O 00 3 N DNk~ W N~

10

12
13
14
15
16
17

Pipeline for Characterizing Alternative Mechanisms (PCAM) based on bi-clustering to
study colorectal cancer heterogeneity
Sha Cao'**, Wennan Chang', Changlin Wan'*, Yong Zang'?, Yijie Wang®, Qin Ma®", Chi
Zhang'?"*

!Center for Computational Biology and Bioinformatics, “Department of Biostatistics,
*Department of Medical and Molecular Genetics, Indiana University, School of Medicine,
Indianapolis, IN,46202, USA.

*Department of Electronic Computer Engineering, Purdue University, West Lafayette, IN
47907

*Department of Computer Science, Indiana University, Bloomington, IN, 43210
®Department of Biomedical Informatics, College of Medicine, the Ohio State University,
Columbus, OH, 43210

*To whom correspondence should be addressed. +1 317-278-9625; Email: czhang87@iu.edu.
Correspondence is also addressed to Sha Cao: shcao@iu.edu and Qin Ma:
maqin2001@gmail.com.



mailto:czhang87@iu.edu

18
19
20
21
2
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

ABSTRACT

The cells of colorectal cancer (CRC) in their microenvironment experience constant
stress, leading to dysregulated activity in the tumor niche. As a result, cancer cells acquire
alternative pathways in response to the changing microenvironment, posing significant
challenges for the design of effective cancer treatment strategies. While computational studies
on high-throughput omics data have advanced our understanding of colorectal cancer
subtypes, characterizing the heterogeneity of this disease remains remarkably complex. Here,
we present a novel computational Pipeline for Characterizing Alternative Mechanisms
(PCAM) based on biclustering to gain a more detailed understanding of cancer heterogeneity.
Our application of PCAM to large-scale CRC transcriptomics datasets suggests that PCAM
can generate a wealth of information leading to new biological understanding and predictive
markers of alternative mechanisms. Our key findings include: 1) A comprehensive collection
of alternative pathways in CRC, associated with biological and clinical factors. 2) Full
annotation of detected alternative mechanisms, including their enrichment in known pathways
and associations with various clinical outcomes. 3) A mechanistic relationship between
known clinical subtypes and outcomes on a consensus map, visualized by the presence of
alternative mechanisms. 4) Several potential novel alternative drug resistance mechanisms for
Oxaliplatin, 5-Fluorouracil, and FOLFOX, some of which were validated on independent
datasets. We believe that gaining a deeper understanding of alternative mechanisms is a
critical step towards characterizing the heterogeneity of colorectal cancer. The hypotheses
generated by PCAM, along with the comprehensive collection of biologically and clinically
associated alternative pathways in CRC, could provide valuable insights into the underlying
mechanisms driving cancer progression and drug resistance, which could aid in the
development of more effective cancer therapies and guide experimental design towards more
targeted and personalized treatment strategies.

Introduction

Colorectal cancer (CRC) is the third most frequent cancer type in the United States,
which accounts for an estimated 8% of adult cancer incidence and more than 8% cancer
deaths in 2023 (1). Epidemiology data suggests the average five-year survival rate of CRC is
64.9%, while more than 80% of patients die from the disease in five years in the case of
metastasis (2,3). The tumor heterogeneity of CRC presents significant challenges in designing
effective treatment strategies (4-6). The varying levels of sensitivity that different patient
populations exhibit when receiving cytotoxic drugs can make it difficult to achieve successful
therapies in heterogenic tumors (7).

A few molecular subtyping methods have been developed for CRC, aiming to facilitate
personalized treatment (8-16). Among these, the Consensus Molecular Subtype (CMS) has
been accepted as a standard CRC stratification (8,9). CMS was derived from a cohort of 18
independent gene expression data sets with 4,151 CRC samples, and it has stratified CRC
patients into four classes with distinct molecular features and prognoses (8). Such patient
stratifications that may predict treatment response or prognosis may not be widely applicable,
as the genetic differences within and between CRC tumors are far more complicated, and
further research into more comprehensive descriptions of CRC heterogeneity is still in
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progress (8). Based on CMS classification, deeper investigation into the molecular and
phenotypic distinctions within each subtype has also been carried out. Though these works
have largely contributed to the characterization of CRC heterogeneity, they are however
under powered: the statistical power of detecting subtype biomarkers drops remarkably with
more refined patients stratifications, where the samples attributed to each subtype becomes
smaller. On the other hand, since all the subtypes are defined based on known clinical and/or
biological characteristics, it will inevitably limit our power in identifying alternative
mechanisms that could lead to novel clinical implications. These largely undermine the
practicality of CMS classification in clinical translation. It is thus imperative to develop a
computational framework to comprehensively detect alternative mechanisms in CRC in light
of the inter-tumor heterogeneity, which is not restricted to existing molecular classifications,
such as CMS.

Clearly, tumor heterogeneity has substantially hurdled the computational capability in
mining gene expression data for studying the disease complexities. This is because the gene
regulatory pathways are interwoven to ensure the robustness of the spatial and temporal
regulation of the cell functions, resulting in multi-pathways from one stimulus to a single
target (17,18). Thus, the set of genes used to execute a biological or clinical response may
very likely exist in more than one alternative forms, and cells under different circumstances in
different patient populations may likely choose to select any of them.

In light of the above challenges, we developed a novel computational Pipeline for
Characterizing Alternative Mechanisms (PCAM) to study CRC heterogeneity. PCAM
models alternative forms of biological/clinical response in a large gene expression matrix as
submatrices, wherein the genes in the row subset correspond to the genes used to execute the
response, and the samples in the column subset correspond to the patient circumstances that
such an alternative form is activated and used. And PCAM replies on bi-clustering to identify
such submatrices.

Bi-clustering analysis is a technique to identify gene co-expression structures specific to
certain and sometimes to-be-identified subsets of samples (19,20). The algorithm outputs data
blocks, each containing subset of samples and features in a sub-matrix format, called bi-
clusters (BC). Our recently released bi-clustering tool QUBIC-R enables identification of BCs
in whole-genome transcriptomics data set and has shown competitive performance (21-23).
Bi-clustering algorithms have previously been used to study cancer expression datasets (24-
26), to find clusters of patient samples, where in each cluster, the co-expressed genes may
differ. However, these studies underestimate the complexities of cancer. Consider the
complexity in whole genome transcriptional regulatory programs and the patient
heterogeneity, there should exist many ways that the samples can be clustered. In other words,
the level of similarity for two samples could vary drastically when looking at different
biological pathways. The core algorithm of PCAM, QUBIC-R, could comprehensively
identify all the significant submatrices in a large gene expression matrix, from tens to
thousands of rows/columns. Therefore, in PCAM, one sample could fall into multiple BCs,
allowing one sample to be involved in multiple activated response pathways.

Application of PCAM on a large collection of CRC gene expression datasets produced a
wealth of information. PCAM fully recognizes the large heterogeneity within CRC patients,
some of which may be strongly associated with existing CRC sub-classes defined by various
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clinical and genomic features, while the rest will provide novel alternative ways for us to
better understand the disease. We believe PCAM is suitable for in-depth discovery of
alternative biological mechanisms, by systematic interrogation of the disease in different
clinical settings without compromising the analysis power.

Materials and Methods
Data collection

We have collected transcriptomics data of 1,440 colorectal cancer tissue samples
including one RNA-Seq data from TCGA (The Cancer Genome Atlas) and seven microarray
data sets from GEO (Gene Expression Omnibus) database. The micro-array datasets are
selected with the following criteria: (1) data are collected by the top 10 most frequently
utilized human microarray platforms in GEO database; (2) dataset has more than 50 samples;
and (3) dataset provides certain prognostic or clinical outcome information. We use RPKM
normalized expression value for RNA-Seq data and RMA normalized expression for
microarray data. Detailed data information is provided in Table 1. In this study, DFS (disease
free survival) refers to the duration between the primary treatment for cancer and the absence
of any cancer-related symptoms, and OS (overall survival) represents the time elapsed from
either the date of cancer diagnosis or the initiation of treatment until the patient's survival.
Expression of each gene with multiple probes is assessed by expression of the probe with
highest mean expression value in each data set. Genes of mean expressions at bottom 30%
quantile in each microarray data set, and genes with 0 expression in more than 85% samples
in the RNA-Seq data set are removed from the analysis, in order to control the noise of non-
or lowly- expressed genes.

PCAM-step 1, Discretization: modeling the regulatory states of gene expressions via data
discretization

To capture the regulatory states of a gene, we re-format the continuous expression data
matrix into a larger binary matrix. Specifically, for a gene expression data G, x, with m
genes and n samples, we first find the K+ 1 quantiles of each gene, and then generate a
K X n binary matrix Dg for each gene g: Dg[i,j] = 1 if and only if expression of gene g in

sample j is in the interval of <Qig_1,Q%’>,i =1,...,K. Here Qi represents the a quantile of
K K

K
the expression vector of gene g; and K is a hyper-parameter that controls the granularity of

the discretization, with larger K capturing more potential transcriptional states of the gene.
Obviously, each row of D indicates the samples with same expression patterns of g, and
hence the same transcriptional regulatory states. Then we concatenate all the Dg by row to
form a Km X n binary matrix Dk« and apply our in-house bi-clustering software QUBIC-
R to identify the bi-clusters enriched by 1s in Dk, «n - The rationality of this formulation is
that each of the bi-cluster identified here corresponds to a group of genes, whose expression
patterns are highly consistent over a subset of samples, hence representing a gene co-
expression module specific to the subset of samples. It is worth noting that samples in one bi-
cluster are highly likely to share similar transcriptional regulatory signals controlling the
relevant genes. More discussion about the connection between bi-clusters and gene
expression control are available in Supplementary Method.
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PCAM-step 2, Bi-clustering: Bi-cluster identification in a binary matrix

PCAM uses our recently released bi-clustering R package — QUBIC-R to identify bi-
clusters in discretized matrices, which was optimized based on the core algorithm of QUBIC
for large-scale matrices (21,22). It is noteworthy that the number of rows ranges from 28,754
to 71,940 in this analysis. To the best of our knowledge, QUBIC is the most efficient bi-
clustering method in the public domain that can handle input data of such large scale. The
three parameters are set as follow: consistency level c=0.25, desired output number 0=3000,
and bicluster overlapping rate f'is set at five different levels, 0.85, 0.875, 0.9, 0.95, and 1,
depending on the input data size and number of 1s in each row. Detailed information for bi-
clustering parameters determination and program running for each dataset are available in
Supplementary Method.

By extending Xing Sun et al.’s work (27-29), we derived an analytical formula to
evaluate the significance values for the BCs. For a random binary matrix M with my rows
and n, columns, the probability of being 1 for any element, namely, p(M[i, j] = 1), is
denoted as py. Then the upper bound of the probability that at least one submatrix M; exists
in M could be assessed by the following formula, where M; has m; rows, n,; columns, and
Z, total number of 0, and n; = K:

2
P(3 M, withn; = K) < (ﬂan)no'w“)(’(‘s(nl'”o'ﬁ)(logb ny)f*1, whenn - oo,
0

where
m m 1
a =—0,ﬁ — 1y _ =
Nno ny Po
po=PM[i,j1=1)=1-PM[i,j]=0)forVi,j

p+1 p+1 p+1
s(ny,ng, B) = 5 logy ng — 5 logy, (Tlogb n0> + logy, @

(1+p)logye—plog, B
" B

More details of the derivation of this assessment formula is given in Supplementary Method.
We have tested this significance assessment method on simulated data and compared its
performance with the Chernoff’s bound method (30), which is a popular measure for the
effectiveness of biclustering methods. In detail, we conducted bi-clustering analysis on
randomly generated gene expression matrices with same sizes. The analysis revealed that p
values generated by our methods can more accurately recover the empirical p values
comparing to the Chernoff’s bound method. Particularly, our method offers a good control of
false discover rate for the BCs that are highly enriched by 1s, hence it is more robust in
picking out the significant ones from a large number of BCs identified in a large matrix. This
is particularly key to large—scale matrix. Note that this significance test ensures that only BCs
with sufficient width, height and number of 1°s in it will be selected.

PCAM-step 3, Annotation: gene set enrichment and clinical association analysis
Enrichment analysis: Biological characteristics of each BC is assessed by whether genes
in the BC significantly enrich a biology pathway or gene set. In total, 1,329 canonical gene
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sets including all pathways from KEGG, BIOCARTA, REACTOME databases and 1,472 GO
(Gene Ontology) terms from MsigDB are used in the study (33). The enrichment analysis was
computed by hypergeometric test, and for each BC in each dataset, genes in the BC were
chosen as test set, while all genes in the dataset were chosen as the gene universe. Here
p=0.005 is used as the cutoff for significance.

Single BC association analysis: Association analysis of each BC with clinical features
was conducted using different tests based on the nature of the feature. For discrete clinical
features including CMS classifications and pathological stages, we utilized Fisher’s exact test;
for continuous clinical features except for survival outcome, we compared the feature value
for samples in and out of the BC by Mann Whitney test. p<0.005 was used as significance
cutoff for all these tests. Notably, associations with CMS are conducted for only BCs
containing more than five samples of the CMS class. For survival outcomes including DFS
and OS, we compared the survival for samples in and out of the BC, using log-rank test with
significance cutoff p<0.05.

Multiple BCs association analysis with prognosis: In order to identify the BCs that could
best predict prognosis and drug resistance, we constructed multiple variable Cox-regression
model between patients’ survival and the BCs shown to be associated with survival with a
variable selection procedure. Here, each BC is coded into one binary explanatory vector with
1’s for samples in the BC and 0’s for samples not in the BC. Specifically, we applied forward
and backward stepwise variable selection approach to select the model with lowest AIC
(Akaike information criterion) value by using SURVIVAL and MASS package R.

Multiple BCs associated with drug resistance. Among the BCs that are detected to show
resistance to the chemo-drugs, we posit that each BC suggests one mechanism for the drug
resistance. However, there may exist more than one BCs corresponding to the same
mechanism. In order to identify the most unique set of resistance mechanisms, we use
agglomerative clustering to cluster the BCs of similar resistance mechanisms into groups, and
log-rank test is used to test each BC group with one drug resistance.

To do this, we first defined the distance between any two BCs as D(BCI, BC]-) =1-

|(Samples in BCi)n(Samples in BCj)|
|(Samples in BC;)u(Samples in BC;)|’

based on which an agglomerative clustering was performed.

In each step of the clustering, two clusters X and Y are merged, if (1) samplesinX NY is
significantly associated with resistance to the drug, (2) neither samples in X\Y or Y\X is
significantly associated with the drug resistance. A sample collection is defined as associated
with resistance of a chemo-drug if the following two conditions are both met: (1) among drug
treated samples, the overall survival of samples in the collection is significantly worse than
those not in the collection (p<<0.001); and (2) among samples in the collection, the overall
survival of samples that are drug treated is significantly worse than those not treated (p<0.05).
The agglomeration is stopped when no clusters could be merged.

Analysis of somatic mutations in TCGA data

TCGA COAD level 2 mutation profile of 429 samples predicted by mutect is retrieved
from GDC database. A total of 932 genes with mutations in more than 5% (22/429) samples
are selected. Considering high MSI (MicroSatellite Instability) causes the CRC genomes to be
hyper-mutated, we exclude a majority of the 932 genes whose mutations are highly associated
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with MSI, and 73 gene mutations not associated with MSI are retained for further analysis.
The association of a gene’s mutation and MSI is calculated as the association between gene
mutation and CMS class [—the class known to have high MSI, using Chi-square test (p<0.1).

Correction for multiple hypothesis testing

The p-value cutoff was set for significance test of identified BCs, pathway enrichment of
each BC against 2,801 gene sets, and associations of BC with five types of phenotypic
features. Among these, p-value was adjusted based on Benjamin and Hochberg method (31),
when evaluating the significance of identified BCs, and the cutoff for the adjusted p-value is
set at 0.05. However, we didn’t apply the same criterion for the enrichment and association
analysis. Rather, we set a fixed cut-off as 1e-6 for enrichment analysis, and 0.005 for
associations analysis. The number of tests for enrichment and association analyzes are huge,
which is the number of BCs multiple by the number of gene sets or phenotypes. Clearly, the
current sample size is severely under powered, and we suspect a stringent Benjamin and
Hochberg false discovery rate control would leave few tests to be significant. On the other
hands, since these tests are highly dependent, while the level of dependency is impossible to
track, we believe a lenient p-value cutoff could allow for more novel discoveries, that might
be potentially interesting to experimentalists. Here, the more stringent p-value cutoff for
enrichment analysis than association analysis is to control for higher false discovery rate due
to the large number of gene sets analyzed.

Colon cancer consensus molecular subtype prediction

We applied the R package CMSclassifier to predict the CMS classification of each
sample in the eight data sets (32), by which each sample will be predicted with four CMS
scores representing its similarity to the four CMS classes. One sample is classified to one
subtype if its CMS score of the subtype is larger than 0.5 and a sample is considered as with
multiple-classification if both top two CMS scores are larger than 0.5 and the difference
between the two scores is smaller than 0.1.

Results

We applied PCAM on eight colon cancer transcriptomics data sets with 1,440 samples.
PCAM identified ~4,000 BCs on average in each data set (Table 2). We then evaluated each
BC with its statistical significance, and annotated each BC by the pathways enriched by its
genes, and clinical and prognostic outcomes associated with samples in the BC.

The overall pipeline of PCAM

Figure 1A shows a flowchart of PCAM, describing the analysis procedures we conducted
on the selected datasets. Figure 1B details the bi-clustering analysis procedure. Each gene
expression data set is was discretized such that the original m X n gene expression matrix
with m genes and n samples is expanded to a Km X n binary matrix, as shown in Figure 1B
and detailed in Methods section. Then, submatrices enriched by 1s in the discretized matrix
are identified as BCs heuristically. Here, K is a hyperparameter that controls the granularity
of the discretization. Clearly, the choice of K is very important: small K may blur the
variability of gene expression across samples leading to insufficient capturing of the
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transcriptional regulatory states of the gene, and large K may severely undercut the power of
bi-clustering and result in “narrow” bi-clusters that cover a very small percentage of samples.
In all analyses, K=3 is selected because each gene could potentially be categorized into one of
the three expression states: low/down-regulated, medium, and high/up-regulated. Each
identified BC consists of a subset of samples and a group of genes, in which the genes are
consistently expressed highly, moderately, or lowly by the subset of the samples.

The significant BCs will go through comprehensive annotation phases. PCAM examines
whether genes in a BC enrich a certain pathway or gene set, and samples in a BC significantly
over-represent a certain phenotype. Phenotypes of particular interests in this study include: 29
clinical features/outcomes in supplementary Table 1; 73 cancer-associated gene mutations
(supplementary Table 1); and treatment responses to three chemo therapeutic drugs namely 5-
Fluorouracil, Oxaliplatin, and the combination of 5-Fluorouracil, Oxaliplatin and
Leucovorin. Functional annotation of the genes in each BC are conducted against 1,329
canonical pathways and 1,472 Gene Ontology sets in Msigdb (33).

PCAM was applied to transcriptomic data of 1,440 patient-derived CRC tissue samples
including the TCGA COAD RNA-Seq data set, as well as seven microarray data sets
(GSE14333, GSE17536, GSE29621, GSE33113, GSE37892, GSE383832 and GSE39582)
measured by Affymetrix UA133 plus 2.0 array platform. (See detailed data information in
Method). The computational pipeline of PCAM and key statistics for CRC are all provided in
GitHub (https://github.com/changwn/BC-CRC). It is noteworthy that PCAM can be readily
transplanted for similar analyzes in other disease scenarios. Below, we present the PCAM
annotation results of the BCs identified in CRC datasets.

PCAM annotation of BCs with functional gene sets and phenotypic features

A total of 65,744 BCs were identified in the eight data sets. On average, ~4,000 BCs are
found to be significant in each data set (Table 2) (adjusted p<0.05). Complete gene/sample
information of all the significant BCs, are described in Supplementary Table 2. For each
significant BC, we comprehensively investigated whether: (1) genes in the BC significantly
enrich any of the 2,801 gene sets (p<le-6), called PE BCs; (2) samples in the BC are
significantly associated with any CMS class (p<0.005), called CMS I, 11, III, IV and UC
(unclassified) BCs; (3) samples in the BC are significantly associated with prognostic
outcomes, namely patients’ overall and disease free survival (p<0.005), called Surv BCs or
DFS BCs and OS BCs; (4) samples in the BC are significantly associated with clinical
features such as age, gender, races and pathological stages (p<0.005), called Clin BCs; (5)
samples in the BC are significantly associated with any of the 73 genomic mutation profiles
(p<0.005), called Mut BCs; and (6) samples in the BC are significantly associated with the
response to three selected chemo-drugs (p<0.005), called Drug BCs. The choice of p-value
cutoffs is justified in Methods section. Figure 2A shows the proportion of BCs with
significant findings in (1)-(4), in each of the eight data sets. On average, 71.79%
(22,981/32,008) of the significant BCs can be significantly annotated by at least one of (1)-
(4), with detailed numbers listed in Table 2. Note that (5) and (6) are specific to TCGA-
COAD dataset, as mutation profiles and chemo-drug prognosis data are not available for the
GEO datasets.
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Figure 2B shows at different significance cutoff level (x-axis), the ratio (y-axis) of the
BCs belonging to any one of the four kinds: PE BC, CMS BC, Surv BC, and Clin BC, among
all significant BCs. The x-axis shows different significance levels of cutoff in ascending
order, with leftmost the most stringent cutoff, and the y-axis shows the total number of
annotatable BCs divided by the total number of significant BCs. It is obvious that not all
significant BCs are annotatable, and interestingly, the most significant portion of the BCs are
most likely to be annotatable, as indicated by the almost monotonically decreasing trend of all
the eight curves. For example, we found if we only look at the top 20% of the significant BCs,
then on average more than 80.7% of them are significantly annotatable; and the number drops
to 66.4% if we look at all the significant BCs. This indicates BCs of higher significance tend
to be more biologically/clinically relevant, demonstrating the rationality of our bi-clustering
algorithm. Interestingly, by examining BCs of different significance levels, we found that the
most significant BCs (p<le-200) correspond to biological mechanisms that seem to be
general to the whole population. Particularly, in these BCs, their genes tend to enrich
pathways of low cell type specificity, including cell cycle, cell proliferation, cell death,
biosynthesis and metabolism of nucleic acid, etc (Figure 3); and their samples don’t seem to
be associated with any phenotypic features. The biologically/clinically relevant BCs start to
pop out in the next significance level (1e-200<p<le-50). With higher sample specificity, these
BCs have smaller sizes, and they tend to enrich pathways that are cell type specific, including
immune response, extracellular matrix, O linked and N linked protein amino acid
glycosylation, lipoprotein biosynthesis and lipid metabolism, etc. We have also seen that on
average 44.7% of the DFS BCs and 33.9% of the OS BCs are also CMS BCs, particularly
class I and IV, as shown in Figure 2C, and these BCs serve as possible CMS class specific
prognosis markers. Other DFS BCs and OS BCs are found to be independent of the CMS
class, suggesting the limitation of CMS in personalized prognosis prediction. In fact, the
network complexity of the alternative pathways in cells and the uncertainty for cells to choose
any of the alternative forms to maintain its viability in a perturbed microenvironment, has
posed huge challenges for researchers to capture the heterogeneity of CRC withy any simple
clinical stratifications. On the other hand, the large number of BCs presents us with
comprehensive landscape of the alternative mechanisms, and potentially an increasing
number of novel therapeutic targets.

The general trend of how BCs at different significance levels could be annotated by each
category is shown in Figure 2D. Here, the ratio of PE BCs (left), CMS BCs (middle), and
Surv BCs (right) among all significant BCs for all eight datasets, are shown as a function of
the significance cutoff. While a stringent significance cutoff tend to produce BCs that
significantly enrich biological pathways (PE BCs), this is not the case for CMS BCs or Surv
BCs. Instead, a relatively lenient significance cutoff allows us to find more BCs associated
with CMS and survival. Clearly, these novel patient subgroups contain far richer information
than CMS. Below we will discuss in detail the BCs in relation to CMS. For all the eight data
sets, on average 19.2% (12,641/65,744) of the BCs are CMS BCs. Among these, the
proportion of BCs associated with each class is shown in Figure 2E. On average, the CMS
BCs only cover 23.6%, 15.6%, 30.1% and 24.1% of the CMS I-1V samples, respectively
(shown in Supplementary Figure 2). This suggests that there exists a large number of sample
subgroups, that may not be aligned with CMS. The proportion of samples in the BCs that
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belong to different CMS class is shown in Figure 2F. There seems to be relatively more BCs
aligning with CMS class I and IV, and unclassified, suggesting higher variations in patients of
these classes. Of note, BCs associated with the four CMS classes, especially class III and IV,
contain genes that highly overlap with the putative CMS marker genes; while the CMS
marker genes rarely show up in BCs associated with the unclassified samples, as shown in
Figure 2G. This indicates that the genes we identified in the BCs are indeed coherent with the
marker genes of CMS class. Very few BCs are observed to have associations with the

samples of multiple CMS classes, suggesting the exclusiveness of the CMS classes.

Among all the DFS BCs, 42.9% of them are also over-represented in certain CMS
classes, while this rate is 49.5% for OS (See Figure 2H), on average. Particularly, 53.1% and
40.4% of these CMS-associated BCs belong to CMS 1V class for DFS and OS respectively,
on average. For DFS, the CMS IV associated BCs enrich the following pathways:
glycosaminoglycan biosynthesis and metabolism, UDP glycosyltransferase, lipid,
phospholipid and glycosphingolipid metabolism, mRNA splicing, and steroid hormone
metabolism; while for OS, the pathways are: immune signaling, WNT and MYC signaling,
VEGEF signaling, tumor necrosis, notch signaling, cell proliferation and integrin pathways.
This observation suggests that the extracellular matrix, glycosaminoglycan metabolism, lipid
metabolism are prognostic markers for DFS if the patients are diagnosed with CMS class IV,
while for OS, the markers are related to stromal infiltration. Similarly, we also observed a
large proportion of CMS class I (19.1%) and CMS II associated (17.7%) BCs for DFS BCs,
and CMS associated (25.1%) BCs for OS BCs. The CMS I associated DFS BCs enrich
chemokine signaling, integrin signaling, chondroitin sulfate and sulfur metabolism, O linked
glycosylation, and other immune and inflammation related pathways; CMS II associated DFS
BCs enrich hypoxia response, O linked glycosylation, PI3K signaling, apoptosis, and immune
response pathways; and CMS 11 specific OS associated BCs enrich cell cycle, nucleotide
excision repair, and MYC signaling pathways.

We have also tested the association between BCs and 117 highly frequently mutated and
non-MSI-associated genes in TCGA COAD data. Our analysis identified that 29.1%
(550/1886) of the annotatable BCs and 22.5% (168/746) of the unannotated BCs are
associated with at least one of the gene mutations. Interestingly, by looking at the mutation
profiles of samples in the Mut BCs, a large proportion happen in genes including
TMEM132D, BCLIL, NF-1, SCN10A, PCDHA10, DIP2C, GLI3, TET2, and ARFGEF2,
while only a small number fall into key CRC associated gene including APC, TP53, KRAS,
CTNNBI, and PIK3CA. The Mut BCs majorly enrich pathways of nucleotide and glucose
metabolism and immune responses. Detailed pathway enrichment of the mutation BCs is
provided through GitHub and described in Supplementary Table 2.

A consensus functional annotation of the BC landscape

The cellular system is sufficiently complex and robust that cells are able to deploy a
variety of pathways to respond to perturbations in the microenvironment. Our analysis has
revealed that BCs associated with different phenotypic features exhibit enrichment to distinct
sets of pathways, as reflected by a consensus map that illustrates how different pathways are
“favored” by the cellular systems under different phenotypic states in Figure 3. We call this a
consensus functional annotation of the BC landscape in CRC. The BCs are examined with
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respect to biological pathway enrichment called the PE BCs, and 17 clinical phenotypes,
including five CMS BCs, DFS BCs, DFS BCs that over-represent five CMS classes, OS BCs,
and OS BCs that over-represent five CMS classes. In each setting, genes in the BCs are used
for pathway enrichment, and in total, 43 most significant pathways consistent to all eight
datasets are selected, shown as the left row-wise names of the consensus map in Figure 3. The
right block row-wise names indicate one of the 18 categories the BCs are annotated. The 43
pathways are believed to represent the specific functions associated with the
biological/phenotypic state. For each of the 43 pathways, its average activation level with
regards to the 18 settings, shown as top column-wise names of the map, are calculated over
all datasets. Clearly, the activation score matrix reflects the degree of similarity or
dissimilarity among the 18 settings in relation to the 43 pathways.

This consensus map greatly helps us visualize the distinctions and similarities regarding
different clinical phenotypes, using functional pathways derived from BCs. As shown in
Figure 3, different CMS classes are characterized by different pathways/gene sets, but they
also show certain continuity. CMS I BCs are also enriched by immune signaling pathways
including IL-3, -5, -6, -12, -27, STAT, and interferon gamma signaling pathways, as well as
nucleotide biosynthesis, WNT signaling, lipid metabolism, and glycolysis pathways, which
are markers of CMS II and III (8). Considering that CMS 1 is a subtype with high MSI and
strong immune cell activation (8), our observation clearly suggests that there are distinct
subgroups inside CMS I with different immune activation status that display CMS II-like
characteristics with high expression of epithelial and WNT signaling markers and CMS III-
like characteristics of metabolism dysregulations. More intriguingly, the CMS IV BCs seem
to fall into two categories: one enriched by integrin binding, epithelial cell cycle, cell death,
cell-cell and cell-matrix adhesions pathways, while the other enriched by immune response,
MYC and WNT signaling, and metabolism pathways. The first category show expression of
cancer and stromal cell marker genes, suggesting different levels of stromal cell infiltration in
CMS 1V class. In contrast, the second category enriches marker genes of CMS class I-111,
suggesting that there are subgroups within CMS IV class that resemble CMS I, II or III. CMS
IV is a subtype with high stromal infiltration and angiogenesis (8). Our previous study has
identified a dynamic population of mesenchymal-like cells with similar markers as CMS IV
(34). With these observations, we suspect that CMS IV is a combination of CMS I-I1I but
with higher proportion of stromal cells, hence higher expression of mesenchymal cell markers
and lower rate of somatic mutations. However, it is noteworthy that the CMS IV cancers have
generally poorer prognosis comparing to CMS I-II1, indicating the level of stromal infiltration
may serve as an important prognosis marker for all the CMS classes. We have also seen that a
number of CMS II and IIT BCs show marker genes of other CMS classes. The CMS UC BCs
enrich signaling pathways of MAPK, P38, GPCR, NOTCH, TGF-beta, ARF6 and other
kinase receptors and pathways responsive to micro-environment stresses including ER stress,
oxidative stress, dysregulated immune activation and extracellular matrix malfunction. We
suspect that in response to the activation of specific signaling pathways and distinct micro-
environment stresses, gene expression in these samples are highly volatile, and hence cannot
be classified by CMS. Functional annotation of the genes in the CMS BCs are given in
Supplementary Table 3.
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Lastly, we employed a Cox regression model with variable selection using BCs to
explain patients’ prognosis (see Methods). Our analysis suggested that the DFS predictive
BCs contain genes that enrich pathways including chemokine receptor, O-linked glycan
biosynthesis, apoptosis, mitochondria, cell membrane, MAPK activity, tissue morphogenesis,
VEGFR pathway, lipid homeostasis and cell surface receptor activity; while for OS, the BCs
enrich cell death, cell proliferation, mitosis, glycosaminoglycan synthesis, integrin (possibly
suggests stromal infiltration level), T cell activation, WNT beta-catenin signaling, leukocyte
activation, extracellular region and glucose transport and VEGFR pathway.

PCAM annotations of BCs by alternative drug resistance mechanisms

Chemo-therapy is one of the standard cancer treatment methods that induces cell death of
fast proliferating cancer cells (35). Usually, the administration of cytotoxic drugs may initially
result in tumor shrinkage by destruction of non-resistant subclonal populations within a
heterogeneic tumour, while leaving the resistant clones. With a selective advantage, these
resistant clones can replicate to repopulate the tumour, and the repopulated tumor appears to be
far more aggressive, called acquired drug resistance. The clinical information in TCGA
provides patients’ treatment response to three most prevalent CRC chemo-therapy plans,
including 5-Fluorouracil (5-FU), Oxaliplatin (OXA), and the combination of OXA, 5-FU and
Leucovorin (FOLFOX). In order to delineate the alternative drug resistance mechanism in CRC,
we selected the drug associated BCs, called Drug BCs. A drug BC is defined if the following
two conditions are both met: (1) among drug treated samples, the overall survival of samples
in the BC is significantly worse than those not in the BC (p<0.001); and (2) among samples in
the BC, the overall survival of samples that are drug treated is significantly worse than those
not treated (p<0.05). Certainly, multiple drug BCs may correspond to the same resistance
mechanism. We conducted a log-rank test coupled with agglomerative clustering to cluster the
BCs into groups, each of which may be linked to one drug resistance mechanism (see details in
Methods section). Complete information of Drug BC clusters are given in Supplementary Table
4.

5-FU is one of the most commonly used chemo-drugs in treating CRC (36). We identified
11 5FU BCs, and found that the 11 BCs form four groups, where each group consists of a
number of genes tightly co-expressed, and a number of samples with SFU resistance, as shown
in Figure 4A. The first BC group contains genes enriching known chemo-resistance related
mechanisms, including over expression of CFLAR involved in apoptosis and FAS signaling;
CAPRIN2 related to cell proliferation and cancer multi-drug resistance; DNA excision repair
gene XPA; cell cycle regulating proteins DMTF1 and SYCEZ2; killer cell activating receptor
associated protein TYROBP; taurine metabolism gene CSAD; RNA processing proteins RBM6
and CLK1; DNA binding and transcriptional regulatory genes ZNF638, ZNF169, ZNF26,
ZNF333,ZNF493, ZNF234 and ZNF33A; OGT, TAS2RS5, LTB4R2 related to cellular response
to chemical stimuli. It is noteworthy that a number of genes in this panel including CFLAR,
CAPRIN2, XPA, TYROBP, CLK1, OGT, and LTB4R2 have been previously identified to be
relate to chemo-resistance in other cancer types (37-42). The second group contains genes
including SMAD2, SMAD4, TCF12, ELP2, ATG2B, PIGN, MBP, NCBP3 and PIK3C3, which
enrich pathways of cell cycle, cell metabolism regulation, TGF-beta signaling, PI3K cascade,
autophagy, immune responses and mRNA production regulation. The third BC group contains
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a large number of pseudo genes and also genes that enrich the translation regulation and viral
infection pathways, among which genes TMA7, DEXI and EIF3CL have been previously
reported as related to cisplatin and fluorouracil resistance in bladder and gastric cancer (43,44).
Genes in the fourth group enrich two different groups of ribosome proteins, which are related
to translational control and elongation of peptides.

OXA is a platinum-based antineoplastic chemo-drug used to treat colorectal cancer (36).
We have identified 10 OXA BCs, which were further clustered into three groups as shown in
Figure 4B. The first BC group shows an overlap with the first group in SFU resistance, in that
the genes are also involved in known chemo-resistance related mechanisms including CFLAR,
CAPRIN2, TYROBP, CLK1, OGT and LTB4R2 as well as SYCE2, RBM6, ZNF638, ZNF169,
ZNF26, ZNF333, ZNF493, ZNF234 and ZNF33A, related to cell cycle, mRNA processing and
DNA binding. Meanwhile, this group also contains overly expressed DNA synthesis and cell
cycle genes POLA1, CHFR, and TAF1; mRNA processing gene PCF11; EPHA7 and COL4A3
related to tissue development; and ITPR2 related to calcium dependent signaling transduction.
The second group also contains CFLAR, CAPRIN2, SYCE2, and LTB4R?2 identified in the
first group. In addition, this group also contains cyclin-D binding transcription factor DMTF1;
transcriptional regulation co-factor EP300; GTF2H4 related to RNA polymerase II
transcription initiation; mRNA splicing gene DDX39B; and cell surface channel, transporter or
exchanger genes PKD2, TRAPPC10, SMG1, and TRIO. The third group contains a number of
nuclear ribonucleoproteins and HSPAS, where the latter has been previously identified as a
chemo-resistance biomarker and molecular target in B-lineage acute lymphoblastic leukemia
(45).

FOLFOX is a combinatorial therapy of 5Fu, OXA with Leu--a reduced folic acid based
drug that is used in combination with other chemotherapies to enhance effectiveness or prevent
side effects of the chemo-drugs (36,46). We have identified eight FOLFOX BCs forming four
BC groups (Figure 4C). The first BC group shows strong overlaps with the first group of SFU
chemo-resistance, and the first and second group of OXA chemo-resistance, which includes
CFLAR, CAPRIN2, SYCE2, CSAD, MSH5, XPA, OGT, LTB4R2, ZNF234, ZNF169,
ZNF493, ZNF26, and ZNF333. The second group contains JAK?2, which is involved in multiple
cytokine receptor signaling pathways related to immune response; Rho GTPase Activating
Protein DLC1 (tumor suppressor); cell death related genes NME1, BCL2L15 and RPSS3A;
tissue development regulating gene FOXA2; TCA cycle and respiration electron transport
genes ATP5C1 and COX7A2L; and mitochondrial inner membrane translocase TIMM23. In
addition, this group also overly express ribosome proteins. The third group contains highly
expressed CAPRIN2, cell proliferation regulating gene DMTF1 and mRNA processing proteins
DDX39B and GTF2H4. The fourth group is composed of under expressed microRNA
MIR3911 and antisense mRNA EIF1AX-ASI.

We collected drug screening data on colon cancer cell line to validate our identified
possible resistance mechanism (see methods). To the best of our knowledge, 5-FU is the only
one drug with a wide spectrum of sensitivity measure on cell lines among the three. 5-FU
treatment was performed on 29 and 19 colon cancer cell lines for two independent datasets
(47,48). In each dataset, we computed the correlations between the basal level expressions of
all the genes and cell’s response to 5-FU, measured by IC50 and GIS0 (see Supplementary table
5). IC50 and GI50 are two metrics to evaluate drug treatment efficacy. Distribution of the

13



538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581

correlations for genes in each BC group was compared with the distribution of the correlation
for all genes, which serves as a random background. Density curves of the correlations of each
BC group and the background are shown in Figure 4D and 4E. We have seen that, comparing
to the background, genes in BC group 4 show much higher correlations to cells’ resistance to
5-Fu, and BC groups 1-3 also contain a marked portion of genes that are more correlated with
5-Fu resistance than background. This serves as further validation of our observations of
alternative drug resistance mechanisms. Detailed lists of the validation data are provided in
Supplementary Table 5.

In summary, for each chemo-drug, we have identified a few potential drug alternative
resistance mechanisms, presented in the form of BC groups, and some of which are novel to
CRC. Further experimental validations are needed to confirm these findings. It is noteworthy
that the genes CFLAR, CAPRIN2, SYCE2, OGT, and LTB4R2 are consistently observed as
resistance associated for all the three drugs. Further investigation of the sample composition of
the BC groups suggests that the first BC group of 5-Fu, OXA and the second BC group of
FOLFOX highly overlap, which correspond to poor response of 5-Fu and OXA in CMSI1
samples and FOLFOX in CMS2 samples (Figure 4F). The second BC cluster of OXA and the
third BC cluster of FOLFOX overlap, which corresponds to poor response in CMS1 samples.
In addition, the 5-Fu BC groups 2, 3 and 4 show that patients of CMS III, CMS III/IV and CMS
II/IIT are particularly resistant to 5-Fu; OXA BC groups 2 and 3 show that OXA resistance is
high in CMS II/III and CMS I/IV/IIT; FOLFOX BC groups 1, 3, and 4 show that resistance of
the drug prevalently happen to patients of CMS II/IV, CMS II and CMS IV. Interestingly, 5-Fu
BC group 1 and FOLFOX BC groups 1 and 4 do not seem to show chemo-resistance
mechanisms specific to any CMS classes. Among the identified BC groups, some of them point
to known chemo-resistance mechanisms. Meanwhile, we have seen in 1-2 BC groups for each
drug type there exists novel biomarkers, including overly expressed ribosome genes and under
expressed ncRNAs. Further experimental validations are warranted.

Discussion and Conclusion

It has been widely recognized that cells have multiple alternative pathways to cope with
microenvironmental perturbations, and the uncertainty surrounding the choice of a pathway
under different circumstances contributes to cancer heterogeneity. In the case of drug
resistance, multiple pathways are often altered to create a single off-target resistance
mechanism (49-51). Molecular subtyping methods for CRC, such as CMS, have provided
valuable information in understanding heterogeneity. However, due to the dynamic nature of
the cancer microenvironment, novel alternative pathways can emerge under selective
pressure, that may not have been captured by any disease stratifications. Limiting our
computational analysis to a pre-defined molecular subtyping such as CMS would fail to
capture a large number of alternative mechanisms (and their combinations) which are
employed under different circumstances. Our bi-clustering based PCAM method is powerful
in delineating a comprehensive collection of alternative mechanisms caused by the intrinsic
heterogeneity within patients, and their associations with known phenotypic features. Each
BC potentially contains a coherent gene module present in a subgroup of patients, and the
gene subsets may enrich certain biological pathways that could lead to substantially deeper
biological understanding for molecular stratification of cancer. More importantly, any
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existing sub-grouping methods, such as CMS, could be studied and integrated with the
produced BCs.

We developed PCAM as an unsupervised exploratory approach with several advantages
in identifying gene markers for certain phenotypes: (1) efficiently control false discoveries;
(2) readily detect informative co-expressed prognostic markers; (3) conveniently handle the
intricate relationships among different subtypes, and their interactions with various clinical
outcomes. Of note, deriving prognostic or predictive markers from only BCs with high
statistical significance could decrease the number of independent tests, and the resulted co-
expressed gene modules are more relevant in the disease context. The sample compositions in
each BC provides an easily comprehensible way to understand the underlying subtypes. Our
analysis has clearly demonstrated that PCAM can effectively identify biomarkers for
alternative prognosis related or drug resistance mechanisms from large scale transcriptomics
data. We posit that bi-clustering is more sensitive to locate the biomarkers specific to small
subset of samples and the inference on the multiple genes in the BC can provide more
biologically coherent interpretations.

Nonetheless, we have seen a few more challenges that is beyond this study. Firstly, when
several BCs are highly overlapping, only one will be retained, which may be problematic
when consistency of BCs across different datasets are to be performed. This raises a demand
for effective multi-tasking strategy to find bi-clusters with high consistency through multiple
data sets. Secondly, currently PCAM lacks a predicative model using BCs, which largely
limits its potential in practice of personalized treatment. Thirdly, the BC’s statistical
significance is estimated by an upper bound of p value, which works well for the BCs with
small number of Os in it, but not for BCs with large number of 0s. We fully anticipate future
studies will address these challenges, and increase the feasibility of PCAM in characterizing
the complexity of CRC heterogeneity, and aiding biomarker detection and personalized
medicine.
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Tables:
Table 1. Information of the eight CRC datasets.

Data ID Sample# Drug response Follow-up Platform Normalization
GSE14333 290 No DFS Affy U133 Plus 2.0 RMA
GSE17536 177 No OS/DFS Affy U133 Plus 2.0 RMA
GSE29621 65 No OS/DFS Affy U133 Plus 2.0 RMA
GSE33113 90 No DFS Affy U133 Plus 2.0 RMA
GSE37892 130 No DFS Affy U133 Plus 2.0 RMA
GSE38832 122 No OS/DFS Affy U133 Plus 2.0 RMA
GSE39582 566 No OS/DFS Affy U133 Plus 2.0 RMA
TCGA-COAD 385 Yes oS RNA-Seq RPKM

Table 2. PCAM identified Bi-clustering of the eight CRC data sets
Data ID #BCs #Sig BCs #PE BCs #CMS BCs  #Surv BCs #Clin BCs
GSE14333 9631 6547 2597(39.7%) 2512(38.4%)  448(6.8%) 452(6.9%)
GSE17536 11255 4806 2187(45.5%) 1425(29.7%)  284(5.9%) 63(1.3%)
GSE29621 8167 1758 582(33.1%) 289(16.4%) 73(4.2%) 56(3.2%)
GSE33113 9238 2836 795(28%) 958(33.8%) 136(4.8%) 3(0.1%)
GSE37892 10644 4452 1600(35.9%) 1202(27%) 130(2.9%) 101(2.3%)
GSE38832 5845 4319 2603(60.3%) 1705(39.5%)  335(7.8%) 0(0%)
1068(22.9%
GSE39582 8267 4658 1200(25.8%)  2894(62.1%) ) 1847(39.7%)
TCGA_CO
AD - 2697 2632 1077(40.9%)  743(28.2%) 183(7%) 954(36.2%)
Figure legends:

Figure 1. (A) General analysis pipeline. The analysis was conducted on one TCGA RNA-
seq and seven microarray datasets. BC identification from each high-dimensional data sets
starts with a discretization step followed by a bi-cluster identification step (see details in B).
The identified BCs are further annotated by their associations with biological pathways, CMS
class, and patients clinical and prognostic features. Consensus analysis of the BCs throughout
multiple data sets was further conducted. BCs were further associated with response to
different chemo-drugs for identification of alternative chemo-resistance mechanisms. (B)
Data discretization and bi-clustering procedures. The histogram on the left illustrates the
distribution of a gene’s expression. The gene expression is discretized into three levels,
represented as three 0-1 vectors (D _high, D _moderate and D_low), corresponding to samples
with top (blue), medium (green) and bottom (red) 1/3 expression level of the gene,
respectively. The discretized data are then concatenated that expand an original m X n gene
expression matrix to a 3m X n binary matrix, as shown in the right panel. In the expanded
matrix, rows represent different states of the gene, and columns represent cancer patient
samples. BCs enriched by 1s are further identified by QUBIC-R.
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Figure 2. Statistics of the BC landscape in the eight data sets. (A) Proportions (y-axis) of
PE BCs, CMS BCs, Surv BCs, Clin BCs, and their combinations (Multi) amongst all
identified BCs in each data set (x-axis). (B) Rates of annotatable BCs (y-axis) as a function of
significance cutoff of BCs at different levels (x-axis), most stringent on the left. (C) Among
the DFS (left) and OS (right) BCs, the proportions (y-axis) of different CMS class BCs, in
each dataset (x-axis). (D) Proportions (y-axis) of PE BCs, CMS BCs, Surv BCs amongst all
significant BCs as a function of BC significance cutoff at different quantiles (x-axis), most
stringent on the left. Here, a “0.2” quantile means the top 20% significant BCs. (E)
Proportions of the BCs (y-axis) with significant associations to different CMS classes in each
data set (x-axis). (F) Among the Surv BCs, the proportions of the BCs (y-axis) associated
with CMS types in each data set (x-axis). (G) For BCs associated with different CMS class,
the average overlapping rates (y-axis) between the genes in the BC and CMS marker genes in
each dataset (x-axis). (H) Among all the DFS/OS BCs, the proportion of the BCs (y-axis) that
significantly over-represent a (sub)sample class in each dataset (x-axis). In (C), (E) and (F):
None: CMS unclassified samples; Multi-CMS: a class of samples falling into more than one
CMS classes; Multi-class: a class of BCs significantly associated with more than one CMS
classes. In (H): None: CMS unclassified samples; overall: the BCs associated with survival
throughout all patients, but not with a particular CMS class; Multiple: the BCs associated with
patients’ survival specific to the patients of more than CMS classes.

Figure 3. Functional annotation and concensus map of selected CMS classes and
prognosis associated BCs. 43 pathways, shown on the left, that are most significantly and
consistently over all datasets enriched by genes from PE BCs (or called Top BCs), CMS I, 11,
III, IV, UC BCs, DFS BCs, and OS BCs, shown on the right. The relative level of enrichment
significance for these 43 pathways in the 18 settings, shown on the top, are shown in the color
panels. For example, cell cycle is the pathway consistently enriched by BCs of top
significance across all eight datasets, and the level of enrichment by genes in the BCs
belonging to the 18 settings to cell cycle pathway is quite different, darker blue being the
most significant.

Figure 4. Possible alternative chemo-resistance mechanism depicted by BC groups. (A-
C) Discretized gene expression profile of the BC groups for SFU (A), OXA (B), and
FOLFOX (C). For (A-C), in the left-most panels, blue and white in the heatmap represent 1s
and Os in the discretized data matrix, while red marks the matrix element belonging to a
certain BC group, framed in green dashed line. In the middle panels, the dendrograms show
the results of agglomerative clustering of the resistance associated BCs. Each BC group is
framed by a dashed rectangle. In the right-most panels, the survival curves represent the
comparison of overall survival of the patients in a BC group (red) with those not (black), for
the drug treated patients. (D-E) Distribution of the correlations calculated between
expressions of genes in different groups with drug resistance measure IC50, in CTRP v2
dataset (D) and GI50 in K Bracht et al.’s dataset (E). The x-axis represents the correlations
and the y-axis represents the density. (F) Relationships between chemo-resistance BCs and
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different CMS classes. In columns 1-3, a “cross” sign indicates the drugs to that samples in
the BCs show resistance; in columns 4-6, larger sizes of the sectors indicate higher
significances that the BC’s resistance mechanisms is also exhibited in CMS I (blue), I
(yellow), I1I (green), and IV (red); in columns 7-10, larger sizes of the squares indicate higher
significances that the BC is positively (blue)/negatively (red) enriched by samples in each
CMS class (only p<0.001 are shown); the last column shows for each BC, the type of drug
and BC group it is linked to.

Figures:
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