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ABSTRACT 18 

The cells of colorectal cancer (CRC) in their microenvironment experience constant 19 

stress, leading to dysregulated activity in the tumor niche. As a result, cancer cells acquire 20 

alternative pathways in response to the changing microenvironment, posing significant 21 

challenges for the design of effective cancer treatment strategies. While computational studies 22 

on high-throughput omics data have advanced our understanding of colorectal cancer 23 

subtypes, characterizing the heterogeneity of this disease remains remarkably complex. Here, 24 

we present a novel computational Pipeline for Characterizing Alternative Mechanisms 25 

(PCAM) based on biclustering to gain a more detailed understanding of cancer heterogeneity. 26 

Our application of PCAM to large-scale CRC transcriptomics datasets suggests that PCAM 27 

can generate a wealth of information leading to new biological understanding and predictive 28 

markers of alternative mechanisms. Our key findings include: 1) A comprehensive collection 29 

of alternative pathways in CRC, associated with biological and clinical factors. 2) Full 30 

annotation of detected alternative mechanisms, including their enrichment in known pathways 31 

and associations with various clinical outcomes. 3) A mechanistic relationship between 32 

known clinical subtypes and outcomes on a consensus map, visualized by the presence of 33 

alternative mechanisms. 4) Several potential novel alternative drug resistance mechanisms for 34 

Oxaliplatin, 5-Fluorouracil, and FOLFOX, some of which were validated on independent 35 

datasets. We believe that gaining a deeper understanding of alternative mechanisms is a 36 

critical step towards characterizing the heterogeneity of colorectal cancer. The hypotheses 37 

generated by PCAM, along with the comprehensive collection of biologically and clinically 38 

associated alternative pathways in CRC, could provide valuable insights into the underlying 39 

mechanisms driving cancer progression and drug resistance, which could aid in the 40 

development of more effective cancer therapies and guide experimental design towards more 41 

targeted and personalized treatment strategies. 42 

 43 

 44 

Introduction 45 

Colorectal cancer (CRC) is the third most frequent cancer type in the United States, 46 

which accounts for an estimated 8% of adult cancer incidence and more than 8% cancer 47 

deaths in 2023 (1). Epidemiology data suggests the average five-year survival rate of CRC is 48 

64.9%, while more than 80% of patients die from the disease in five years in the case of 49 

metastasis (2,3). The tumor heterogeneity of CRC presents significant challenges in designing 50 

effective treatment strategies (4-6). The varying levels of sensitivity that different patient 51 

populations exhibit when receiving cytotoxic drugs can make it difficult to achieve successful 52 

therapies in heterogenic tumors (7).  53 

A few molecular subtyping methods have been developed for CRC, aiming to facilitate 54 

personalized treatment (8-16). Among these, the Consensus Molecular Subtype (CMS) has 55 

been accepted as a standard CRC stratification (8,9). CMS was derived from a cohort of 18 56 

independent gene expression data sets with 4,151 CRC samples, and it has stratified CRC 57 

patients into four classes with distinct molecular features and prognoses (8). Such patient 58 

stratifications that may predict treatment response or prognosis may not be widely applicable, 59 

as the genetic differences within and between CRC tumors are far more complicated, and 60 

further research into more comprehensive descriptions of CRC heterogeneity is still in 61 
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progress (8). Based on CMS classification, deeper investigation into the molecular and 62 

phenotypic distinctions within each subtype has also been carried out. Though these works 63 

have largely contributed to the characterization of CRC heterogeneity, they are however 64 

under powered: the statistical power of detecting subtype biomarkers drops remarkably with 65 

more refined patients stratifications, where the samples attributed to each subtype becomes 66 

smaller. On the other hand, since all the subtypes are defined based on known clinical and/or 67 

biological characteristics, it will inevitably limit our power in identifying alternative 68 

mechanisms that could lead to novel clinical implications. These largely undermine the 69 

practicality of CMS classification in clinical translation. It is thus imperative to develop a 70 

computational framework to comprehensively detect alternative mechanisms in CRC in light 71 

of the inter-tumor heterogeneity, which is not restricted to existing molecular classifications, 72 

such as CMS.  73 

Clearly, tumor heterogeneity has substantially hurdled the computational capability in 74 

mining gene expression data for studying the disease complexities. This is because the gene 75 

regulatory pathways are interwoven to ensure the robustness of the spatial and temporal 76 

regulation of the cell functions, resulting in multi-pathways from one stimulus to a single 77 

target (17,18). Thus, the set of genes used to execute a biological or clinical response may 78 

very likely exist in more than one alternative forms, and cells under different circumstances in 79 

different patient populations may likely choose to select any of them. 80 

 In light of the above challenges, we developed a novel computational Pipeline for 81 

Characterizing Alternative Mechanisms (PCAM) to study CRC heterogeneity. PCAM 82 

models alternative forms of biological/clinical response in a large gene expression matrix as 83 

submatrices, wherein the genes in the row subset correspond to the genes used to execute the 84 

response, and the samples in the column subset correspond to the patient circumstances that 85 

such an alternative form is activated and used. And PCAM replies on bi-clustering to identify 86 

such submatrices.  87 

Bi-clustering analysis is a technique to identify gene co-expression structures specific to 88 

certain and sometimes to-be-identified subsets of samples (19,20). The algorithm outputs data 89 

blocks, each containing subset of samples and features in a sub-matrix format, called bi-90 

clusters (BC). Our recently released bi-clustering tool QUBIC-R enables identification of BCs 91 

in whole-genome transcriptomics data set and has shown competitive performance (21-23). 92 

Bi-clustering algorithms have previously been used to study cancer expression datasets (24-93 

26), to find clusters of patient samples, where in each cluster, the co-expressed genes may 94 

differ. However, these studies underestimate the complexities of cancer. Consider the 95 

complexity in whole genome transcriptional regulatory programs and the patient 96 

heterogeneity, there should exist many ways that the samples can be clustered. In other words, 97 

the level of similarity for two samples could vary drastically when looking at different 98 

biological pathways. The core algorithm of PCAM, QUBIC-R, could comprehensively 99 

identify all the significant submatrices in a large gene expression matrix, from tens to 100 

thousands of rows/columns. Therefore, in PCAM, one sample could fall into multiple BCs, 101 

allowing one sample to be involved in multiple activated response pathways.  102 

Application of PCAM on a large collection of CRC gene expression datasets produced a 103 

wealth of information. PCAM fully recognizes the large heterogeneity within CRC patients, 104 

some of which may be strongly associated with existing CRC sub-classes defined by various 105 
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clinical and genomic features, while the rest will provide novel alternative ways for us to 106 

better understand the disease. We believe PCAM is suitable for in-depth discovery of 107 

alternative biological mechanisms, by systematic interrogation of the disease in different 108 

clinical settings without compromising the analysis power.  109 

 110 

Materials and Methods  111 

Data collection 112 

We have collected transcriptomics data of 1,440 colorectal cancer tissue samples 113 

including one RNA-Seq data from TCGA (The Cancer Genome Atlas) and seven microarray 114 

data sets from GEO (Gene Expression Omnibus) database. The micro-array datasets are 115 

selected with the following criteria: (1) data are collected by the top 10 most frequently 116 

utilized human microarray platforms in GEO database; (2) dataset has more than 50 samples; 117 

and (3) dataset provides certain prognostic or clinical outcome information. We use RPKM 118 

normalized expression value for RNA-Seq data and RMA normalized expression for 119 

microarray data. Detailed data information is provided in Table 1. In this study, DFS (disease 120 

free survival) refers to the duration between the primary treatment for cancer and the absence 121 

of any cancer-related symptoms, and OS (overall survival) represents the time elapsed from 122 

either the date of cancer diagnosis or the initiation of treatment until the patient's survival. 123 

Expression of each gene with multiple probes is assessed by expression of the probe with 124 

highest mean expression value in each data set. Genes of mean expressions at bottom 30% 125 

quantile in each microarray data set, and genes with 0 expression in more than 85% samples 126 

in the RNA-Seq data set are removed from the analysis, in order to control the noise of non- 127 

or lowly- expressed genes. 128 

 129 

PCAM-step 1, Discretization: modeling the regulatory states of gene expressions via data 130 

discretization  131 

To capture the regulatory states of a gene, we re-format the continuous expression data 132 

matrix into a larger binary matrix. Specifically, for a gene expression data 𝐺m×n with 𝑚 133 

genes and 𝑛 samples, we first find the K + 1 quantiles of each gene, and then generate a 134 

K × n binary matrix Dg for each gene 𝑔: Dg[𝑖, 𝑗] = 1 if and only if expression of gene 𝑔 in 135 

sample 𝑗 is in the interval of (Qi−1

K

g
, Q i

K

g
) , 𝑖 = 1, … , 𝐾. Here Qα

g
 represents the α quantile of 136 

the expression vector of gene 𝑔; and K is a hyper-parameter that controls the granularity of 137 

the discretization, with larger K capturing more potential transcriptional states of the gene. 138 

Obviously, each row of Dg indicates the samples with same expression patterns of 𝑔, and 139 

hence the same transcriptional regulatory states. Then we concatenate all the Dg by row to 140 

form a Km × n binary matrix 𝐷Km×n  and apply our in-house bi-clustering software QUBIC-141 

R to identify the bi-clusters enriched by 1s in 𝐷Km×n . The rationality of this formulation is 142 

that each of the bi-cluster identified here corresponds to a group of genes, whose expression 143 

patterns are highly consistent over a subset of samples, hence representing a gene co-144 

expression module specific to the subset of samples. It is worth noting that samples in one bi-145 

cluster are highly likely to share similar transcriptional regulatory signals controlling the 146 

relevant genes. More discussion about the connection between bi-clusters and gene 147 

expression control are available in Supplementary Method.  148 
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 149 

PCAM-step 2, Bi-clustering: Bi-cluster identification in a binary matrix 150 

PCAM uses our recently released bi-clustering R package – QUBIC-R to identify bi-151 

clusters in discretized matrices, which was optimized based on the core algorithm of QUBIC 152 

for large-scale matrices (21,22). It is noteworthy that the number of rows ranges from 28,754 153 

to 71,940 in this analysis. To the best of our knowledge, QUBIC is the most efficient bi-154 

clustering method in the public domain that can handle input data of such large scale. The 155 

three parameters are set as follow: consistency level c=0.25, desired output number o=3000, 156 

and bicluster overlapping rate f is set at five different levels, 0.85, 0.875, 0.9, 0.95, and 1, 157 

depending on the input data size and number of 1s in each row. Detailed information for bi-158 

clustering parameters determination and program running for each dataset are available in 159 

Supplementary Method. 160 

By extending Xing Sun et al.’s work (27-29), we derived an analytical formula to 161 

evaluate the significance values for the BCs. For a random binary matrix M with 𝑚0 rows 162 

and 𝑛0 columns, the probability of being 1 for any element, namely, 𝑝(𝑀[𝑖, 𝑗] = 1), is 163 

denoted as 𝑝0. Then the upper bound of the probability that at least one submatrix 𝑀1 exists 164 

in 𝑀 could be assessed by the following formula, where 𝑀1 has 𝑚1 rows, 𝑛1 columns, and 165 

𝑧0 total number of 0, and 𝑛1 ≥ 𝐾: 166 

P(∃ 𝑀1 𝑤𝑖𝑡ℎ 𝑛1 ≥ K) ≤ (
 𝛽𝑛1

2

𝑧0
) 𝑛0

−(𝛽+1)(𝐾−𝑠(𝑛1,𝑛0,𝛽)(log𝑏 𝑛0)𝛽+1, when 𝑛 →  ∞, 167 

where 168 

𝛼 =
𝑚0

𝑛0
, 𝛽 =

𝑚1

𝑛1
, b =

1

p0
 169 

p0 = 𝑃(𝑀[𝑖, 𝑗] = 1) = 1 − 𝑃(𝑀[𝑖, 𝑗] = 0) for ∀ 𝑖, 𝑗 170 

s(n1, n0, 𝛽) =
𝛽 + 1

𝛽
log𝑏 n0 −

𝛽 + 1

𝛽
log𝑏 (

𝛽 + 1

𝛽
log𝑏 n0) + log𝑏 𝛼171 

+
(1 + 𝛽) log𝑏 𝑒 − 𝛽 log𝑏 𝛽

𝛽
 172 

 173 

More details of the derivation of this assessment formula is given in Supplementary Method. 174 

We have tested this significance assessment method on simulated data and compared its 175 

performance with the Chernoff’s bound method (30), which is a popular measure for the 176 

effectiveness of biclustering methods. In detail, we conducted bi-clustering analysis on 177 

randomly generated gene expression matrices with same sizes. The analysis revealed that p 178 

values generated by our methods can more accurately recover the empirical p values 179 

comparing to the Chernoff’s bound method. Particularly, our method offers a good control of 180 

false discover rate for the BCs that are highly enriched by 1s, hence it is more robust in 181 

picking out the significant ones from a large number of BCs identified in a large matrix. This 182 

is particularly key to large–scale matrix. Note that this significance test ensures that only BCs 183 

with sufficient width, height and number of 1’s in it will be selected. 184 

 185 

PCAM-step 3, Annotation: gene set enrichment and clinical association analysis  186 

 Enrichment analysis: Biological characteristics of each BC is assessed by whether genes 187 

in the BC significantly enrich a biology pathway or gene set. In total, 1,329 canonical gene 188 
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sets including all pathways from KEGG, BIOCARTA, REACTOME databases and 1,472 GO 189 

(Gene Ontology) terms from MsigDB are used in the study (33). The enrichment analysis was 190 

computed by hypergeometric test, and for each BC in each dataset, genes in the BC were 191 

chosen as test set, while all genes in the dataset were chosen as the gene universe. Here 192 

p=0.005 is used as the cutoff for significance. 193 

 Single BC association analysis: Association analysis of each BC with clinical features 194 

was conducted using different tests based on the nature of the feature. For discrete clinical 195 

features including CMS classifications and pathological stages, we utilized Fisher’s exact test; 196 

for continuous clinical features except for survival outcome, we compared the feature value 197 

for samples in and out of the BC by Mann Whitney test. p<0.005 was used as significance 198 

cutoff for all these tests. Notably, associations with CMS are conducted for only BCs 199 

containing more than five samples of the CMS class. For survival outcomes including DFS 200 

and OS, we compared the survival for samples in and out of the BC, using log-rank test with 201 

significance cutoff p<0.05. 202 

 Multiple BCs association analysis with prognosis: In order to identify the BCs that could 203 

best predict prognosis and drug resistance, we constructed multiple variable Cox-regression 204 

model between patients’ survival and the BCs shown to be associated with survival with a 205 

variable selection procedure. Here, each BC is coded into one binary explanatory vector with 206 

1’s for samples in the BC and 0’s for samples not in the BC. Specifically, we applied forward 207 

and backward stepwise variable selection approach to select the model with lowest AIC 208 

(Akaike information criterion) value by using SURVIVAL and MASS package R. 209 

 Multiple BCs associated with drug resistance: Among the BCs that are detected to show 210 

resistance to the chemo-drugs, we posit that each BC suggests one mechanism for the drug 211 

resistance. However, there may exist more than one BCs corresponding to the same 212 

mechanism. In order to identify the most unique set of resistance mechanisms, we use 213 

agglomerative clustering to cluster the BCs of similar resistance mechanisms into groups, and 214 

log-rank test is used to test each BC group with one drug resistance. 215 

 To do this, we first defined the distance between any two BCs as D(BCI, BCj) = 1 −216 

|(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑖)∩(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑗)|

|(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑖)∪(𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝐵𝐶𝑗)|
, based on which an agglomerative clustering was performed. 217 

In each step of the clustering, two clusters 𝑋 and 𝑌 are merged, if (1) samples in 𝑋 ∩ 𝑌 is 218 

significantly associated with resistance to the drug, (2) neither samples in 𝑋\𝑌 or 𝑌\𝑋 is 219 

significantly associated with the drug resistance. A sample collection is defined as associated 220 

with resistance of a chemo-drug if the following two conditions are both met: (1) among drug 221 

treated samples, the overall survival of samples in the collection is significantly worse than 222 

those not in the collection (p<0.001); and (2) among samples in the collection, the overall 223 

survival of samples that are drug treated is significantly worse than those not treated (p<0.05). 224 

The agglomeration is stopped when no clusters could be merged. 225 

 226 

Analysis of somatic mutations in TCGA data 227 

TCGA COAD level 2 mutation profile of 429 samples predicted by mutect is retrieved 228 

from GDC database. A total of 932 genes with mutations in more than 5% (22/429) samples 229 

are selected. Considering high MSI (MicroSatellite Instability) causes the CRC genomes to be 230 

hyper-mutated, we exclude a majority of the 932 genes whose mutations are highly associated 231 
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with MSI, and 73 gene mutations not associated with MSI are retained for further analysis. 232 

The association of a gene’s mutation and MSI is calculated as the association between gene 233 

mutation and CMS class I—the class known to have high MSI, using Chi-square test (p<0.1).  234 

 235 

Correction for multiple hypothesis testing  236 

The p-value cutoff was set for significance test of identified BCs, pathway enrichment of 237 

each BC against 2,801 gene sets, and associations of BC with five types of phenotypic 238 

features. Among these, p-value was adjusted based on Benjamin and Hochberg method (31), 239 

when evaluating the significance of identified BCs, and the cutoff for the adjusted p-value is 240 

set at 0.05. However, we didn’t apply the same criterion for the enrichment and association 241 

analysis. Rather, we set a fixed cut-off as 1e-6 for enrichment analysis, and 0.005 for 242 

associations analysis. The number of tests for enrichment and association analyzes are huge, 243 

which is the number of BCs multiple by the number of gene sets or phenotypes. Clearly, the 244 

current sample size is severely under powered, and we suspect a stringent Benjamin and 245 

Hochberg false discovery rate control would leave few tests to be significant. On the other 246 

hands, since these tests are highly dependent, while the level of dependency is impossible to 247 

track, we believe a lenient p-value cutoff could allow for more novel discoveries, that might 248 

be potentially interesting to experimentalists. Here, the more stringent p-value cutoff for 249 

enrichment analysis than association analysis is to control for higher false discovery rate due 250 

to the large number of gene sets analyzed. 251 

 252 

Colon cancer consensus molecular subtype prediction 253 

We applied the R package CMSclassifier to predict the CMS classification of each 254 

sample in the eight data sets (32), by which each sample will be predicted with four CMS 255 

scores representing its similarity to the four CMS classes. One sample is classified to one 256 

subtype if its CMS score of the subtype is larger than 0.5 and a sample is considered as with 257 

multiple-classification if both top two CMS scores are larger than 0.5 and the difference 258 

between the two scores is smaller than 0.1. 259 

 260 

Results 261 

We applied PCAM on eight colon cancer transcriptomics data sets with 1,440 samples. 262 

PCAM identified ~4,000 BCs on average in each data set (Table 2). We then evaluated each 263 

BC with its statistical significance, and annotated each BC by the pathways enriched by its 264 

genes, and clinical and prognostic outcomes associated with samples in the BC. 265 

 266 

The overall pipeline of PCAM 267 

Figure 1A shows a flowchart of PCAM, describing the analysis procedures we conducted 268 

on the selected datasets. Figure 1B details the bi-clustering analysis procedure. Each gene 269 

expression data set is was discretized such that the original m × n gene expression matrix 270 

with m genes and 𝑛 samples is expanded to a Km × n binary matrix, as shown in Figure 1B 271 

and detailed in Methods section. Then, submatrices enriched by 1s in the discretized matrix 272 

are identified as BCs heuristically. Here, K is a hyperparameter that controls the granularity 273 

of the discretization. Clearly, the choice of K is very important: small K may blur the 274 

variability of gene expression across samples leading to insufficient capturing of the 275 
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transcriptional regulatory states of the gene, and large K may severely undercut the power of 276 

bi-clustering and result in “narrow” bi-clusters that cover a very small percentage of samples. 277 

In all analyses, K=3 is selected because each gene could potentially be categorized into one of 278 

the three expression states: low/down-regulated, medium, and high/up-regulated. Each 279 

identified BC consists of a subset of samples and a group of genes, in which the genes are 280 

consistently expressed highly, moderately, or lowly by the subset of the samples.  281 

The significant BCs will go through comprehensive annotation phases. PCAM examines 282 

whether genes in a BC enrich a certain pathway or gene set, and samples in a BC significantly 283 

over-represent a certain phenotype. Phenotypes of particular interests in this study include: 29 284 

clinical features/outcomes in supplementary Table 1; 73 cancer-associated gene mutations 285 

(supplementary Table 1); and treatment responses to three chemo therapeutic drugs namely 5-286 

Fluorouracil，Oxaliplatin, and the combination of 5-Fluorouracil, Oxaliplatin and 287 

Leucovorin. Functional annotation of the genes in each BC are conducted against 1,329 288 

canonical pathways and 1,472 Gene Ontology sets in Msigdb (33).  289 

PCAM was applied to transcriptomic data of 1,440 patient-derived CRC tissue samples 290 

including the TCGA COAD RNA-Seq data set, as well as seven microarray data sets 291 

(GSE14333, GSE17536, GSE29621, GSE33113, GSE37892, GSE383832 and GSE39582) 292 

measured by Affymetrix UA133 plus 2.0 array platform. (See detailed data information in 293 

Method). The computational pipeline of PCAM and key statistics for CRC are all provided in 294 

GitHub (https://github.com/changwn/BC-CRC). It is noteworthy that PCAM can be readily 295 

transplanted for similar analyzes in other disease scenarios. Below, we present the PCAM 296 

annotation results of the BCs identified in CRC datasets. 297 

 298 

PCAM annotation of BCs with functional gene sets and phenotypic features 299 

A total of 65,744 BCs were identified in the eight data sets. On average, ~4,000 BCs are 300 

found to be significant in each data set (Table 2) (adjusted p<0.05). Complete gene/sample 301 

information of all the significant BCs, are described in Supplementary Table 2. For each 302 

significant BC, we comprehensively investigated whether: (1) genes in the BC significantly 303 

enrich any of the 2,801 gene sets (p<1e-6), called PE BCs; (2) samples in the BC are 304 

significantly associated with any CMS class (p<0.005), called CMS I, II, III, IV and UC 305 

(unclassified) BCs; (3) samples in the BC are significantly associated with prognostic 306 

outcomes, namely patients’ overall and disease free survival (p<0.005), called Surv BCs or 307 

DFS BCs and OS BCs; (4) samples in the BC are significantly associated with clinical 308 

features such as age, gender, races and pathological stages (p<0.005), called Clin BCs; (5) 309 

samples in the BC are significantly associated with any of the 73 genomic mutation profiles 310 

(p<0.005), called Mut BCs; and (6) samples in the BC are significantly associated with the 311 

response to three selected chemo-drugs (p<0.005), called Drug BCs. The choice of p-value 312 

cutoffs is justified in Methods section. Figure 2A shows the proportion of BCs with 313 

significant findings in (1)-(4), in each of the eight data sets. On average, 71.79% 314 

(22,981/32,008) of the significant BCs can be significantly annotated by at least one of (1)-315 

(4), with detailed numbers listed in Table 2. Note that (5) and (6) are specific to TCGA-316 

COAD dataset, as mutation profiles and chemo-drug prognosis data are not available for the 317 

GEO datasets.  318 

https://github.com/changwn/BC-CRC
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Figure 2B shows at different significance cutoff level (x-axis), the ratio (y-axis) of the 319 

BCs belonging to any one of the four kinds: PE BC, CMS BC, Surv BC, and Clin BC, among 320 

all significant BCs. The x-axis shows different significance levels of cutoff in ascending 321 

order, with leftmost the most stringent cutoff, and the y-axis shows the total number of 322 

annotatable BCs divided by the total number of significant BCs. It is obvious that not all 323 

significant BCs are annotatable, and interestingly, the most significant portion of the BCs are 324 

most likely to be annotatable, as indicated by the almost monotonically decreasing trend of all 325 

the eight curves. For example, we found if we only look at the top 20% of the significant BCs, 326 

then on average more than 80.7% of them are significantly annotatable; and the number drops 327 

to 66.4% if we look at all the significant BCs. This indicates BCs of higher significance tend 328 

to be more biologically/clinically relevant, demonstrating the rationality of our bi-clustering 329 

algorithm. Interestingly, by examining BCs of different significance levels, we found that the 330 

most significant BCs (p<1e-200) correspond to biological mechanisms that seem to be 331 

general to the whole population. Particularly, in these BCs, their genes tend to enrich 332 

pathways of low cell type specificity, including cell cycle, cell proliferation, cell death, 333 

biosynthesis and metabolism of nucleic acid, etc (Figure 3); and their samples don’t seem to 334 

be associated with any phenotypic features. The biologically/clinically relevant BCs start to 335 

pop out in the next significance level (1e-200<p<1e-50). With higher sample specificity, these 336 

BCs have smaller sizes, and they tend to enrich pathways that are cell type specific, including 337 

immune response, extracellular matrix, O linked and N linked protein amino acid 338 

glycosylation, lipoprotein biosynthesis and lipid metabolism, etc. We have also seen that on 339 

average 44.7% of the DFS BCs and 33.9% of the OS BCs are also CMS BCs, particularly 340 

class I and IV, as shown in Figure 2C, and these BCs serve as possible CMS class specific 341 

prognosis markers. Other DFS BCs and OS BCs are found to be independent of the CMS 342 

class, suggesting the limitation of CMS in personalized prognosis prediction. In fact, the 343 

network complexity of the alternative pathways in cells and the uncertainty for cells to choose 344 

any of the alternative forms to maintain its viability in a perturbed microenvironment, has 345 

posed huge challenges for researchers to capture the heterogeneity of CRC withy any simple 346 

clinical stratifications. On the other hand, the large number of BCs presents us with 347 

comprehensive landscape of the alternative mechanisms, and potentially an increasing 348 

number of novel therapeutic targets. 349 

The general trend of how BCs at different significance levels could be annotated by each 350 

category is shown in Figure 2D. Here, the ratio of PE BCs (left), CMS BCs (middle), and 351 

Surv BCs (right) among all significant BCs for all eight datasets, are shown as a function of 352 

the significance cutoff. While a stringent significance cutoff tend to produce BCs that 353 

significantly enrich biological pathways (PE BCs), this is not the case for CMS BCs or Surv 354 

BCs. Instead, a relatively lenient significance cutoff allows us to find more BCs associated 355 

with CMS and survival. Clearly, these novel patient subgroups contain far richer information 356 

than CMS. Below we will discuss in detail the BCs in relation to CMS. For all the eight data 357 

sets, on average 19.2% (12,641/65,744) of the BCs are CMS BCs. Among these, the 358 

proportion of BCs associated with each class is shown in Figure 2E. On average, the CMS 359 

BCs only cover 23.6%, 15.6%, 30.1% and 24.1% of the CMS I-IV samples, respectively 360 

(shown in Supplementary Figure 2). This suggests that there exists a large number of sample 361 

subgroups, that may not be aligned with CMS. The proportion of samples in the BCs that 362 
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belong to different CMS class is shown in Figure 2F. There seems to be relatively more BCs 363 

aligning with CMS class I and IV, and unclassified, suggesting higher variations in patients of 364 

these classes. Of note, BCs associated with the four CMS classes, especially class III and IV, 365 

contain genes that highly overlap with the putative CMS marker genes; while the CMS 366 

marker genes rarely show up in BCs associated with the unclassified samples, as shown in 367 

Figure 2G. This indicates that the genes we identified in the BCs are indeed coherent with the 368 

marker genes of CMS class. Very few BCs are observed to have associations with the 369 

samples of multiple CMS classes, suggesting the exclusiveness of the CMS classes. 370 

Among all the DFS BCs, 42.9% of them are also over-represented in certain CMS 371 

classes, while this rate is 49.5% for OS (See Figure 2H), on average. Particularly, 53.1% and 372 

40.4% of these CMS-associated BCs belong to CMS IV class for DFS and OS respectively, 373 

on average. For DFS, the CMS IV associated BCs enrich the following pathways: 374 

glycosaminoglycan biosynthesis and metabolism, UDP glycosyltransferase, lipid, 375 

phospholipid and glycosphingolipid metabolism, mRNA splicing, and steroid hormone 376 

metabolism; while for OS, the pathways are: immune signaling, WNT and MYC signaling, 377 

VEGF signaling, tumor necrosis, notch signaling, cell proliferation and integrin pathways. 378 

This observation suggests that the extracellular matrix, glycosaminoglycan metabolism, lipid 379 

metabolism are prognostic markers for DFS if the patients are diagnosed with CMS class IV, 380 

while for OS, the markers are related to stromal infiltration. Similarly, we also observed a 381 

large proportion of CMS class I (19.1%) and CMS II associated (17.7%) BCs for DFS BCs, 382 

and CMS associated (25.1%) BCs for OS BCs. The CMS I associated DFS BCs enrich 383 

chemokine signaling, integrin signaling, chondroitin sulfate and sulfur metabolism, O linked 384 

glycosylation, and other immune and inflammation related pathways; CMS II associated DFS 385 

BCs enrich hypoxia response, O linked glycosylation, PI3K signaling, apoptosis, and immune 386 

response pathways; and CMS II specific OS associated BCs enrich cell cycle, nucleotide 387 

excision repair, and MYC signaling pathways.  388 

We have also tested the association between BCs and 117 highly frequently mutated and 389 

non-MSI-associated genes in TCGA COAD data. Our analysis identified that 29.1% 390 

(550/1886) of the annotatable BCs and 22.5% (168/746) of the unannotated BCs are 391 

associated with at least one of the gene mutations. Interestingly, by looking at the mutation 392 

profiles of samples in the Mut BCs, a large proportion happen in genes including 393 

TMEM132D, BCL9L, NF-1, SCN10A, PCDHA10, DIP2C, GLI3, TET2, and ARFGEF2, 394 

while only a small number fall into key CRC associated gene including APC, TP53, KRAS, 395 

CTNNB1, and PIK3CA. The Mut BCs majorly enrich pathways of nucleotide and glucose 396 

metabolism and immune responses. Detailed pathway enrichment of the mutation BCs is 397 

provided through GitHub and described in Supplementary Table 2. 398 

 399 

A consensus functional annotation of the BC landscape  400 

The cellular system is sufficiently complex and robust that cells are able to deploy a 401 

variety of pathways to respond to perturbations in the microenvironment. Our analysis has 402 

revealed that BCs associated with different phenotypic features exhibit enrichment to distinct 403 

sets of pathways, as reflected by a consensus map that illustrates how different pathways are 404 

“favored” by the cellular systems under different phenotypic states in Figure 3. We call this a 405 

consensus functional annotation of the BC landscape in CRC. The BCs are examined with 406 



 11 

respect to biological pathway enrichment called the PE BCs, and 17 clinical phenotypes, 407 

including five CMS BCs, DFS BCs, DFS BCs that over-represent five CMS classes, OS BCs, 408 

and OS BCs that over-represent five CMS classes. In each setting, genes in the BCs are used 409 

for pathway enrichment, and in total, 43 most significant pathways consistent to all eight 410 

datasets are selected, shown as the left row-wise names of the consensus map in Figure 3. The 411 

right block row-wise names indicate one of the 18 categories the BCs are annotated. The 43 412 

pathways are believed to represent the specific functions associated with the 413 

biological/phenotypic state. For each of the 43 pathways, its average activation level with 414 

regards to the 18 settings, shown as top column-wise names of the map, are calculated over 415 

all datasets. Clearly, the activation score matrix reflects the degree of similarity or 416 

dissimilarity among the 18 settings in relation to the 43 pathways.  417 

 This consensus map greatly helps us visualize the distinctions and similarities regarding 418 

different clinical phenotypes, using functional pathways derived from BCs. As shown in 419 

Figure 3, different CMS classes are characterized by different pathways/gene sets, but they 420 

also show certain continuity. CMS I BCs are also enriched by immune signaling pathways 421 

including IL-3, -5, -6, -12, -27, STAT, and interferon gamma signaling pathways, as well as 422 

nucleotide biosynthesis, WNT signaling, lipid metabolism, and glycolysis pathways, which 423 

are markers of CMS II and III (8). Considering that CMS I is a subtype with high MSI and 424 

strong immune cell activation (8), our observation clearly suggests that there are distinct 425 

subgroups inside CMS I with different immune activation status that display CMS II-like 426 

characteristics with high expression of epithelial and WNT signaling markers and CMS III-427 

like characteristics of metabolism dysregulations. More intriguingly, the CMS IV BCs seem 428 

to fall into two categories: one enriched by integrin binding, epithelial cell cycle, cell death, 429 

cell-cell and cell-matrix adhesions pathways, while the other enriched by immune response, 430 

MYC and WNT signaling, and metabolism pathways. The first category show expression of 431 

cancer and stromal cell marker genes, suggesting different levels of stromal cell infiltration in 432 

CMS IV class. In contrast, the second category enriches marker genes of CMS class I-III, 433 

suggesting that there are subgroups within CMS IV class that resemble CMS I, II or III. CMS 434 

IV is a subtype with high stromal infiltration and angiogenesis (8). Our previous study has 435 

identified a dynamic population of mesenchymal-like cells with similar markers as CMS IV 436 

(34). With these observations, we suspect that CMS IV is a combination of CMS I-III but 437 

with higher proportion of stromal cells, hence higher expression of mesenchymal cell markers 438 

and lower rate of somatic mutations. However, it is noteworthy that the CMS IV cancers have 439 

generally poorer prognosis comparing to CMS I-III, indicating the level of stromal infiltration 440 

may serve as an important prognosis marker for all the CMS classes. We have also seen that a 441 

number of CMS II and III BCs show marker genes of other CMS classes. The CMS UC BCs 442 

enrich signaling pathways of MAPK, P38, GPCR, NOTCH, TGF-beta, ARF6 and other 443 

kinase receptors and pathways responsive to micro-environment stresses including ER stress, 444 

oxidative stress, dysregulated immune activation and extracellular matrix malfunction. We 445 

suspect that in response to the activation of specific signaling pathways and distinct micro-446 

environment stresses, gene expression in these samples are highly volatile, and hence cannot 447 

be classified by CMS. Functional annotation of the genes in the CMS BCs are given in 448 

Supplementary Table 3. 449 
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Lastly, we employed a Cox regression model with variable selection using BCs to 450 

explain patients’ prognosis (see Methods). Our analysis suggested that the DFS predictive 451 

BCs contain genes that enrich pathways including chemokine receptor, O-linked glycan 452 

biosynthesis, apoptosis, mitochondria, cell membrane, MAPK activity, tissue morphogenesis, 453 

VEGFR pathway, lipid homeostasis and cell surface receptor activity; while for OS, the BCs 454 

enrich cell death, cell proliferation, mitosis, glycosaminoglycan synthesis, integrin (possibly 455 

suggests stromal infiltration level), T cell activation, WNT beta-catenin signaling, leukocyte 456 

activation, extracellular region and glucose transport and VEGFR pathway. 457 

 458 

PCAM annotations of BCs by alternative drug resistance mechanisms  459 

Chemo-therapy is one of the standard cancer treatment methods that induces cell death of 460 

fast proliferating cancer cells (35). Usually, the administration of cytotoxic drugs may initially 461 

result in tumor shrinkage by destruction of non-resistant subclonal populations within a 462 

heterogeneic tumour, while leaving the resistant clones. With a selective advantage, these 463 

resistant clones can replicate to repopulate the tumour, and the repopulated tumor appears to be 464 

far more aggressive, called acquired drug resistance. The clinical information in TCGA 465 

provides patients’ treatment response to three most prevalent CRC chemo-therapy plans, 466 

including 5-Fluorouracil (5-FU), Oxaliplatin (OXA), and the combination of OXA, 5-FU and 467 

Leucovorin (FOLFOX). In order to delineate the alternative drug resistance mechanism in CRC, 468 

we selected the drug associated BCs, called Drug BCs. A drug BC is defined if the following 469 

two conditions are both met: (1) among drug treated samples, the overall survival of samples 470 

in the BC is significantly worse than those not in the BC (p<0.001); and (2) among samples in 471 

the BC, the overall survival of samples that are drug treated is significantly worse than those 472 

not treated (p<0.05). Certainly, multiple drug BCs may correspond to the same resistance 473 

mechanism. We conducted a log-rank test coupled with agglomerative clustering to cluster the 474 

BCs into groups, each of which may be linked to one drug resistance mechanism (see details in 475 

Methods section). Complete information of Drug BC clusters are given in Supplementary Table 476 

4. 477 

 5-FU is one of the most commonly used chemo-drugs in treating CRC (36). We identified 478 

11 5FU BCs, and found that the 11 BCs form four groups, where each group consists of a 479 

number of genes tightly co-expressed, and a number of samples with 5FU resistance, as shown 480 

in Figure 4A. The first BC group contains genes enriching known chemo-resistance related 481 

mechanisms, including over expression of CFLAR involved in apoptosis and FAS signaling; 482 

CAPRIN2 related to cell proliferation and cancer multi-drug resistance; DNA excision repair 483 

gene XPA; cell cycle regulating proteins DMTF1 and SYCE2; killer cell activating receptor 484 

associated protein TYROBP; taurine metabolism gene CSAD; RNA processing proteins RBM6 485 

and CLK1; DNA binding and transcriptional regulatory genes ZNF638, ZNF169, ZNF26, 486 

ZNF333, ZNF493, ZNF234 and ZNF33A; OGT, TAS2R5, LTB4R2 related to cellular response 487 

to chemical stimuli. It is noteworthy that a number of genes in this panel including CFLAR, 488 

CAPRIN2, XPA, TYROBP, CLK1, OGT, and LTB4R2 have been previously identified to be 489 

relate to chemo-resistance in other cancer types (37-42). The second group contains genes 490 

including SMAD2, SMAD4, TCF12, ELP2, ATG2B, PIGN, MBP, NCBP3 and PIK3C3, which 491 

enrich pathways of cell cycle, cell metabolism regulation, TGF-beta signaling, PI3K cascade, 492 

autophagy, immune responses and mRNA production regulation. The third BC group contains 493 
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a large number of pseudo genes and also genes that enrich the translation regulation and viral 494 

infection pathways, among which genes TMA7, DEXI and EIF3CL have been previously 495 

reported as related to cisplatin and fluorouracil resistance in bladder and gastric cancer (43,44). 496 

Genes in the fourth group enrich two different groups of ribosome proteins, which are related 497 

to translational control and elongation of peptides. 498 

 OXA is a platinum-based antineoplastic chemo-drug used to treat colorectal cancer (36). 499 

We have identified 10 OXA BCs, which were further clustered into three groups as shown in 500 

Figure 4B. The first BC group shows an overlap with the first group in 5FU resistance, in that 501 

the genes are also involved in known chemo-resistance related mechanisms including CFLAR, 502 

CAPRIN2, TYROBP, CLK1, OGT and LTB4R2 as well as SYCE2, RBM6, ZNF638, ZNF169, 503 

ZNF26, ZNF333, ZNF493, ZNF234 and ZNF33A, related to cell cycle, mRNA processing and 504 

DNA binding. Meanwhile, this group also contains overly expressed DNA synthesis and cell 505 

cycle genes POLA1, CHFR, and TAF1; mRNA processing gene PCF11; EPHA7 and COL4A3 506 

related to tissue development; and ITPR2 related to calcium dependent signaling transduction. 507 

The second group also contains CFLAR, CAPRIN2, SYCE2, and LTB4R2 identified in the 508 

first group. In addition, this group also contains cyclin-D binding transcription factor DMTF1; 509 

transcriptional regulation co-factor EP300; GTF2H4 related to RNA polymerase II 510 

transcription initiation; mRNA splicing gene DDX39B; and cell surface channel, transporter or 511 

exchanger genes PKD2, TRAPPC10, SMG1, and TRIO. The third group contains a number of 512 

nuclear ribonucleoproteins and HSPA5, where the latter has been previously identified as a 513 

chemo-resistance biomarker and molecular target in B-lineage acute lymphoblastic leukemia 514 

(45). 515 

FOLFOX is a combinatorial therapy of 5Fu, OXA with Leu--a reduced folic acid based 516 

drug that is used in combination with other chemotherapies to enhance effectiveness or prevent 517 

side effects of the chemo-drugs (36,46). We have identified eight FOLFOX BCs forming four 518 

BC groups (Figure 4C). The first BC group shows strong overlaps with the first group of 5FU 519 

chemo-resistance, and the first and second group of OXA chemo-resistance, which includes 520 

CFLAR, CAPRIN2, SYCE2, CSAD, MSH5, XPA, OGT, LTB4R2, ZNF234, ZNF169, 521 

ZNF493, ZNF26, and ZNF333. The second group contains JAK2, which is involved in multiple 522 

cytokine receptor signaling pathways related to immune response; Rho GTPase Activating 523 

Protein DLC1 (tumor suppressor); cell death related genes NME1, BCL2L15 and RPSS3A; 524 

tissue development regulating gene FOXA2; TCA cycle and respiration electron transport 525 

genes ATP5C1 and COX7A2L; and mitochondrial inner membrane translocase TIMM23. In 526 

addition, this group also overly express ribosome proteins. The third group contains highly 527 

expressed CAPRIN2, cell proliferation regulating gene DMTF1 and mRNA processing proteins 528 

DDX39B and GTF2H4. The fourth group is composed of under expressed microRNA 529 

MIR3911 and antisense mRNA EIF1AX-AS1. 530 

We collected drug screening data on colon cancer cell line to validate our identified 531 

possible resistance mechanism (see methods). To the best of our knowledge, 5-FU is the only 532 

one drug with a wide spectrum of sensitivity measure on cell lines among the three. 5-FU 533 

treatment was performed on 29 and 19 colon cancer cell lines for two independent datasets 534 

(47,48). In each dataset, we computed the correlations between the basal level expressions of 535 

all the genes and cell’s response to 5-FU, measured by IC50 and GI50 (see Supplementary table 536 

5). IC50 and GI50 are two metrics to evaluate drug treatment efficacy. Distribution of the 537 
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correlations for genes in each BC group was compared with the distribution of the correlation 538 

for all genes, which serves as a random background. Density curves of the correlations of each 539 

BC group and the background are shown in Figure 4D and 4E. We have seen that, comparing 540 

to the background, genes in BC group 4 show much higher correlations to cells’ resistance to 541 

5-Fu, and BC groups 1-3 also contain a marked portion of genes that are more correlated with 542 

5-Fu resistance than background. This serves as further validation of our observations of 543 

alternative drug resistance mechanisms. Detailed lists of the validation data are provided in 544 

Supplementary Table 5. 545 

In summary, for each chemo-drug, we have identified a few potential drug alternative 546 

resistance mechanisms, presented in the form of BC groups, and some of which are novel to 547 

CRC. Further experimental validations are needed to confirm these findings. It is noteworthy 548 

that the genes CFLAR, CAPRIN2, SYCE2, OGT, and LTB4R2 are consistently observed as 549 

resistance associated for all the three drugs. Further investigation of the sample composition of 550 

the BC groups suggests that the first BC group of 5-Fu, OXA and the second BC group of 551 

FOLFOX highly overlap, which correspond to poor response of 5-Fu and OXA in CMS1 552 

samples and FOLFOX in CMS2 samples (Figure 4F). The second BC cluster of OXA and the 553 

third BC cluster of FOLFOX overlap, which corresponds to poor response in CMS1 samples. 554 

In addition, the 5-Fu BC groups 2, 3 and 4 show that patients of CMS III, CMS III/IV and CMS 555 

II/III are particularly resistant to 5-Fu; OXA BC groups 2 and 3 show that OXA resistance is 556 

high in CMS II/III and CMS I/II/III; FOLFOX BC groups 1, 3, and 4 show that resistance of 557 

the drug prevalently happen to patients of CMS II/IV, CMS II and CMS IV. Interestingly, 5-Fu 558 

BC group 1 and FOLFOX BC groups 1 and 4 do not seem to show chemo-resistance 559 

mechanisms specific to any CMS classes. Among the identified BC groups, some of them point 560 

to known chemo-resistance mechanisms. Meanwhile, we have seen in 1-2 BC groups for each 561 

drug type there exists novel biomarkers, including overly expressed ribosome genes and under 562 

expressed ncRNAs. Further experimental validations are warranted. 563 

 564 

Discussion and Conclusion 565 

It has been widely recognized that cells have multiple alternative pathways to cope with 566 

microenvironmental perturbations, and the uncertainty surrounding the choice of a pathway 567 

under different circumstances contributes to cancer heterogeneity. In the case of drug 568 

resistance, multiple pathways are often altered to create a single off-target resistance 569 

mechanism (49-51). Molecular subtyping methods for CRC, such as CMS, have provided 570 

valuable information in understanding heterogeneity. However, due to the dynamic nature of 571 

the cancer microenvironment, novel alternative pathways can emerge under selective 572 

pressure, that may not have been captured by any disease stratifications. Limiting our 573 

computational analysis to a pre-defined molecular subtyping such as CMS would fail to 574 

capture a large number of alternative mechanisms (and their combinations) which are 575 

employed under different circumstances. Our bi-clustering based PCAM method is powerful 576 

in delineating a comprehensive collection of alternative mechanisms caused by the intrinsic 577 

heterogeneity within patients, and their associations with known phenotypic features. Each 578 

BC potentially contains a coherent gene module present in a subgroup of patients, and the 579 

gene subsets may enrich certain biological pathways that could lead to substantially deeper 580 

biological understanding for molecular stratification of cancer. More importantly, any 581 
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existing sub-grouping methods, such as CMS, could be studied and integrated with the 582 

produced BCs. 583 

We developed PCAM as an unsupervised exploratory approach with several advantages 584 

in identifying gene markers for certain phenotypes: (1) efficiently control false discoveries; 585 

(2) readily detect informative co-expressed prognostic markers; (3) conveniently handle the 586 

intricate relationships among different subtypes, and their interactions with various clinical 587 

outcomes. Of note, deriving prognostic or predictive markers from only BCs with high 588 

statistical significance could decrease the number of independent tests, and the resulted co-589 

expressed gene modules are more relevant in the disease context. The sample compositions in 590 

each BC provides an easily comprehensible way to understand the underlying subtypes. Our 591 

analysis has clearly demonstrated that PCAM can effectively identify biomarkers for 592 

alternative prognosis related or drug resistance mechanisms from large scale transcriptomics 593 

data. We posit that bi-clustering is more sensitive to locate the biomarkers specific to small 594 

subset of samples and the inference on the multiple genes in the BC can provide more 595 

biologically coherent interpretations.  596 

Nonetheless, we have seen a few more challenges that is beyond this study. Firstly, when 597 

several BCs are highly overlapping, only one will be retained, which may be problematic 598 

when consistency of BCs across different datasets are to be performed. This raises a demand 599 

for effective multi-tasking strategy to find bi-clusters with high consistency through multiple 600 

data sets. Secondly, currently PCAM lacks a predicative model using BCs, which largely 601 

limits its potential in practice of personalized treatment. Thirdly, the BC’s statistical 602 

significance is estimated by an upper bound of p value, which works well for the BCs with 603 

small number of 0s in it, but not for BCs with large number of 0s. We fully anticipate future 604 

studies will address these challenges, and increase the feasibility of PCAM in characterizing 605 

the complexity of CRC heterogeneity, and aiding biomarker detection and personalized 606 

medicine. 607 
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Tables: 762 

Table 1. Information of the eight CRC datasets. 763 

 764 

Data ID Sample# Drug response Follow-up  Platform Normalization 

GSE14333 290 No DFS Affy U133 Plus 2.0 RMA 

GSE17536 177 No OS/DFS Affy U133 Plus 2.0 RMA 

GSE29621 65 No OS/DFS Affy U133 Plus 2.0 RMA 

GSE33113 90 No DFS Affy U133 Plus 2.0 RMA 

GSE37892 130 No DFS Affy U133 Plus 2.0 RMA 

GSE38832 122 No OS/DFS Affy U133 Plus 2.0 RMA 

GSE39582 566 No OS/DFS Affy U133 Plus 2.0 RMA 

TCGA-COAD 385 Yes OS RNA-Seq RPKM 

 765 

Table 2. PCAM identified Bi-clustering of the eight CRC data sets 766 

 767 

Data ID #BCs #Sig BCs #PE BCs #CMS BCs #Surv BCs #Clin BCs 

GSE14333 9631 6547 2597(39.7%) 2512(38.4%) 448(6.8%) 452(6.9%) 

GSE17536 11255 4806 2187(45.5%) 1425(29.7%) 284(5.9%) 63(1.3%) 

GSE29621 8167 1758 582(33.1%) 289(16.4%) 73(4.2%) 56(3.2%) 

GSE33113 9238 2836 795(28%) 958(33.8%) 136(4.8%) 3(0.1%) 

GSE37892 10644 4452 1600(35.9%) 1202(27%) 130(2.9%) 101(2.3%) 

GSE38832 5845 4319 2603(60.3%) 1705(39.5%) 335(7.8%) 0(0%) 

GSE39582 8267 4658 1200(25.8%) 2894(62.1%) 
1068(22.9%

) 
1847(39.7%) 

TCGA_CO

AD 
2697 2632 1077(40.9%) 743(28.2%) 183(7%) 954(36.2%) 

 768 

 769 

Figure legends: 770 

Figure 1. (A) General analysis pipeline. The analysis was conducted on one TCGA RNA-771 

seq and seven microarray datasets. BC identification from each high-dimensional data sets 772 

starts with a discretization step followed by a bi-cluster identification step (see details in B). 773 

The identified BCs are further annotated by their associations with biological pathways, CMS 774 

class, and patients clinical and prognostic features. Consensus analysis of the BCs throughout 775 

multiple data sets was further conducted. BCs were further associated with response to 776 

different chemo-drugs for identification of alternative chemo-resistance mechanisms. (B) 777 

Data discretization and bi-clustering procedures. The histogram on the left illustrates the 778 

distribution of a gene’s expression. The gene expression is discretized into three levels, 779 

represented as three 0-1 vectors (D_high, D_moderate and D_low), corresponding to samples 780 

with top (blue), medium (green) and bottom (red) 1/3 expression level of the gene, 781 

respectively. The discretized data are then concatenated that expand an original m × n gene 782 

expression matrix to a 3m × n binary matrix, as shown in the right panel. In the expanded 783 

matrix, rows represent different states of the gene, and columns represent cancer patient 784 

samples. BCs enriched by 1s are further identified by QUBIC-R.  785 
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 786 

 787 

Figure 2. Statistics of the BC landscape in the eight data sets. (A) Proportions (y-axis) of 788 

PE BCs, CMS BCs, Surv BCs, Clin BCs, and their combinations (Multi) amongst all 789 

identified BCs in each data set (x-axis). (B) Rates of annotatable BCs (y-axis) as a function of 790 

significance cutoff of BCs at different levels (x-axis), most stringent on the left. (C) Among 791 

the DFS (left) and OS (right) BCs, the proportions (y-axis) of different CMS class BCs, in 792 

each dataset (x-axis). (D) Proportions (y-axis) of PE BCs, CMS BCs, Surv BCs amongst all 793 

significant BCs as a function of BC significance cutoff at different quantiles (x-axis), most 794 

stringent on the left. Here, a “0.2” quantile means the top 20% significant BCs. (E) 795 

Proportions of the BCs (y-axis) with significant associations to different CMS classes in each 796 

data set (x-axis). (F) Among the Surv BCs, the proportions of the BCs (y-axis) associated 797 

with CMS types in each data set (x-axis). (G) For BCs associated with different CMS class, 798 

the average overlapping rates (y-axis) between the genes in the BC and CMS marker genes in 799 

each dataset (x-axis). (H) Among all the DFS/OS BCs, the proportion of the BCs (y-axis) that 800 

significantly over-represent a (sub)sample class in each dataset (x-axis). In (C), (E) and (F): 801 

None: CMS unclassified samples; Multi-CMS: a class of samples falling into more than one 802 

CMS classes; Multi-class: a class of BCs significantly associated with more than one CMS 803 

classes. In (H): None: CMS unclassified samples; overall: the BCs associated with survival 804 

throughout all patients, but not with a particular CMS class; Multiple: the BCs associated with 805 

patients’ survival specific to the patients of more than CMS classes.  806 

 807 

Figure 3. Functional annotation and concensus map of selected CMS classes and 808 

prognosis associated BCs. 43 pathways, shown on the left, that are most significantly and 809 

consistently over all datasets enriched by genes from PE BCs (or called Top BCs), CMS I, II, 810 

III, IV, UC BCs, DFS BCs, and OS BCs, shown on the right. The relative level of enrichment 811 

significance for these 43 pathways in the 18 settings, shown on the top, are shown in the color 812 

panels. For example, cell cycle is the pathway consistently enriched by BCs of top 813 

significance across all eight datasets, and the level of enrichment by genes in the BCs 814 

belonging to the 18 settings to cell cycle pathway is quite different, darker blue being the 815 

most significant.  816 

 817 

Figure 4. Possible alternative chemo-resistance mechanism depicted by BC groups. (A-818 

C) Discretized gene expression profile of the BC groups for 5FU (A), OXA (B), and 819 

FOLFOX (C). For (A-C), in the left-most panels, blue and white in the heatmap represent 1s 820 

and 0s in the discretized data matrix, while red marks the matrix element belonging to a 821 

certain BC group, framed in green dashed line. In the middle panels, the dendrograms show 822 

the results of agglomerative clustering of the resistance associated BCs. Each BC group is 823 

framed by a dashed rectangle. In the right-most panels, the survival curves represent the 824 

comparison of overall survival of the patients in a BC group (red) with those not (black), for 825 

the drug treated patients. (D-E) Distribution of the correlations calculated between 826 

expressions of genes in different groups with drug resistance measure IC50, in CTRP v2 827 

dataset (D) and GI50 in K Bracht et al.’s dataset (E). The x-axis represents the correlations 828 

and the y-axis represents the density. (F) Relationships between chemo-resistance BCs and 829 



 22 

different CMS classes. In columns 1-3, a “cross” sign indicates the drugs to that samples in 830 

the BCs show resistance; in columns 4-6, larger sizes of the sectors indicate higher 831 

significances that the BC’s resistance mechanisms is also exhibited in CMS I (blue), II 832 

(yellow), III (green), and IV (red); in columns 7-10, larger sizes of the squares indicate higher 833 

significances that the BC is positively (blue)/negatively (red) enriched by samples in each 834 

CMS class (only p<0.001 are shown); the last column shows for each BC, the type of drug 835 

and BC group it is linked to. 836 

 837 

Figures: 838 
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