

1      **Pipeline for Characterizing Alternative Mechanisms (PCAM) based on bi-clustering to**  
2      **study colorectal cancer heterogeneity**

3      Sha Cao<sup>1,2\*</sup>, Wennan Chang<sup>1,4</sup>, Changlin Wan<sup>1,4</sup>, Yong Zang<sup>1,2</sup>, Yijie Wang<sup>5</sup>, Qin Ma<sup>6\*</sup>, Chi  
4      Zhang<sup>1,3\*</sup>

5      <sup>1</sup>Center for Computational Biology and Bioinformatics, <sup>2</sup>Department of Biostatistics,

6      <sup>3</sup>Department of Medical and Molecular Genetics, Indiana University, School of Medicine,  
7      Indianapolis, IN, 46202, USA.

8      <sup>4</sup>Department of Electronic Computer Engineering, Purdue University, West Lafayette, IN  
9      47907

10     <sup>5</sup>Department of Computer Science, Indiana University, Bloomington, IN, 43210

11     <sup>6</sup>Department of Biomedical Informatics, College of Medicine, the Ohio State University,  
12     Columbus, OH, 43210

13     \*To whom correspondence should be addressed. +1 317-278-9625; Email: [cchang87@iu.edu](mailto:cchang87@iu.edu).

14     Correspondence is also addressed to Sha Cao: [shcao@iu.edu](mailto:shcao@iu.edu) and Qin Ma:

15     [maqin2001@gmail.com](mailto:maqin2001@gmail.com).

16

17

18 **ABSTRACT**

19 The cells of colorectal cancer (CRC) in their microenvironment experience constant  
20 stress, leading to dysregulated activity in the tumor niche. As a result, cancer cells acquire  
21 alternative pathways in response to the changing microenvironment, posing significant  
22 challenges for the design of effective cancer treatment strategies. While computational studies  
23 on high-throughput omics data have advanced our understanding of colorectal cancer  
24 subtypes, characterizing the heterogeneity of this disease remains remarkably complex. Here,  
25 we present a novel computational Pipeline for Characterizing Alternative Mechanisms  
26 (PCAM) based on biclustering to gain a more detailed understanding of cancer heterogeneity.  
27 Our application of PCAM to large-scale CRC transcriptomics datasets suggests that PCAM  
28 can generate a wealth of information leading to new biological understanding and predictive  
29 markers of alternative mechanisms. Our key findings include: 1) A comprehensive collection  
30 of alternative pathways in CRC, associated with biological and clinical factors. 2) Full  
31 annotation of detected alternative mechanisms, including their enrichment in known pathways  
32 and associations with various clinical outcomes. 3) A mechanistic relationship between  
33 known clinical subtypes and outcomes on a consensus map, visualized by the presence of  
34 alternative mechanisms. 4) Several potential novel alternative drug resistance mechanisms for  
35 Oxaliplatin, 5-Fluorouracil, and FOLFOX, some of which were validated on independent  
36 datasets. We believe that gaining a deeper understanding of alternative mechanisms is a  
37 critical step towards characterizing the heterogeneity of colorectal cancer. The hypotheses  
38 generated by PCAM, along with the comprehensive collection of biologically and clinically  
39 associated alternative pathways in CRC, could provide valuable insights into the underlying  
40 mechanisms driving cancer progression and drug resistance, which could aid in the  
41 development of more effective cancer therapies and guide experimental design towards more  
42 targeted and personalized treatment strategies.

43

44

45 **Introduction**

46 Colorectal cancer (CRC) is the third most frequent cancer type in the United States,  
47 which accounts for an estimated 8% of adult cancer incidence and more than 8% cancer  
48 deaths in 2023 (1). Epidemiology data suggests the average five-year survival rate of CRC is  
49 64.9%, while more than 80% of patients die from the disease in five years in the case of  
50 metastasis (2,3). The tumor heterogeneity of CRC presents significant challenges in designing  
51 effective treatment strategies (4-6). The varying levels of sensitivity that different patient  
52 populations exhibit when receiving cytotoxic drugs can make it difficult to achieve successful  
53 therapies in heterogenic tumors (7).

54 A few molecular subtyping methods have been developed for CRC, aiming to facilitate  
55 personalized treatment (8-16). Among these, the Consensus Molecular Subtype (CMS) has  
56 been accepted as a standard CRC stratification (8,9). CMS was derived from a cohort of 18  
57 independent gene expression data sets with 4,151 CRC samples, and it has stratified CRC  
58 patients into four classes with distinct molecular features and prognoses (8). Such patient  
59 stratifications that may predict treatment response or prognosis may not be widely applicable,  
60 as the genetic differences within and between CRC tumors are far more complicated, and  
61 further research into more comprehensive descriptions of CRC heterogeneity is still in

62 progress (8). Based on CMS classification, deeper investigation into the molecular and  
63 phenotypic distinctions within each subtype has also been carried out. Though these works  
64 have largely contributed to the characterization of CRC heterogeneity, they are however  
65 under powered: the statistical power of detecting subtype biomarkers drops remarkably with  
66 more refined patients stratifications, where the samples attributed to each subtype becomes  
67 smaller. On the other hand, since all the subtypes are defined based on known clinical and/or  
68 biological characteristics, it will inevitably limit our power in identifying alternative  
69 mechanisms that could lead to novel clinical implications. These largely undermine the  
70 practicality of CMS classification in clinical translation. It is thus imperative to develop a  
71 computational framework to comprehensively detect alternative mechanisms in CRC in light  
72 of the inter-tumor heterogeneity, which is not restricted to existing molecular classifications,  
73 such as CMS.

74 Clearly, tumor heterogeneity has substantially hurdled the computational capability in  
75 mining gene expression data for studying the disease complexities. This is because the gene  
76 regulatory pathways are interwoven to ensure the robustness of the spatial and temporal  
77 regulation of the cell functions, resulting in multi-pathways from one stimulus to a single  
78 target (17,18). Thus, the set of genes used to execute a biological or clinical response may  
79 very likely exist in more than one alternative forms, and cells under different circumstances in  
80 different patient populations may likely choose to select any of them.

81 In light of the above challenges, we developed a novel computational **Pipeline for**  
82 **Characterizing Alternative Mechanisms (PCAM)** to study CRC heterogeneity. PCAM  
83 models alternative forms of biological/clinical response in a large gene expression matrix as  
84 submatrices, wherein the genes in the row subset correspond to the genes used to execute the  
85 response, and the samples in the column subset correspond to the patient circumstances that  
86 such an alternative form is activated and used. And PCAM replies on bi-clustering to identify  
87 such submatrices.

88 Bi-clustering analysis is a technique to identify gene co-expression structures specific to  
89 certain and sometimes to-be-identified subsets of samples (19,20). The algorithm outputs data  
90 blocks, each containing subset of samples and features in a sub-matrix format, called bi-  
91 clusters (BC). Our recently released bi-clustering tool QUBIC-R enables identification of BCs  
92 in whole-genome transcriptomics data set and has shown competitive performance (21-23).  
93 Bi-clustering algorithms have previously been used to study cancer expression datasets (24-  
94 26), to find clusters of patient samples, where in each cluster, the co-expressed genes may  
95 differ. However, these studies underestimate the complexities of cancer. Consider the  
96 complexity in whole genome transcriptional regulatory programs and the patient  
97 heterogeneity, there should exist many ways that the samples can be clustered. In other words,  
98 the level of similarity for two samples could vary drastically when looking at different  
99 biological pathways. The core algorithm of PCAM, QUBIC-R, could comprehensively  
100 identify all the significant submatrices in a large gene expression matrix, from tens to  
101 thousands of rows/columns. Therefore, in PCAM, one sample could fall into multiple BCs,  
102 allowing one sample to be involved in multiple activated response pathways.

103 Application of PCAM on a large collection of CRC gene expression datasets produced a  
104 wealth of information. PCAM fully recognizes the large heterogeneity within CRC patients,  
105 some of which may be strongly associated with existing CRC sub-classes defined by various

106 clinical and genomic features, while the rest will provide novel alternative ways for us to  
107 better understand the disease. We believe PCAM is suitable for in-depth discovery of  
108 alternative biological mechanisms, by systematic interrogation of the disease in different  
109 clinical settings without compromising the analysis power.

110

## 111 **Materials and Methods**

### 112 **Data collection**

113 We have collected transcriptomics data of 1,440 colorectal cancer tissue samples  
114 including one RNA-Seq data from TCGA (The Cancer Genome Atlas) and seven microarray  
115 data sets from GEO (Gene Expression Omnibus) database. The micro-array datasets are  
116 selected with the following criteria: (1) data are collected by the top 10 most frequently  
117 utilized human microarray platforms in GEO database; (2) dataset has more than 50 samples;  
118 and (3) dataset provides certain prognostic or clinical outcome information. We use RPKM  
119 normalized expression value for RNA-Seq data and RMA normalized expression for  
120 microarray data. Detailed data information is provided in Table 1. In this study, DFS (disease  
121 free survival) refers to the duration between the primary treatment for cancer and the absence  
122 of any cancer-related symptoms, and OS (overall survival) represents the time elapsed from  
123 either the date of cancer diagnosis or the initiation of treatment until the patient's survival.  
124 Expression of each gene with multiple probes is assessed by expression of the probe with  
125 highest mean expression value in each data set. Genes of mean expressions at bottom 30%  
126 quantile in each microarray data set, and genes with 0 expression in more than 85% samples  
127 in the RNA-Seq data set are removed from the analysis, in order to control the noise of non-  
128 or lowly- expressed genes.

129

### 130 **PCAM-step 1, Discretization: modeling the regulatory states of gene expressions via data 131 discretization**

132 To capture the regulatory states of a gene, we re-format the continuous expression data  
133 matrix into a larger binary matrix. Specifically, for a gene expression data  $G_{m \times n}$  with  $m$   
134 genes and  $n$  samples, we first find the  $K + 1$  quantiles of each gene, and then generate a  
135  $K \times n$  binary matrix  $D_g$  for each gene  $g$ :  $D_g[i, j] = 1$  if and only if expression of gene  $g$  in  
136 sample  $j$  is in the interval of  $\left(Q_{\frac{i-1}{K}}^g, Q_{\frac{i}{K}}^g\right)$ ,  $i = 1, \dots, K$ . Here  $Q_{\alpha}^g$  represents the  $\alpha$  quantile of  
137 the expression vector of gene  $g$ ; and  $K$  is a hyper-parameter that controls the granularity of  
138 the discretization, with larger  $K$  capturing more potential transcriptional states of the gene.  
139 Obviously, each row of  $D_g$  indicates the samples with same expression patterns of  $g$ , and  
140 hence the same transcriptional regulatory states. Then we concatenate all the  $D_g$  by row to  
141 form a  $Km \times n$  binary matrix  $D_{Km \times n}$  and apply our in-house bi-clustering software QUBIC-  
142 R to identify the bi-clusters enriched by 1s in  $D_{Km \times n}$ . The rationality of this formulation is  
143 that each of the bi-cluster identified here corresponds to a group of genes, whose expression  
144 patterns are highly consistent over a subset of samples, hence representing a gene co-  
145 expression module specific to the subset of samples. It is worth noting that samples in one bi-  
146 cluster are highly likely to share similar transcriptional regulatory signals controlling the  
147 relevant genes. More discussion about the connection between bi-clusters and gene  
148 expression control are available in Supplementary Method.

149

150 **PCAM-step 2, Bi-clustering: Bi-cluster identification in a binary matrix**

151 PCAM uses our recently released bi-clustering R package – QUBIC-R to identify bi-  
 152 clusters in discretized matrices, which was optimized based on the core algorithm of QUBIC  
 153 for large-scale matrices (21,22). It is noteworthy that the number of rows ranges from 28,754  
 154 to 71,940 in this analysis. To the best of our knowledge, QUBIC is the most efficient bi-  
 155 clustering method in the public domain that can handle input data of such large scale. The  
 156 three parameters are set as follow: consistency level  $c=0.25$ , desired output number  $o=3000$ ,  
 157 and bicluster overlapping rate  $f$  is set at five different levels, 0.85, 0.875, 0.9, 0.95, and 1,  
 158 depending on the input data size and number of 1s in each row. Detailed information for bi-  
 159 clustering parameters determination and program running for each dataset are available in  
 160 Supplementary Method.

161 By extending Xing Sun *et al.*'s work (27-29), we derived an analytical formula to  
 162 evaluate the significance values for the BCs. For a random binary matrix  $M$  with  $m_0$  rows  
 163 and  $n_0$  columns, the probability of being 1 for any element, namely,  $p(M[i,j] = 1)$ , is  
 164 denoted as  $p_0$ . Then the upper bound of the probability that at least one submatrix  $M_1$  exists  
 165 in  $M$  could be assessed by the following formula, where  $M_1$  has  $m_1$  rows,  $n_1$  columns, and  
 166  $z_0$  total number of 0, and  $n_1 \geq K$ :

$$167 P(\exists M_1 \text{ with } n_1 \geq K) \leq \binom{\beta n_1^2}{z_0} n_0^{-(\beta+1)(K-s(n_1, n_0, \beta))} (\log_b n_0)^{\beta+1}, \text{ when } n \rightarrow \infty,$$

168 where

$$169 \alpha = \frac{m_0}{n_0}, \beta = \frac{m_1}{n_1}, b = \frac{1}{p_0}$$

$$170 p_0 = P(M[i,j] = 1) = 1 - P(M[i,j] = 0) \text{ for } \forall i, j$$

$$171 s(n_1, n_0, \beta) = \frac{\beta + 1}{\beta} \log_b n_0 - \frac{\beta + 1}{\beta} \log_b \left( \frac{\beta + 1}{\beta} \log_b n_0 \right) + \log_b \alpha$$

$$172 + \frac{(1 + \beta) \log_b e - \beta \log_b \beta}{\beta}$$

173

174 More details of the derivation of this assessment formula is given in Supplementary Method.  
 175 We have tested this significance assessment method on simulated data and compared its  
 176 performance with the Chernoff's bound method (30), which is a popular measure for the  
 177 effectiveness of biclustering methods. In detail, we conducted bi-clustering analysis on  
 178 randomly generated gene expression matrices with same sizes. The analysis revealed that  $p$   
 179 values generated by our methods can more accurately recover the empirical  $p$  values  
 180 comparing to the Chernoff's bound method. Particularly, our method offers a good control of  
 181 false discover rate for the BCs that are highly enriched by 1s, hence it is more robust in  
 182 picking out the significant ones from a large number of BCs identified in a large matrix. This  
 183 is particularly key to large-scale matrix. Note that this significance test ensures that only BCs  
 184 with sufficient width, height and number of 1's in it will be selected.

185

186 **PCAM-step 3, Annotation: gene set enrichment and clinical association analysis**

187 *Enrichment analysis:* Biological characteristics of each BC is assessed by whether genes  
 188 in the BC significantly enrich a biology pathway or gene set. In total, 1,329 canonical gene

189 sets including all pathways from KEGG, BIOCARTA, REACTOME databases and 1,472 GO  
190 (Gene Ontology) terms from MsigDB are used in the study (33). The enrichment analysis was  
191 computed by hypergeometric test, and for each BC in each dataset, genes in the BC were  
192 chosen as test set, while all genes in the dataset were chosen as the gene universe. Here  
193  $p=0.005$  is used as the cutoff for significance.

194 *Single BC association analysis:* Association analysis of each BC with clinical features  
195 was conducted using different tests based on the nature of the feature. For discrete clinical  
196 features including CMS classifications and pathological stages, we utilized Fisher's exact test;  
197 for continuous clinical features except for survival outcome, we compared the feature value  
198 for samples in and out of the BC by Mann Whitney test.  $p<0.005$  was used as significance  
199 cutoff for all these tests. Notably, associations with CMS are conducted for only BCs  
200 containing more than five samples of the CMS class. For survival outcomes including DFS  
201 and OS, we compared the survival for samples in and out of the BC, using log-rank test with  
202 significance cutoff  $p<0.05$ .

203 *Multiple BCs association analysis with prognosis:* In order to identify the BCs that could  
204 best predict prognosis and drug resistance, we constructed multiple variable Cox-regression  
205 model between patients' survival and the BCs shown to be associated with survival with a  
206 variable selection procedure. Here, each BC is coded into one binary explanatory vector with  
207 1's for samples in the BC and 0's for samples not in the BC. Specifically, we applied forward  
208 and backward stepwise variable selection approach to select the model with lowest AIC  
209 (Akaike information criterion) value by using SURVIVAL and MASS package R.

210 *Multiple BCs associated with drug resistance:* Among the BCs that are detected to show  
211 resistance to the chemo-drugs, we posit that each BC suggests one mechanism for the drug  
212 resistance. However, there may exist more than one BCs corresponding to the same  
213 mechanism. In order to identify the most unique set of resistance mechanisms, we use  
214 agglomerative clustering to cluster the BCs of similar resistance mechanisms into groups, and  
215 log-rank test is used to test each BC group with one drug resistance.

216 To do this, we first defined the distance between any two BCs as  $D(BC_i, BC_j) = 1 -$   
217  $\frac{|(Samples\ in\ BC_i) \cap (Samples\ in\ BC_j)|}{|(Samples\ in\ BC_i) \cup (Samples\ in\ BC_j)|}$ , based on which an agglomerative clustering was performed.  
218 In each step of the clustering, two clusters  $X$  and  $Y$  are merged, if (1) samples in  $X \cap Y$  is  
219 significantly associated with resistance to the drug, (2) neither samples in  $X \setminus Y$  or  $Y \setminus X$  is  
220 significantly associated with the drug resistance. A sample collection is defined as associated  
221 with resistance of a chemo-drug if the following two conditions are both met: (1) among drug  
222 treated samples, the overall survival of samples in the collection is significantly worse than  
223 those not in the collection ( $p<0.001$ ); and (2) among samples in the collection, the overall  
224 survival of samples that are drug treated is significantly worse than those not treated ( $p<0.05$ ).  
225 The agglomeration is stopped when no clusters could be merged.

## 227 *Analysis of somatic mutations in TCGA data*

228 TCGA COAD level 2 mutation profile of 429 samples predicted by *mutect* is retrieved  
229 from GDC database. A total of 932 genes with mutations in more than 5% (22/429) samples  
230 are selected. Considering high MSI (MicroSatellite Instability) causes the CRC genomes to be  
231 hyper-mutated, we exclude a majority of the 932 genes whose mutations are highly associated

232 with MSI, and 73 gene mutations not associated with MSI are retained for further analysis.  
233 The association of a gene's mutation and MSI is calculated as the association between gene  
234 mutation and CMS class I—the class known to have high MSI, using Chi-square test ( $p<0.1$ ).  
235

### 236 ***Correction for multiple hypothesis testing***

237 The  $p$ -value cutoff was set for significance test of identified BCs, pathway enrichment of  
238 each BC against 2,801 gene sets, and associations of BC with five types of phenotypic  
239 features. Among these,  $p$ -value was adjusted based on Benjamin and Hochberg method (31),  
240 when evaluating the significance of identified BCs, and the cutoff for the adjusted  $p$ -value is  
241 set at 0.05. However, we didn't apply the same criterion for the enrichment and association  
242 analysis. Rather, we set a fixed cut-off as 1e-6 for enrichment analysis, and 0.005 for  
243 associations analysis. The number of tests for enrichment and association analyzes are huge,  
244 which is the number of BCs multiple by the number of gene sets or phenotypes. Clearly, the  
245 current sample size is severely under powered, and we suspect a stringent Benjamin and  
246 Hochberg false discovery rate control would leave few tests to be significant. On the other  
247 hands, since these tests are highly dependent, while the level of dependency is impossible to  
248 track, we believe a lenient  $p$ -value cutoff could allow for more novel discoveries, that might  
249 be potentially interesting to experimentalists. Here, the more stringent  $p$ -value cutoff for  
250 enrichment analysis than association analysis is to control for higher false discovery rate due  
251 to the large number of gene sets analyzed.  
252

### 253 ***Colon cancer consensus molecular subtype prediction***

254 We applied the R package CMSclassifier to predict the CMS classification of each  
255 sample in the eight data sets (32), by which each sample will be predicted with four CMS  
256 scores representing its similarity to the four CMS classes. One sample is classified to one  
257 subtype if its CMS score of the subtype is larger than 0.5 and a sample is considered as with  
258 multiple-classification if both top two CMS scores are larger than 0.5 and the difference  
259 between the two scores is smaller than 0.1.  
260

## 261 **Results**

262 We applied PCAM on eight colon cancer transcriptomics data sets with 1,440 samples.  
263 PCAM identified ~4,000 BCs on average in each data set (Table 2). We then evaluated each  
264 BC with its statistical significance, and annotated each BC by the pathways enriched by its  
265 genes, and clinical and prognostic outcomes associated with samples in the BC.  
266

### 267 ***The overall pipeline of PCAM***

268 Figure 1A shows a flowchart of PCAM, describing the analysis procedures we conducted  
269 on the selected datasets. Figure 1B details the bi-clustering analysis procedure. Each gene  
270 expression data set is was discretized such that the original  $m \times n$  gene expression matrix  
271 with  $m$  genes and  $n$  samples is expanded to a  $Km \times n$  binary matrix, as shown in Figure 1B  
272 and detailed in Methods section. Then, submatrices enriched by 1s in the discretized matrix  
273 are identified as BCs heuristically. Here,  $K$  is a hyperparameter that controls the granularity  
274 of the discretization. Clearly, the choice of  $K$  is very important: small  $K$  may blur the  
275 variability of gene expression across samples leading to insufficient capturing of the

276 transcriptional regulatory states of the gene, and large K may severely undercut the power of  
277 bi-clustering and result in “narrow” bi-clusters that cover a very small percentage of samples.  
278 In all analyses, K=3 is selected because each gene could potentially be categorized into one of  
279 the three expression states: low/down-regulated, medium, and high/up-regulated. Each  
280 identified BC consists of a subset of samples and a group of genes, in which the genes are  
281 consistently expressed highly, moderately, or lowly by the subset of the samples.

282 The significant BCs will go through comprehensive annotation phases. PCAM examines  
283 whether genes in a BC enrich a certain pathway or gene set, and samples in a BC significantly  
284 over-represent a certain phenotype. Phenotypes of particular interests in this study include: 29  
285 clinical features/outcomes in supplementary Table 1; 73 cancer-associated gene mutations  
286 (supplementary Table 1); and treatment responses to three chemo therapeutic drugs namely 5-  
287 Fluorouracil, Oxaliplatin, and the combination of 5-Fluorouracil, Oxaliplatin and  
288 Leucovorin. Functional annotation of the genes in each BC are conducted against 1,329  
289 canonical pathways and 1,472 Gene Ontology sets in Msigdb (33).

290 PCAM was applied to transcriptomic data of 1,440 patient-derived CRC tissue samples  
291 including the TCGA COAD RNA-Seq data set, as well as seven microarray data sets  
292 (GSE14333, GSE17536, GSE29621, GSE33113, GSE37892, GSE383832 and GSE39582)  
293 measured by Affymetrix UA133 plus 2.0 array platform. (See detailed data information in  
294 Method). The computational pipeline of PCAM and key statistics for CRC are all provided in  
295 GitHub (<https://github.com/changwn/BC-CRC>). It is noteworthy that PCAM can be readily  
296 transplanted for similar analyzes in other disease scenarios. Below, we present the PCAM  
297 annotation results of the BCs identified in CRC datasets.

298

### 299 ***PCAM annotation of BCs with functional gene sets and phenotypic features***

300 A total of 65,744 BCs were identified in the eight data sets. On average, ~4,000 BCs are  
301 found to be significant in each data set (Table 2) (adjusted p<0.05). Complete gene/sample  
302 information of all the significant BCs, are described in Supplementary Table 2. For each  
303 significant BC, we comprehensively investigated whether: (1) genes in the BC significantly  
304 enrich any of the 2,801 gene sets (p<1e-6), called PE BCs; (2) samples in the BC are  
305 significantly associated with any CMS class (p<0.005), called CMS I, II, III, IV and UC  
306 (unclassified) BCs; (3) samples in the BC are significantly associated with prognostic  
307 outcomes, namely patients’ overall and disease free survival (p<0.005), called Surv BCs or  
308 DFS BCs and OS BCs; (4) samples in the BC are significantly associated with clinical  
309 features such as age, gender, races and pathological stages (p<0.005), called Clin BCs; (5)  
310 samples in the BC are significantly associated with any of the 73 genomic mutation profiles  
311 (p<0.005), called Mut BCs; and (6) samples in the BC are significantly associated with the  
312 response to three selected chemo-drugs (p<0.005), called Drug BCs. The choice of p-value  
313 cutoffs is justified in Methods section. Figure 2A shows the proportion of BCs with  
314 significant findings in (1)-(4), in each of the eight data sets. On average, 71.79%  
315 (22,981/32,008) of the significant BCs can be significantly annotated by at least one of (1)-(4),  
316 with detailed numbers listed in Table 2. Note that (5) and (6) are specific to TCGA-  
317 COAD dataset, as mutation profiles and chemo-drug prognosis data are not available for the  
318 GEO datasets.

319       Figure 2B shows at different significance cutoff level (x-axis), the ratio (y-axis) of the  
320 BCs belonging to any one of the four kinds: PE BC, CMS BC, Surv BC, and Clin BC, among  
321 all significant BCs. The x-axis shows different significance levels of cutoff in ascending  
322 order, with leftmost the most stringent cutoff, and the y-axis shows the total number of  
323 annotatable BCs divided by the total number of significant BCs. It is obvious that not all  
324 significant BCs are annotatable, and interestingly, the most significant portion of the BCs are  
325 most likely to be annotatable, as indicated by the almost monotonically decreasing trend of all  
326 the eight curves. For example, we found if we only look at the top 20% of the significant BCs,  
327 then on average more than 80.7% of them are significantly annotatable; and the number drops  
328 to 66.4% if we look at all the significant BCs. This indicates BCs of higher significance tend  
329 to be more biologically/clinically relevant, demonstrating the rationality of our bi-clustering  
330 algorithm. Interestingly, by examining BCs of different significance levels, we found that the  
331 most significant BCs ( $p < 1e-200$ ) correspond to biological mechanisms that seem to be  
332 general to the whole population. Particularly, in these BCs, their genes tend to enrich  
333 pathways of low cell type specificity, including cell cycle, cell proliferation, cell death,  
334 biosynthesis and metabolism of nucleic acid, etc (Figure 3); and their samples don't seem to  
335 be associated with any phenotypic features. The biologically/clinically relevant BCs start to  
336 pop out in the next significance level ( $1e-200 < p < 1e-50$ ). With higher sample specificity, these  
337 BCs have smaller sizes, and they tend to enrich pathways that are cell type specific, including  
338 immune response, extracellular matrix, O linked and N linked protein amino acid  
339 glycosylation, lipoprotein biosynthesis and lipid metabolism, etc. We have also seen that on  
340 average 44.7% of the DFS BCs and 33.9% of the OS BCs are also CMS BCs, particularly  
341 class I and IV, as shown in Figure 2C, and these BCs serve as possible CMS class specific  
342 prognosis markers. Other DFS BCs and OS BCs are found to be independent of the CMS  
343 class, suggesting the limitation of CMS in personalized prognosis prediction. In fact, the  
344 network complexity of the alternative pathways in cells and the uncertainty for cells to choose  
345 any of the alternative forms to maintain its viability in a perturbed microenvironment, has  
346 posed huge challenges for researchers to capture the heterogeneity of CRC with any simple  
347 clinical stratifications. On the other hand, the large number of BCs presents us with  
348 comprehensive landscape of the alternative mechanisms, and potentially an increasing  
349 number of novel therapeutic targets.

350       The general trend of how BCs at different significance levels could be annotated by each  
351 category is shown in Figure 2D. Here, the ratio of PE BCs (left), CMS BCs (middle), and  
352 Surv BCs (right) among all significant BCs for all eight datasets, are shown as a function of  
353 the significance cutoff. While a stringent significance cutoff tend to produce BCs that  
354 significantly enrich biological pathways (PE BCs), this is not the case for CMS BCs or Surv  
355 BCs. Instead, a relatively lenient significance cutoff allows us to find more BCs associated  
356 with CMS and survival. Clearly, these novel patient subgroups contain far richer information  
357 than CMS. Below we will discuss in detail the BCs in relation to CMS. For all the eight data  
358 sets, on average 19.2% (12,641/65,744) of the BCs are CMS BCs. Among these, the  
359 proportion of BCs associated with each class is shown in Figure 2E. On average, the CMS  
360 BCs only cover 23.6%, 15.6%, 30.1% and 24.1% of the CMS I-IV samples, respectively  
361 (shown in Supplementary Figure 2). This suggests that there exists a large number of sample  
362 subgroups, that may not be aligned with CMS. The proportion of samples in the BCs that

363 belong to different CMS class is shown in Figure 2F. There seems to be relatively more BCs  
364 aligning with CMS class I and IV, and unclassified, suggesting higher variations in patients of  
365 these classes. Of note, BCs associated with the four CMS classes, especially class III and IV,  
366 contain genes that highly overlap with the putative CMS marker genes; while the CMS  
367 marker genes rarely show up in BCs associated with the unclassified samples, as shown in  
368 Figure 2G. This indicates that the genes we identified in the BCs are indeed coherent with the  
369 marker genes of CMS class. Very few BCs are observed to have associations with the  
370 samples of multiple CMS classes, suggesting the exclusiveness of the CMS classes.

371 Among all the DFS BCs, 42.9% of them are also over-represented in certain CMS  
372 classes, while this rate is 49.5% for OS (See Figure 2H), on average. Particularly, 53.1% and  
373 40.4% of these CMS-associated BCs belong to CMS IV class for DFS and OS respectively,  
374 on average. For DFS, the CMS IV associated BCs enrich the following pathways:  
375 glycosaminoglycan biosynthesis and metabolism, UDP glycosyltransferase, lipid,  
376 phospholipid and glycosphingolipid metabolism, mRNA splicing, and steroid hormone  
377 metabolism; while for OS, the pathways are: immune signaling, WNT and MYC signaling,  
378 VEGF signaling, tumor necrosis, notch signaling, cell proliferation and integrin pathways.  
379 This observation suggests that the extracellular matrix, glycosaminoglycan metabolism, lipid  
380 metabolism are prognostic markers for DFS if the patients are diagnosed with CMS class IV,  
381 while for OS, the markers are related to stromal infiltration. Similarly, we also observed a  
382 large proportion of CMS class I (19.1%) and CMS II associated (17.7%) BCs for DFS BCs,  
383 and CMS associated (25.1%) BCs for OS BCs. The CMS I associated DFS BCs enrich  
384 chemokine signaling, integrin signaling, chondroitin sulfate and sulfur metabolism, O linked  
385 glycosylation, and other immune and inflammation related pathways; CMS II associated DFS  
386 BCs enrich hypoxia response, O linked glycosylation, PI3K signaling, apoptosis, and immune  
387 response pathways; and CMS II specific OS associated BCs enrich cell cycle, nucleotide  
388 excision repair, and MYC signaling pathways.

389 We have also tested the association between BCs and 117 highly frequently mutated and  
390 non-MSI-associated genes in TCGA COAD data. Our analysis identified that 29.1%  
391 (550/1886) of the annotatable BCs and 22.5% (168/746) of the unannotated BCs are  
392 associated with at least one of the gene mutations. Interestingly, by looking at the mutation  
393 profiles of samples in the Mut BCs, a large proportion happen in genes including  
394 TMEM132D, BCL9L, NF-1, SCN10A, PCDHA10, DIP2C, GLI3, TET2, and ARFGEF2,  
395 while only a small number fall into key CRC associated gene including APC, TP53, KRAS,  
396 CTNNB1, and PIK3CA. The Mut BCs majorly enrich pathways of nucleotide and glucose  
397 metabolism and immune responses. Detailed pathway enrichment of the mutation BCs is  
398 provided through GitHub and described in Supplementary Table 2.

399

#### 400 *A consensus functional annotation of the BC landscape*

401 The cellular system is sufficiently complex and robust that cells are able to deploy a  
402 variety of pathways to respond to perturbations in the microenvironment. Our analysis has  
403 revealed that BCs associated with different phenotypic features exhibit enrichment to distinct  
404 sets of pathways, as reflected by a consensus map that illustrates how different pathways are  
405 “favored” by the cellular systems under different phenotypic states in Figure 3. We call this a  
406 consensus functional annotation of the BC landscape in CRC. The BCs are examined with

407 respect to biological pathway enrichment called the PE BCs, and 17 clinical phenotypes,  
408 including five CMS BCs, DFS BCs, DFS BCs that over-represent five CMS classes, OS BCs,  
409 and OS BCs that over-represent five CMS classes. In each setting, genes in the BCs are used  
410 for pathway enrichment, and in total, 43 most significant pathways consistent to all eight  
411 datasets are selected, shown as the left row-wise names of the consensus map in Figure 3. The  
412 right block row-wise names indicate one of the 18 categories the BCs are annotated. The 43  
413 pathways are believed to represent the specific functions associated with the  
414 biological/phenotypic state. For each of the 43 pathways, its average activation level with  
415 regards to the 18 settings, shown as top column-wise names of the map, are calculated over  
416 all datasets. Clearly, the activation score matrix reflects the degree of similarity or  
417 dissimilarity among the 18 settings in relation to the 43 pathways.

418 This consensus map greatly helps us visualize the distinctions and similarities regarding  
419 different clinical phenotypes, using functional pathways derived from BCs. As shown in  
420 Figure 3, different CMS classes are characterized by different pathways/gene sets, but they  
421 also show certain continuity. CMS I BCs are also enriched by immune signaling pathways  
422 including IL-3, -5, -6, -12, -27, STAT, and interferon gamma signaling pathways, as well as  
423 nucleotide biosynthesis, WNT signaling, lipid metabolism, and glycolysis pathways, which  
424 are markers of CMS II and III (8). Considering that CMS I is a subtype with high MSI and  
425 strong immune cell activation (8), our observation clearly suggests that there are distinct  
426 subgroups inside CMS I with different immune activation status that display CMS II-like  
427 characteristics with high expression of epithelial and WNT signaling markers and CMS III-  
428 like characteristics of metabolism dysregulations. More intriguingly, the CMS IV BCs seem  
429 to fall into two categories: one enriched by integrin binding, epithelial cell cycle, cell death,  
430 cell-cell and cell-matrix adhesions pathways, while the other enriched by immune response,  
431 MYC and WNT signaling, and metabolism pathways. The first category show expression of  
432 cancer and stromal cell marker genes, suggesting different levels of stromal cell infiltration in  
433 CMS IV class. In contrast, the second category enriches marker genes of CMS class I-III,  
434 suggesting that there are subgroups within CMS IV class that resemble CMS I, II or III. CMS  
435 IV is a subtype with high stromal infiltration and angiogenesis (8). Our previous study has  
436 identified a dynamic population of mesenchymal-like cells with similar markers as CMS IV  
437 (34). With these observations, we suspect that CMS IV is a combination of CMS I-III but  
438 with higher proportion of stromal cells, hence higher expression of mesenchymal cell markers  
439 and lower rate of somatic mutations. However, it is noteworthy that the CMS IV cancers have  
440 generally poorer prognosis comparing to CMS I-III, indicating the level of stromal infiltration  
441 may serve as an important prognosis marker for all the CMS classes. We have also seen that a  
442 number of CMS II and III BCs show marker genes of other CMS classes. The CMS UC BCs  
443 enrich signaling pathways of MAPK, P38, GPCR, NOTCH, TGF-beta, ARF6 and other  
444 kinase receptors and pathways responsive to micro-environment stresses including ER stress,  
445 oxidative stress, dysregulated immune activation and extracellular matrix malfunction. We  
446 suspect that in response to the activation of specific signaling pathways and distinct micro-  
447 environment stresses, gene expression in these samples are highly volatile, and hence cannot  
448 be classified by CMS. Functional annotation of the genes in the CMS BCs are given in  
449 Supplementary Table 3.

450        Lastly, we employed a Cox regression model with variable selection using BCs to  
451        explain patients' prognosis (see Methods). Our analysis suggested that the DFS predictive  
452        BCs contain genes that enrich pathways including chemokine receptor, O-linked glycan  
453        biosynthesis, apoptosis, mitochondria, cell membrane, MAPK activity, tissue morphogenesis,  
454        VEGFR pathway, lipid homeostasis and cell surface receptor activity; while for OS, the BCs  
455        enrich cell death, cell proliferation, mitosis, glycosaminoglycan synthesis, integrin (possibly  
456        suggests stromal infiltration level), T cell activation, WNT beta-catenin signaling, leukocyte  
457        activation, extracellular region and glucose transport and VEGFR pathway.  
458

459 ***PCAM annotations of BCs by alternative drug resistance mechanisms***

460        Chemo-therapy is one of the standard cancer treatment methods that induces cell death of  
461        fast proliferating cancer cells (35). Usually, the administration of cytotoxic drugs may initially  
462        result in tumor shrinkage by destruction of non-resistant subclonal populations within a  
463        heterogeneic tumour, while leaving the resistant clones. With a selective advantage, these  
464        resistant clones can replicate to repopulate the tumour, and the repopulated tumor appears to be  
465        far more aggressive, called acquired drug resistance. The clinical information in TCGA  
466        provides patients' treatment response to three most prevalent CRC chemo-therapy plans,  
467        including 5-Fluorouracil (5-FU), Oxaliplatin (OXA), and the combination of OXA, 5-FU and  
468        Leucovorin (FOLFOX). In order to delineate the alternative drug resistance mechanism in CRC,  
469        we selected the drug associated BCs, called Drug BCs. A drug BC is defined if the following  
470        two conditions are both met: (1) among drug treated samples, the overall survival of samples  
471        in the BC is significantly worse than those not in the BC ( $p<0.001$ ); and (2) among samples in  
472        the BC, the overall survival of samples that are drug treated is significantly worse than those  
473        not treated ( $p<0.05$ ). Certainly, multiple drug BCs may correspond to the same resistance  
474        mechanism. We conducted a log-rank test coupled with agglomerative clustering to cluster the  
475        BCs into groups, each of which may be linked to one drug resistance mechanism (see details in  
476        Methods section). Complete information of Drug BC clusters are given in Supplementary Table  
477        4.

478        5-FU is one of the most commonly used chemo-drugs in treating CRC (36). We identified  
479        11 5FU BCs, and found that the 11 BCs form four groups, where each group consists of a  
480        number of genes tightly co-expressed, and a number of samples with 5FU resistance, as shown  
481        in Figure 4A. The first BC group contains genes enriching known chemo-resistance related  
482        mechanisms, including over expression of CFLAR involved in apoptosis and FAS signaling;  
483        CAPRIN2 related to cell proliferation and cancer multi-drug resistance; DNA excision repair  
484        gene XPA; cell cycle regulating proteins DMTF1 and SYCE2; killer cell activating receptor  
485        associated protein TYROBP; taurine metabolism gene CSAD; RNA processing proteins RBM6  
486        and CLK1; DNA binding and transcriptional regulatory genes ZNF638, ZNF169, ZNF26,  
487        ZNF333, ZNF493, ZNF234 and ZNF33A; OGT, TAS2R5, LTB4R2 related to cellular response  
488        to chemical stimuli. It is noteworthy that a number of genes in this panel including CFLAR,  
489        CAPRIN2, XPA, TYROBP, CLK1, OGT, and LTB4R2 have been previously identified to be  
490        relate to chemo-resistance in other cancer types (37-42). The second group contains genes  
491        including SMAD2, SMAD4, TCF12, ELP2, ATG2B, PIGN, MBP, NCBP3 and PIK3C3, which  
492        enrich pathways of cell cycle, cell metabolism regulation, TGF-beta signaling, PI3K cascade,  
493        autophagy, immune responses and mRNA production regulation. The third BC group contains

494 a large number of pseudo genes and also genes that enrich the translation regulation and viral  
495 infection pathways, among which genes TMA7, DEXI and EIF3CL have been previously  
496 reported as related to cisplatin and fluorouracil resistance in bladder and gastric cancer (43,44).  
497 Genes in the fourth group enrich two different groups of ribosome proteins, which are related  
498 to translational control and elongation of peptides.

499 OXA is a platinum-based antineoplastic chemo-drug used to treat colorectal cancer (36).  
500 We have identified 10 OXA BCs, which were further clustered into three groups as shown in  
501 Figure 4B. The first BC group shows an overlap with the first group in 5FU resistance, in that  
502 the genes are also involved in known chemo-resistance related mechanisms including CFLAR,  
503 CAPRIN2, TYROBP, CLK1, OGT and LTB4R2 as well as SYCE2, RBM6, ZNF638, ZNF169,  
504 ZNF26, ZNF333, ZNF493, ZNF234 and ZNF33A, related to cell cycle, mRNA processing and  
505 DNA binding. Meanwhile, this group also contains overly expressed DNA synthesis and cell  
506 cycle genes POLA1, CHFR, and TAF1; mRNA processing gene PCF11; EPHA7 and COL4A3  
507 related to tissue development; and ITPR2 related to calcium dependent signaling transduction.  
508 The second group also contains CFLAR, CAPRIN2, SYCE2, and LTB4R2 identified in the  
509 first group. In addition, this group also contains cyclin-D binding transcription factor DMTF1;  
510 transcriptional regulation co-factor EP300; GTF2H4 related to RNA polymerase II  
511 transcription initiation; mRNA splicing gene DDX39B; and cell surface channel, transporter or  
512 exchanger genes PKD2, TRAPPC10, SMG1, and TRIO. The third group contains a number of  
513 nuclear ribonucleoproteins and HSPA5, where the latter has been previously identified as a  
514 chemo-resistance biomarker and molecular target in B-lineage acute lymphoblastic leukemia  
515 (45).

516 FOLFOX is a combinatorial therapy of 5Fu, OXA with Leu--a reduced folic acid based  
517 drug that is used in combination with other chemotherapies to enhance effectiveness or prevent  
518 side effects of the chemo-drugs (36,46). We have identified eight FOLFOX BCs forming four  
519 BC groups (Figure 4C). The first BC group shows strong overlaps with the first group of 5FU  
520 chemo-resistance, and the first and second group of OXA chemo-resistance, which includes  
521 CFLAR, CAPRIN2, SYCE2, CSAD, MSH5, XPA, OGT, LTB4R2, ZNF234, ZNF169,  
522 ZNF493, ZNF26, and ZNF333. The second group contains JAK2, which is involved in multiple  
523 cytokine receptor signaling pathways related to immune response; Rho GTPase Activating  
524 Protein DLC1 (tumor suppressor); cell death related genes NME1, BCL2L15 and RPSS3A;  
525 tissue development regulating gene FOXA2; TCA cycle and respiration electron transport  
526 genes ATP5C1 and COX7A2L; and mitochondrial inner membrane translocase TIMM23. In  
527 addition, this group also overly express ribosome proteins. The third group contains highly  
528 expressed CAPRIN2, cell proliferation regulating gene DMTF1 and mRNA processing proteins  
529 DDX39B and GTF2H4. The fourth group is composed of under expressed microRNA  
530 MIR3911 and antisense mRNA EIF1AX-AS1.

531 We collected drug screening data on colon cancer cell line to validate our identified  
532 possible resistance mechanism (see methods). To the best of our knowledge, 5-FU is the only  
533 one drug with a wide spectrum of sensitivity measure on cell lines among the three. 5-FU  
534 treatment was performed on 29 and 19 colon cancer cell lines for two independent datasets  
535 (47,48). In each dataset, we computed the correlations between the basal level expressions of  
536 all the genes and cell's response to 5-FU, measured by IC50 and GI50 (see Supplementary table  
537 5). IC50 and GI50 are two metrics to evaluate drug treatment efficacy. Distribution of the

538 correlations for genes in each BC group was compared with the distribution of the correlation  
539 for all genes, which serves as a random background. Density curves of the correlations of each  
540 BC group and the background are shown in Figure 4D and 4E. We have seen that, comparing  
541 to the background, genes in BC group 4 show much higher correlations to cells' resistance to  
542 5-Fu, and BC groups 1-3 also contain a marked portion of genes that are more correlated with  
543 5-Fu resistance than background. This serves as further validation of our observations of  
544 alternative drug resistance mechanisms. Detailed lists of the validation data are provided in  
545 Supplementary Table 5.

546 In summary, for each chemo-drug, we have identified a few potential drug alternative  
547 resistance mechanisms, presented in the form of BC groups, and some of which are novel to  
548 CRC. Further experimental validations are needed to confirm these findings. It is noteworthy  
549 that the genes CFLAR, CAPRIN2, SYCE2, OGT, and LTB4R2 are consistently observed as  
550 resistance associated for all the three drugs. Further investigation of the sample composition of  
551 the BC groups suggests that the first BC group of 5-Fu, OXA and the second BC group of  
552 FOLFOX highly overlap, which correspond to poor response of 5-Fu and OXA in CMS1  
553 samples and FOLFOX in CMS2 samples (Figure 4F). The second BC cluster of OXA and the  
554 third BC cluster of FOLFOX overlap, which corresponds to poor response in CMS1 samples.  
555 In addition, the 5-Fu BC groups 2, 3 and 4 show that patients of CMS III, CMS III/IV and CMS  
556 II/III are particularly resistant to 5-Fu; OXA BC groups 2 and 3 show that OXA resistance is  
557 high in CMS II/III and CMS I/II/III; FOLFOX BC groups 1, 3, and 4 show that resistance of  
558 the drug prevalently happen to patients of CMS II/IV, CMS II and CMS IV. Interestingly, 5-Fu  
559 BC group 1 and FOLFOX BC groups 1 and 4 do not seem to show chemo-resistance  
560 mechanisms specific to any CMS classes. Among the identified BC groups, some of them point  
561 to known chemo-resistance mechanisms. Meanwhile, we have seen in 1-2 BC groups for each  
562 drug type there exists novel biomarkers, including overly expressed ribosome genes and under  
563 expressed ncRNAs. Further experimental validations are warranted.

564

## 565 **Discussion and Conclusion**

566 It has been widely recognized that cells have multiple alternative pathways to cope with  
567 microenvironmental perturbations, and the uncertainty surrounding the choice of a pathway  
568 under different circumstances contributes to cancer heterogeneity. In the case of drug  
569 resistance, multiple pathways are often altered to create a single off-target resistance  
570 mechanism (49-51). Molecular subtyping methods for CRC, such as CMS, have provided  
571 valuable information in understanding heterogeneity. However, due to the dynamic nature of  
572 the cancer microenvironment, novel alternative pathways can emerge under selective  
573 pressure, that may not have been captured by any disease stratifications. Limiting our  
574 computational analysis to a pre-defined molecular subtyping such as CMS would fail to  
575 capture a large number of alternative mechanisms (and their combinations) which are  
576 employed under different circumstances. Our bi-clustering based PCAM method is powerful  
577 in delineating a comprehensive collection of alternative mechanisms caused by the intrinsic  
578 heterogeneity within patients, and their associations with known phenotypic features. Each  
579 BC potentially contains a coherent gene module present in a subgroup of patients, and the  
580 gene subsets may enrich certain biological pathways that could lead to substantially deeper  
581 biological understanding for molecular stratification of cancer. More importantly, any

582 existing sub-grouping methods, such as CMS, could be studied and integrated with the  
583 produced BCs.

584 We developed PCAM as an unsupervised exploratory approach with several advantages  
585 in identifying gene markers for certain phenotypes: (1) efficiently control false discoveries;  
586 (2) readily detect informative co-expressed prognostic markers; (3) conveniently handle the  
587 intricate relationships among different subtypes, and their interactions with various clinical  
588 outcomes. Of note, deriving prognostic or predictive markers from only BCs with high  
589 statistical significance could decrease the number of independent tests, and the resulted co-  
590 expressed gene modules are more relevant in the disease context. The sample compositions in  
591 each BC provides an easily comprehensible way to understand the underlying subtypes. Our  
592 analysis has clearly demonstrated that PCAM can effectively identify biomarkers for  
593 alternative prognosis related or drug resistance mechanisms from large scale transcriptomics  
594 data. We posit that bi-clustering is more sensitive to locate the biomarkers specific to small  
595 subset of samples and the inference on the multiple genes in the BC can provide more  
596 biologically coherent interpretations.

597 Nonetheless, we have seen a few more challenges that is beyond this study. Firstly, when  
598 several BCs are highly overlapping, only one will be retained, which may be problematic  
599 when consistency of BCs across different datasets are to be performed. This raises a demand  
600 for effective multi-tasking strategy to find bi-clusters with high consistency through multiple  
601 data sets. Secondly, currently PCAM lacks a predicitve model using BCs, which largely  
602 limits its potential in practice of personalized treatment. Thirdly, the BC's statistical  
603 significance is estimated by an upper bound of  $p$  value, which works well for the BCs with  
604 small number of 0s in it, but not for BCs with large number of 0s. We fully anticipate future  
605 studies will address these challenges, and increase the feasibility of PCAM in characterizing  
606 the complexity of CRC heterogeneity, and aiding biomarker detection and personalized  
607 medicine.

608

## 609 STATEMENT OF INTERESTS

### 610 Statement of interests

611 We declare none of the authors have any competing interests.

612

### 613 Funding

614 This work was supported by the National Science Foundation (IIS-1850360, IIS-2145314),  
615 National Cancer Institute (5P30CA082709), and Indiana Clinical and Translational Sciences  
616 Institute Showalter Trust Young Investigator Award.

617

618

## 619 REFERENCES

620

- 621 1. Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer statistics, 2023. *CA: A Cancer  
622 Journal for Clinicians*, **73**, 17-48.
- 623 2. Wolf, A.M.D., Fontham, E.T.H., Church, T.R., Flowers, C.R., Guerra, C.E., LaMonte, S.J., Etzioni,  
624 R., McKenna, M.T., Oeffinger, K.C., Shih, Y.T. *et al.* (2018) Colorectal cancer screening for

625 average-risk adults: 2018 guideline update from the American Cancer Society. *CA Cancer J  
626 Clin*, **68**, 250-281.

627 3. Inamura, K. (2018) Colorectal Cancers: An Update on Their Molecular Pathology. *Cancers  
628 (Basel)*, **10**.

629 4. Gonzalez-Garcia, I., Sole, R.V. and Costa, J. (2002) Metapopulation dynamics and spatial  
630 heterogeneity in cancer. *Proc Natl Acad Sci U S A*, **99**, 13085-13089.

631 5. Samowitz, W.S. and Slattery, M.L. (1999) Regional reproducibility of microsatellite instability  
632 in sporadic colorectal cancer. *Genes Chromosomes Cancer*, **26**, 106-114.

633 6. Giaretti, W., Monaco, R., Pujic, N., Rapallo, A., Nigro, S. and Geido, E. (1996) Intratumor  
634 heterogeneity of K-ras2 mutations in colorectal adenocarcinomas: association with degree of  
635 DNA aneuploidy. *Am J Pathol*, **149**, 237-245.

636 7. Marusyk, A. and Polyak, K. (2010) Tumor heterogeneity: causes and consequences. *Biochim  
637 Biophys Acta*, **1805**, 105-117.

638 8. Guinney, J., Dienstmann, R., Wang, X., de Reynies, A., Schlicker, A., Soneson, C., Marisa, L.,  
639 Roepman, P., Nyamundanda, G., Angelino, P. *et al.* (2015) The consensus molecular subtypes  
640 of colorectal cancer. *Nat Med*, **21**, 1350-1356.

641 9. Cancer Genome Atlas, N. (2012) Comprehensive molecular characterization of human colon  
642 and rectal cancer. *Nature*, **487**, 330-337.

643 10. Roepman, P., Schlicker, A., Tabernero, J., Majewski, I., Tian, S., Moreno, V., Snel, M.H.,  
644 Chresta, C.M., Rosenberg, R., Nitsche, U. *et al.* (2014) Colorectal cancer intrinsic subtypes  
645 predict chemotherapy benefit, deficient mismatch repair and epithelial-to-mesenchymal  
646 transition. *Int J Cancer*, **134**, 552-562.

647 11. Budinska, E., Popovici, V., Tejpar, S., D'Ario, G., Lapique, N., Sikora, K.O., Di Narzo, A.F., Yan,  
648 P., Hodgson, J.G., Weinrich, S. *et al.* (2013) Gene expression patterns unveil a new level of  
649 molecular heterogeneity in colorectal cancer. *J Pathol*, **231**, 63-76.

650 12. Schlicker, A., Beran, G., Chresta, C.M., McWalter, G., Pritchard, A., Weston, S., Runswick, S.,  
651 Davenport, S., Heathcote, K., Castro, D.A. *et al.* (2012) Subtypes of primary colorectal tumors  
652 correlate with response to targeted treatment in colorectal cell lines. *BMC Med Genomics*, **5**,  
653 66.

654 13. Sadanandam, A., Lyssiotis, C.A., Homicsko, K., Collisson, E.A., Gibb, W.J., Wullschleger, S.,  
655 Ostos, L.C., Lannon, W.A., Grotzinger, C., Del Rio, M. *et al.* (2013) A colorectal cancer  
656 classification system that associates cellular phenotype and responses to therapy. *Nat Med*,  
657 **19**, 619-625.

658 14. De Sousa, E.M.F., Wang, X., Jansen, M., Fessler, E., Trinh, A., de Rooij, L.P., de Jong, J.H., de  
659 Boer, O.J., van Leersum, R., Bijlsma, M.F. *et al.* (2013) Poor-prognosis colon cancer is defined  
660 by a molecularly distinct subtype and develops from serrated precursor lesions. *Nat Med*, **19**,  
661 614-618.

662 15. Marisa, L., de Reynies, A., Duval, A., Selves, J., Gaub, M.P., Vescovo, L., Etienne-Grimaldi,  
663 M.C., Schiappa, R., Guenot, D., Ayadi, M. *et al.* (2013) Gene expression classification of colon  
664 cancer into molecular subtypes: characterization, validation, and prognostic value. *PLoS Med*,  
665 **10**, e1001453.

666 16. Perez-Villamil, B., Romera-Lopez, A., Hernandez-Prieto, S., Lopez-Campos, G., Calles, A.,  
667 Lopez-Asenjo, J.A., Sanz-Ortega, J., Fernandez-Perez, C., Sastre, J., Alfonso, R. *et al.* (2012)

668       Colon cancer molecular subtypes identified by expression profiling and associated to stroma,  
669       mucinous type and different clinical behavior. *BMC Cancer*, **12**, 260.

670       17. Gong, Y. and Zhang, Z.J.F.I. (2005) Alternative signaling pathways: When, where and why? ,  
671       **579**, 5265-5274.

672       18. Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F.J. and Doyle, J.J.C. (2004) Robustness of cellular  
673       functions. **118**, 675-685.

674       19. Pontes, B., Giraldez, R. and Aguilar-Ruiz, J.S. (2015) Biclustering on expression data: A review.  
675       *J Biomed Inform*, **57**, 163-180.

676       20. Eren, K., Deveci, M., Kucuktunc, O. and Catalyurek, U.V. (2013) A comparative analysis of  
677       biclustering algorithms for gene expression data. *Brief Bioinform*, **14**, 279-292.

678       21. Zhang, Y., Xie, J., Yang, J., Fennell, A., Zhang, C. and Ma, Q. (2017) QUBIC: a bioconductor  
679       package for qualitative biclustering analysis of gene co-expression data. *Bioinformatics*, **33**,  
680       450-452.

681       22. Li, G., Ma, Q., Tang, H., Paterson, A.H. and Xu, Y. (2009) QUBIC: a qualitative biclustering  
682       algorithm for analyses of gene expression data. *Nucleic Acids Res*, **37**, e101.

683       23. Xie, J., Ma, A., Fennell, A., Ma, Q. and Zhao, J. (2018) It is time to apply biclustering: a  
684       comprehensive review of biclustering applications in biological and biomedical data. *Brief  
685       Bioinform*.

686       24. Wang, Y.K., Print, C.G. and Crampin, E.J. (2013) Biclustering reveals breast cancer tumour  
687       subgroups with common clinical features and improves prediction of disease recurrence.  
688       *BMC Genomics*, **14**, 102.

689       25. Fiannaca, A., La Rosa, M., La Paglia, L., Rizzo, R. and Urso, A. (2015) Analysis of miRNA  
690       expression profiles in breast cancer using biclustering. *BMC Bioinformatics*, **16 Suppl 4**, S7.

691       26. Liu, Y., Gu, Q., Hou, J.P., Han, J. and Ma, J. (2014) A network-assisted co-clustering algorithm  
692       to discover cancer subtypes based on gene expression. *BMC Bioinformatics*, **15**, 37.

693       27. Sun, X. (2007) *Significance and recovery of blocks structures in binary and real-valued  
694       matrices with noise*. The University of North Carolina at Chapel Hill.

695       28. Sun, X. and Nobel, A. (2006), *International Conference on Computational Learning Theory*.  
696       Springer, pp. 109-122.

697       29. Sun, X. and Nobel, A.B. (2008) On the size and recovery of submatrices of ones in a random  
698       binary matrix. *Journal of Machine Learning Research*, **9**, 2431-2453.

699       30. Hoeffding, W. (1963) Probability Inequalities for Sums of Bounded Random Variables. *Journal  
700       of the American Statistical Association*, **58**, 13-30.

701       31. Hochberg, Y. and Benjamini, Y.J.S.i.m. (1990) More powerful procedures for multiple  
702       significance testing. **9**, 811-818.

703       32. Eide, P.W., Bruun, J., Lothe, R.A. and Sveen, A. (2017) CMScaller: an R package for consensus  
704       molecular subtyping of colorectal cancer pre-clinical models. *Sci Rep*, **7**, 16618.

705       33. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A.,  
706       Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. *et al*. (2005) Gene set enrichment  
707       analysis: a knowledge-based approach for interpreting genome-wide expression profiles.  
708       *Proc Natl Acad Sci U S A*, **102**, 15545-15550.

709       34. Zhang, C., Cao, S. and Xu, Y. (2014) Population dynamics inside cancer biomass driven by  
710       repeated hypoxia-reoxygenation cycles. *Quantitative Biology*, **2**, 85-99.

711 35. DeVita, V.T., Jr. and Chu, E. (2008) A history of cancer chemotherapy. *Cancer Res*, **68**, 8643-  
712 8653.

713 36. Gustavsson, B., Carlsson, G., Machover, D., Petrelli, N., Roth, A., Schmoll, H.J., Tveit, K.M. and  
714 Gibson, F. (2015) A review of the evolution of systemic chemotherapy in the management of  
715 colorectal cancer. *Clin Colorectal Cancer*, **14**, 1-10.

716 37. Fraser, M., Leung, B., Jahani-Asl, A., Yan, X., Thompson, W.E. and Tsang, B.K. (2003)  
717 Chemoresistance in human ovarian cancer: the role of apoptotic regulators. *Reprod Biol  
718 Endocrinol*, **1**, 66.

719 38. Weaver, D.A., Crawford, E.L., Warner, K.A., Elkhairi, F., Khuder, S.A. and Willey, J.C. (2005)  
720 ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin  
721 chemoresistance in non-small cell lung cancer cell lines. *Mol Cancer*, **4**, 18.

722 39. Mochmann, L.H., Neumann, M., von der Heide, E.K., Nowak, V., Kuhl, A.A., Ortiz-Tanchez, J.,  
723 Bock, J., Hofmann, W.K. and Baldus, C.D. (2014) ERG induces a mesenchymal-like state  
724 associated with chemoresistance in leukemia cells. *Oncotarget*, **5**, 351-362.

725 40. Zhang, L., Yang, H., Zhang, W., Liang, Z., Huang, Q., Xu, G., Zhen, X. and Zheng, L.T. (2017)  
726 Clk1-regulated aerobic glycolysis is involved in glioma chemoresistance. *J Neurochem*, **142**,  
727 574-588.

728 41. Cheng, S., Mao, Q., Dong, Y., Ren, J., Su, L., Liu, J., Liu, Q., Zhou, J., Ye, X., Zheng, S. *et al.*  
729 (2017) GNB2L1 and its O-GlcNAcylation regulates metastasis via modulating epithelial-  
730 mesenchymal transition in the chemoresistance of gastric cancer. *PLoS One*, **12**, e0182696.

731 42. Park, J., Park, S.Y. and Kim, J.H. (2016) Leukotriene B4 receptor-2 contributes to  
732 chemoresistance of SK-OV-3 ovarian cancer cells through activation of signal transducer and  
733 activator of transcription-3-linked cascade. *Biochim Biophys Acta*, **1863**, 236-243.

734 43. Tanaka, N., Katayama, S., Reddy, A., Nishimura, K., Niwa, N., Hongo, H., Ogihara, K., Kosaka,  
735 T., Mizuno, R., Kikuchi, E. *et al.* (2018) Single-cell RNA-seq analysis reveals the platinum  
736 resistance gene COX7B and the surrogate marker CD63. *Cancer Med*, **7**, 6193-6204.

737 44. Kim, M., Jung, J.Y., Choi, S., Lee, H., Morales, L.D., Koh, J.T., Kim, S.H., Choi, Y.D., Choi, C.,  
738 Slaga, T.J. *et al.* (2017) GFRA1 promotes cisplatin-induced chemoresistance in osteosarcoma  
739 by inducing autophagy. *Autophagy*, **13**, 149-168.

740 45. Uckun, F.M., Qazi, S., Ozer, Z., Garner, A.L., Pitt, J., Ma, H. and Janda, K.D. (2011) Inducing  
741 apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by  
742 targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response  
743 signalling network. *Br J Haematol*, **153**, 741-752.

744 46. Tsai, Y.J., Lin, J.K., Chen, W.S., Jiang, J.K., Teng, H.W., Yen, C.C., Lin, T.C. and Yang, S.H. (2016)  
745 Adjuvant FOLFOX treatment for stage III colon cancer: how many cycles are enough?  
746 *Springerplus*, **5**, 1318.

747 47. Rees, M.G., Seashore-Ludlow, B., Cheah, J.H., Adams, D.J., Price, E.V., Gill, S., Javaid, S.,  
748 Coletti, M.E., Jones, V.L., Bodycombe, N.E. *et al.* (2016) Correlating chemical sensitivity and  
749 basal gene expression reveals mechanism of action. *Nat Chem Biol*, **12**, 109-116.

750 48. Bracht, K., Nicholls, A.M., Liu, Y. and Bodmer, W.F. (2010) 5-Fluorouracil response in a large  
751 panel of colorectal cancer cell lines is associated with mismatch repair deficiency. *Br J  
752 Cancer*, **103**, 340-346.

753 49. Chang, R.L., Xie, L., Xie, L., Bourne, P.E. and Palsson, B.O. (2010) Drug off-target effects  
754 predicted using structural analysis in the context of a metabolic network model. *PLoS*  
755 *Comput Biol*, **6**, e1000938.

756 50. Schenone, M., Dancik, V., Wagner, B.K. and Clemons, P.A. (2013) Target identification and  
757 mechanism of action in chemical biology and drug discovery. *Nat Chem Biol*, **9**, 232-240.

758 51. Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. and Baradaran, B. (2017) The  
759 Different Mechanisms of Cancer Drug Resistance: A Brief Review. *Adv Pharm Bull*, **7**, 339-348.

760

761

762 **Tables:**

763 Table 1. Information of the eight CRC datasets.

764

| Data ID          | Sample# | Drug response | Follow-up | Platform           | Normalization |
|------------------|---------|---------------|-----------|--------------------|---------------|
| <b>GSE14333</b>  | 290     | No            | DFS       | Affy U133 Plus 2.0 | RMA           |
| <b>GSE17536</b>  | 177     | No            | OS/DFS    | Affy U133 Plus 2.0 | RMA           |
| <b>GSE29621</b>  | 65      | No            | OS/DFS    | Affy U133 Plus 2.0 | RMA           |
| <b>GSE33113</b>  | 90      | No            | DFS       | Affy U133 Plus 2.0 | RMA           |
| <b>GSE37892</b>  | 130     | No            | DFS       | Affy U133 Plus 2.0 | RMA           |
| <b>GSE38832</b>  | 122     | No            | OS/DFS    | Affy U133 Plus 2.0 | RMA           |
| <b>GSE39582</b>  | 566     | No            | OS/DFS    | Affy U133 Plus 2.0 | RMA           |
| <b>TCGA-COAD</b> | 385     | Yes           | OS        | RNA-Seq            | RPKM          |

765

766 Table 2. PCAM identified Bi-clustering of the eight CRC data sets

767

| Data ID          | #BCs  | #Sig BCs | #PE BCs     | #CMS BCs    | #Surv BCs   | #Clin BCs   |
|------------------|-------|----------|-------------|-------------|-------------|-------------|
| <b>GSE14333</b>  | 9631  | 6547     | 2597(39.7%) | 2512(38.4%) | 448(6.8%)   | 452(6.9%)   |
| <b>GSE17536</b>  | 11255 | 4806     | 2187(45.5%) | 1425(29.7%) | 284(5.9%)   | 63(1.3%)    |
| <b>GSE29621</b>  | 8167  | 1758     | 582(33.1%)  | 289(16.4%)  | 73(4.2%)    | 56(3.2%)    |
| <b>GSE33113</b>  | 9238  | 2836     | 795(28%)    | 958(33.8%)  | 136(4.8%)   | 3(0.1%)     |
| <b>GSE37892</b>  | 10644 | 4452     | 1600(35.9%) | 1202(27%)   | 130(2.9%)   | 101(2.3%)   |
| <b>GSE38832</b>  | 5845  | 4319     | 2603(60.3%) | 1705(39.5%) | 335(7.8%)   | 0(0%)       |
| <b>GSE39582</b>  | 8267  | 4658     | 1200(25.8%) | 2894(62.1%) | 1068(22.9%) | 1847(39.7%) |
| <b>TCGA_COAD</b> | 2697  | 2632     | 1077(40.9%) | 743(28.2%)  | 183(7%)     | 954(36.2%)  |

768

769

### 770 **Figure legends:**

771 **Figure 1. (A) General analysis pipeline.** The analysis was conducted on one TCGA RNA-  
772 seq and seven microarray datasets. BC identification from each high-dimensional data sets  
773 starts with a discretization step followed by a bi-cluster identification step (see details in B).  
774 The identified BCs are further annotated by their associations with biological pathways, CMS  
775 class, and patients clinical and prognostic features. Consensus analysis of the BCs throughout  
776 multiple data sets was further conducted. BCs were further associated with response to  
777 different chemo-drugs for identification of alternative chemo-resistance mechanisms. **(B)**

778 **Data discretization and bi-clustering procedures.** The histogram on the left illustrates the  
779 distribution of a gene's expression. The gene expression is discretized into three levels,  
780 represented as three 0-1 vectors (D\_high, D\_moderate and D\_low), corresponding to samples  
781 with top (blue), medium (green) and bottom (red) 1/3 expression level of the gene,  
782 respectively. The discretized data are then concatenated that expand an original  $m \times n$  gene  
783 expression matrix to a  $3m \times n$  binary matrix, as shown in the right panel. In the expanded  
784 matrix, rows represent different states of the gene, and columns represent cancer patient  
785 samples. BCs enriched by 1s are further identified by QUBIC-R.

786

787

788 **Figure 2. Statistics of the BC landscape in the eight data sets.** (A) Proportions (y-axis) of  
789 PE BCs, CMS BCs, Surv BCs, Clin BCs, and their combinations (Multi) amongst all  
790 identified BCs in each data set (x-axis). (B) Rates of annotatable BCs (y-axis) as a function of  
791 significance cutoff of BCs at different levels (x-axis), most stringent on the left. (C) Among  
792 the DFS (left) and OS (right) BCs, the proportions (y-axis) of different CMS class BCs, in  
793 each dataset (x-axis). (D) Proportions (y-axis) of PE BCs, CMS BCs, Surv BCs amongst all  
794 significant BCs as a function of BC significance cutoff at different quantiles (x-axis), most  
795 stringent on the left. Here, a “0.2” quantile means the top 20% significant BCs. (E)  
796 Proportions of the BCs (y-axis) with significant associations to different CMS classes in each  
797 data set (x-axis). (F) Among the Surv BCs, the proportions of the BCs (y-axis) associated  
798 with CMS types in each data set (x-axis). (G) For BCs associated with different CMS class,  
799 the average overlapping rates (y-axis) between the genes in the BC and CMS marker genes in  
800 each dataset (x-axis). (H) Among all the DFS/OS BCs, the proportion of the BCs (y-axis) that  
801 significantly over-represent a (sub)sample class in each dataset (x-axis). In (C), (E) and (F):  
802 None: CMS unclassified samples; Multi-CMS: a class of samples falling into more than one  
803 CMS classes; Multi-class: a class of BCs significantly associated with more than one CMS  
804 classes. In (H): None: CMS unclassified samples; overall: the BCs associated with survival  
805 throughout all patients, but not with a particular CMS class; Multiple: the BCs associated with  
806 patients’ survival specific to the patients of more than CMS classes.

807

808 **Figure 3. Functional annotation and concensus map of selected CMS classes and**  
809 **prognosis associated BCs.** 43 pathways, shown on the left, that are most significantly and  
810 consistently over all datasets enriched by genes from PE BCs (or called Top BCs), CMS I, II,  
811 III, IV, UC BCs, DFS BCs, and OS BCs, shown on the right. The relative level of enrichment  
812 significance for these 43 pathways in the 18 settings, shown on the top, are shown in the color  
813 panels. For example, cell cycle is the pathway consistently enriched by BCs of top  
814 significance across all eight datasets, and the level of enrichment by genes in the BCs  
815 belonging to the 18 settings to cell cycle pathway is quite different, darker blue being the  
816 most significant.

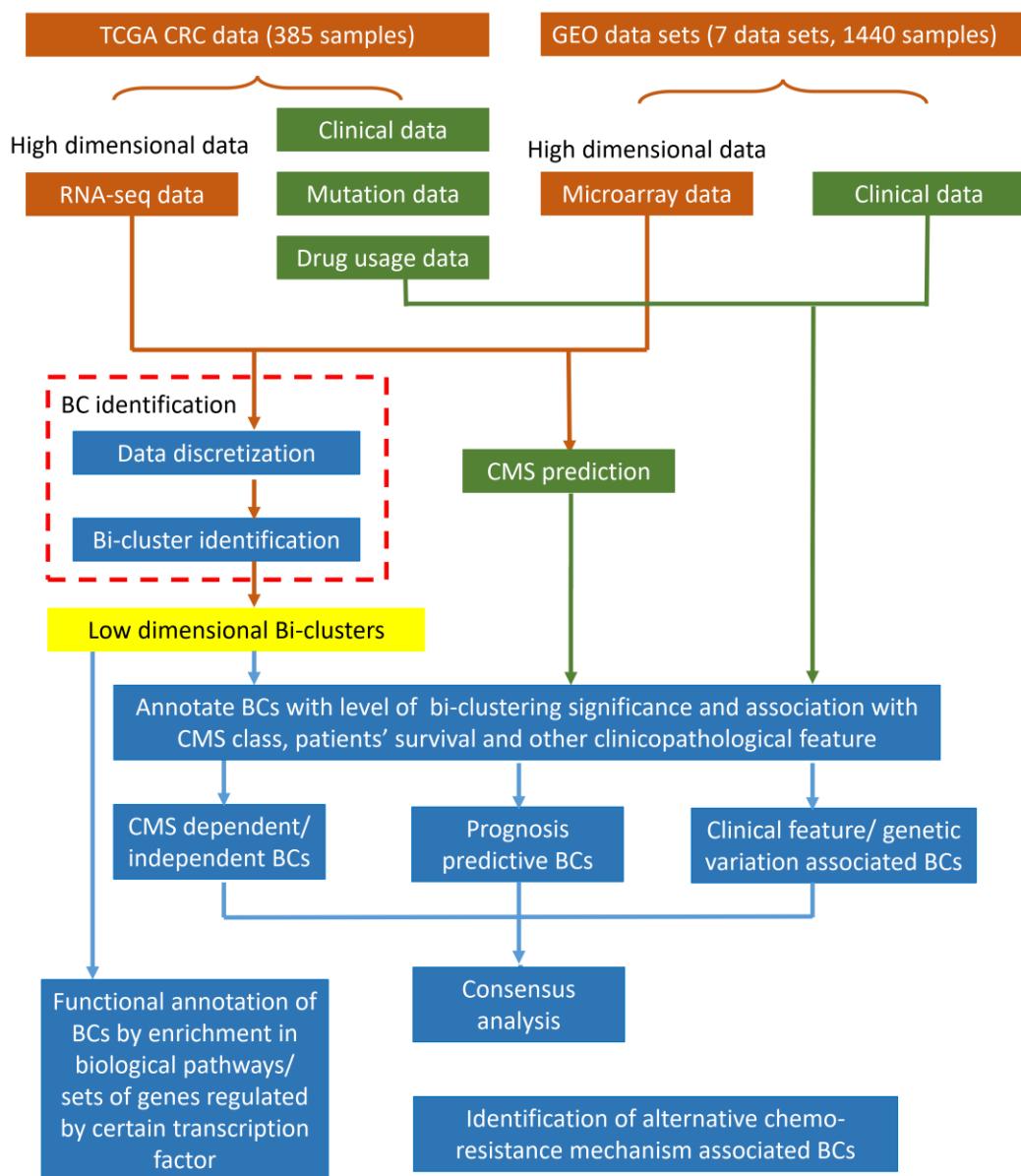
817

818 **Figure 4. Possible alternative chemo-resistance mechanism depicted by BC groups.** (A-  
819 C) Discretized gene expression profile of the BC groups for 5FU (A), OXA (B), and  
820 FOLFOX (C). For (A-C), in the left-most panels, blue and white in the heatmap represent 1s  
821 and 0s in the discretized data matrix, while red marks the matrix element belonging to a  
822 certain BC group, framed in green dashed line. In the middle panels, the dendograms show  
823 the results of agglomerative clustering of the resistance associated BCs. Each BC group is  
824 framed by a dashed rectangle. In the right-most panels, the survival curves represent the  
825 comparison of overall survival of the patients in a BC group (red) with those not (black), for  
826 the drug treated patients. (D-E) Distribution of the correlations calculated between  
827 expressions of genes in different groups with drug resistance measure IC50, in CTRP v2  
828 dataset (D) and GI50 in K Bracht et al.’s dataset (E). The x-axis represents the correlations  
829 and the y-axis represents the density. (F) Relationships between chemo-resistance BCs and

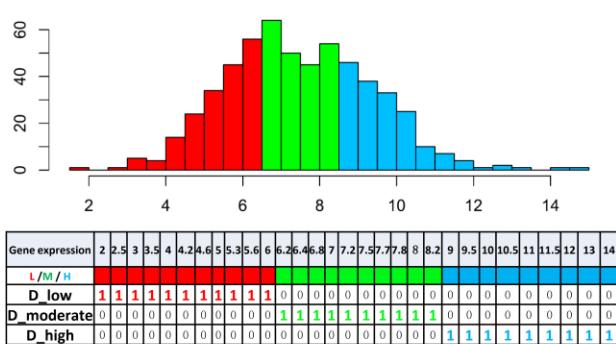
830 different CMS classes. In columns 1-3, a “cross” sign indicates the drugs to that samples in  
831 the BCs show resistance; in columns 4-6, larger sizes of the sectors indicate higher  
832 significances that the BC’s resistance mechanisms is also exhibited in CMS I (blue), II  
833 (yellow), III (green), and IV (red); in columns 7-10, larger sizes of the squares indicate higher  
834 significances that the BC is positively (blue)/negatively (red) enriched by samples in each  
835 CMS class (only  $p < 0.001$  are shown); the last column shows for each BC, the type of drug  
836 and BC group it is linked to.

837

838 **Figures:**

**A****B**

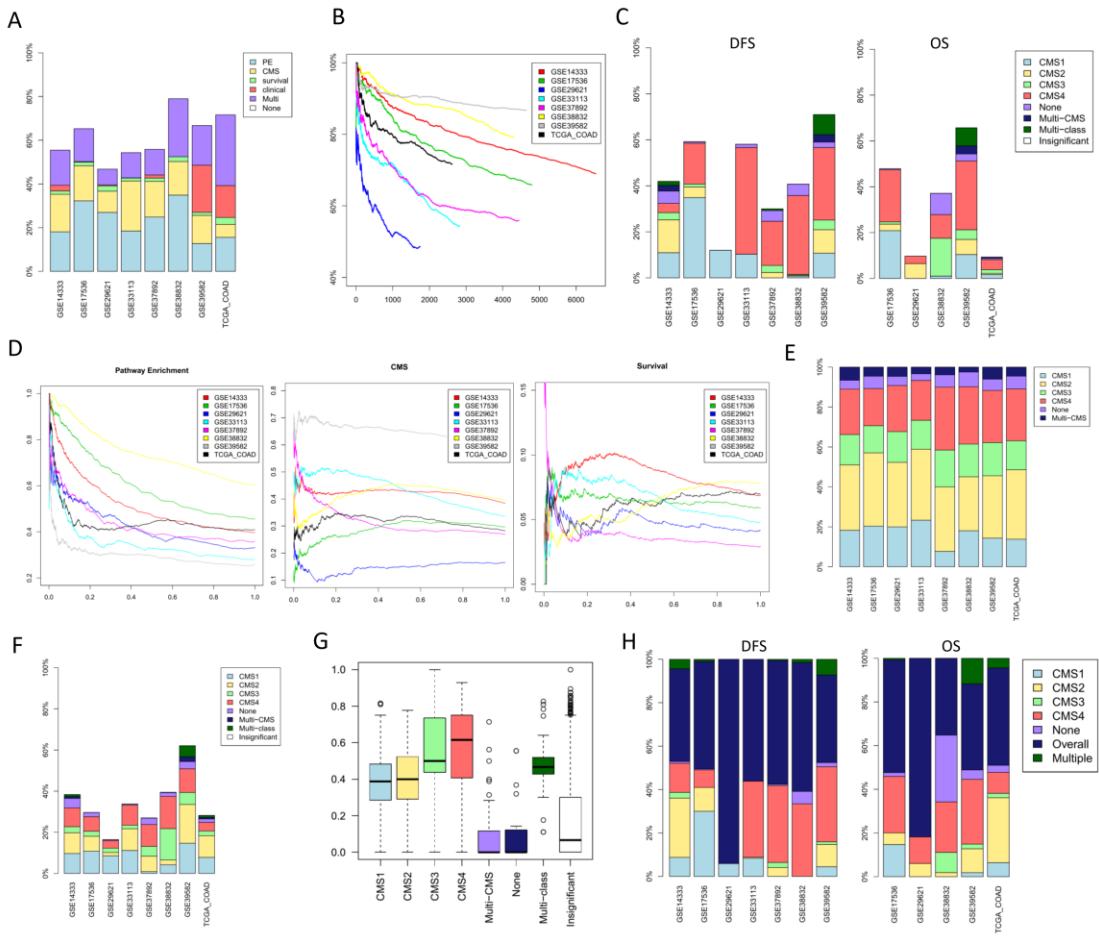
Discretization of a single gene's expression profile

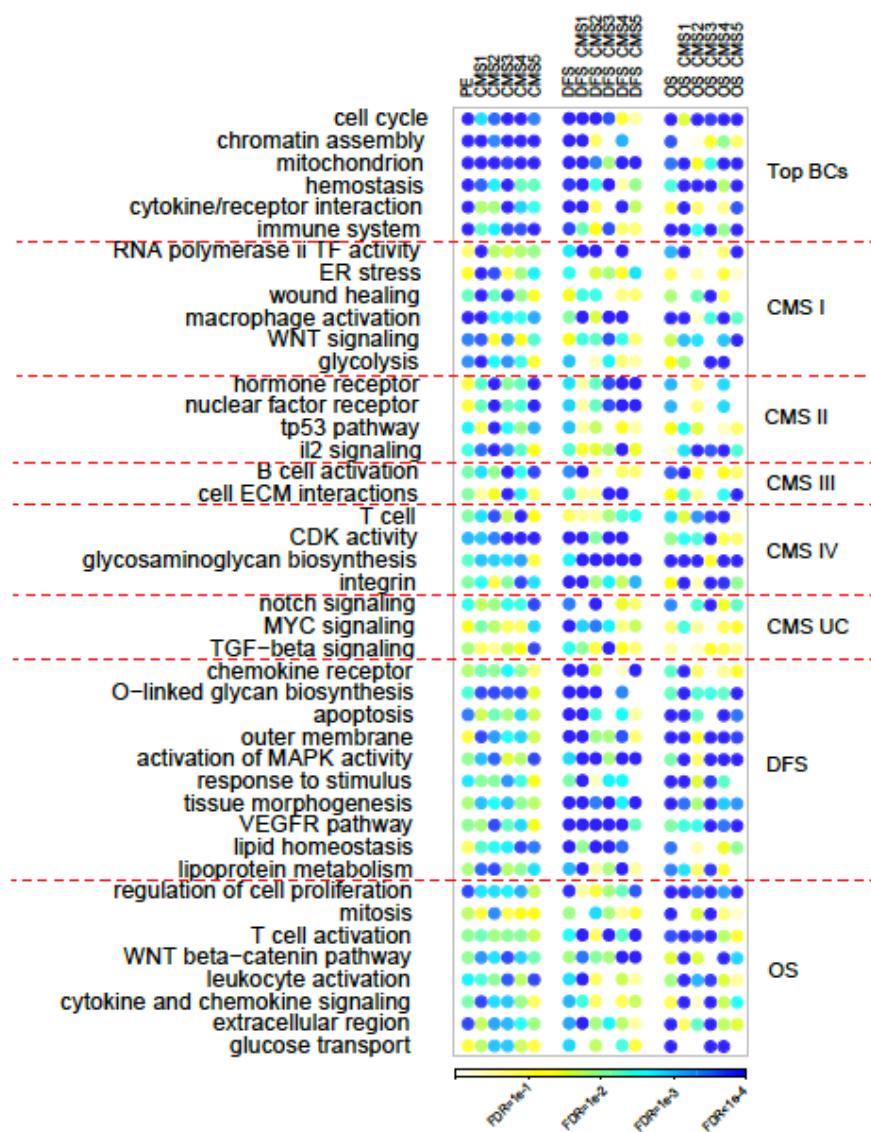


Bi-clustering identification

Gene expression matrix:  $G_{m \times n}$   
 $\rightarrow$  Binary matrix:  $D_{3m \times n}$

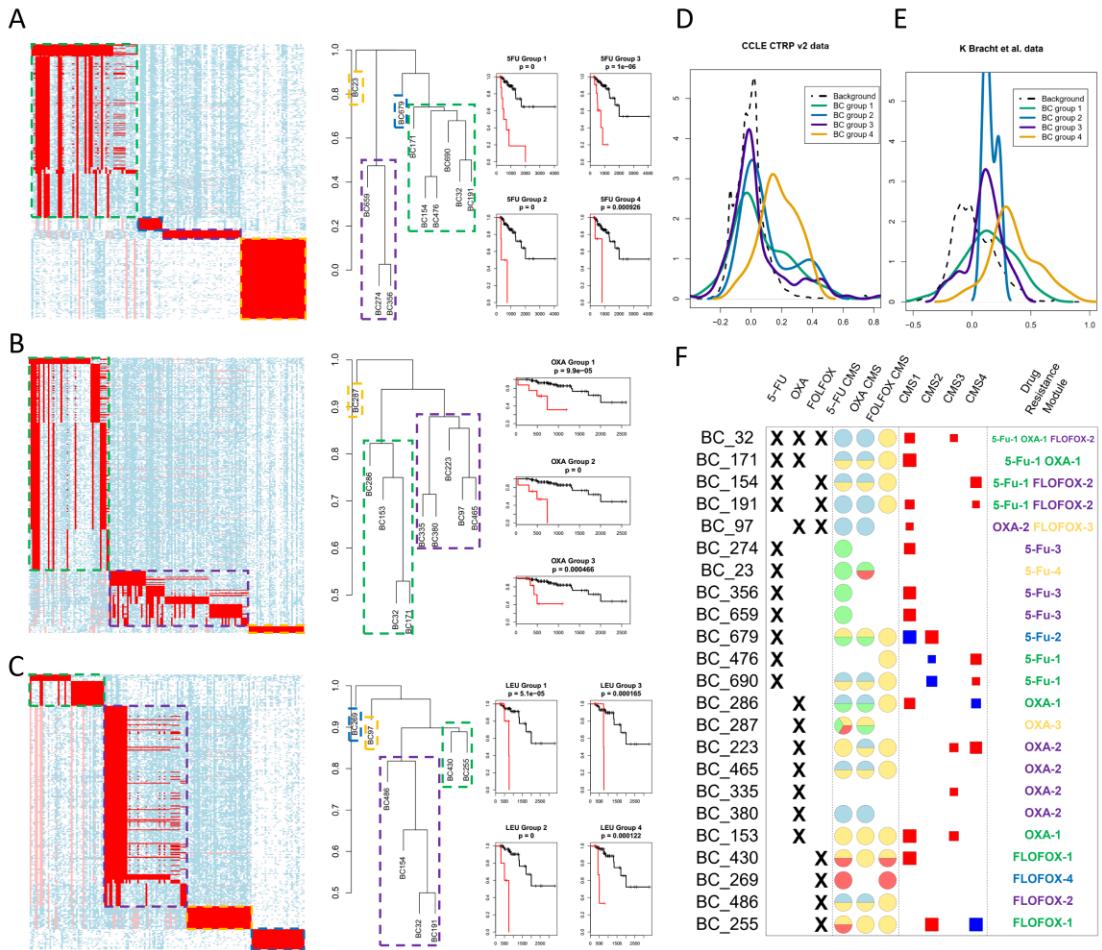
|      | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 |
|------|----|----|----|----|----|----|----|----|----|
| G1_H | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| G1_M | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| G1_L | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| G2_H | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| G2_M | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| G2_L | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| G3_H | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| G3_M | 0  | 0  | 0  | 0  | 1  | 0  | 1  | 1  | 0  |
| G3_L | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| G4_H | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| G4_M | 0  | 0  | 1  | 0  | 1  | 0  | 0  | 0  | 1  |
| G4_L | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |





844

845



846

847

848