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ABSTRACT
Structural design of neural networks is crucial for the success of
deep learning. While most prior works in evolutionary learning aim
at directly searching the structure of a network, few attempts have
been made on another promising track, channel pruning, which re-
cently has made major headway in designing e�cient deep learning
models. In fact, prior pruning methods adopt human-made prun-
ing functions to score a channel’s importance for channel pruning,
which requires domain knowledge and could be sub-optimal. To
this end, we pioneer the use of genetic programming (GP) to dis-
cover strong pruning metrics automatically. Speci�cally, we craft a
novel design space to express high-quality and transferable pruning
functions, which ensures an end-to-end evolution process where no
manual modi�cation is needed on the evolved functions for their
transferability after evolution. Unlike prior methods, our approach
can provide both compact pruned networks for e�cient inference
and novel closed-form pruning metrics which are mathematically
explainable and thus generalizable to di�erent pruning tasks. While
the evolution is conducted on small datasets, our functions shows
promising results when applied to more challenging datasets, dif-
ferent from those used in the evolution process. For example, on
ILSVRC-2012, an evolved function achieves state-of-the-art pruning
results.
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1 INTRODUCTION
Convolutional neural networks (CNNs) have demonstrated supe-
rior performance on various computer vision tasks [12, 13, 23, 64].
However, CNNs require huge storage space, high computational
budget, and large memory utilization, which could far exceed the
resource limit of edge devices like mobile phones and embedded
gadgets. As a result, many methods have been proposed to reduce
their cost, such as weight quantization [7, 10, 25], tensor factoriza-
tion [34, 39], weight pruning [26, 81], and channel pruning [31, 48].
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Among them all, channel pruning is the preferred approach to learn
dense compact models, which has been receiving increased focus
from the research community.

Channel pruning is usually achieved in three steps: (1) score
channels’ importance with a hand-crafted pruning function; (2)
remove redundant channels based on the scores; (3) retrain the
network. The performance of channel pruning largely depends on
the pruning function used in step (1). Current scoring metrics are
mostly handcrafted to extract crucial statistics from channels’ fea-
turemaps [32, 80] or kernel parameters [31, 42] in a labelless [29, 51]
or label-aware [38, 82] manner. However, the design space of prun-
ing functions is so large that hand-crafted metrics are usually sub-
optimal, and enumerating all functions with human labor under
the space is impossible. While prior evolutionary learning works
aim to automate the design for the structure of the network di-
rectly [67, 72], no attempts, to the best of our knowledge, have been
made to evolve the pruning metrics. These raise the question: can
we leverage evolutionary strategies to automatically develop strong
pruning functions to advance channel pruning?

To this end, we take the �rst step to adopt genetic programming
(GP) to learn transferable pruning functions, as shown in Fig. 1. In
particular, a population of functions is evolved by applying them to
pruning tasks of small image classi�cation datasets, and the evolved
functions can later be transferred to larger and more challenging
datasets. Our closed-form, explainable, learned functions are trans-
ferable and generalizable: (1) They are applicable to pruning tasks
of di�erent image datasets and networks, and can also be used for
other machine learning tasks, e.g., feature selection; (2) they demon-
strate competitive pruning performance on datasets and networks
that are di�erent from those used in the evolution process. Such
transferability and generalizability provides a unique advantage
to our method, where prior meta-pruning methods like MetaPrun-
ing [52] and LFPC [28] are learned and evolved on the same tasks
with no transferability and perform inferior to our approach.

Speci�cally, we encode pruning functions using expression trees
where we carefully design our search space to allow transferability
of the evolved functions. For example, we propose a uni-tree search
space for label-aware pruning metrics, which makes them applica-
ble to di�erent datasets. Such a design space ensures an end-to-end
evolution process, where the learned functions are transferable to
other datasets without any manual modi�cation after evolution.
Moreover, under our encoding space, we are able to build a group
of competitive hand-crafted pruning functions, which we name as
SOAP (state-of-the-art population), and we �nd the use of SOAP
considerably improves the evolution performance. The populations
of the functions are evolved with two di�erent pruning tasks, LeNet
on MNIST and VGGNet on CIFAR-10. We observe that evolving on
two tasks produces better functions than only evolving on one of
them, and more surprisingly, our scheme can even produce more
e�ective pruning functions than direct evolution on a large dataset,
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Figure 1: Illustration of our approach. Compared to conventional methods which mainly use handcrafted pruning functions,
we aim to learn the pruning functions automatically via an evolution strategy, genetic programming. The evolved functions
are transferable and generalizable, further enhancing the pruning performance.

e.g., ILSVRC-2012, under the same computational budget. We an-
alyze the merits of an evolved function both mathematically and
visually and transfer it to three larger datasets, CIFAR-100, SVHN,
and ILSVRC-2012, where it exceeds the state-of-the-art pruning
results on all of them.

Our main contributions are summarized as follows:
• We propose a novel paradigmwhere we leverage genetic pro-
gramming to learn transferable channel pruning functions
which advance pruning e�cacy.

• We develop a novel design space to allow an end-to-end co-
evolution process for searching transferable pruning func-
tions. Such a space also enables us to express SOAP, which
helps improve the e�ectiveness of the evolution.

• We provide an analysis on our closed-form evolved functions,
which could further streamline the design of pruning metrics.
The evolved functions also show generalizability to other
machine learning tasks, e.g., feature selection.

• When transferred to datasets unseen by the evolution, our
evolved functions achieve state-of-the-art pruning results.
For example, with 26.9% and 53.4% FLOPs1 reduction from
MobileNet-V2, we achieve top-1 accuracies of 71.90% and
69.16% on ILSVRC-2012, outperforming the state of the art.

2 RELATEDWORK
Hand-Crafted Channel Pruning. Channel pruning [31, 38, 80,
82] is generally realized by using a handcrafted pruning function
to score channels’ saliency and remove redundant ones. Based on
the scoring procedure, it can be categorized into labelless pruning
and label-aware pruning.

Labelless channel pruning typically adopts the norm-based prop-
erty of the channel’s feature maps or associated �lters as pruning
criterion [29, 31, 32, 42, 44, 51, 53, 54, 78]. For example, Liu et
al. [51] and Ye et al. [78] use the absolute value of scaling factors
in the batch-norm, while ✓1-norm and ✓2-norm of channels’ asso-
ciated �lters are computed in [29, 42, 44] as channels’ importance.
On the other hand, researchers have designed metrics to evaluate
class discrepancy of channels’ feature maps for label-aware prun-
ing [38, 49, 82]. Zhuang et al. [82] insert discriminant losses in
the network and remove channels that are the least correlated to
the losses after iterative optimization. Kung et al. [38] and Liu et
1Number of �oating points operations for an image inference.

al. [49, 50] adopt closed-form discriminant functions to accelerate
the scoring process.

While these works use handcrafted scoring metrics, we learn
transferable and generalizable pruning functions automatically.
Meta-Learning. Our work falls into the category of meta-learning,
where prior works have attempted to optimize machine learning
components, including hyper-parameters [5, 17, 68], optimizers [4,
8, 76], and neural network structures [46, 47, 62, 63, 74, 77, 83, 84].

Prior works on neural architecture search (NAS) have leveraged
reinforcement learning (RL) to discover high-performing network
structures [2, 6, 73, 74, 83, 84]. Recently, NAS has also been adopted
to �nd e�cient network structures [73, 74]. Another line of works
adopts evolution strategies (ES) to explore the space of network
structures [11, 16, 47, 56, 60, 62, 63, 67, 69, 72, 75, 77], which demon-
strates competitive performance to RL methods. This notion is pio-
neered by neuro-evolution [18, 70, 71] which evolves the topology
of small neural networks. In the era of deep learning, Suganuma et
al. [72] leverage Cartesian genetic programming to �nd competitive
network structures. Real et al. [62] evolve networks that improve
over the ones found by RL-based NAS [84]. Dai et al. [11] apply ES
to design e�cient and deployable networks for mobile platforms.
Templier et al. [75] propose a geometric encoding scheme for more
e�cient parameter search.

Compared to prior works, we employ evolutionary learning from
a new angle for e�cient network design, where we learn transfer-
able pruning functions that produce state-of-the-art pruning results.
Our work is orthogonal to prior works, for example, our evolved
functions can be potentially applied on evolutionary NAS-learned
networks to further enhance their e�ciency.
Meta-Pruning. Prior works [9, 28, 30, 33, 52] have also adopted
a similar notion of learning to prune a CNN. We note that an
evolution strategy is used in LeGR [9] and MetaPruning [52] to
search for a pair of pruning parameters and network encoding
vectors, respectively. However, our approach is drastically di�erent
from them in terms of search space and search candidates, where
we search for e�ective combinations of operands and operators to
build transferable and powerful pruning functions. He et al. propose
LFPC [28] to learn network pruning criteria (functions) across layers
by training a di�erentiable criteria sampler. However, rather than
learning new pruning functions, their goal is to search within a pool
of existing pruning criteria and �nd candidates that are good for a
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Figure 2: Illustration of our approach to evolve channel pruning functions. A population of functions is applied to conduct
pruning tasks on two datasets, MNIST and CIFAR-10. Each function receives a �tness value by combining its pruned networks’
accuracies. The population will then go through a natural selection process to improve the functions’ e�ectiveness.

Filter-based operands whole layer’s �lter W 2 R2>DC⇥28=⇥⌘⇥F , channel’s incoming �lter W� 2 R28=⇥⌘⇥F , channel’s
batch-normed parameter B 2 R4

Map-based operands Feature maps collection F = {(58 ,~8 ) |58 2 R�⇥, ,~8 2 [1 : ⇠], 8 2 [1 : # ]}, two partitions of
feature maps collections F+ = {58 |~8 = :,: 2 [1 : ⇠]} and F � = {58 |~8 < :,: 2 [1 : ⇠]}

Table 1: Operand Space

Elementwise operators addition, subtraction, multiplication, division, absolute value, square, square root, adding ridge
factor

Matrix operators matrix trace, matrix multiplication, matrix inversion, inner product, outer product, matrix/vector
transpose

Statistics operators summation, product, mean, standard deviation, variance, counting measure
Specialized operators rbf kernel matrix getter, geometric median getter, tensor slicer

Table 2: Operator Space

certain layer’s pruning. On the contrary, our evolution recombines
the operands and operators and produces novel pruning metrics,
which are generally good for all layers.

We also notice that MetaPruning [52], LFPC [28], and other meth-
ods [9, 30, 33] are all learned on one task (dataset and network)
and applied only on the same task with no transferability. In con-
trast, we only need one evolution learning process, which outputs
evolved functions that are transferable across multiple tasks and
demonstrate competitive performance on all of them.

3 METHODOLOGY
In Fig. 2, we present our evolution framework, which leverages
genetic programming [36] to learn high-quality channel pruning
functions. We �rst describe the design space to encode channel
scoring functions. Next, we discuss the pruning tasks to evaluate
the functions’ e�ectiveness. Lastly, genetic operators are de�ned to
traverse the function space for competitive solutions.

3.1 Function Design Space
Expression Tree. In channel pruning, a pruning function b : C 7�!
R scores the channels to determine their importance/redundancy,
where C denotes feature maps, �lters, and their statistics associated
with the channels. This scoring process can be viewed as a series of
operations with operators (addition, matrix multiplication, etc.) and
operands (feature maps, �lters, etc.). We thus adopt an expression
tree encoding scheme to represent a pruning function where inner
nodes are operators, and leaves are operands.

As shown in Tab. 1 and 2, our function design space includes two
types of operands (6 operands in total) and four types of operators
(23 operators in total), via which a vast number of pruning functions
can be expressed. The statistics operators can compute the statis-
tics of an operand in two dimensions, namely, global dimension
(subscript with ‘g’) and sample dimension (subscript with ‘s’). The
global dimension operators �atten operands into a 1D sequence
and extract corresponding statistics, while the sample dimension
operators compute statistics on the axis of samples. For example,
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sum6 (W) returns the summation of all entries of a kernel tensor,
while meanB (F ) returns 5̄ 2 R�⇥, , which is the sample average
of all feature maps. We also include specialized operators which al-
low us to build complicated but competitive metrics like maximum
mean discrepancy (MMD) [24] and �lter’s geometric median [31].
Function Encoding. The channel scoring functions can be catego-
rized into two types: labelless metrics and label-aware metrics. For
labelless functions like �lter’s ✓1-norm, we adopt a direct encoding
scheme as sum6 (abs(W� )) with the expression tree shown in Fig. 3.

For label-aware metrics such as the one in [38] and MMD [24],
which measure class discrepancy of the feature maps, we observe
a common computation graph among them, as shown in Fig. 3:
(1) partition the feature maps in a labelwise manner; (2) apply the
same operations on each label partition and all feature maps; (3)
average/sum the scores of all partitions to obtain a single scalar.
These metrics can be naively encoded as⇠-branch trees (⇠ : number
of class labels in the dataset). However, directly using the naive
encoding scheme will result in data-dependent non-transferable
metrics because: (1) ⇠ varies from dataset to dataset (e.g., metrics
for CIFAR-10 is not transferable to CIFAR-100); (2) mutating the
subtrees di�erently could make the metric over�t to a speci�c label
numbering scheme (e.g., for a metric with di�erent subtrees on
class-1 and class-2, renumbering the labels would mean the metric
would compute something di�erent, which is undesirable).

To combat the above issues, we express a label-aware function by
a uni-tree which encodes the common operations that are applied
to each label partition, as explained in Fig. 3. Instead of directly
encoding the operands from a speci�c label partition, like F 1+

(feature maps with labels equal to 1) and F 1� (feature maps with
labels not equal to 1), we use a symbolic representation of F+ and
F � to generically encode the partition concept. In the actual scoring
process, the uni-tree is compiled back to a ⇠-branch computation
graph, with F+ and F � converted to the speci�c map partitions.
Such uni-tree encoding allows us to evolve label-aware metrics
independent of ⇠ and label numbering schemes, which ensures
their transferability to datasets unseen by the evolution process.
SOAP. Using the above described function encoding, we can im-
plement a broad range of competitive pruning functions: �lter’s
✓1-norm [42], �lter’s ✓2-norm [29], batch norm’s scaling factor [51],
�lter’s geometric median [31], Discriminant Information [38], Max-
imum Mean Discrepancy [24], Absolute SNR [22], Student’s T-
Test [41], Fisher Discriminant Ratio [61], and Symmetric Diver-
gence [55]. For the last four metrics, we adopt the scheme in [49]
for channel scoring. We name this group of functions the state-
of-the-art population (SOAP), which helps our evolution in many
aspects. For instance, in Sec. 6, we �nd that initializing the popu-
lation with SOAP evolves better pruning functions than random
initialization. Detailed implementation of SOAP is included in Sup-
plementary.

3.2 Function E�ectiveness Evaluation
The encoded functions are applied to empirical pruning tasks to
evaluate their e�ectiveness. To avoid over�tting on certain data
patterns and increase the generality of the evolved functions, we
evolve the population of functions on two di�erent pruning tasks,
LeNet-5 [40] on MNIST [40] and VGG-16 [66] on CIFAR-10 [37]. In

both pruning tasks, we adopt a one-shot pruning scheme and report
the retrained accuracies on validation sets. For each pruning task,
we keep the pruning settings (layers’ pruning ratios, target pruning
layers, etc.) and the retraining hyper-parameters (learning rate,
optimizer, weight decay factor, etc.) the same for all evaluations
throughout the evolution process. This guarantees a fair e�ective-
ness comparison over di�erent functions in all generations and
ensures we are evolving better functions rather than better hyper-
parameters. In this way, we can meta-learn powerful functions that
perform well on both MNIST and CIFAR-10 and are generalizable to
other datasets. Not surprisingly, evolving with both tasks produce
stronger pruning functions than evolving on only one of them,
shown in Sec. 3.3. Moreover, in Sec. 6, we �nd our strategy enjoys
better cost-e�ectiveness compared to direct evolution on a large
dataset, e.g., ILSVRC-2012.

3.3 Function Fitness
After evaluation, each encoded function receives two accuracies,
AccMNIST andAccCIFAR, from the pruning tasks.We investigate two
accuracy combination schemes, weighted arithmetic mean (Eqn. 1)
and weighted geometric mean (Eqn. 2), to obtain the joint �tness
of a function. A free parameter U 2 [0, 1] is introduced to control
the weights of di�erent tasks.

Fitness = U ⇥ AccMNIST + (1 � U) ⇥ AccCIFAR (1)
Fitness = (AccMNIST)U ⇥ (AccCIFAR)1�U (2)

Ablation Study. To decide the �tness combination scheme for
the main experiments, we conduct 10 small preliminary evolution
tests using a grid of U 2 {0, 0.3, 0.5, 0.7, 1} with both combination
schemes. Note that when U 2 {0, 1}, the process degenerates to sin-
gle dataset evolution. We empirically evaluate the generalizability
of the best evolved functions from each test by applying them to
prune a ResNet-38 on CIFAR-100. Note CIFAR-100 is not used in
the evolution process, and thus the performance on it speaks well
for evolved functions’ generalizability. In Fig. 4, we �nd that solely
evolving on MNIST (U = 1) would be the least e�ective option for
CIFAR-100 transfer pruning. In addition, we �nd that functions
evolved on two datasets (U 2 [0.3, 0.5, 0.7]) generally perform bet-
ter than the ones that just evolve on a single dataset (U 2 [0, 1]).
We observe that setting U = 0.5 with weighted geometric mean
leads to the best result, which we adopt in the main experiments.

3.4 Genetic Operations
Selection.After evaluation, the population will undergo a selection
process, where we adopt tournament selection [21] to choose a
subset of competitive functions.
Diversity Maintenance. This subset of functions is then used to
reproduce individuals for the next generation. However, we observe
shrinkage of the population’s genetic diversity when all children
are reproduced from parents, as the selected parents only represent
a small pool of genomes. Such diversity shrinkage would result
in premature convergence of the evolution process. To combat
this issue, we reserve a slot in the next generation and produce
individuals in the slots by randomly cloning functions from SOAP
or building random trees.We �nd this adjustment empirically useful
to help the evolution proceed longer.
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Figure 3: Illustration of the pruning function encoding. Left: For labelless scoring metrics like �lter’s ✓1-norm, we adopt a
direct tree encoding scheme. Right: For label-aware scoring metrics, we encode the ⇠-subtree computation graph by a uni-tree
(⇠: number of class labels). The uni-tree encodes the common operations (op) on each label partition (F+, F �) and all feature
maps (F ). This scheme allows transferable function evolution.

Figure 4: Preliminary evolution tests on the choice
of �tness combination scheme. The best evolved
function from each scheme is applied to conduct
a pruning test on CIFAR-100 with ResNet-38, and
their accuracies are plotted.
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Figure 5: Progress of the evolution experiment. Each dot represents an
individual function evaluation. The red curve shows functions with the
best �tness over generations, while the green curve shows the individuals
at the 25 percentile �tness. The e�ectiveness of the best function and
the population’s overall quality are both monotonically increasing.

Mutation and Crossover. We conduct mutation and crossover on
the reproduced population to traverse the function design space for
new expressions. We adopt the conventional scheme of random tree
mutation and one point crossover [3]. After mutation and crossover,
the population will go through the next evolution iteration.
Function Validity. The function expressions generated from mu-
tation and crossover can be invalid (non-invertible matrix, dimen-
sion inconsistency, etc.) due to the random selections of operators,
operands, and nodes in the expression trees. To combat this issue
and enlarge our valid function space, some operators are deliber-
ately modi�ed from their standard de�nition. For instance, when-
ever we need to invert a positive semi-de�nite scatter matrix ( , we
automatically add a ridge factor d� , and invert the matrix ( +d� . For
dimension inconsistency in elementwise operations, we have two
options to pad the operand with a smaller dimension: (1) with 0 for
+ and �, and 1 for ⇥, and ÷, (2) with its own value if it is a scalar.
Moreover, we conduct a validity test on the mutated/crossovered
functions every time after the mutation/crossover process. The
invalid expressions are discarded, and the mutation/crossover op-
erations are repeated until we recover the population size with

all valid functions. These methods ensure we generate valid func-
tion expressions under our vast design space during the evolution
process.

4 EVOLUTION ON MNIST AND CIFAR-10
Experiment Settings. We conduct the experiment with a popula-
tion size of 40 individuals over 25 generations. The population is
initialized with 20 individuals chosen by randomly cloning func-
tions from SOAP and 20 random expression trees. The size of the
selection tournament is 4 and we select 10 functions in each gen-
eration. 24 individuals are reproduced from the selected functions,
while 6 individuals are from SOAP or randomly built. The mutation
and crossover probability are both set to be 0.75. We prune 92.4%
of FLOPs from a LeNet-5 (baseline acc: 99.26%) and 63.0% of FLOPs
from a VGG-16 (baseline acc: 93.7%), respectively. Such aggressive
pruning schemes help us better identify functions’ e�ectiveness.
We use the weighted geometric mean in Eqn. 2 to combine two
validation accuracies with U = 0.5. Our codes are implemented
with DEAP [19] and TensorFlow [1] for the genetic operations and
the neural network pruning. The experiments are carried out on a
cluster with SLURM job scheduler [79] for workload parallelization.
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Network Method Test Acc (%) Acc # (%) FLOPs Pruned (%) Parameters Pruned (%)
ResNet
164

SLIM [51] 98.22 ! 98.15 0.07 172M 31.1 1.46M 14.5
Ours 98.22 ! 98.26 -0.04 92M 63.2 0.64M 63.0

Table 3: SVHN Transfer Pruning Results

Network Method Test Acc (%) Acc # (%) FLOPs Pruned (%) Parameters Pruned (%)

VGG19
SLIM [51] 73.26 ! 73.48 -0.22 256M 37.1 5.0M 75.1
G-SD [49] 73.40 ! 73.67 -0.27 161M 59.5 3.2M 84.0
Ours 73.40 ! 74.02 -0.62 155M 61.0 2.9M 85.5

ResNet
56

SFP [29] 71.33 ! 68.37 2.96 76M 39.3 - -
FPGM [31] 71.40 ! 68.79 2.61 59M 52.6 - -
LFPC [28] 71.33 ! 70.83 0.58 61M 51.6 - -
LeGR [9] 72.41 ! 71.04 1.37 61M 51.4 - -
Ours 72.05 ! 71.70 0.35 55M 56.2 0.38M 54.9

ResNet
110

LCCL [14] 72.79! 70.78 2.01 173M 31.3 1.75M 0.0
SFP [29] 74.14 ! 71.28 2.86 121M 52.3 - -

FPGM [31] 74.14 ! 72.55 1.59 121M 52.3 - -
TAS [15] 75.06! 73.16 1.90 120M 52.6 - -
Ours 74.40 ! 73.85 0.55 111M 56.2 0.77M 55.8

ResNet
164

LCCL [14] 75.67! 75.26 0.41 195M 21.3 1.73M 0.0
SLIM [51] 76.63 ! 76.09 0.54 124M 50.6 1.21M 29.7
DI [38] 76.63! 76.11 0.52 105M 58.0 0.95M 45.1
Ours 77.15 ! 77.77 -0.62 92M 63.2 0.66M 61.8

Table 4: CIFAR-100 Transfer Pruning Results

b⇤ (C) =
var6 (F �)
var6 (F +) +

var6 (F +)
var6 (F �) +

| |std6 ( 5̄ ) ⇥ var6 (F �) ⇥ 5̄ + (var6 (F +) �mean6 (F �))1| |22
var6 (F +) + var6 (F �) (3)

Experiment Result. Our evolution progress is shown in Fig. 5,
where the red curve denotes the functions with the maximum �t-
ness while the green curve plots the ones with the top 25 percentile
�tness. Both curves increase monotonically over generations, in-
dicating that the quality of both the best function and the entire
population improves over time. This demonstrates the e�ectiveness
of our scheme. Speci�cally, the best pruned LeNet-5/VGG-16 in
the �rst generation have accuracies of 99.15%/93.55% while the
best accuracies in the last generation are 99.25%/94.0%. As the �rst
generation is initialized with SOAP functions, such results suggest
that the algorithm derives metrics that outperform handcrafted
functions in SOAP. The whole evolution takes 98 GPU-days on
P100, which is a reasonable amount of computation for modern
evolution learning. While this is a pioneering work2, we envision
that future work could further reduce the evolution computation.
Evolved Function. We present the winning function in Eqn. 3,
where 5̄ = meanB (F ) denotes sample average of the feature maps
and 1 is a vector with all entries set to be 1. The �rst two terms of
the function award a high score to channels with class-diverged
feature maps whose var6 (F +) or var6 (F �) is signi�cantly smaller
than the other. Channels with these feature maps contain rich class
information as it generates distinguishable responses to di�erent
classes. The third term’s denominator computes the sum of the
feature maps variances while its numerator draws statistics from
the average feature maps and the distance between F+ and F �,

2Compared to initial works on NAS, which take 2000 GPU-days [84] and 3000 GPU-
days [63], we are 20/30x faster.

which resembles the concept of signal-to-noise ratio. Two points
worth mentioning for this function: (1) it identi�es important sta-
tistical concepts from human-designed metrics, where it learns
from Symmetric Divergence [55] to measure the divergence of
class feature maps. (2) it contains unique math concepts that are
empirically good for channel importance measurement, which is
shown in the novel statistics combination of the feature maps in
the third term’s numerator. Our visual result in Sec. 6 shows b⇤ can
be further applied to feature selection, which represents another
machine learning task.

5 TRANSFER PRUNING
Benchmarks. To show the generalizability of our evolved pruning
function, we apply b⇤ in Eqn. 3 to more challenging datasets that
are not used in the evolution process: CIFAR-100 [37], SVHN [58],
and ILSVRC-2012 [12]. We compare our method with metrics from
SOAP, e.g., L1 [42], FPGM [31], G-SD [49], and DI [38], where b⇤
outperforms all these handcrafted metrics. We also include other
“learn to prune" methods like Meta [52] and LFPC [28] and other
state-of-the-art methods like DSA [59] and CC [43] for comparison.
The results are summarized in Tab. 3, 4, and 5, where the accuracies
are shown as “baseline acc.! pruned acc." and the numbers for all
other methods are copied from their papers. On ILSVRC-2012, we
report our pruned models at di�erent FLOPs reduction levels and
add a su�x specifying their FLOPs pruning ratios (e.g., Ours 60%-
pruned). This is because di�erent prior arts report their compressed
models at di�erent rates, and we want to make a fair comparison
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Network Method
Top-1
Acc. (%)

Top-1
# (%)

Top-5
Acc. (%)

Top-5
# (%)

FLOPs (B)
Pruned (%)

Params (M)
Pruned (%)

VGG16

L1 [42] - - 89.90 ! 89.10 0.80 7.74 (50.0) -
CP [32] - - 89.90 ! 89.90 0.00 7.74 (50.0) -

G-SD [49] 71.30 ! 71.88 -0.58 90.10 ! 90.66 -0.56 6.62 (57.2) 133.6 (3.4)
Ours 59%-pruned 71.30! 72.37 -1.07 90.10 ! 91.05 -0.95 6.34 (59.0) 133.5 (3.5)

RNP [45] - - 89.90 ! 86.67 3.23 5.16 (66.7) 138.3 (0.0)
SLIM [51] - - 89.90 ! 88.53 1.37 5.16 (66.7) -
FBS [20] - - 89.90! 89.86 0.04 5.16 (66.7) 138.3 (0.0)

Ours 67%-pruned 71.30! 71.64 -0.34 90.10 ! 90.60 -0.50 5.12 (66.9) 131.6 (4.8)

ResNet
18

Ours 17%-pruned 70.05! 70.08 -0.03 89.40 ! 89.24 0.16 1.50 (16.8) 11.2 (3.9)
SLIM [51] 68.98 ! 67.21 1.77 88.68 ! 87.39 1.29 1.31 (28.0) -
LCCL [14] 69.98! 66.33 3.65 89.24 ! 86.94 2.30 1.18 (34.6) 11.7 (0.0)

Ours 37%-pruned 70.05! 69.09 0.96 89.40 ! 88.59 0.81 1.14 (36.7) 9.3 (20.1)
SFP [29] 70.28 ! 67.10 3.18 89.63 ! 87.78 1.85 1.06 (41.8) -
DCP [82] 69.64 ! 67.35 2.29 88.98 ! 87.60 1.38 0.98 (46.0) 6.2 (47.0)
FPGM [31] 70.28 ! 68.41 1.87 89.63 ! 88.48 1.15 1.06 (41.8) -
DSA [59] 69.72 ! 68.61 1.11 89.07 ! 88.35 0.72 1.09 (40.0) -

Ours 41%-pruned 70.05! 68.85 1.20 89.40 ! 88.45 0.95 1.07 (41.0) 8.8 (24.5)

MobileNet
V2

Uniform [65] 71.80! 69.80 2.00 - - 0.22 (26.9) -
AMC [30] 71.80! 70.80 1.00 - - 0.22 (26.9) -
CC [43] 71.88! 70.91 0.89 - - 0.22 (28.3) -
Meta [52] 72.70 ! 71.20 1.50 - - 0.22 (27.9) -
LeGR [9] 71.80! 71.40 0.40 - - 0.22 (26.9) -

Ours 27%-pruned 72.18! 71.90 0.28 90.49 ! 90.38 0.11 0.22 (26.9) 2.8 (20.4)
DCP [82] 70.11 ! 64.22 5.89 - 3.77 0.17 (44.7) 2.6 (25.9)
Meta [52] 72.70 ! 68.20 4.50 - - 0.14 (53.4) -

Ours 53%-pruned 72.18! 69.16 3.02 90.49 ! 88.66 1.83 0.14 (53.4) 2.1 (39.3)
Table 5: ILSVRC-2012 Transfer Pruning Results. We report our pruned models at di�erent FLOPs levels to ensure a fair
comparison with di�erent prior arts. We add a su�x specifying FLOPs pruning percentage for each of our pruned model.

to all of them. We �nd that our evolved function achieves state-of-
the-art results on all datasets.
Settings. We adopt a one-shot pruning scheme with a uniform
pruning ratio across layers for our transfer pruning and use the
SGD optimizer with Nesterov Momentum [57] for retraining. The
weight decay factor and the momentum are set to be 0.0001 and 0.9,
respectively. On SVHN/CIFAR-100, we use a batch size of 32/128
to �ne-tune the network with 20/200 epochs. The learning rate is
initialized at 0.05 and multiplied by 0.14 at 40% and 80% of the total
number of epochs. On ILSVRC-2012, we use a batch size of 128 to
�ne-tune VGG-16/ResNet-18/MobileNet-V2 for 30/100/100 epochs.
For VGG-16/ResNet-18, the learning rate is started at 0.0006 and
multiplied by 0.4 at 40% and 80% of the total number of epochs. We
use a cosine decay learning rate schedule for MobileNet-V2 [65]
with an initial rate of 0.03.
SVHN.We �rst evaluate b⇤ on SVHN with ResNet-164. Ours out-
performs SLIM [51] by 0.1% in accuracy with signi�cant hardware
resource savings: 32.1% more FLOPs saving and 48.5% more param-
eters saving, which well demonstrates the e�ectiveness of b⇤.
CIFAR-100. On VGG-19, our pruned model achieves an accuracy
gain of 0.35% with respect to G-SD [49]. Compared to LFPC [28] and
LeGR [9], our pruned ResNet-56 achieves an accuracy gain of 0.87%
and 0.66%, respectively, while having 5% less FLOPs. On ResNet-110,
our method outperforms FPGM [31] and TAS [15] by 1.30% and
0.69% in terms of accuracy with 4% less FLOPs. In comparison with
LCCL [14], SLIM [51], and DI [38], our pruned ResNet-164 achieves

an accuracy of 77.77% with 63.2% FLOPs reduction which advances
all prior methods.
ILSVRC-2012. On VGG-16, our approach improves over the base-
line by nearly 1.1% in top-1 accuracy with 2.4⇥ acceleration. Our
3.3⇥-accelerated model advances the state of the art by achiev-
ing top-1/top-5 accuracies of 71.64%/90.60%. On ResNet-18, our
approach reduces 16.8% of the FLOPs without top-1 accuracy loss.
Compared to LCCL [14], our method achieves a 2.72% top-1 accu-
racy gain with a higher FLOPs reduction ratio. We demonstrate
top-1 accuracy gains of 1.75% and 1.50% with respect to SFP [29]
and DCP [82] with over 40% FLOPs reduction. We �nally show
our performance on a much more compact network, MobileNet-
V2, which is speci�cally designed for mobile deployment. When
26.9% of FLOPs are pruned, our approach outperforms AMC [30],
Meta [52], and LeGR [9] with a top-1 accuracy of 71.90%. At a higher
pruning ratio, our method advances DCP [82] and Meta [52] by
top-1 accuracies of 4.94% and 0.96%, with 53.4% FLOPs reduction.

6 ABLATION STUDY
Random Initial Population. In Fig. 6, we conduct a control ex-
periment which initializes all individuals as random expression
trees to study the e�ectiveness of initializing our population with
SOAP. We also turn o� the SOAP function insertion in the repro-
duction process for the control experiment. All other parameters
(number of generations, size of population, U , etc.) are kept to be
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Figure 6: Comparing random initial population evolution
(dashed line) with the evolution in Sec. 4 (solid line). Thanks
to the expressiveness of our function space, the evolution
with randomly-initialized functions also achieve good prun-
ing �tness. However, we observe that it converges very early
around the 8th generation and stalls at the plateau for a long
period. Moreover, its �nal �tness has a clear performance
gap with respect to the one in Sec. 4.

the same as in Sec. 4 for a fair comparison. We �nd that evolv-
ing with random population also achieves a good pruning �tness,
which indicates that our design space is of powerful expressiveness.
However, we observe early convergence and a �nal performance
gap in the control experiment compared to the main experiment in
Sec. 4, demonstrating the advantage of using SOAP for evolution.
Evolution on ILSVRC-2012. In contrast to our evolution strategy
with a joint �tness function onMNIST and CIFAR-10, we conduct an
evolution on only ILSVRC-2012 as a control experiment. We restrict
the total computation budget to be the same as Sec. 4, i.e. 98 GPU-
days, and evolve on ResNet-18 with a population size of 40 over 25
generations. Due to the constrained budget, each pruned net is only
retrained for 4 epochs. We include detailed evolution settings and
results in Supplementary. Two major drawbacks are found with this
evolution strategy: (1) Imprecise evaluation. Due to the lack of
training epochs, the function’s actual e�ectiveness is not precisely
revealed. We take two functions with �tness 63.24 and 63.46 from
the last generation, and use them again to prune ResNet-18 but fully
retrain for 100 epochs. We �nd that the one with lower �tness in
evolution achieves an accuracy of 68.27% in the full training, while
the higher one only has an accuracy of 68.02%. Such result indicates
that the evaluation in this evolution procedure could be inaccurate,
while our strategy ensures a full retraining for precise e�ectiveness
assessment. (2) Inferior performance. The best evolved function
with this method, b�<064#4C (in Supplementary), performs inferior
to b⇤ shown in Eqn. 3 when transferred to a di�erent dataset. In
particular, when applied to pruning 56% FLOPs from ResNet-110 on
CIFAR-100, b�<064#4C only achieves an accuracy of 72.51% while
b⇤ reaches 73.85%. These two issues suggest that evolving on two
small datasets would have better cost-e�ectiveness than using a
single large scale dataset like ILSVRC-2012.
Feature Selection. We further apply b⇤ to another machine learn-
ing task, feature selection, to visually understand our evolved func-
tion. In particular, we compare b⇤ (right) vs. DI [38] (middle) on
MNIST feature selection in Fig. 7. The red pixels indicate the im-
portant features evaluated by the metrics, while the blue ones are

Figure 7: Feature selection by DI [38] (middle) and b⇤ (right)
for MNIST, where b⇤ tends to preserve features with higher
means and more robust pattern in reference of the average
feature values map (left).

redundant. Taking the average feature values map (left) for ref-
erence, we �nd that our evolved function tends to select features
with higher means, where the MNIST pattern is more robust.

7 CONCLUSION
In this work, we propose a novel paradigm integrating evolutionary
learning with channel pruning, which �rst learns novel channel
pruning functions from small datasets, and then transfers them to
larger and more challenging datasets. We develop an end-to-end
genetic programming framework to automatically search for trans-
ferable pruning functions over our novel function design space
without any manual modi�cation after evolution. We present and
analyze a closed-form evolved function which can o�er strong prun-
ing performance and further streamline the design of our pruning
strategy. The learned pruning function exhibits remarkable gener-
alizability to datasets di�erent from those in the evolution process.
Speci�cally, on SVHN, CIFAR-100, and ILSVRC-2012, we achieve
state-of-the-art pruning results.
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Elementwise
operators

addition add(+)
subtraction sub(�)

multiplication mul(⇥)
division div(÷)

absolute value abs
square sq

square root sqrt
adding ridge factor ridge

Matrix
operators

matrix trace tr
matrix multiplication matmul
matrix inversion inv
inner product dot
outer product outprod

matrix/vector transpose tran

Statistics
operators

summation sum{B,6}
product prod{B,6}
mean mean{B,6}

standard deviation std{B,6}
variance var{B,6}

counting measure count{B,6}

Specialized
operators

rbf kernel matrix getter rbf
geometric median getter geo

tensor slicer slice
Table 6: Detailed Operator Space

We organize our supplementary material as follows. In Sec. 9,
we present a more detailed table for the operator space and our
implementation of the state-of-the-art population (SOAP). In Sec. 10,
we include more experimental details of our evolution and pruning
study. We discuss more detailed settings and results of evolution on
ILSVRC-2012 in Sec. 11. Lastly, we present extra evolved functions
in Sec. 12.

9 SOAP IMPLEMENTATION
9.1 Operator Space
In Tab. 6, we present the detailed operator space with operators
and their abbreviations.

9.2 SOAP Functions
With the abbreviations of operators in Tab. 6 and the symbols of
operands presented in Tab. 1 of the main paper, we can thus give
the precise expressions of the functions in SOAP:

• Filter’s ✓1-norm: sum6 (abs(W� ))
• Filter’s ✓2-norm: sqrt(sum6 (sq(W� )))
• Batch normalization’s scaling factor: abs(slice(B))
• Filter’s geometric median: sqrt(sum6 (sq(W� � geo(W))))
• Discriminant Information:
countB (F +) ⇥matmul(tran(meanB (F +) �meanB (F )),
inv(ridge(matmul(tran(F �meanB (F )), F �meanB (F )))),
meanB (F +) �meanB (F ))

• Maximum Mean Discrepancy:
div(sum6 (rbf (F +, F+)), sq(countB (F +)))
+ div(sum6 (rbf (F �, F �)), sq(countB (F �)))
�div(sum6 (rbf (F +, F �)), mul(countB (F +)), countB (F �)))�

div(sum6 (rbf (F +, F �)), mul(countB (F +)), countB (F �)))
• Generalized Absolute SNR:
div(abs(mean6 (F +) �mean6 (F �)), std6 (F +) + std6 (F �))

• Generalized Student’s T-Test:
div(abs(mean6 (F +) �mean6 (F �)),
sqrt(div(var6 (F +), countB (F +)) +
div(var6 (F �), countB (F �))))

• Generalized Fisher Discriminat Ratio:
div(sq(mean6 (F +) �mean6 (F �)), var6 (F +) + var6 (F �))

• Generalized Symmetric Divergence:
div(var6 (F +), var6 (F �)) + div(var6 (F �), var6 (F +))
+div(sq(mean6 (F +)�mean6 (F �)), var6 (F +)+var6 (F �))

10 EXPERIMENTAL DETAILS
10.1 Study on Fitness Combination Scheme
Preliminary Evolution. We conduct 10 preliminary experiments,
where the variables are: U 2 {0, 0.3, 0.5, 0.7, 1} and combination
scheme 2 {weighted geometric mean, weighted arithmetic mean}.
For each experiment, we have a population of 15 functions which
are evolved for 10 generations. The population is initialized with 10
individuals randomly cloned from SOAP and 5 random expression
trees. The tournament size is 3, and the number of the selected
functions is 5. The next generation is reproduced only from the
selected functions. Other settings are the same as themain evolution
experiment.
CIFAR-100 Pruning.We apply the best evolved functions from
each preliminary evolution test to prune a ResNet-38 [27] on CIFAR-
100 [37]. The baseline ResNet-38 adopts the bottleneck block struc-
ture with an accuracy of 72.3%. We use each evolved function
to prune 40% of channels in all layers uniformly, resulting in a
54.7%/52.4% FLOPs/parameter reduction. The network is then �ne-
tuned by the SGD optimizer with 200 epochs. We use the Nesterov
Momentum [57] with a momentum of 0.9. The mini-batch size is
set to be 128, and the weight decay is set to be 1e-3. The training
data is transformed with a standard data augmentation scheme [27].
The learning rate is initialized at 0.1 and divided by 10 at epoch 80
and 160.

10.2 Main Evolution Experiment
MNIST Pruning. On MNIST [40] pruning task, we prune a LeNet-
5 [40] with a baseline accuracy of 99.26% from shape of 20-50-800-
500 to 5-12-160-40. Such pruning process reduces 92.4% of FLOPs
and 98.0% of parameters. The pruned network is �ne-tuned for 300
epochs with a batch size of 200 and a weight decay of 7e-5. We use
the Adam optimizer [35] with a constant learning rate of 5e-4.
CIFAR-10 Pruning. For CIFAR-10 [37] pruning, we adopt the
VGG-16 structure from [42] with a baseline accuracy of 93.7%. We
uniformly prune 40% of the channels from all layers resulting in
63.0% FLOPs reduction and 63.7% parameters reduction. The �ne-
tuning process takes 200 epochs with a batch size of 128. We set
the weight decay to be 1e-3 and the dropout ratio to be 0.3. We
use the SGD optimizer with Nesterov momentum [57], where the
momentum is set to be 0.9. We augment the training samples with
a standard data augmentation scheme [27]. The initial learning rate
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b�<064#4C (C) = (
var6 (meanB (F +))

std6 (tr(F +)) ⇥mean6 (F �) )
4 ÷ var6 (sqrt(F ))

(4)

is set to be 0.006 and multiplied by 0.28 at 40% and 80% of the total
number of epochs.

10.3 Transfer Pruning
We implement the pruning experiments in TensorFlow [1] and
carry them out with NVIDIA Tesla P100 GPUs. CIFAR-100 contains
50,000/10,000 training/test samples in 100 classes. SVHN is a 10-
class dataset where we use 604,388 training images for network
training with a test set of 26,032 images. ILSVRC-2012 contains 1.28
million training images and 50 thousand validation images in 1000
classes. We adopt the standard data augmentation scheme [27] for
CIFAR-100 and ILSVRC-2012.

10.4 Channel Scoring
As many of our pruning functions require activation maps of the
channels to determine channels’ importance, we need to feed-
forward the input images for channel scoring. Speci�cally, for prun-
ing experiments on MNIST, CIFAR-10, and CIFAR-100, we use all
their training images to compute the channel scores. On SVHN and
ILSVRC-2012, we randomly sample 20 thousand and 10 thousand
training images for channel scoring, respectively.

11 EVOLUTION ON ILSVRC-2012
Evolution. We use ResNet-18 as the target network for pruning
function evolution on ILSVRC-2012. Since only one task is evalu-
ated, we directly use the retrained accuracy of the pruned network
as the function’s �tness. Other evolution settings for population,
selection, mutation, and crossover are kept the same as Sec. 4 of
the main paper.
Evaluation. We uniformly prune 30% of channels in each layer
from a pretrained ResNet-18, resulting in a FLOPs reduction of 36.4%.
Due to the constrained computational budget, we only �ne-tune
it for 4 epochs using the SGD optimizer with Nesterov momen-
tum [57]. We use a batch size of 128 and initialize our learning rate
at 0.001. The learning rate is multiplied by 0.4 at epoch 1 and 2.
Result.We show the evolution progress in Fig. 8. Due to the lack
of training budget, the pruned net is clearly not well retrained as
they only achieve around 63.5% accuracy, much lower than the
performance of methods shown in Tab. 5 of the main paper at
the similar pruning level. Such inadequate training results in a
imprecise function �tness evaluation evidenced in Sec. 6 of the
main paper. Moreover, the best evolved function from this strategy,
b�<064#4C (Eqn. 4), performs inferior to the co-evolved function b⇤

when transferred for CIFAR-100 pruning. These results demonstrate
the advantage of our small dataset co-evolution strategy in cost-
e�ectiveness.
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Figure 8: Function evolution on ImageNet.

12 EXTRA EVOLVED FUNCTIONS
We present additional evolved functions from our co-evolution
strategy:

b1 (C) =
| | 5̄ � var6 (F �)1| |22

var6 (F +) + var6 (F �) + var6 (F +) (5)

b2 (C) = var6 (F +) (6)
b3 (C) = var6 (W� ) (7)

Eqn. 5 presents ametric with the concept of SNR for classi�cation,
while having a novel way of statistics combination. Moreover, our
evolution experiments �nd that measuring the variance across all
elements in F+ (Eqn. 6) and W� (Eqn. 7) would help us identify
important channels empirically. These two functions are simple
and e�ective yet remain undiscovered from the literature.
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