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The position an individual holds in a social network is dependent on both its
direct and indirect social interactions. Because social network position is
dependent on the actions and interactions of conspecifics, it is likely that
the genotypic composition of individuals within a social group impacts
individuals’ network positions. However, we know very little about whether
social network positions have a genetic basis, and even less about how
the genotypic makeup of a social group impacts network positions and
structure. With ample evidence indicating that network positions influence
various fitness metrics, studying how direct and indirect genetic effects
shape network positions is crucial for furthering our understanding of
how the social environment can respond to selection and evolve. Using repli-
cate genotypes of Drosophila melanogaster fruit flies, we created social groups
that varied in their genotypic makeup. Social groups were videoed, and net-
works were generated using motion-tracking software. We found that both
an individual’s own genotype and the genotypes of conspecifics in its
social group affect its position within a social network. These findings
provide an early example of how indirect genetic effects and social network
theory can be linked, and shed new light on how quantitative genetic
variation shapes the structure of social groups.

This article is part of a discussion meeting issue ‘Collective behaviour
through time’.

1. Introduction
The social interactions that individuals engage in, and the emergent structure of
the social groups they are a part of, can shape individuals’ entire lives in impor-
tant ways [1–3]. One of the many factors contributing to social interactions and
emergent social group structure is the genotypes of individuals comprising a
group [3–6]. From an evolutionary perspective, the quantitative genetics
of social interactions are particularly interesting: when the genotype of one indi-
vidual affects the phenotype of an interacting partner—a phenomenon termed
indirect genetic effects (IGEs)—this genetic component of the social environ-
ment indicates that the social environment itself can respond to selective
pressures and evolve [7–9].

Theoretical and empirical work incorporating IGEs has seeded a better
understanding of variation in social interactions and social dynamics [10–14].
However, models of IGEs have struggled to move beyond dyadic social inter-
actions, to better mimic the common natural situation in which many
individuals (and their genotypes and phenotypes) interact simultaneously
[4,5,14–17]. This limitation is problematic for applying IGE theory to data
from wild study systems, because individuals frequently engage in social inter-
actions with multiple conspecifics, either simultaneously or sequentially. One of
the ways IGE theory has been extended to apply to social groups is to take the
average phenotype of a focal individual’s social groupmates [5]. An issue that
arises with this approach is that how individuals affect others is often not an
average. Previous studies have demonstrated, for example, that some individ-
uals can have a disproportionate influence on their social groups [18] and
networks (e.g. [19]). Furthermore, how interacting individuals affect others
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can depend on the specific individuals or genotypes they
are paired with [20–27]. If the effect of interacting individuals
depends on both their own genotype and the genotype of the
individuals they are interacting with, then these effects can be
considered a type of genotype-by-environment interaction,
where the ‘environment’ is the IGEs imposed by the social
environment [23–26,28,29]. However, we still know very
little about how variability in IGEs and genotype-by-IGE
interactions (also termed genotype-by-genotype epistasis)
shape variation in group structure [30].

To move beyond studying IGEs in dyadic contexts, social
network analysis provides a promising opportunity, as it
allows us to measure how the effects of social group members
cascade through networks of direct and indirect interactions
[4–6,17]. Social network analysis has emerged as a widely
used tool for describing how individuals’ direct and indirect
social interactions are nested within the emergent social struc-
ture of their group [1,2,31–34], but has only rarely been
deployed in genetically informative samples that would allow
estimation of IGEs [4,5,17].

Numerous studies have found that behavioural variation
shapes the positions that individuals hold in their networks
of social interactions (e.g. movement and exploratory behav-
iour [35,36]; aggression and policing behaviours [19,37,38];
group size preference and experience [6,29,39]). However, it
remains unclear whether these behavioural effects on net-
work structure have an underlying quantitative genetic
basis, and if so, how genetic variation acts through direct gen-
etic effects (DGEs) and IGEs to produce variation in network
structure [4–6,40]. Extending our knowledge of how the gen-
etic effects of social group members affect the structure and
dynamics of networks of social interactions—i.e. IGEs
within social networks—can allow us to better understand
how variation in social structures forms, shapes behaviour
and its genetic basis, and evolves [3–5,17].

Because the position that an individual holds in a network
is inherently dependent on the direct and indirect social inter-
actions occurring amongst all social groupmembers, the effects
of individuals’ own genotypes on their own network position
are difficult to parse from the IGEs of other social group part-
ners [40]. For example, variation in the social behaviours of
conspecifics in a social group could affect a focal individual’s
position in a network, even if the focal individual’s social beha-
viours remain consistent. However, while an individual’s
network position may be relative compared to other individ-
uals in its network, it is important to note that individuals’
own behaviours can and often do shape their network pos-
itions [19,35,36,39,41–43]. So, an individual’s social network
position is expected to be an emergent property of its own be-
haviour, plasticity in its own behaviour across groups, and the
behaviour and plasticity of groupmates.

As such, while the hypothesis that the genotypic compo-
sition of social groups should influence individuals’ network
positions seems intuitive, this is not a guarantee; and empirical
evidence evaluating the effects of IGEs in social networks (or
their absence) is lacking. Indeed, few studies have addressed
how an individual’s own genotype influences its position
within a social network [37,44–46], and we know even less
about how the genotypic composition of social groups and
IGEs of interacting group members shape variation in network
phenotypes [5,17,40]. A handful of studies have addressed how
the genotypicmakeup of a social group impacts various aspects
of its structure and dynamics: social niche construction

[28,47–49], exploratory behaviour [26], collective foraging [50],
antipredator behaviour [10] and aggression [15,38]. Yet it
remains unclear how the genotypes of multiple individuals
within social groups impact the structure of their networks of
social interactions. Merging studies of the quantitative genetic
basis of social traits, IGEs, and social networks can open new
windows into understanding the genetic basis and evolution-
ary potential of social group structures.

In this study, we started to bridge this gap in knowledge
by examining how multiple individuals’ genotypes and the
genotypes of their social partners affected multiple measures
of social network positions using replicate genotypes of
Drosophila melanogaster fruit flies. We have previously demon-
strated a heritable basis to social network position in this
system [46]. Further, we found that social network position
influenced measures of male and female fitness, underlining
the importance of social network dynamics in this system.
Here, we manipulated and varied the genotypic composition
of entire social groups, allowing us to quantify the role of
DGEs and IGEs in social network structure. We predicted
that the genotypes present in a social group would influence
the network positions of all members.

Specifically, we predicted that including genotypes known
to differ in their eigenvector centrality (ameasure of the ‘impor-
tance’ of an individual to the structure of its network based
on its direct and indirect social connections [2,32,34]) in a differ-
ent social setting [46] would also differ in their impact on their
own social network positions, and those of their groupmates.
An individual’s eigenvector centrality can serve as a measure
for how much that individual serves as a ‘hub’ of social inter-
actions; i.e. an individual with high eigenvector centrality may
engage in many social interactions and/or engages in social
interactions with individuals who are themselves highly
connected [2]. For example, female baboons who groom
highly connected social partners thereby gain access to many
more grooming partners, making them ‘hubs’ for this social
behaviour (i.e. having high eigenvector centrality) [45,51].
We consider eigenvector centrality as a good ‘test case’ for
understanding IGEs in social networks because eigenvector
centrality: (i) is inherently an emergent property of many
individual interactions and (ii) varies among genotypes
and influences measures of fitness in our study system. In
our study, the effect of the presence or absence of particular
genotypes on a focal individuals’ network positions would
represent an IGE on the focal individuals’ network positions.
Further, we predicted that this IGE would be dose-dependent,
such that the more individuals from the high- or low-eigenvec-
tor centrality genotype were present in the group, the stronger
this effect would be. Finally, we tested whether the IGEs dis-
covered, if any, were dependent on the identity of the other
genotype present, representing a genotype-by-IGE interaction.

2. Methods
(a) Study system
Flies are a great study system to address questions about the
quantitative genetic basis of social traits, as we can replicate
the genotypes of individuals and entire social groups using mul-
tiple replicate genotypes [52]. Flies actively form social groups on
food substrates in nature [53–55] and in the laboratory [48,56–58].
Additionally, flies have been shown to vary in social group pre-
ference [28,47]; to actively choose the social groups they are a
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part of [48,49]; and to have non-random social networks of inter-
actions [46,57,59].

(b) Genotypes and rearing
Heterozygous genotypes were created by performing mating
crosses of inbred homozygous genotypes of D. melanogaster
flies derived from the Drosophila genetic reference panel
(DGRP), a collection of inbred lines derived from a natural

population in North Carolina ([52]; figure 1). Each heterozygous
genotype used in our experiment was generated by establishing
a mating cross of 10 virgin females of homozygous lines 208, 315,
786 or 637 with 10 males of homozygous lines 313, 229, 716
or 318, respectively. Virgin females were collected from mating
crosses 208 × 313, 315 × 229 and 786 × 716; and virgin males
were collected from mating cross 637 × 318. Genotype numbers
refer to arbitrary labelling within the DGRP and are not indi-
cative of similarities or differences between genotypes [52].

208
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Figure 1. Overview of the experimental design indicating how heterozygous genotypes were derived from homozygous inbred lines of flies, and how social groups
of variable composition and ratios of female genotypes were established. Genotype numbers refer to arbitrary indicators from the DGRP [52]. Sample sizes indicate
the number of networks analysed for each social group treatment.
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Seeding the vials with a standard number of parents per vial
(10 females and 10 males), allowed us to minimize variation in
larval density. We chose to use heterozygous genotypes, as
opposed to homozygous flies from inbred lines, to create individ-
uals that are more representative of genetic variation found in
the wild. Additionally, creating heterozygous genotypes allays
concerns about potentially deleterious effects of homozygous
recessive alleles in inbred homozygous lines [60,61].

We chose three heterozygous female genotypes to create social
groups of variable genotypic compositions, because we have
demonstrated that these genotypes vary in how critical they are
to social network structure based on the strength of their direct
and indirect social interactions (i.e. eigenvector centrality) in
social groups of standardized genotypic composition [46]. We
chose female genotypes that have been previously shown to vary
in eigenvector centrality for three reasons. First, this measure of
network position incorporates information about both an individ-
ual’s direct and indirect social interactions, which is a key part of
addressing our question of how an individual’s own genotype,
and the genotypes of its direct and indirect social partners, affects
the network positions of a focal individual and its social group-
mates. Second, eigenvector centrality is an inherently relative
measure: if one or more individuals are highly central to group
structure, there must be an individual(s) who is not as central to
group structure, as not everyone within a group can have high
eigenvector centrality. Third, an individual’s eigenvector centrality
in a group has been demonstrated to be affected by numerous phe-
notypes (e.g. age [62,63], sex and dominance rank [64] and
exploratory behaviour [42]) with important consequences for
numerous life history traits (e.g. mating frequency [46], fecundity
[65], survival [65,66], food patch discovery [67], territoriality [68],
predation [69] and disease [70,71]). We chose to manipulate both
the genotypic identities and number of females of each genotype
in the group, as our results from previous work indicate that
female fruit flies receive more social interactions and are more
central to the structure of their social groups than males [46].

All flies were reared, aged, and housed on a 12 : 12 light : dark
cycle, at 24°C, 50% relative humidity, and on standard fly food
(unless otherwise noted). Newly eclosed virgin adults were col-
lected under light CO2 anaesthesia. Each fly was marked with a
unique paint colour on its mesothoracic segment, allowing us to
visually distinguish individuals. Flies were then aged in same-
sex groups for 3 days to allow for recovery from CO2 anaesthesia
and development to sexual maturation [72,73]. Females were
housed in their specific treatment combinations (described below
and in figure 1), andmales with other males of the same genotype.

(c) Social groups
Groups were composed of 20 individuals (10 males and 10
females). In all groups, all 10 males were of a standardized het-
erozygous genotype (figure 1). The genotypic composition and
genotypic ratio of females were varied. To vary the genotypic
composition of groups, each social group contained two different
heterozygous female genotypes out of the three total in our
experiment (see §2b above), for a total of three possible genotypic
compositions. Further, we manipulated the ratio of each geno-
type, where a given female genotype served as either the
minority (one individual, referred to as the ‘focal genotype’) or
the majority (nine individuals, referred to as the ‘stimulus geno-
type’) in each group (figure 1). This allowed us to address not
only how the IGEs of an individual’s social group partners
affect its network position, but how the genotype of a single indi-
vidual could affect the structure of its social groupmates. Every
genotype was measured as the focal and stimulus individuals
in each genotypic composition combination, representing a full-
factorial design totalling six treatment genotypic composition
and ratio combinations (figure 1).

(d) Fly behaviour and social network analysis
At the start of trials, males and females were released into a
10 cm petri dish layered with fly food (58.8 g nutritional yeast,
133.7 g malt sugar, 27 g agar, 11.1 ml tegocept acid mix (70 g
tegocept/270 ml H2O) and 3 ml propionic acid; per 1 l H2O) to
form a social group.

Social groupswere video recorded during the first hour of light
(when flies aremost active) over the course of 2 days, beginning the
morning after social groups were established [74]. Videos were
recorded for 20 min using Nikon D3300 cameras at 30 fps and
10.22 ± 0.24 pixels mm−1. The position and orientation of each fly
in each video were quantified using the motion-tracking software
Caltech FlyTracker 1.0.5 [75]. The fly tracks in each video were
manually verified to ensure all tracking identities were accurate
and consistent.

We measured the weighted and directed social interactions
occurring between every pairwise combination of flies using
the tracking output [76]. This allowed us to create a social inter-
action matrix for each video. Three criteria dictated whether or
not two flies were socially interacting: (i) the distance between
the two flies was less than 2.5 average fly body lengths, (ii) a
social partner was within a 320° field-of-view and (iii) these
first two criteria were maintained for a minimum duration of
0.6 s [77]. These interaction criteria have been previously demon-
strated to filter out random social interactions, such as two flies
walking by one another without socially engaging [77]. Each
edge in our interaction matrices encompassed the total duration
of time any two flies spent interacting during a video, given our
three interaction criteria. Because all individuals were observed
and present throughout the entirety of every video, this allowed
us to directly proceed with network analyses without having to
compute association indices to account for sampling errors
or biases, or carry this estimation error forward in subsequent
analyses [78–81]. Using the R package igraph 1.2.4.2 [82], we
analysed four of the most commonly studied individual-level
social network positions: instrength—the amount of time other
individuals spend socially engaging with an individual; out-
strength—the amount of time an individual spends socially
engaging with other individuals; weighted and directed cluster-
ing coefficient—how interconnected an individual’s direct social
partners are to one another (i.e. cliquishness); and weighted and
directed eigenvector centrality—how critical an individual is to
the overall structure of the group based on the strength of its
direct social connections, the strength of its partners’ connec-
tions, the strength of its partners’ partners’ connections, etc.
[2,32,34] (electronic supplementary material, figure S1).

(e) Replication
One hundred and twelve social groups were created, represent-
ing 18–19 replicates of each genotype ratio/composition: 1 : 9
ratio of genotypes 208 × 313 and 786 × 716, respectively (n = 19);
1 : 9 ratio of 208 × 313 and 315 × 229 (n = 19); 1 : 9 ratio of 786 ×
716 and 315 × 229 (n = 19); 9 : 1 ratio of 208 × 313 and 786 × 716
(n = 19); 9 : 1 ratio of 208 × 313 and 315 × 229 (n = 18); 9 : 1 ratio
of 786 × 716 and 315 × 229 (n = 18). Social groups were excluded
from analyses if any flies died or escaped before they were
videoed. This excluded over half of our social groups from ana-
lyses, as keeping all 20 flies in a group alive throughout the
duration of the experiment was challenging. However, doing so
was necessary, because variation introduced by the presence of
a dead individual and subsequent changes in group size
caused groups to no longer be replicated within each genotype
ratio/composition treatment. For intact social groups, up to
two videos were taken (one/day over the course of 2 days).
Forty-four independent social groups had fully tracked videos,
21 of which were videoed on both days, resulting in 65 tracked
videos of social groups used for network analysis. Thus, our
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final dataset included 4–15 replicates per genotype ratio/compo-
sition treatment: 1 : 9 ratio of genotypes 208 × 313 and 786 × 716,
respectively (n = 7); 1 : 9 ratio of 208 × 313 and 315 × 229 (n = 14);
1:9 ratio of 786 × 716 and 315 × 229 (n = 14); 9 : 1 ratio of 208 ×
313 and 786 × 716 (n = 15); 9 : 1 ratio of 208 × 313 and 315 × 229
(n = 4); 9 : 1 ratio of 786 × 716 and 315 × 229 (n = 11) (electronic
supplementary material, table S1).

( f ) Analyses of direct and indirect genetic effects on
network structure

Because all males had the same standardized genotype, we could
not address how a male individual’s genotype (DGE) affected
their own network position. We could, however, estimate
DGEs for female network positions, as female genotypes varied
within and across social groups. As such, networks were con-
structed for the entire social group, but then data from females
and males were analysed separately to ask different questions
about the quantitative genetic causes of variation in social
network position.

For females, we analysed how an individual’s own genotype
(DGE), the genotype of the female(s) in their group (IGE), and
their genotypic frequency in their social group impacted their
social network positions. We also analysed how all pairwise
combinations of interaction effects between DGEs, IGEs, and
genotypic frequency effects impacted females’ network positions.

For males, we analysed how IGEs of the specific genotypic
composition and ratio of females in their group impacted
males’ network positions. The IGE of the singular unique
female genotype in each group is referred to as an IGE of the
‘focal genotype’, and the IGE of the nine female genotypes that
were consistent within a social group is referred to as an IGE
of the ‘stimulus genotypes’. The presence of IGEs on males
was tested based on the significance of stimulus and/or focal
female genotype fixed effects. We also tested for an interaction
effect between the focal and stimulus female genotypes that
males were paired with on males’ network positions.

In all models analysing the effects on network structure, the
effects of DGEs, IGEs, an individual’s genotypic frequency in
the group, and interactions between these effects were treated as
fixed factors. Genotypic effects (DGEs and IGEs) were treated as
fixed factors because genotypes were chosen non-randomly
based on prior information (see §2b), and because there were
only three levels of genotype for females. All models also included
a random effect of the identity of the individuals’ social group, to
account for the fact that each individual was a sub-sample of its
social group.

(g) Model fitting
All analyses were conducted in R v.3.6.2 [83]. Network positions
of instrength and outstrength were analysed using Poisson-dis-
tributed generalized linear mixed models (GLMMs), as these
measures of network position are counts; and network positions
of clustering coefficient and eigenvector centrality were analysed
using linear mixed models (LMMs) using R package lme4 1.1
[84]. Model fits were assessed using the package DHARMa
0.2.7 [85]. Accommodations for overdispersion were applied as
needed using an observation-level random effect [86].

(h) Inference
Fixed effects and all interactionswere assessed using Type IIIWald
χ2 tests, and non-significant interactions were removed [87].

Because measures of network position are non-independent
within social groups, meaning one individual’s network position
inherently informs other individuals’ network positions, we
employed nodal permutation tests to test for the significance of

DGEs, IGEs, genotypic frequency effects, and all pairwise inter-
actions between these effects on females’ network positions
[88–90]. Sinceournetworkdataweregeneratedvia automated track-
ing and manual verification of video data, and we could ensure
that all individuals and social interactions between them were
represented in our networks (i.e. no missing data); nodal permu-
tations were employed as the most appropriate means of testing
the significance of effects, while avoiding the possible risk of elev-
ated error rates associated with pre-network or datastream
permutations [90,91]. In each permutation test, 1000 null datasets
were generated by randomizing the genotypic identities of females
within each social group (DGEs), the identity of the other female
genotype in the group (IGEs), and their genotypic frequency in a
social group in tandem. Type III Wald χ2 test statistics from the
observed datawere compared to Type IIIWald χ2 test statistics gen-
erated from the null datasets to ascertain the significance of effects.
Additionally, we sought to estimate the variance ‘explained’ by
significant DGEs and IGEs on females’ network positions using
the R packageMuMin 1.43.17 [92]. Pseudo-R2 values were obtained
byestimating the variance explained byDGEs and IGEs on network
positions usingmodels with each fixed effect included individually,
but otherwise constructed identically as described in §§2f,g.

Formales, permutation testswere not required to inform the sig-
nificance of IGEs of focal and stimulus female genotypes on males’
network positions, because the genotypic identity of the focal and
stimulus females was consistent within each social group. As
such, there was nothing to permute, and significance was assessed
using Type III Wald χ2 tests on the observed male data.

3. Results
(a) Direct and indirect genetic effects on female

network positions
Female genotypes significantly differed in three measures of
network position. We found DGEs on how much time other
individuals interacted with a given individual (instrength,
χ2 = 5.619, p-value derived from nodal permutations, hereafter
pR = 0.001, pseudo-R2 = 0.051), how much time individuals
spent engaging with other individuals (outstrength, χ2 =
3.202, pR = 0.001, pseudo-R2 = 0.044), as well as how central
individuals were to the structure of their social groups (eigen-
vector centrality, χ2 = 13.095, pR < 0.001, pseudo-R2 = 0.035;
figure 2; table 1). We did not find evidence to suggest a DGE
on how cliquish individuals were (clustering coefficient,
χ2 = 12.149, pR = 0.503; figure 2; table 1).

We found IGEs for eigenvector centrality: the genotypic
identity of a female’s groupmates significantly impacted
how central she was to the structure of the network (eigenvec-
tor centrality, χ2 = 3.270, pR = 0.016, pseudo-R2 = 0.020). More
specifically, when a female was paired with genotype 208 ×
313 (estimated marginal mean (EMM) eigenvector centrality =
0.214), 315 × 229 (EMMeigenvector centrality = 0.214) or 786 ×
716 (EMM eigenvector centrality = 0.241), her eigenvector
centrality values had an EMM of 0.230, 0.215 and 0.223,
respectively (figure 2g,h). Notably, when a female was paired
with a genotype with one of the lowest eigenvector centrality
values (208 × 313), she in turnwasmore likely to have the high-
est eigenvector centrality value compared to being paired with
the other female genotypes. This matches our prediction of an
IGE of being pairedwith a genotype of a given eigenvector cen-
trality value having an inverse effect on one’s own eigenvector
centrality. We did not find evidence for an IGE on our other
tested measures of network position (instrength, outstrength
or clustering coefficient; table 1).
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In contrast to the effects of DGEs and IGEs on females’
network positions, we did not find an effect of genotypic fre-
quency on females’ position in a network (table 1). That is, the
network positions of individuals of a particular genotype did
not depend on whether there was one individual of that gen-
otype, or nine individuals of that genotype, in the social

group. Nor did we find any interaction effects between
DGEs, IGEs, and/or a female’s genotypic frequency in a
social group (table 1).

(b) Indirect genetic effects on male network positions
The genotype of the stimulus females (i.e. the female genoty-
pic majority) in the males’ group significantly impacted
how central males were to the structure of their social
groups (eigenvector centrality, χ2 = 7.827, p = 0.020; figure 2;
table 2). While males were generally less central to social
group structure compared to females (male eigenvector cen-
trality mean 0.208 ± 0.05 s.d., female eigenvector centrality
mean 0.224 ± 0.06 s.d.), the effect of the stimulus female gen-
otype on males’ eigenvector centralities also followed our
predictions: when males were in a group with a female stimu-
lus genotype with the highest eigenvector centrality values,
these males had relatively lower values of eigenvector cen-
trality compared to males who were paired with female
stimulus genotypes with lower eigenvector centrality values.

Aside from an IGE of a stimulus female’s genotype on
males’ eigenvector centrality, we found only marginal evi-
dence suggesting IGEs on other aspects of males’ network
positions. The stimulus female genotype, as well as the
specific focal- and stimulus-female genotypic combination,
had marginal effects on how cliquish males were (clustering
coefficient: stimulus IGE, χ2 = 4.881, p = 0.087; focal IGE-by-
stimulus IGE interaction, χ2 = 2.958, p = 0.085; table 2). We
found no evidence for IGEs of the stimulus female genotype
on howmuch males engaged in social interactions (instrength
and outstrength), IGEs of the focal female genotype on any
measure of males’ network positions, and no focal IGE-by-
stimulus IGE interaction effects on how much males engaged
in social interactions or how central males were to the
structure of their social groups (instrength, outstrength and
eigenvector centrality; table 2).

4. Discussion
To start to understand how IGEs influence social network
structure and dynamics, wemanipulated the female genotypes
present inmultiple replicate social groups. Based on prior data,
we predicted that a female’s own genotype would influence
her own eigenvector centrality (i.e. DGEs), and we tested
whether those genotypic effects also indirectly influenced
the social network positions of other males and females
in the network (i.e. IGEs). For females, we found evidence
of DGEs for three measures of social network position:
instrength, outstrength and eigenvector centrality (table 1,
figure 2). We did not see any evidence that the frequency
(i.e. one individual or nine individuals) of a particular
genotype influenced network position. In both males and
females, we found evidence of IGEs for eigenvector centrality,
supporting our a priori predictions. However, we did not
observe IGEs for other aspects of network position (tables 1
and 2). Taken together, our findings show that an individual’s
position within a social network is dictated not only by its own
genotype, but also by the genotypes of other individuals
within the network (i.e. DGEs and IGEs). Thus, the genetic
basis of network position should extend to include the geno-
types of all social group members, at least for some aspects
of network position.
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The idea that an individual’s position within a social net-
work is dependent not only on its own genotype, but also on
the genotypes of other individuals within a network, is per-
haps intuitive because an individual’s position within a
network is dependent on both its own direct social inter-
actions and indirect interactions amongst groupmates
[1,2,32,33]. However, studying how DGEs and IGEs affect
network structure has remained challenging [4–6,17,40],
meaning that we lack empirical support for this hypothesis.
Previous studies investigating the heritability of measures
of network position have estimated the direct genetic contri-
butions to network position phenotypes, but have often done
so using individuals of known genotype or relatedness
nested within social networks of individuals of unknown
genotypes or relatedness ([37,44,45]; but see [46]). Because
of the challenges of controlling for the genetic identities of
all individuals within a social group, it has remained unclear
to what degree an individual’s own genotype and the geno-
types of their social groupmates affect each individual’s
position within a social network.

Our approach partially overcomes this challenge bymanip-
ulating and replicating the genotypic composition of groups,
and studying the resulting social networks.WhileD. melanoga-
ster flies may not experience groups containing multiple
genetically identical individuals in nature, the aim of our
studywas less about creating social groups that are representa-
tive of variation found in the wild, and more about taking an
initial step toward integrating IGEs and social network
theory. Indeed, many of the individuals in our social groups
(all males, and 9/10 females in each group) were genotypically
identical, which is not likely to be representative of most wild
groups in a species with limited population structure. Excep-
tions to this include haplodiploid social Hymenoptera (e.g.
ants, bees andwasps), which alternatively, are classic examples
of how relatedness affects social group dynamics [93].
Additional parallels to this study design are social groups com-
prised of heterospecific individuals, such as mixed-species
groups. Heterospecific social groups comprised of a variable
mix of similar and dissimilar individuals can result in groups
with variable social and community structures [94–97].

Similarly, our study manipulated only genotypic variation
in females, while males were kept genotypically constant.
While it is likely that both sexes shape and affect the structure
of their social groups in both similar and novel ways, manipu-
lating both sexes could introduce confounding variation about
which specific genotypic and sex combinations affect group
structure [15,48] and this was not the goal of our current
study. Future studies could extend these findings by manipu-
lating males either separately or factorially with females in
studies of IGEs and individual effects on social group structure.
However, extending our approach to multiple (i.e. more than
three) genotypes, and both sexes, in a factorial designwith suf-
ficient replication will be difficult, even in organisms amenable
to laboratory manipulation such as flies. Creative approaches
are needed to move us beyond studying IGEs in dyadic con-
texts and averaging the effects of social groupmates, into
providing a fuller understanding of how social effects cascade
through networks of individuals to produce the observed
emergent structure of social groups [5].

While we were able to control for prior experience
and the genotypic composition of social groups, the specific
behaviours that individuals engaged in remain unknown.
The genotype-to-network position phenotype relationship isTa
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complex, and how the behaviours of individuals and social
partners are nested within this relationship can manifest in
many ways. For example, in wire-tailed manakins (Pipra fili-
cauda), higher territoriality causes males to be more central to
network structure (i.e. high eigenvector centrality; [68]). How-
ever, in other systems, it seems plausible that highly territorial
individuals would be less central to group structure (i.e. low-
eigenvector centrality) if movement and exploratory
behaviour are critical to engaging in social interactions. Our
findings of DGEs for measures of network position do
translate well to findings of individual differences in other
complex social behaviours (i.e. social roles, social responsive-
ness, social complexity, and social niche specialization;
[12,98–100]). Individuals have been shown to consistently
vary in network position across both time [63,64,101–103]
and contexts [104–108], with individuals’ behaviours often
being tied to their positions within a social group
[19,29,35,36,39,41,43,109]. Correspondingly, individuals have
also been shown to plastically alter their network positions in
response to prior experience [35,41,43,110], behavioural
changes within their social group [108], and perturbations
such as demographic changes (reviewed in [111]) and disease
prevalence [112].

Such relationships between an individual’s genotype, its be-
haviour, and its network position are complex, and are likely
dependent uponmultiple behaviours of not just one individual,
but the actions and behaviours of conspecifics in a network. For
example, even if focal individuals were to behave identically
across different social groups, variability in the behaviour and
social interactions of their social partners could profoundly
influence those focal individuals’ network positions. Alterna-
tively, focal individuals may adjust their behaviours to
compensate for variation in their networks, thereby maintain-
ing a consistent network position. In other words, apparent
DGEs may be driven wholly by IGEs, and vice versa. Further,
the behavioural mechanisms that give rise to variation in net-
work positions might differ across contexts, study systems or
even genotypes. This is perhaps one of many reasons why
prior estimates of the genetic contributions to measures of net-
work position have had conflicting results [37,40,44–46]. Future
work should continue to link genotypic differences in specific
behaviours (or potentially other traits) to DGEs and IGEs for
network structure. It will be necessary to address these ques-
tions across a range of contexts and study systems in order to
come to generalizable conclusions about the quantitative
genetic basis of social group structure.

Our lack of finding significant effects of genotypic
frequency, DGE-by-genotypic frequency effects, or an IGE-

by-genotypic frequency effect (table 1) suggests that the
DGEs and IGEs we found do not depend on whether
a female is the singular (minority) focal genotype or the
stimulus (majority) genotype. These results imply that the
presence of a single individual from a particular genotype
can impact the social structure of others in their group, and
further underscore the potential problems with using the
average of all social partners’ trait values in IGE analyses.
This finding further highlights the need to understand the
causes of a group’s genotypic composition. For example,
genotypes may vary in which type(s) of social environments
they choose to experience, generating genotype–social
environment correlations [28,49,113–116]. If unaccounted
for, such links between genotype and group composition
can further obscure how DGEs and IGEs manifest into differ-
ences in network position. Combining studies of genetic
variation in social group choice with studies of the genetic
basis of social network positions will help to reveal the
reasons why particular genotypes end up in groups together,
and the behavioural and evolutionary consequences of these
genetically influenced group formation processes.

Social network analysis has emerged as a well-suited tool
for resolving how direct and indirect interactions affect how
group structure evolves, as it provides a consistent frame-
work in which social interactions and the genotypes of
social group members can be studied simultaneously. How-
ever, studies employing both network analysis and IGEs
remain scarce, despite their potential to help resolve unan-
swered questions about how variation in social group
structure arises and evolves. The work presented here is a
first step toward integrating IGEs and network theory.
Future work should continue to leverage this integration, to
resolve questions about how variation in DGEs and IGEs
shapes the structure and evolution of social groups.
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Table 2. Model results for indirect genetic effects (IGEs) and social group composition effects on males’ social network positions. Values in italics indicate
significant effects and asterisked values are marginally significant.

social network positions

IGE: stimulus female genotype IGE: focal female genotype
stimulus × focal female
genotype

χ2 d.f. p χ2 d.f. p χ2 d.f. p

instrength 0.622 2 0.733 0.675 2 0.713 0.077 1 0.781

outstrength 2.153 2 0.341 0.914 2 0.633 0.357 1 0.550

eigenvector centrality 7.827 2 0.020 0.366 2 0.833 0.350 1 0.554

clustering coefficient 4.881 2 0.087* 0.484 2 0.785 2.958 1 0.085*
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