers to encode
input image «, and then use a 3 layer MLP to model the
dynamics in eq. (1b). We evaluate on standard benchmarks,
by perturbing the input images within an ¢ ball of radius 0.1
and 0.2 on MNIST, and 0.141 (36/255) on CIFAR-10. For
the control problem, we use a 3 layer MLP as the controller.
We train and certify that the controller can keep the system
to be forward invariant within an ellipsoid around the origin.

4.2. Certified Robustness for Image Classification

We want to evaluate the effectiveness of our FI-ODE ap-
proach for training certifiably robust NODEs. To our knowl-
edge, there are no previous works demonstrating certified

Table 1. ¢ certified robustness. Accuracy (%) is reported. Semi-
MonDeq results are reported on 100 test images with 95% confi-
dence interval due to high cost, and 10,000 test images are used
for other methods.

Dataset Method € Clean  Adversarial Certified
Lipschitz-MonDeq 0.1 95.60 94.42 83.09
(Pabbaraju et al., 2020)
Semi-MonDeq * 0.1 99[>9%4] 99 [>94] 99 [>94]
(Chen et al., 2021)

MNIST Robust FI-ODE (Ours) 0.1 99.35 99.09 95.75
Lipschitz-MonDeq 0.2 95.60 93.09 50.56
(Pabbaraju et al., 2020)
Robust FI-ODE (Ours) 0.2 99.35 98.83 81.65
Lipschitz-MonDeq 0.141 66.66 50.51 <7.37
(Pabbaraju et al., 2020)
NODE w/o Lyapunov training 0.141 69.05 56.94 16.81

CIFAR-10  LyaNet + Lipschitz restriction 0.141 73.15 64.87 41.43
(Jimenez Rodriguez et al., 2022)
LyaNet + Sampling scheduler 0.141 82.83 74.81 0
(Jimenez Rodriguez et al., 2022)
Robust FI-ODE (Ours) 0.141 78.34 67.45 42.27
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robustness of NODEs on CIFAR-10. Therefore, we com-
pare with methods on certifying robustness of monotone
deep equilibrium models (monDeq) (Pabbaraju et al., 2020;
Chen et al., 2021). Similar to NODE, MonDeq (Winston &
Kolter, 2020) is also an implicit-depth model.

Table 1 shows the results. The main metric is certified ac-
curacy, the percentage of test set inputs that are certifiably
robust. Our approach achieves the strongest overall certified
robustness results compared to prior ODE-based approaches.
We also reported clean and adversarial accuracy for refer-
ences. For baseline methods (Pabbaraju et al., 2020; Chen
et al., 2021), the adversarial accuracy are evaluated with
PGD attack. For our methods, we use AutoAttack (Croce &
Hein, 2020) to evaluate the empirical adversarial robustness.

On MNIST, we compare with Lipschitz-MonDeq (Pab-
baraju et al., 2020) and Semialgebraic-MonDeq (Chen et al.,
2021), and our method significantly outperforms Lipschitz-
MonDeq (Pabbaraju et al., 2020). Semialgebraic-MonDeq
(Chen et al., 2021) only tested their method on the first 100
test images on MNIST and reported the 95% confidence
interval in bracket. Our method performs similarly if not
better when comparing accuracy within 95% confidence
interval. Since Semialgebraic-MonDeq (Chen et al., 2021)
does not scale up to CIFAR-10 (it takes 1350s per sample
on MNIST), we only compare with it on MNIST.

On CIFAR-10, Lipschitz-MonDeq (Pabbaraju et al., 2020)
achieved 7.37% certified accuracy with e = 0.01. When us-
ing the standard benchmark perturbation magnitude 0.141,
the certified accuracy should be lower, and our approach
significantly outperforms this method. This is potentially
because Lipschitz-MonDeq (Pabbaraju et al., 2020) con-
trols the Lipschitz constant of monDeq and restricts the
expressiveness of the model. In contrast, our approach only
enforces properties on the point-wise dynamics instead of
the full trajectories, and thus is less restrictive.

For the rest of the baselines, we train the models differently
but certify with the same methods in Section 3.4 to see
the effectiveness of the learning algorithms in Section 3.3.
All the learning components: Lyapunov training, Lipschitz
restriction and adaptive sampling are needed for good per-
formance, and the model that is trained with all of them
(Robust FI-ODE) achieved the highest certified accuracy.

First, we train a NODE with standard adjoint method and
cross entropy loss instead of Lyapunov training. We still
use orthogonal layers (Trockman & Kolter, 2021) to control
the Lipschitz constant of the dynamics. The trained model
still maintains some certified robustness, mainly because of
the restricted Lipschitz constant. Second, we use Lyapunov
training (Jimenez Rodriguez et al., 2022) to train the NODE,
and test the effectiveness of Lipschitz restriction and adap-
tive sampling. We see that Lipschitz restriction is crucial

for certified robustness. Without Lipschitz restriction, the
global Lipschitz bound of the dynamics is on the order of
108, making the robustness guarantee vacuous. Compar-
ing with uniform sampling, adaptive sampling focuses on
the states that are crucial for certifying robust forward in-
variance, and making the training to be less restrictive and
achieves better clean and adversarial accuracy.

4.3. Certifying Safety for Continuous Control

We test our approach on a planar segway system with three
states: angular position ¢, angular velocity (;5 and velocity v.
Our goal is to train a NODE controller and certify that the
controller keeps the states in a forward invariant safe set.

We enforce forward invariance within the c-sublevel set
of the Lyapunov function: Q.(V) = {z|V(z) < ¢}. We
learn a quadratic Lyapunov function V (z) = x " Px, where
P is positive definite and learnable, and use adversarial
training to increase the penalty for states that tend to violate
the Lyapunov condition. Adversarial training is useful to
restrict the empirical Lispchitz of the dynamics and eases the
certification. During certification, we use rejection sampling
to find the states that cover the c-level set of the Lyapunov
function (states between the two dashed lines in fig. 6),
check that V' < 0 holds on those states, and use CROWN
(Raghunathan et al., 2018) to verify the condition also holds
around a neighborhood of the sampled states. Then we can
show that the set within the solid line is forward invariant.

Figure 6 (a) shows the contours of the time derivative of the
learned Lyapunov function on two of the three dimensions
when v = 0. The solid line is the level set when V' = 0.15.
The two dashed lines show the region where samples are
accepted during rejection sampling. Figure 6 (b) shows
trajectories with initial states in the forward invariant set
(the gray ellipsoid).

4.4. Computational Costs

The main computational costs of our method comes from
the number of samples that are needed to cover the boundary
of the forward invariant set. Table 2 compares the compu-
tational costs and performance for different certification

(@) - 8 (b)0.150
10 v 0.125
0.5 -16 0.100
e 00 > 0.075

-0.5 _40 0.0501 |

—48 0.025

-1.04}
* Y
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Figure 6. (a) V contours and certified forward invariant set (within
the solid line). Background gray arrows are the dynamic flows.
(b) V along the trajectories. All trajectories starting within the
forward invariant set stay in it.
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Table 2. Computational costs for certification on CIFAR-10.

Certification ~ Sampling

Method density (\) #samples Time (s) Certified
Lipschitz 20 3.67 x 10° 1.03 0
Lipschitz 30 5.50 x 106 1.37 27.40
Lipschitz 40 4.13 x 107 2.8 33.46
CROWN 40 4.13 x 107 240 42.27

methods on CIFAR-10. We first compare the results of cer-
tifying with Lipschitz bounds and CROWN (Zhang et al.,
2018). Certifying with Lipschitz bounds is faster. Since
we can pre-compute the Lipschitz bound of the dynamics,
the certification time equals to the inference time on all the
states. Certifying with CROWN provides a tighter bound
and thus higher certified accuracy but is more computation-
ally expensive than using the Lipschitz bound. We also
compare the performance of different sampling density by
choosing different N in Theorem 3.2. With larger N, we
can cover the region of interest with smaller neighborhood
around each sampled point. We vary N using the Lipschitz
certification method because it is faster to evaluate, but the
pattern should remain the same for CROWN. As expected,
we get better accuracy with larger sampling density, but the
computational time is longer since we have more samples.

5. Related Works

Empirical Robustness of NODEs. Yan et al. (2020) pro-
poses a steady state loss to improve empirical robustness
of NODEs. A line of work trains NODE:s to stabilize to
Lyapunov equilibrium points. Kang et al. (2021) adds a
regularization term in the loss to encourage the Jacobian
of dynamics in NODE to have eigenvalues with negative
real parts. Huang et al. (2022) paramterizes the weights of
NODE blocks to be skew-symmetric. However, both works
only demonstrate empirical robustness improvement from
NODE but no formal guarantees. Huang et al. (2022) also
shows that the empircal robustnesss improvement may be
due to the gradient masking effects from the adaptive ODE
solvers.

Verification and Certified robustness of NODEs. Previ-
ous works on formal analysis of NODEs mostly focus on
reachability analysis. Stochastic Lagrangian Reachability
(SLR) (Grunbacher et al., 2021) proposes an abstraction-
based technique to provide stochastic bound on the reach-
able set of NODEs. Lopez et al. (2022) computes determin-
istic reachable set of NODE:s via zonotope and polynomial-
zonotope based methods implemented in CORA (Althoff,
2013). However, these methods have only been demon-
strated on very low dimension problems or on linear NODE:s.
Another important class of implicit-depth models is mon-
DEQ (Winston & Kolter, 2020), and it can be thought of
as an implicit ODE. There are previous works trying to

certify /5 robustness of monDEQ, either via controlling
Lipschitz (Pabbaraju et al., 2020) or semialgebraic repre-
sentation (Chen et al., 2021). However, they do not scale
well beyond MNIST. Recently, Xiao et al. (2022) propose
invariance propagation for stacked NODEs that provides
guarantees for output specifications by controller/input syn-
thesis. While their approach focuses more on interpretable
causal reasoning of stacked NODEs, our work provides
a framework for training and provably certifying general
NODE:s.

Formal verification of neural networks. Formal verifica-
tion of neural networks aim to prove or disprove certain spec-
ifications of neural networks, and a canonical problem of
neural network verification is to bound the output of neural
networks given specified input perturbations. Computing the
exact bounds is a NP-complete problem (Katz et al., 2017)
and can be solved via MIP or SMT solvers (Tjeng et al.,
2019; Ehlers, 2017), but they are not scalable and often too
expensive for practical usage. In the meanwhile, incomplete
neural network verifiers are developed to give sound outer
bounds of neural networks (Salman et al., 2019; Dvijotham
et al., 2018; Wang et al., 2018; Singh et al., 2019), and
bound-propagation-based methods such as CROWN (Zhang
et al., 2018) are a popular approach for incomplete verifica-
tion. Recently, branch-and-bound based approaches (Bunel
et al., 2020; Wang et al., 2021; De Palma et al., 2021) are
proposed to further enhance the strength of neural network
verifiers. Our work utilizes neural network verifiers as a
sub-procedure to prove forward invariance of NODEs, and
is agnostic to the verification algorithm used. We used
CROWN because it is efficient, GPU-accelerated and has
high quality implementation (Xu et al., 2020).

Learning Lyapunov functions and controllers for non-
linear control problems. A range of work learns neural
network Lyapunov functions (Chang et al., 2019), barrier
functions (Jin et al., 2020), and control policies (Dai et al.,
2021) for nonlinear control problems. To certify the stabil-
ity or safety requirements, Chang et al. (2019) uses SMT
solvers (Gao et al., 2013), Jin et al. (2020) uses Lispchitz
methods and (Dai et al., 2021) formulate the verification as
mixed integer programming (MIP). We use a linear relax-
ation based neural network verifier (Zhang et al., 2018) that
enjoys a good balance between tightness and computational
cost, enabling us to certify nonlinear control policies (Chang
et al. (2019); Jin et al. (2020) learns linear control policies)
on the real dynamics (Dai et al. (2021) uses a neural network
to approximate the dynamics).

6. Conclusion

We have presented FI-ODE: a framework for certified and ro-
bust forward invariance of NODEs in both the classification
and control contexts. For image classification, we certify ad-
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versarial robustness by enforcing robust forward invariance
of sublevel sets of Lyapunov functions. We demonstrate the
broad applicability of our FI-ODE by certifying the forward
invariance of a region of the state-space in a planar segway
model. We consider this a first step towards certification of
desirable properties in complex NODEs for a wide variety
of domains from classification to classical control.
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A. Definitions
A.1. Class K functions
Definition 3 (Class K Function). A continuous function o : [0,a) — [0,00) for a € Rsg U {oo} belongs to class K
(a € K) if it satisfies:
1. Zero at Zero: «(0) =0

2. Strictly Increasing: For all r1,72 € [0, a] we have that 11 < 12 = a(r1) < a(rz)
Definition 4 (Class /C, Function). A function belongs to K, if it satisfies:

1. ek

2. Radially Unbounded: lim, _, ., a(r) = 0o
Definition 5 (Extended Class S Function). A continuous function o : R — R belongs to extended K¢ if it satisfies:

1. Zero at Zero: «(0) =0

2. Strictly Increasing: For all v1,79 € [0, a] we have that 1 < r9 = a(r1) < a(rs)
Definition 6 (Class L Function). A continuous function ( : [0, a) x [0,00) — [0, 00) belongs to KL if it satisfies:

1. Class K on first argument: Vs € [0,00)8(-,s) € K

2. Asymptotically 0 on second argument: Vr € [0,a) lim,_, o, 5(r,s) =0

A.2. Barrier Loss

Recall that 7 € H C R*. Suppose we wish to render the set S = {5 € H : h(n) > 0} where h : H — R is a continuously
differentiable function. Systems that satisfy barrier conditions in Theorem B.2 provides two properties: forward invariance
of S and stability of the system towards S. This stability can be local to a subset of the state-space that contains the desired
set. Namely, we expect the property S C R C H where R is the region of attraction. With this added detail to the problem
setting we are ready to state the definition of Barrier loss:

Definition 7 (Barrier Loss). For a barrier function candidate h : H — R, with function oo € K¢, and its corresponding
region of attraction R, the Barrier Loss £ : © — R is defined as:

on'
20) = [ max(0,-50 fonz.0) — a(b(m)}dn x ¢ (13)
Rx[0,1] n

B. Theorems with Proof

Theorem B.1 (Exponentially Stabilizing Control Lyapunov Function (ES-CLF) Implies Exponential Stability (Ames et al.,
2014)). For the ODE in egs. (1a) and (1b), a continuously differentiable function V : RF — R> is an ES-CLF if there are
class K functions & and k such that:

Vi(n) <&(||nl)), (14)
win |2V fom2) + w(V(m)| <0 (15)
oco | om o\, n =
holds for ally € R C H and t € [0, 1]. The existence of an ES-CLF implies that there is a @ € © that can achieve:

‘
g% Foln,x) + w(V(n)) <0, (16)

and furthermore the ODE using 6 is exponentially stable with respect to 'V, i.e., V(n(t)) < V(n(0))e % for some k > 0.
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Proof. Since © is compact, minimums are attained within ©. Let 8*(n) = argming.g g—‘;—r fo(n, z). Therefore, from
eq. (15) we can conclude that:

ov'’
o Joremy(mzx) < —k(V(n)) YneH (17)

For simplicity we will omit the arguments of 8*. Furthermore, in the case where 8™ is a set we will select only one. Since H
is compact then

* = maxa(||n])). 1
0" = maxa(||n|) (18)

This in turn implies that V' in bounded in H which helps us conclude that

V= |4 19
max (n) (19)
is well defined which in turn implies
d
= min 20 (20)
rel0,V] dr

is well defined. Since  is strictly increasing, then £ > 0. Notice that a(r) = kr satisfies & € K, and, by the comparison
lemma, Vr, kr < x(r). Therefore:

ov'’

o Jo-my(n,x) < —k(V(n) < —&V(n), Vne#H 21

In preparation for applying the comparison lemma we will consider the following Initial Value Problem (IVP):

y(0) = V(o) (22)
Y= —Ky (23)

Since this is a linear system solutions for y exist, are unique and take the form y(¢) = V(no)e ='. Furthermore, by the
comparison lemma we can conclude that:

V(n(t)) <y(t) = V(no)e ™ (24)

O

Lemma 1 (Solution of Class K function systems (See Lemma 4.4 in (Khalil, 2002))). Let o € KS,. Then consider the
following IVP for t € [0,1]:

y(0) = yo (25)
Yy =—«

(y) (26)

This IVP has unique solutions y(t) = B(yo,t) where 5 € KL.

Theorem B.2 (Control Barrier Function (CBF) Implies Forward Invariance (Xu et al., 2015; Nagumo, 1942)). Let the set
S C H be the 0 superlevel set of a continuously differentiable function h : H — R, i.e. S = {n € H|h(n) > 0}. The set S
is forward invariant with respect to the ODE egs. (1a) and (1b), if h satisfies either of the following conditions:

1. (Xu et al., 2015) There exists a function o for allm € S so that:

on’ h >0 27
wmas | 5, foln.) +alh(m) | 20, @7

where « is a class K¢ function (this means o : R — R is strictly increasing and satisfies lim,_, o, a(r) = 00).
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2. (Nagumo, 1942) For allm € {n € S|h(n) = 0}:

oh

bl 2

5 0 (28a)
on'

max [577 fe(n,m)] > 0. (28b)

Proof. Both conditions follow from fundamentally different arguments. Condition 1 follows from the comparison lemma.
Condition 2 uses Nagumo’s theorem. In either case we rely on the compactness of O to solve the following optimization
problem:

. oh'’
0" (n) = argmax I Jo(n,x) (29)
6cO n

We will omit the parameters of 8 for brevity and choose a random solution in the case where 8* returns a set of solutions.

1. Consider the following IVP:

h(n(0)) (30)

y(0)
¥ =—a(y) 3D

which satisfies the conditions of lemma 1. This implies that y(¢) is unique and y(¢) = B(h(n(0)),t) where by the
assumption of forward invariance (n(0)) > 0. The by a trivial variant of the comparison lemma we have that
h(n(t)) > —a(h(n)) implies h(n(t)) > B(h(n(0)),t) which implies h(n(t)) > 0 for ¢ € [0, 1]

2. This is a direct application of Nagumo’s theorem (Nagumo, 1942).

B.1. Proof of Theorem 3.1

Proof. Define barrier function as h = V. — V, then the correct classification region S, = {n|n € A,y = argmaxn} is
a O-superlevel set of h. According to Nagumo’s theorem (Nagumo, 1942), if h(m +€n) >00ndS, =D, ={n €
AV (n) = 1}, then S is forward invariant. Since V(n; xz) < —k onD,, we have h(n; x) > kV on OS. Then for perturbed
input, we have

h(n;x + €) = h(n; ) + h(m; 2 + €) - h(n; z) (32)

> h(m; @) — ||h(n; 2 + €) — h(n; z)| (33)

> h(n;x) — Ly Lje (34)

> kY — LpL3e> 0 (35)

where Ly, is the Lipschitz constant of i, L7 is the Lipschitz constant of f with respect to x, and € is the norm of . O

B.2. Proof of Theorem 3.2
Proof. Forany n) € 9,,let z = [Nn, ..., Nn,|. By definition of Z,, in addition to ), z; = N, we have

Z z;=N (36)

Zy = max z; 37
J#Y

Define Z = [z — | 21], ..., 2n — | Zn]] to be the vector that contains the fractional part of each element in z. Then we sort
z in a non-decreasing order. For the tied elements that equals to z,, we put z, as the last. We denote the sorted vector as
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zZ' =%, .., 2, ], where 2;, <...< %, .Letv:Z" — Z7 to be a function that maps the indices in 2 to the indices in Z’.
For instance, if Z; becomes the third element in 2’, then v(1) = 3. If Z; = Z,,, we have v(y) > v(j).

Noticethat >, 2/ =Y. Zi = . zi — > ;|2i| = N —>,[2i],and >, 2] < nsince 0 < 2/ < 1fori=1,...,n. Let
kE=n—(N->3.z]), we have

2§+...+£§€:(1—2,’C+1)+...+(1—£;) (38)
Define vector q as follows:
o |~]\/v’l'hJJ7 jzl,,k
qu B { [an]]7 .] = k + 17 ...,TL (39)

Then we have |g; — z;| < 1 forall ¢ = 1,...,n. Now we check g satisfies Equation (36) and a relaxed version of
Equation (37). First, we have ) . g; = N because of Equation (38). Next, we show g, > max;, g; by contradiction.
Suppose there exists an index j such that q; > gy, then it has to be the case where |z;| = |2,]| and we take ceiling
on z; and take floor on z,, i.e. v(j) > k and v(y) < k. This means Z; > Z,, because v is the sorted indices of Z in a
non-decreasing order and this gives 2; > Z,,, and if Z; = Z,,, we have v(y) > v(j), which is contradictory to v(j) > k and
v(y) < k. Then we have z, = |z,| + 2, < z; = | z;] + Z;, which is contradictory to Equation (37). Therefore, there
does not exist a j such that g; > gy, i.e. g, > max;-, q;. For the cases where g, = max;, q;, we have g € S, i.e. g is
a sampled point.

For the cases where g, > max;., g;, we show that we can modify g to ¢ such that ¢ € S, and |g; — z;| < 1 for all
i=1,..,n. LetZT = {i € Z"|z # y,z; = z,} be the set that contains the indices of all runner-up elements in z. If
g, > max;x, q;, then we must have g, = [Nn,]|, and g, = [ Nn;| for all i € Z. We first let ¢ = g, and then pick an ¢*
fromZ. Let 7 = {j € Z"|q; > 1,j # i*,j # y}. Notice that g;» + g, = 2|z, ] + 1, which is an odd number. Since
Zi q; = N and N is an even number, 7 # (). We discuss how to obtain g case by case.

Case 1: If there exists a j € J such that v(j) > k, we set g; = |Nn;|, and set g;+ = [Nn;+]. Then we have

Case 2: If v(j) < k for all j € J, there must exist a j such that g; < g;~. Otherwise, g, = g;+ + 1, and g; = g;- for all
i #y. Then ) . q; = N = ng;- + 1, which is contradictory to the assumption that N' # 1(mod n). Then set ¢; = [Nn;|

and g, = | N, . Since g; < g;-, wehave ¢; = q; +1 < G, = g;~. O
Remark. The assumption that N # 1(mod n) is easy to satisfy. Since we also require N is an even number, as long as n is
also an even number, we have N % 1(mod n). We can also relax this assumption by adding [%, veny %] 1o Sy.

B.3. Forward Invariance on a Probability Simplex via CBF-QP

Recall that an n-class probability simplex is defined as A = {n € R"|Y."_n; = 1,m; > 0}. Now we show that
Equation (9b) ensures that the sum of the state stays to be 1 and Equation (9c) guarantees the state to be non-negative.

First, we need the sum of 7 stays the same as the initial condition. Taking time derivative of both sides of ZZ':l 7, =1, we
have % X mi) =>1, fe(n,x); = 17 fo(n, x) = 0, which is Equation (9b). This is natural because the dynamics
summing up to zero means the changes from all dimensions summing up to zero, and thus the sum of all dimensions stays
the same.

Next, we need each dimension of the state to be non-negative. Since the initial condition has non-negative entries, we just
need the set {n|n > 0} to be forward invariant. We define forward invariance via barrier functions. For each dimension
i, we define h;(n) = ;. Then the O-superlevel set of h,; equals the safe set {n|n; > 0}. As long as the condition in

Equation (8) holds, i.e. ‘g;]"' fe(n,x) > —a(h;(n)) for some class K, function «, the set {n|n; > 0} is forward invariant.
Plugging in h;(n), we have fg(n, ) > —a(n), which is Equation (9c).

To learn in this setting we differentiate through the QP layer using the KKT conditions as shown in (Agrawal et al., 2019).
Given the simple nature of the QP, we implemented a custom solver that uses binary search to efficiently compute solutions,
detailed in the supplymentary materials.

To demonstrate the effectiveness of the CBF-QP layer, we visualize the learned trajectories on the CIFAR-3 dataset (a subset
of CIFAR-10 with the first 3 classes) in Figure 7. Each colored line represents a trajectory of an input image from a specific
class. As training progresses, the trajectories are trained to evolve to the correct classes. All the trajectories stay in the
simplex, implying that the learned dynamics satisfy the constraints in Equation (9b) and Equation (9c¢).
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Epoch: 300

i

Figure 7. Depicting ODE trajectories that satisfy the simplex constraint for CIFAR-3 on epochs 1 and 300. Each colored line represents
the trajectory of an input example of a specific class, and the stars at the corners are colored with the ground-truth class.

B.4. Custom solver for the CBF-QP
Consider a CBF-QP in the following form:

. 1 .
F(F) = axgmin _ | - £13 (40)
fER™
s.t 1T£=0p

f(n) <£f<1f(n)

where £ and f are non-increasing function of 7. By the Karush-Kuhn-Tucker (KKT) conditions, the solution of (40) is as
follows:

1(f)=|F+ mE (1)

where [- ]f stands for lower and upper clipping by £ and £, and \* is the Lagrangian multiplier. We find A* such that

17 f(f ) = b using binary search. Since f(f) is clipped by £ and T, the search range of A* is [min; (f; — £;), max;(F; — £;)],
where f; stands for the ith element in f, and £,, £; stand for the ith element in £ () and £(n) respectively. Here we consider
a general constraint where there are both lower and upper bounds on £. If there is only a lower bound constraint on £ as in
eq. (9¢), we search \* in [mini(f',» —£;), — min; fz], because if A* > — min; fi, then 17 £ > 0, violating eq. (9b).

To differentiate through the solver in training, we derive the derivatives based on the binding conditions of the inequality
constraints. First, we define the binding and not binding sets as follows:

S ={ilfi=1;}, & =0 (43)
Su={ilfi=1%:}, S;=0N8, 44)

where Q = {i € Z"|i < n}. Then the derivatives of f with respect to the inputs f. £ and T are as follows:
0, 1€8orjeSe

df; o
i _ - g 1=J€S (45)
df; —ly i#5i€SjeS
0, jEeS,VieN 0, jEe S, Vie
df; 1, JESHi=] df; 1, €ESi=7J
sy JESfIES —asy JE€SLiESy

B.S. Interval Bound Propagation through CBF-QP
Proposition B.1. Consider a CBF-QP in the form of 40. Define function h; to be h; : n, f — f( f );. Given perturbed
input in an interval bound m; < m; < 7;, and _fZ < fZ < _fl, we have

hi(nis Fin) < F(F)i < hi(nfy, £ly) 47)
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where m’.,, n}, and be, f'fb are defined as follows:

i nj, Jj=1 i nj, J=1
= ., =49 =L 7 48
Mub {773‘, i M {773'7 i (48)
i ?ja J=t i fi. j=i
=9 o ST fi = = (49)
’ {.n,y¢z P A i

Proof. We prove by contradiction. For the upper bound f(f); < hi(nj, f;b), suppose f(f); > hi(njy, fzb). Plug in
Equation (41), we have

. £(m:) — , £(n:)
[fita] "> [+ V] (50)
£(m:) £(m)

Since £ and f are non-increasing function of 7, we have £(7;) > £(n;) and £(7;) > £(n;). Then fi+A> E + X Since
fi < fi, we have A > X. Then for all j # i, we have

P iy T £(77)
Sum on both sides of 50 and 51, we have
]le("% f) > ]le(nlba fub) (52)

which is contradictory to the equality constraint in 40. Therefore, we have f(f); < hi(nly, £1,). The lower bound in 47
can be proved in the same way. O

C. Sampling Algorithms for Certification
C.1. Sampling on the decision boundary

We describe the process of generating samples on the decision boundary in Algorithm 2. The trick is to break down the
n-class decision boundary sampling problem to 2 to (n — 1)-class sampling problems. For instance, to generate samples
with k£ non-zero elements on an n-class decision boundary with density 7', one can sample points on an k-class decision
boundary with density 7" — k first, adding 1 to each dimension to make each element non-zero, and assign each element to
an n dimensional vector. This operation is denoted by function G in Algorithm 2. G takes two list inputs a and ¢, increases
each element in a by 1, rearranges the elements in a according to the indices given by ¢, and output a new list w of shape k.
Equation 53 gives the form of the output of G. If the inputs are y = 0,a = (3,2,3,0),c = {2,3,7} and k = 8 (y is the
label, a corresponds to a point on 4-class decision boundary, and c specifies the non-zero dimension except for the label
dimension in an 8 dimensional vector), then the output is w = (4,0, 3,4,0,0,0, 1).

ag + 1, 1=y
wi =4 1,2, ine T1, 1E€c (53)
0. o/w

C.2. Rejection sampling

Mathematically, define the distance between two sets Sy, .Sz as d(S1,.52) = inf{||z — y||2|z € S1,y € Sa2}. Let h be the
barrier function, Ly = {n|h(n) = 0} be the 0-level set, and L;, Lo be the c;-level set and co-level set that surrounds Ly,
where ¢; < 0 < cp. First, we sample mesh grids in a hypercube with fixed interval r along each dimension. Then we find ¢;
and ¢y such that d(Lq, Lg) > @7’ and d(Lsy, Lg) > 47’. Since the sampling interval is r, given a point 17 € L, there
exists a point n* from the mesh grids such that [n; —n;| < £ and ¢; < h(n*) < c2. Therefore, we reject points with barrier
function values less than c; or greater than ¢, and verify the Lyapunov condition holds around a hypercube with side length
r for the mesh grids between L; and L. If the verification passes, the Lyapunov condition holds everywhere on L.
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Algorithm 2 Sample the points on the decision boundary by dynamic programming.

Input : Number of classes K, sample density 7, solution set sol with dimension T x K.
/I Initialize sol.
Initialize each element of sol to be (.
sol[0][k] = {0}, where 0y, = [0, .., 0] € R*.
solljl[2] = {1j/2,5/2]}.
/I Append elements to sol[j][k].
for j from 2 to T do
for k from 3 to K do
for [ from O to k — 2 do
ifj—k+1>0andk — 1> 0 then
Let C be the set that contains & — I — 1 combinations of {1,2, ...,k — 1}.
sol[j][k] = sol[j][k] U{G(y, a,c,k)|a € sol[j — k + ][k —],c € C}.
return S, = sol[T|[K]/T

D. Experiment Details
D.1. Image classification

To restrict the Lipschitg of the dynamics, we use orthogonal layers (Trockman & Kolter, 2021) in the neural network.
Specifically, we have f(n,z) = W30 (Waa(Win + g(x)) + bs) + b3, where ¢ is a neural network with 4 orthogonal
convolution layers and 3 orthogonal linear layers, and Wy, Wy, W3 are orthogonal matrices, o is the ReLU activation
function.

In the CBF-QP, we need to pick a class K¢, function « for the inequality constraint £ > —«(n). Here we use a(n) =
c1(e®2™ — 1), where ¢; = 100, and ¢5 = 0.02. Comparing with a linear function, this «(n) leads to a higher margin over
Lipschitz ratio, resulting in better certified accuracy.

During training, we train with batch size of 64. For each image, we sample 512 states. From epoch 1 to 10, all the states are
uniformly sampled in the simplex. From epoch 11 to epoch 60, we linearly decay the proportion of uniform sampling in
the simplex and increase the portion of uniform sampling within the correct classification set for each class. To sample
uniformly in the simplex, we first sample n points from exponential distribution Exp(1) independently, then we normalize
the n dimensional vector to have sum 1. To sample uniformly in the correct classification region for each class, we first
uniformly sample from the simplex, then we swap the maximum element with the element corresponding to the correct
label. We choose & to be 2.0 in the loss function (eq. (10)). We use Adam optimizer with learning rate 0.01, and train for
300 epochs in total.

For certification, we choose N = 40 when sampling on the decision boundary. A larger IV will lead to better certified
accuracy but increases the computational cost dramatically. We ran the experiments on an NVIDIA RTX A6000 GPU.
D.2. Nonlinear control

The dynamics for the segway system is:

¢
d (b . cos ¢(—1.8u+11.50+9.8 sin ¢p) —10.9u~+68.4v—1.2¢ sin ¢
it v = Cos p—24.7 _ (54)
(b (9.3u—58.8v) cos ¢p+38.6u—243.5v—sin $(208.3+¢> cos ¢)
cos? p—24.7

We use a 3 layer MLP as the controller. First, we train the controller to imitate a Linear Quadratic Regulator (LQR) controller.
Then we jointly learn the Lyapunov function and finetune the weights in the MLP. Here we use standard linear layers rather
than orthogonal layers, and control the empirical Lipschitz constant of the neural network by adversarial training.



