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Abstract Previous Self-Supervised Keypoints

Quantifying motion in 3D is important for studying the
behavior of humans and other animals, but manual pose an-
notations are expensive and time-consuming to obtain. Self-
supervised keypoint discovery is a promising strategy for
estimating 3D poses without annotations. However, current
keypoint discovery approaches commonly process single 2D
views and do not operate in the 3D space. We propose a new
method to perform self-supervised keypoint discovery in 3D
from multi-view videos of behaving agents, without any key-
point or bounding box supervision in 2D or 3D. Our method
uses an encoder-decoder architecture with a 3D volumetric
heatmap, trained to reconstruct spatiotemporal differences
across multiple views, in addition to joint length constraints
on a learned 3D skeleton of the subject. In this way, we
discover keypoints without requiring manual supervision in
videos of humans and rats, demonstrating the potential of
3D keypoint discovery for studying behavior.

1. Introduction

All animals behave in 3D, and analyzing 3D posture and
movement is crucial for a variety of applications, includ-
ing the study of biomechanics, motor control, and behav-
ior [29]. However, annotations for supervised training of
3D pose estimators are expensive and time-consuming to
obtain, especially for studying diverse animal species and
varying experimental contexts. Self-supervised keypoint
discovery has demonstrated tremendous potential in discov-
ering 2D keypoints from video [21,22,43], without the need
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Figure 1. Self-supervised 3D keypoint discovery. Previous work
studying self-supervised keypoints either requires 2D supervision
for 3D pose estimation or focuses on 2D keypoint discovery. Cur-
rently, self-supervised 3D keypoint discovery is not well-explored.
We propose methods for discovering 3D keypoints directly from
multi-view videos of different organisms, such as human and rats,
without 2D or 3D supervision. The 3D keypoint discovery exam-
ples demonstrate the results from our method.

for manual data annotation. These models have not been
well-explored in 3D, which is more challenging compared
to 2D due to depth ambiguities, a larger search space, and
the need to incorporate geometric constraints. Here, our
goal is to enable 3D keypoint discovery of humans and an-
imals from synchronized multi-view videos, without 2D or
3D supervision.



Self-Supervised 3D Keypoint Discovery. Previous
works for self-supervised 3D keypoints typically start from
a pre-trained 2D pose estimator [27,45], and thus do not per-
form keypoint discovery (Figure 1). These models are suit-
able for studying human poses because 2D human pose esti-
mators are widely available and the pose and body structure
of humans is well-defined. However, for many scientific
applications [29, 35, 43], it is important to track diverse or-
ganisms in different experimental contexts. These situations
require time-consuming 2D or 3D annotations for training
pose estimation models. The goal of our work is to en-
able 3D keypoint discovery from multi-view videos directly,
without any 2D or 3D supervision, in order to accelerate the
analysis of 3D poses from diverse animals in novel settings.
To the best of our knowledge, self-supervised 3D keypoint
discovery have not been well-explored for real-world multi-
view videos.

Behavioral Videos. We study 3D keypoint discovery
in the setting of behavioral videos with stationary cameras
and backgrounds. We chose this for several reasons. First,
this setting is common in many real-world behavior analy-
sis datasets [2,11,23,30,35,40,42], where there has been an
emerging trend to expand the study of behavior from 2D to
3D [29]. Thus, 3D keypoint discovery would directly ben-
efit many scientific studies in this space using approaches
such as biomechanics, motor control, and behavior [29].
Second, studying behavioral videos in 3D enables us to
leverage recent work in 2D keypoint discovery for behav-
ioral videos [43]. Finally, this setting enables us to tackle
the 3D keypoint discovery challenge in a modular way. For
example, in behavior analysis experiments, many tools are
already available for camera calibration [26], and we can
assume that camera parameters are known.

Our Approach. The key to our approach, which we
call Behavioral Keypoint Discovery in 3D (BKinD-3D),
is to encode self-supervised learning signals from videos
across multiple views into a single 3D geometric bottle-
neck. We leverage the spatiotemporal difference recon-
struction loss from [43] and use multi-view reconstruction
to train an encoder-decoder architecture. Our method does
not use any bounding boxes or keypoint annotations as su-
pervision. Critically, we impose links between our discov-
ered keypoints to discover connectivity across points. In
other words, keypoints on the same parts of the body are
connected, so that we are able to enforce joint length con-
straints in 3D. To show that our model is applicable across
multiple settings, we demonstrate our approach on multi-
view videos from different organisms.

Our main contributions are:

* We introduce self-supervised 3D keypoint discovery,
which discovers 3D pose from real-world multi-view
behavioral videos of different organisms, without any
2D or 3D supervision.

Method 3Dsup. 2Dsup. cameraparams data type

Isakov et al. [19] intrinsics

DANNCE [8] v v extrinsics real

Rhodin et al. [37] v optional intrinsics real

Anipose [20] intrinsics

DeepFly3D [13] x v extrinsics real

EpipolarPose [27] .

CanonPose [16] X v optional real

MetaPose [45] X v X real

Keypoint3D [3] X X 1ntr1.r151.cs simulation
extrinsics

Ours (3D discovery) X X intrinsics real

extrinsics

Table 1. Comparison of our work with representative related
work for 3D pose using multi-view training. Previous works
require either 3D or 2D supervision, or simulated environments to
train jointly with reinforcement learning. Our method addresses a
gap in discovering 3D keypoints from real videos without 2D or
3D supervision.

* We propose a novel method (BKinD-3D) for end-to-
end 3D discovery from video using multi-view spa-
tiotemporal difference reconstruction and 3D joint
length constraints.

* We demonstrate quantitatively that our work signifi-
cantly closes the gap between supervised 3D methods
and 3D keypoint discovery across different organisms
(humans and rats).

We plan to release our code.

2. Related Work

3D Pose Estimation. There has been a large body of
work studying 3D human pose estimation from images or
videos, as reviewed in [39,47], with recent works also fo-
cusing on 3D animal poses [8, 12, 13,26,29]. Most of these
methods are fully supervised from visual data [0, 19, 44],
with some models perform lifting starting from 2D poses [4,

,34,36]. We focus our discussion on multi-view 3D pose
estimation methods, but all of these models require either
3D or 2D supervision during training. This 2D supervision
is typically in the form of pre-trained 2D detectors [27], or
ground truth 2D poses [45]. In comparison, our method uses
multi-view videos to discover 3D keypoints without 2D or
3D supervision.

Methods more closely related to our work are those that
also leverage multi-view structure to estimate 3D pose (Ta-
ble 1). [19] proposed a supervised method that uses learn-
able triangulation to aggregate 2D information across views
to 3D. Here we study similar approaches for representing
3D information, but using self-supervision instead of su-
pervised 3D. Other methods in this space propose training
methods such as enforcing consistency of predicted poses
across views [37], regression to 3D pose estimated from



epipolar geometry of multi-view 2D [27], constraining 3D
poses to project to realistic 2D pose [5], or estimates camera
parameters using detected and ground truth 2D poses [45].
While we also leverage multi-view information, our goal is
different from the work above, in that our approach aims
to discover 3D poses without 2D or 3D supervision given
camera parameters.

Self-supervised Keypoint Discovery. 2D keypoint dis-
covery has been studied from images [15, 21, 49] and
videos [22,43]. Our approach focuses on behavioral videos,
similar to [43], but we aim to use multi-view information
to discover 3D keypoints, instead of 2D. Many approaches
use an encoder-decoder setup to disentangle appearance and
geometry information [21,28,43,49]. Our setup also con-
sists of encoders and decoders, but our encoder maps in-
formation across views to aggregate 2D information into a
3D geometry bottleneck. The discovery model most sim-
ilar to our approach is Keypoint3D [3], which discovers
3D keypoints for control from virtual agents, using a com-
bination of image reconstruction and reinforcement learn-
ing. However, this setup is designed for simulated data and
does not translate well to real videos, since updating the
keypoints through a reinforcement learning policy requires
videos generated through the simulated environment. Key-
point discovery models typically represent discovered parts
as 2D Gaussian heatmaps [21,43] or 2D edges [15]. While
we also use an edge-based representation, our edges are in
3D, which enables our training objective to enforce joint
length consistency.

Behavioral Video Analysis. Pose estimation is a com-
mon intermediate step in automated behavior quantifica-
tion; behavioral videos are commonly captured with sta-
tionary camera and background, with moving agents. To
date, supervised 2D pose estimators are most often used
for analyzing behavior videos [9, 10, 16,25,32,40]. How-
ever, 2D pose estimation is inadequate for many applica-
tions: it cannot reliably capture the angle of joints for kine-
matics, fails to generalize across views, is sensitive to oc-
clusion, and cannot incorporate body plan constraints as
skeleton length or range of motion of joints. Thus, there
has recently been an accelerating trend to study behavior
in 3D [8, 12,26,29]. These models typically require more
expensive 3D training annotations compared to 2D poses.
While 2D self-supervision has been studied for behavioral
videos [43], 3D keypoint discovery in real-world behavioral
videos have not been well-explored.

3. Method

Our goal is to discover 3D keypoints from multi-view
behavioral videos without 2D or 3D supervision (Figure 2).
Our approach is inspired by BKinD [43], which uses spa-
tiotemporal difference reconstruction to discover 2D key-
points in behavioral videos. In these videos, the camera and

background is stationary, and the spatiotemporal difference
is a strong signal for the agent movement.

We develop several approaches for 3D keypoint discov-
ery, but focus on our volumetric model (Figure 2) in this
section, as this model generally performed the best in our
evaluations. More details on other approaches are in Sec-
tion 4.1.2 and supplemental materials.

In our volumetric model (Figure 2), BKinD-3D, we
use multi-view spatiotemporal reconstruction to train an
encoder-decoder architecture with 2D information aggre-
gated to a 3D volumetric heatmap. Projections from the
3D heatmap in the form of agent skeletons are then used to
reconstruct movement in each view.

3.1. 3D Keypoint Discovery

Given behavioral videos captured from M synchronized
camera views, with known camera projection matrix P(*)
for each camera ¢ € {1...M}, we aim to discover a set of
J 3D keypoints U; € R7*3 on a single behaving agent, at
each timestamp ¢. We assume access to camera projection
matrices so that our model discovers 3D keypoints in the
global coordinate frame.

During training, our model uses two timestamps in the
video ¢ and ¢ + k to compute the spatiotemporal difference
in each view as the reconstruction target. In other words,
for each camera view ¢, our training starts with a frame I t(l)
and a future frame It(jr)k. During inference, only a single
timestamp is required: once the model is trained, the model
only needs I, t(l) for each camera view .

In our model setup, the appearance encoder ®, geom-
etry decoder ¥, and reconstruction decoder v are shared
across views and timestamps (in previous work [43], these
networks are shared across timestamps, but only a single
view is addressed). The appearance encoder ® is used to
generate appearance features, which are decoded into 2D
heatmaps by the geometry decoder ¥. These 2D heatmaps
are then aggregated across views to form a 3D volumetric
bottleneck (Section 3.1.2), which is processed by a volume-
to-volume network p. We compute the 3D keypoints us-
ing spatial softmax on the 3D volume. Then, we project
these keypoints to 2D, compute edges between points, and
output these edges into the reconstruction decoder v (Sec-
tion 3.1.3) for training. The reconstruction decoder 1 is
only used during training, and not required for inference.

3.1.1 Feature Encoding

To start, we first compute appearance features from frame
pairs It(l) and It(j_)k using the appearance encoder ®: @(It(z))
and (D(Ifi)k) These appearance features are then fed
into the geometry decoder W to generate 2D heatmaps

\II(<I>(It(i))) = Ht(i) and Ht(_?k Each 2D heatmap has C
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Figure 2. BKinD-3D: 3D keypoint discovery using 3D volume bottleneck. We start from input multi-view videos with known camera
parameters, then unproject feature maps from geometric encoders into 3D volumes for timestamps ¢ and ¢ + k. We next aggregate 3D
points from volumes into a single edge map at each timestamp, and use edges as input to the decoder alongside appearance features at time
t. The model is trained using multi-view spatiotemporal difference reconstruction. Best viewed in color.

channels, where Ht(lc) represents channel c of H, t(i).

3.1.2 View Aggregation using Volumetric Model

To aggregate information across views, we unproject our
2D heatmaps to a 3D volumetric bottleneck. We perform
view aggregation separately across timestamps ¢ and ¢ + k.

We aggregate 2D heatmaps into a 3D volume similar
to [19], which used previously for supervised 3D human
pose estimation. One important difference is that in the su-
pervised setting, an L X L x L sized volume is drawn around
the human pelvis, with L being around twice the size of a
person. As we perform keypoint discovery, we do not have
information on the location or size of the agent. Instead, we
initialize our volume with L representing the maximum size
of the space/room for the behaving agent.

This process aggregates 2D heatmaps Ht( ") for cameras
i € {1...M} and channels ¢ € {1...C'} to 3D keypoints Uy,
for timestamp ¢. Our volume is first discretized into vox-
els Vepords € REXBXBX3 where B represents the number
of distinct coordinates in each dimension. Each voxel cor-
responds to a global 3D coordinate. These 3D coordinates
are projected to a 2D plane using the projection matrices in
each camera view i ‘/p(:‘())j — POV, oras. A volume V.
is then created and filled for each camera view ¢ and each
channel c using bilinear sampling [20] from the correspond-
ing 2D heatmap: V. = HfZC{VZf;Oj} where {-} denotes
bilinear sampling.

We then aggregate these Vc(i) across views for each chan-

nel c using a softmax approach [19]:

(@)
V99 — Z LVC()_) oV,
i Zj exp(Ve”’)

V7?99 is then mapped to 3D heatmaps corresponding to
each joint using a volumetric convolutional network [33] p:
Vaggr = p(V*99). We compute the 3D spatial softmax
over the volume, for each channel j of Vjagg Y jed{l.J},
to obtain the 3D keypoint locations U; for timestamp t, as in
[19]. In many supervised works, the keypoint locations Uy
are optimized to match to ground truth 3D poses; however,
we aim to discover 3D keypoints, and train our network by
using Uy to decode spatiotemporal difference across views.

3.1.3 Projection and Reconstruction

In this step, we project the discovered 3D keypoints to a
2D representation in each view using camera parameters.
For training, 2D representations in timestamps ¢ and t +
k are used as input to the reconstruction decoder v. We
train the 3D keypoints U, at each timestamp ¢ using multi-
view spatiotemporal difference reconstruction. The target
spatiotemporal difference is computed using the 2D image

pair It(i) and It(j_)k at each view 1.

First, we project the 3D keypoints using camera projec-
tion matrices into 2D keypoints u( D= = POU,. We cre-
ate an edge representation for each view for each times-
tamp, which enables us to discover connections between
points and enforce joint length constraints in 3D. For each

keypoint pair u,EZ)n and u%, we draw a differentiable edge



map as a Gaussian along the line connecting them, similar
to [15]:

E(l)

omomy (P) = exp(dyy), (p)?/0?),

where o controls the line thickness and d,, ,(p)® is the
()

t,m and

distance between pixel p and the line connecting u
u,(f,)l We then aggregate the edge heatmaps at each times-
tamp using a set of learned weights w,, ,, for each edge,
where w,, ,, is shared across all timestamps and all views.
An edge is active and connects two points if w,, , > 0,
otherwise the points are not connected. Finally, we aggre-
gate all the edge heatmaps using the max across all edge
pairs [15]:
EEL) (p) = max wm,7v,Et7(m,n)(i) (p)

m,n

In our framework, for each view ¢, the decoder ¢ uses
the edge maps Et(l) and E( 1, as well as the appear-
ance feature <I>(It(i)) for reconstructing the spatiotempo-
ral difference across each view. The ground truth spa-
tiotemporal difference is computed from the original im-

ages S(I1", It(fk) The reconstruction from the model is

S = w(E(l t(_?,w @(I( ))), through the 3D volumetric
bottleneck in order to discover informative 3D keypoints for
reconstructing agent movement.

3.2. Learning Formulation

The entire training pipeline (Figure 2) is differentiable,
and we train the model end-to-end. We note that our model
is only given multi-view video and corresponding camera
parameters, without any keypoint or bounding box supervi-
sion.

3.2.1 Multi-View Reconstruction Loss

Our multi-view spatiotemporal difference reconstruction is
based on the single-view spatiotemporal difference studied
for 2D keypoint discovery [43]. We compute the Struc-
tural Similarity Index Measure (SSIM) [48] as a reconstruc-
tion target in each view. SSIM has been used to measure
perceived differences between images based on luminance,
contrast, and structure features. Here, we use SSIM as a
reconstruction target and we compute a similarity map us-
ing local SSIM on corresponding patches between I, t(z) and
It(i)k. This similarity map is negated to obtain the dissimi-
larity map used as the target: S(I( R It(_gk)

We use perceptual loss [24] in each view between the tar-
get S and the reconstruction S. This loss computes the L2
distance between features of the target and reconstruction
computed from the VGG network ¢ [41]:

‘ngc}con = H¢(S(It(l)’ It(QT)) - ¢(‘§(I75(Z)’ It(QT))HQ ' (1)

The error is computed by comparing features from interme-
diate convolutional blocks of the network. Our final percep-

. . i
tual loss is summed over each view Lrccon = ), ﬁ&e)m.

3.2.2 Learned Length Constraint

Since many animals have a rigid skeletal structure, we en-
courage that the length of active edges (wy, , > 0 for point
pairs m and n) are consistent across samples. We do not as-
sume that these lengths and connections are known, such as
previous work [45]; rather, they are learned during training.
We do this by maintaining a running average of the length
of all active edges l4v4(m,n), and minimizing the difference
between the average length and each sample [,

Elength = Z Z ]]-wmm,>0 ||lavg(m,n) - lm,nHZ : (2)

During training, we update /4, g(1m,,) USing an exponen-
tial running average and w,, ,, indicating edge weights for
every pair is learned. Both of these parameters are shared
across all viewpoints and timestamps. Notably, the length
constraint is only applied to active edges, since there are
many point pairs without rigid connections (e.g. elbow to
feet), while we want to enforce this constraint only for rigid
connections (e.g. elbow to wrist).

3.2.3 Separation Loss

To encourage unique keypoints to be discovered, we apply
separation loss to our 3D keypoints, which has been pre-
viously studied in 2D [43,49]. On a set of 3D keypoints
U, where 1 is the index of a keypoint and ¢ is the time, the
separation loss is:

—_77..)2
L, = Zexp (”Uﬁ)>’ (3)
i#£]

where o is a hyperparameter that controls the strength of
separation.

3.2.4 Training Objective

Our full training objective is the sum of the multi-view spa-
tiotemporal reconstruction 10ss L, ¢con, learned length con-
straints Ljepnqtn, and separation loss L:

L= Erecon + ]]-epoch>e(w7’£length + ws‘cs)- (4)

Our model is trained using curriculum learning [1]. We only
apply Liengin, and £, when the keypoints are more consis-
tent, after e epochs of training using reconstruction loss.



4. Experiments

We demonstrate BKinD-3D using real-world behavioral
videos, using a human dataset and a recently released large-
scale rat dataset (Section 4.1). We evaluate our discovered
keypoints using a standard linear regression protocol based
on previous works for 2D keypoint discovery [21,43] (also
described in Section 4.1.3). Here, we present results on pose
regression (Section 4.2) as well as ablation studies (Sec-
tion 4.3), with additional results in supplementary materi-
als.

4.1. Experimental Setup
4.1.1 Datasets

We demonstrate our method by evaluating it on two repre-
sentative datasets: Human 3.6M and Rat7M. The datasets
have different environments and focus on subjects of differ-
ent sizes, with humans being about 1700mm tall and rats
about 250mm long.

Human 3.6M. We evaluate our method on Human3.6M
to compare to recent works in self-supervised 3D from
2D [45]. Human 3.6M [17] is a large-scale motion cap-
ture dataset with videos from 4 viewpoints. We follow the
standard evaluation protocol [19,27] to use subjects 1, 5,
6, 7, and 8 for training and 9 and 11 for testing. Our
test set matches the set specified in [45] using every 16th
frame (8516 test frame sets). Notably, unlike baselines such
as [19], our method does not require any pre-processing
with 2D bounding box annotations but rather is directly ap-
plied to the full image frame.

Rat7M. We also evaluate our method on Rat7M [8], a
3D pose dataset of rats moving in a behavioral arena. This
dataset most closely matches the expected use case for our
method, which is a dataset of non-human animal behavior
in a static environment. Rat7M consists videos from 6 view-
points captured at 1328 x 1048 resolution and 120Hz, along
with ground truth annotations obtained from marker-based
tracking. We train on subjects 1, 2, 3, 4, and test on subject
5, as in [8]. We train and evaluate on every 240th frame of
each video (3083 train, 1934 test frame sets).

4.1.2 Model Comparisons

We compare our method with three main categories of base-
lines: supervised 3D pose estimation methods (ex: [19]), 3D
pose estimation methods from 2D supervision (ex: [45]),
and a 3D keypoint discovery method developed for control
in simulation [3]. A more detailed comparison of meth-
ods in this space is in Table 1. For baselines with model
variations, we use evaluation results from the version that
is the closest to our model (multi-view inference, and cam-
era parameters during inference). We note that all previous
methods require additional 3D or 2D supervision, or jointly

training a reinforcement learning policy in simulation [3],
which we do not require for 3D keypoint discovery in real
videos. Another notable difference is that previous methods
typically pre-process video frames using detected or ground
truth 2D bounding boxes [19], while our method does not
require this pre-processing step.

Since 3D keypoint discovery has not been thoroughly
explored, we additionally study methods in this area
using multi-view 2D discovery and triangulation (Tri-
ang.+Reproj.), and multi-view 2D discovery with a depth
map estimates (Depth Map), in addition to our volumet-
ric approach (Section 3, BKinD-3D). For multi-view 2D
discovery and triangulation, we use BKinD [43] to dis-
cover 2D keypoints in each view, and perform triangula-
tion using camera parameters to obtain 3D keypoints. We
then project the 3D keypoints for multi-view reconstruc-
tion. We add an additional loss on the reprojection error
to learn keypoints consistent across multiple views. For
the depth map approach, in each camera view, we estimate
2D heatmaps corresponding to each keypoint alongside a
view-specific depthmap estimate. The final 3D keypoints
are then computed from a confidence-weighted average of
each view’s estimated 3D keypoint coordinates (from the
per-view 2D heatmaps and depth estimates). More details
on each method are in the supplementary materials.

4.1.3 Training and Evaluation Procedure

We train our volumetric approach using the full objective
(Eq 4). We scale images to 256 x 256 for training, with a
frame gap of 20 frames (0.4 s) for Human3.6M and 80 (0.66
s) for Rat7M. We use a maximum volume size of 7500mm
for Human3.6M and 1000mm for Rat7M. The results are
computed for all 3D keypoint discovery methods with 15
keypoints unless otherwise specified. We train using videos
from the train split with camera parameters provided by
each dataset.

We evaluate our 3D keypoint discovery through keypoint
regression based on similar methods from 2D, using a linear
regressor without a bias term [21,43,49]. For this regres-
sion step, we extract our discovered 3D keypoints from a
frozen network, and learn a linear regressor to map our dis-
covered keypoints to the provided 3D keypoints in each of
the training sets. We then perform evaluation on regressed
keypoints on the test set.

For metrics, we compute Mean Per Joint Position Error
(MPJPE) in line with previous works in 3D pose estima-
tion [18,19], which is the L2 distance between the regressed
and ground truth 3D poses, accounting for the mean shift
between the regressed and ground truth points. To compare
to methods that require addition alignment before MPJPE
computation (e.g. [45] which does not use camera parame-
ters during inference), we also compute Procrustes aligned
MPIJPE (PMPIPE) [18,27,45]. PMPIJPE applies the optimal



Method Supervision PMPJPE MPJPE
Supervised 3D
Rhodin et al. [37] 3D/2D 52 67
Isakov et al. [19] 3D/2D - 21
Supervised 2D + self-supervised 3D
Anipose [26] 2D 75 -
CanonPose [46] 2D 53 74
EpipolarPose [27] 2D 67 77
Igbal et al. [18] 2D 55 69
MetaPose [45] 2D 74 -
3D Discovery + Regression

Keypoint3D [3] X 168 368
Triang+reproj X 134 241
Depth Map X 122 161
BKinD-3D (ours) X 105 125

Table 2. Comparing performance with related work on Hu-
man3.6M. We note that previous approaches typically require ad-
ditional 2D or 3D supervision, whereas our model discovers 3D
keypoints directly from multi-view video. The 3D keypoint dis-
covery models are evaluated using a linear regression protocol
(Section 4.1.3).

rigid alignment to the predicted and ground truth 3D poses
before metric computation.

4.2. Results

We evaluate our discovered keypoints quantitatively us-
ing keypoint regression on Human3.6M (Table 2) and
Rat7M (Table 3). Over both datasets with diverse organ-
isms, our approach generally outperforms all other fully
self-supervised 3D keypoint discovery approaches. Addi-
tionally, among all the approaches we developed for 3D
keypoint discovery, BKinD-3D using the volumetric bottle-
neck performs the best overall. Results demonstrate that
BKinD-3D is directly applicable to discover 3D keypoints
on novel model organisms, potentially very different in ap-
pearance or size, without additional supervision.

Notably, on Humam3.6M, Keypoint3D [3], developed
for control of simulated videos, does not work well in our
setting with real videos, and qualitative results demonstrate
that this method was not able to discover keypoints that
tracked the agent (supplementary materials).

Qualitative results. We find that the discovered points
and skeletons are reasonable and look similar to the ground
truth annotations for Human3.6M (Figure 3) and Rat7M
(Figure 4). Furthermore, we find that a volumetric model
with 30 keypoints learns a more detailed human skeleton
representation than a model with 15 keypoints. For exam-
ple, the model with 30 keypoints is able to track both legs,
while the 15 keypoint model only tracks 1 leg; however,
both models miss the knees. Importantly, our model discov-
ers the skeleton in global coordinates, and is able to track

Method Supervision PMPJPE MPJPE
Supervised 3D
DANNCE [§] 3D 11 -
3D Discovery + Regression
Triang+reproj X 21 108
Depth Map X 27 56
BKinD-3D (ours) X 24 76

Table 3. Comparison with 3D keypoint discovery methods on
Rat7M. Results from the top three 3D keypoint discovery methods
on Rat7M. The 3D keypoint discovery models are evaluated using
a linear regression protocol (Section 4.1.3).

Method PMPJPE MPJPE
BKinD-3D (8 kpts) 120 149
BKinD-3D (15 kpts) 105 125
BKinD-3D (30 kpts) 109 130
BKinD-3D (point) 110 137
BKinD-3D (edge, without length) 108 129
BKinD-3D (edge, full objective) 105 125

Table 4. Ablation results on Human3.6M. We perform an abla-
tion study of our volumetric bottleneck method comparing differ-
ent numbers of keypoints as well as variations to the edge bottle-
neck with length constraints.

the agent as they move around the space.

While there exists a gap in terms of quantitative metrics
between supervised methods and self-supervised 3D key-
point discovery, our approach has closed the gap substan-
tially to supervised methods compared to previous work,
without requiring time-consuming 2D or 3D annotations.
Qualitative results demonstrate that our approach is able to
discover structure across diverse model organisms, provid-
ing a method for accelerating the study of organism move-
ments in 3D.

4.3. Ablation

To study the effect of keypoints and edges within our
model, we perform an ablation study of our model trained
on Human3.6M (Table 4). We focus on BKinD-3D as it is
the best performing approach on Human3.6M. Results show
that 15 keypoints performed the best quantitatively, but 30
keypoints is comparable and qualitatively provides a more
informed skeleton (Figure 3). This may be due to the linear
regressor used for evaluation overfitting on the training data
with more keypoints.

We additionally find that adding edge information has
a quantitative improvement on performance and provides
more qualitative information on connectivity between joints
(Figures 3, 4). In our 3D setting, we found that the point
bottleneck (studied in previous works in 2D [21, 43]) did



Ground truth Ours (15 kpts) Ours (30 kpts)

Figure 3. Qualitative results for 3D keypoint discovery on Human3.6M. Representative samples of 3D keypoints discovered from
BKinD-3D without regression or alignment for 15 and 30 total discovered keypoints. We visualize all keypoints that are connected using
the learned edge weights, and the projected 3D keypoints in the leftmost column are from the keypoint model with 30 discovered keypoints.

Projected 3D keypoints Ground truth Ours Projected 3D keypoints Ground truth Ours

Sy
Ve

Figure 4. Qualitative results for 3D keypoint discovery on Rat7M. Representative samples of 3D keypoints discovered from BKinD-3D
without regression or alignment. We visualize all connected keypoints using the learned edge weights and visualize the first 4 cameras (out
of 6 cameras) in Rat7M for projected 3D keypoints.

not work as well as the edge bottleneck (studied in previous 5. Discussion
works in 2D [15]). By studying edge bottlenecks in 3D and
expanding beyond 2D, our approach is able to enforce joint

. ) - We present a method for 3D keypoint discovery directly
length constraints through the discovered edge connectivity.

from multi-view video, without any requirement for 2D or



3D supervision. Our method discovers 3D keypoint loca-
tions as well as joint connectivity in behaving organisms
using a volumetric heatmap with multi-view spatiotempo-
ral difference reconstruction. Results demonstrate that our
work has closed the gap significantly to supervised methods
for studying 3D pose, and is applicable to different organ-
isms.

Limitations and Future Directions. Currently, our ap-
proach uses multi-view videos with camera parameters for
training and focuses on behavioral videos with stationary
cameras and backgrounds. Future directions to jointly esti-
mate camera parameters, camera movement, and pose from
visual data can improve the applicability of 3D keypoint
discovery. We were also limited by the small amount of
publicly available multi-view datasets of non-human ani-
mals. More open datasets in this space would encourage the
development of pose estimation models with broader im-
pacts beyond humans. While challenges exist, we highlight
the potential for 3D keypoint discovery in studying the 3D
movement of diverse organisms without supervision.

Broader Impacts. 3D keypoint discovery has the poten-
tial to accelerate the study of agent movements and behav-
ior in 3D [29], since these methods does not require time-
consuming manual annotations for training. This advance
enables scientists to study behavior in novel organisms and
experimental setups, for which annotations and pre-trained
models are not available. However, risks are inherent in
applications of behavior analysis, especially regarding hu-
man behavior, and thus important considerations must be
taken to respect privacy and human rights. In research, re-
sponsible use of these models involves being informed and
following policies, which often includes obtaining internal
review board (IRB) approval, as well as obtaining written
informed consent from human participants in studies. Over-
all, we hope to inspire more efforts in self-supervised 3D
keypoint discovery in order to understand the capabilities
and limitations of vision models as well as enable new ap-
plications, such as studying natural behaviors of organisms
from diverse taxa in biology.
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Supplementary Material

We present additional experimental results (Section A), method description for the approaches we studied for 3D keypoint
discovery in addition to the volumetric method (Section B), additional implementation details (Section C), and qualitative
results (Section D).

A. Additional Experimental Results

We perform additional experiments of BKinD-3D on Human3.6M and Rat7M using the evaluation procedure based on
3D keypoint regression, similar to the main paper.

On Human3.6M (Table 5), we vary the number of cameras from 4 to 2, and compute the mean performance over all camera
pairs. For the 4 camera experiment, we used all 4 cameras for training and inference, while for the 2 camera experiment, we
used the same selections of 2 cameras for training and inference. The mean performance with 2 cameras is slightly lower
than using all cameras. Notably, on the best performing camera pair, we observe that the performance is similar to using all
4 cameras. This result is promising for 3D keypoint discovery in settings that might limit the number of cameras, such as
due to cost of additional cameras, maintenance effort, or difficulty of hardware setups. Additionally, we did not observe a
significant difference in performance with a bigger volumetric representation (Table 5). This volume feature corresponds to
C, which is the number of channels of the volumetric representation before input to the volume-to-volume network p.

We additionally visualize the error distribution across joint types from our 3D volumetric model (Figure 5). We observe
that generally joints on the limbs (e.g. wrist, ankle) have higher errors than joints closer to the center of the body (e.g.
thorax, neck), for both MPJPE and PMPIJPE. This could be due to the wider range of motion of these limbs compared to
the center in Human3.6M. There is not a significant difference in error across joints on the left side or right side. Since
we currently perform inference per frame, future work to incorporate temporal constraints, or extend our method to identify
meshes without supervision, could reduce errors on the limbs.

On Rat7M (Table 6), we compare model performance when discovering 15 keypoints and 30 keypoints. We observe
a small improvement in PMPJPE and MPJPE with an increased number of discovered keypoints, and also observe that
the discovered keypoints cover a greater portion of the rat body in qualitative results (Figure 9). This is similar to our
observations on varying keypoints on Human 3.6M (Figure 3 in the main paper). It is possible that further increasing the
number of keypoints could lead to a better body representation. Future work that explores using more efficient models with
a much higher number of learned keypoints could further improve performance.

Method PMPJPE MPJPE
BKinD-3D (2 cams) mean 117 155
(2 cams) best 108 133
(2 cams) worst 125 167
BKinD-3D (4 cams) 105 125
BKinD-3D (32 volume features) 105 125
BKinD-3D (64 volume features) 107 125

Table 5. Additional results on Human3.6M. We vary the number of cameras used for training and inference, as well as the size of the
volumetric representation. Since there are multiple choices of 2 camera configurations, we chose the mean, best, and worst performance
metrics.

Method PMPJPE MPIPE
BKinD-3D (15 kpt) 24 76
BKinD-3D (30 kpt) 23 70

Table 6. Additional results on Rat7M. We vary the number of discovered keypoints.
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Figure 5. Per joint errors on Human3.6M. Errors of each joint in mm using BKinD-3D, corresponding to the skeleton definition from
the Human3.6M dataset. The dotted red line corresponds to the mean across joints (the MPJPE and PMPJPE respectively).

B. Additional 3D Keypoint Discovery Approaches

B.1. Triangulation and reprojection

One of the simplest approaches to extending current 2D keypoint discovery methods [43] to three dimensions is to trian-
gulate the discovered 2D keypoints to obtain 3D keypoints, then reproject the points back to 2D. This model can be trained
using the same loss (spatiotemporal difference reconstruction) using the discovered 2D keypoints and the projected 2D key-
point in each view. We implement this approach, along with an additional loss for minimizing reprojection error to encourage
detecting consistent keypoints across views.

We use an encoder-decoder architecture, with a shared appearance encoder ¢, geometry decoder ¥, and reconstruction
decoder 9. For each camera view ¢ and time ¢, a frame It(i) is processed to obtain a heatmap Ht(i) = \IJ(<I>(It(i))). We apply

a spatial softmax to obtain 2D keypoints ygi) for each view. The 2D keypoints across all views are triangulated to produce

3D keypoints. The triangulation is done by applying singular value decomposition (SVD) to find a solution to the following
problem:

y? — POT, |

argmin, ;)

where U, represents the 3D keypoints in homogeneous coordinates and P(*) the projection matrix for camera view i. The 3D
keypoints are projected back into 2D for each view forming y*gz).
To train the network, we minimize a sum of three losses:

. ££’2¢on: the multi-view reconstruction loss (described in Section 3.2.1 of the main paper) using the detected 2D keypoints
yt(l) and yigk

. £1(fr)0jrecon: the same multi-view reconstruction loss as above, but applied to the projected 2D keypoints y*gi) and y*g K

. Liie)pmj =|ly *ti) —ygi)||2: the reprojection error
* L,: the separation loss (described in Section 3.2.3 of the main paper)

The final loss is } , ‘
L= Z ‘Cg"ze)con + 13P00h>€(w3£5 + Wp Z ‘C]()lr)ojrecon +wr Z ‘Cg‘le)proj)

2

Our model is trained using curriculum learning [1]. We only apply the losses based on projected 2D points after e epochs,

when the model learns some consistent keypoints with each view. We train our model for 5 epochs and apply the losses after
e = 2 epochs.
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Figure 6. 3D keypoint discovery using depth maps. The model is trained using multi-view spatiotemporal difference reconstruction to
learn 2D heatmaps and depth representations at each view. Then the 3D information from each view is aggregated using a confidence-
weighted average to produce the final 3D pose.

B.2. Depth Approach

Based on the success in 2D unsupervised behavioral video keypoint discovery [43] and 3D keypoint discovery for robotic
control [3], we experiment with a framework that encodes appearance as well as 2D and depth representations (Figure 0).
Given multiple camera views with known extrinsic and instrinsic parameters, our framework learns 2D keypoints and depth
maps to estimate 3D keypoints.

For each camera i, there is an appearance encoder ®(?), a pose decoder ¥(?), and a depth decoder DV, A frame It(i)
and future frame [, t(fk)k are fed into the appearance encoder and subsequently the pose decoder. The pose decoder outputs J
heatmaps corresponding to the J keypoints: () (&) ( *)). A spatial softmax operation is applied to the output of the pose
decoder, representing confidence or a probability distribution for the location of each keypoint. We interpret each of the

heatmaps as a 2D Gaussian. The depth decoder outputs one depth map D(®(-)), representing a dense prediction of distance

from the camera plane for the scene. The appearance features &) (I t(?)) are fused with the 2D geometry features for both
I; and I, 1. These are fed into the reconstruction decoder v to reconstruct the 2D spatiotemporal difference between [; and
I+ . The spatiotemporal difference encourages the network to focus on meaningful regions of movement and be invariant
to the background and other irrelevant features. This framework is repeated across camera views.

The reconstruction objective uses spatiotemporal difference reconstruction similar to our volumetric approach. To make
the model more robust to rotation, we rotate the geometry bottleneck h, for image I to create pseudo labels hffo for the

rotated input images [ R where R = 90°,180°,270°. We apply mean squared error between the predicted geometry
bottlenecks hy and the rotated images and the generated pseudo labels hg:

Lyot = MSE(h]" hy(I™")) )

The rotational loss can lead to a degenerate solution, with the keypoints converging to the center of the image. As such, we
employ a separation loss as was done in our volumetric method.

For camera i and a 3D point (z,v, ) in the world coordinate system, we can use the projection matrix P(*) to project
the 3D point to camera 4’s normalized coordinate system (u,v, d). Let the Q(*) operator denote the transformation to the
camera plane and Q*(*) denote the inverse transformation. These transformations are differentiable and can be expressed
analytically [3].

After outputting the 2D keypoint heatmap ¥ (®(-)) and the depth map D(®(-)) for an input frame, we integrate over
the probability distributions on the RS> heatmaps and the depth maps to get the expected value for each coordinate j and
camera ¢:

i 1 i
E[u§)]:§ZU-H]()(u,v) (6)

14



Type Input dimension Output dimension  Output size
Upsampling - - 16x16
Conv_block 2048 + # keypoints x 2 1024 16x16
Upsampling - - 32x32
Conv_block 1024 + # keypoints x 2 512 32x32
Upsampling - - 64x64
Conv_block 512 + # keypoints x 2 256 64x64
Upsampling - - 128x128
Conv_block 256 + # keypoints x 2 128 128x128
Upsampling - - 256x256
Conv_block 128 + # keypoints x 2 64 256x256
Convolution 64 3 256x256

Table 7. Reconstruction decoder architecture. “Conv_block” refers to combination of 3 x3 convolution, batch normalization, and ReLU

activation. This architecture setup is also used for reconstruction decoding in [38,43].
Dataset # Keypoints | Batch size | Volume dimension | Volume size | Resolution | Frame Gap | Learning Rate
Human3.6M 15 1 7500 64 256 20 0.001
Rat7™M 15 1 1000 64 256 80 0.001
Table 8. Hyperparameters for 3D Keypoint Discovery.
1 (i)
Efv;"] = EZU.HJ'Z (u,v) 7
u,v
(@ . (4) 2
Eld1 =33 DY (u,v) - H (u,v) ®)
u=1v=1

The keypoints are unprojected into the world coordinate system: Q~1,,(u, v, d). To penalize disagreement between predic-
tions from different views, we use a multi-view consistency loss via mean-squared error.

C. Additional Implementation Details

Architecture Details. Our model architecture is based on ones studied before for 2D keypoint discovery [38,43]. Our
encoder ® is a ResNet-50 [14], which outputs our appearance features. Our pose decoder ¥ uses GlobalNet [7], which
outputs our 2D heatmaps. Our volume-to-volume network p is based on V2V [33]. Finally, our reconstruction decoder 1)
is a a series of convolution blocks, where the architecture details are in Table 7. Our code is included in the supplementary
materials and we plan to open-source our code.

Hyperparameters. The hyperparameters for the volumetric 3D keypoint discovery model is in Table 8. All keypoint dis-
covery models are trained until convergence, with 5 epochs for Human3.6M and 8 epochs for Rat 7M. We include additional
details on each dataset:

Human3.6M. The Human 3.6M dataset [ 7] contains 3.6 million frames of 3D human poses with corresponding video
captured from 4 different camera views, recorded from a set of different scenarios (discussion, sitting, eating, ...). Each
scenario consists of videos from all 4 views with the same background, across a set of human participants. The person in
the video is approximately 1700mm tall while the room is approximately 4000mm in dimension. The dataset is captured at
50Hz. This dataset is licensed for academic use, and more details on the dataset and license are provided by the Human 3.6M
authors within [17].

Rat7M. The Rat7M dataset [8] consists of 3D pose and videos from a behavioral experiment with a set of rats, recorded
across 6 views. This is currently one of the largest dataset with animal 3D poses. The dataset consists of 5 rats, with videos
from some of the rats across multiple days. The rats are approximately 250mm long with the cage being around 1000mm in
dimension. The video is captured at 120Hz. Some of the ground truth poses in Rat7M contains nans, and during processing,
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similar to [8], we remove frames with nans from evaluation. Our training procedure is not affected since we do not use any
3D poses during training. This dataset is open-sourced for research.

D. Qualitative Results

We present additional qualitative results from BKinD-3D in Figures 8 and 9. For Human 3.6M (Figure 8), qualitative
results demonstrate that the volumetric method discovers 3D keypoints and connections that qualitatively match the ground
truth, even with self-occlusion or unusual poses, such as when the subject is laying or sitting down. The 30 keypoint model
generally tracks the legs, shoulders, hips, arms, and head of the subject. The 15 keypoint model tracks the shoulders, arms,
and head of the subject but fails to discover the legs and hips. This may be because we use spatiotemporal difference
reconstruction, and there is more movements in these discovered parts. We observe that most discovered edges correspond
to limbs, although there are extra discovered edges within the body. For example, the shoulders to feet connection in the
15 keypoint model. This edge likely allows the volumetric bottleneck to model the human shape with the limited keypoints
available. In addition to extra edges that may be discovered by our model, we may also miss parts, such as the knees of the
subject, and occasionally the wrist keypoints (e.g. the left wrist for both 15 and 30 keypoint model in the last row). Despite
this, we note that the discovered skeleton is reasonable across a wide range of poses.

In contrast to the volumetric bottleneck, the method Keypoint3D [3] does not work well on our real videos. In [3],
Keypoint3D jointly trains image reconstruction with a reinforcement learning (RL) policy loss in simulated environments.
We find that training in real videos using only image reconstruction leads to poor performance: the discovered keypoints do
not track any semantically meaningful parts (Figure 7).

For Rat7M (Figure 9), we also find that the volumetric bottleneck discovers interpretable keypoints that qualitatively
match the ground truth. The head and front legs in particular are well tracked in both 15 and 30 keypoint models, across a
variety of rat poses from having 4 feet on the ground to crouching to standing up. However, the back legs are only partially
discovered in the 30 keypoint model. Furthermore, the discovered rat skeleton has much more edges compared to the ground
truth. This highlights a limitation in our model, as the rat’s skin and fat hide its underlying skeleton, making it difficult to
discover the skeleton from video data alone. Future work could explore applying self-supervised learning constrained by
body priors, such as animal X-rays, in order to discover a more precise skeleton.

Overall, qualitative results from the volumetric method demonstrates the potential of 3D keypoint discovery for dis-
covering the pose and structure of different agents without supervision, across organisms that are significantly different in
appearance and scale.

Figure 7. Qualitative results for Keypoint3D on Human3.6M. Representative samples of 3D keypoints discovered using Keypoint3D
method [3] on real videos.
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Projected 3D keypoints Ground truth Ours (15 kpts) Ours (30 kpts)

Figure 8. Qualitative results for 3D keypoint discovery on Human3.6M. Representative samples from BKinD-3D without regression or
alignment for 15 and 30 total discovered keypoints. We visualize all keypoints that are connected using the learned edge weights, and the
projected 3D keypoints in the leftmost column are from the keypoint model with 30 discovered keypoints.
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Projected 3D keypoints Ground truth Ours (15 kpts) Ours (30 kpts)

Figure 9. Qualitative results for 3D keypoint discovery on Rat7M. Representative samples of 3D keypoints discovered from BKinD-3D
without regression or alignment for 15 and 30 total discovered keypoints. We visualize all connected keypoints using the learned edge
weights and visualize the first 4 cameras (out of 6 cameras) in Rat7M for projected 3D keypoints from the 30 keypoint model.
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