The expanding Asgard archaea invoke novel insights into

Tree of Life and Eukaryogenesis

Zhichao Zhou', Yang Liu*>>, Karthik Anantharaman', Meng Li>>"
g g

! Department of Bacteriology, University of Wisconsin—-Madison, Madison, W1, 53706, USA

2 Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060,
China.

3 Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study,
Shenzhen University, Shenzhen, 518060, China

tZhichao Zhou and Yang Liu contributed equally to this review and Yang
Liu is the co-first author.

*Correspondence: Meng Li, limeng848@szu.edu.cn



O 0 9 N W B~ W N

I U
W NN = O

Abstract

The division of organisms on the tree of life into either a three-domain (3D) tree or a two-domain
(2D) tree has been disputed for a long-time. Ever since the discovery of Archaea by Carl Woese
in 1977 using 16S rRNA sequence as the evolutionary marker, there has been a great advance in
our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships
between different lineages of living organisms. Here, we present this perspective to summarize the
progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the
latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest
relative of Eukaryotes. Furthermore, we proposed three major directions for future research on
exploring the “next one” closest Eukaryote relative, deciphering the function of archaeal
eukaryotic signature proteins (ESPs) and eukaryogenesis from both genomic and physiological
aspects, and understanding the roles of horizontal gene transfer (HGT), viruses, and mobile

elements in eukaryogenesis.
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The discovery of Archaea and two notions of the Tree of Life

The wide usage of 16S ribosomal RNA as the gold standard for determining the taxonomy of
prokaryotes roots back to the late 1970s. In 1977, Woese and Fox discovered a new kind of
microbial life that is not the same as typical bacteria based on 16S rRNA phylogeny (1). They
initially named them ‘“‘archaebacteria”, representing a new group of life besides Bacteria and
Eukarya. This is the emergence of the notion of a three-domain (3D) tree of life represented by —
Bacteria, Archaea, and Eukarya (Figure 1A). They proposed this name because they believed
“archaebacteria” were ancient, living in extreme environments, and had robust evolutionary
connections to the organisms living on early earth (2). The short name “archaea” was then widely

adopted by the scientific community after this finding was gradually accepted.

Nevertheless, in the late 1980s, there came two theories to deal with the placement of Archaea and
Eukarya. One was the “Eocyte tree” model developed by James Lake (3). Eocytes, a group of
extreme thermophiles without a nucleus, are believed to be the ancestors of Eukaryotes. They
formed the “Karyotes” branch with Eukaryotes, comparable to the other branch composed of
Prokaryotes (Figure 1B) (3, 4). On the contrary, Woese et al. claimed the division of Prokaryotes
into two life domains — Bacteria and Archaea, and posited the Eukaryote branch as an independent
lineage (Figure 1A) (1). Beyond this, other pieces of biochemical evidence were added;
phylogenetic trees based on proteins encoding the information-processing machinery (RNA
polymerases I, II, and III, DNA-dependent RNA polymerase, and ribosomal protein L11, L1, L10,
and L.12) were observed to be congruent with the 3D tree (5-7).

When it comes to the late 1990s and 2000s, the topology of 3D tree was depicted with the following
features (8): 1) the root of three domains could not be determined from rRNA sequences; 2)
Eukarya and Archaea had a common ancestral branch which was different from the Bacterial
branch; 3) Eukarya and Archaea were close but were separated into two branches, in this manner,
Archaea were distantly related to Bacteria, they were not monophyletic as previously thought (9).
The establishment of the 3D tree since the late 1970s soon replaced the old taxonomic clustering
system mainly based on morphological subjects (9). It challenged the simple division of Eukarya
and Prokarya by the existence of a membrane-bounded nucleus. In terms of the evolutionary line

of cell nucleus genetic material, the Eukarya line is as ancient as that of Archaea in the ribosomal
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RNA-based 3D tree (Figure 1A), in this way, Eukarya was posited not directly evolving from

either Archaea or Bacteria.

The Growing diversity of Archaea

Currently, based on NCBI Taxonomy data updated through October 2022, there are 39 phylum-
level archaeal lineages: Euryarchaeota, Thermoplasmatota, Hydrothermarchaeota, TACK group
(n=10), DPANN group (n=11), and Asgard group (n=15). While the classification of Archaea
started from quite a few numbers of lineages. Ever since the establishment of Archaea,
Euryarchaeota and Crenarchaeota were the first two major clades identified in Archaea (10).
Euryarchaeota contains methanogens, anaerobic methanotrophs, and halophilic archaea (10). It
also includes thermophilic Thermococcales which usually are acidophilic and do not contain a cell
wall (10). Thermoplasmatota was first proposed by Rinke et al. (11) in 2019. It contains
Poseidoniia (formerly Marine Group II and III), Thermoplasmata, and DHVE2 group.
Hydrothermarchaeota was formerly the Marine Benthic Group E and was proposed as a new
archaea phylum by Carr et al. (12) in 2019. It is named after its first discovered place of the

continental slope and abyssal sediments (13).

Crenarchaeota was the most abundant component within the TACK group (including
Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota). Crenarchacota mostly
comprises of hyperthermophiles that are discovered in geothermally-heated/acidic hot spring
environments (10). Most of them are obligate anaerobes with either chemoorganotrophic or
chemolithotrophic lifestyles (10). Many of them also live in hot springs, submarine volcanic, or
hydrothermal vent habitats (10). In the middle 1990s, Korarchaeota was added to the tree of life
(Figure 1C) (14). Korarchaeum cryptofilum is the first representative of this phylum (15). It is an
obligate anaerobe with a chemoorganotrophic and hyperthermophilic lifestyle. From its genome,
it is posited to live a fermentative lifestyle using peptides and amino acids (10). Additionally, it
lacks the machinery to perform anaerobic respiration and likely depends on other community
members in the form of a mutual dependence relationship to acquire co-factors (10). It was
assumed that all archaeal lineages were obligate anaerobes and lived in extreme environments until
the discovery of Thaumarchaeota in the 2000s. The first isolated strain of Thaumarchaeota,

Nitrosopumilus maritimus, is a representative of their aerobic lifestyle dependent on oxidizing
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ammonia to nitrite (16). It is adapted to a life that can grow at ammonia concentrations that are
one hundred times lower than those required by bacterial nitrifiers, which explains their
widespread distribution in the open ocean (10). Aigarchaeota was formerly the HWCG I group
and was proposed to be a new phylum by Nunoura et al. (17) in 2010. It contains two candidate
genera — Caldiarchaeum and Calditenuis. The study of the Aigarchaeota genome reveals the first

evidence of eukaryotic ubiquitin system homologues in archaea (17).

The DPANN superphylum of Archaea was first proposed in 2013 (18). The name is an acronym
of'the initials of the first five groups discovered — Diapherotrites, Parvarchaeota, Aenigmarchaeota,
Nanoarchaeota, and Nanohaloarchaeota. While, later on, many other groups were added —
Altiarchaeota, Huberarchaea, Micrarchaeota, Pacearchaeota, Undinarchaeota, and
Woesearchaeota. They are characterized as ultra-small archaea with nanometric cell size. They
have small genome sizes with limited metabolic capabilities. Many members of DPANN depend
on symbiotic/parasitic interactions with other organisms (19, 20). The specific placement of
DPANN lineages on the archaeal tree is somewhat controversial (20). Studies have claimed
DPANN to be a deep-branching archaeal superphylum in the basal position of the archaeal tree
(21, 22). While, others have suggested that DPANN lineages are fast-evolving and have high
mutational rates causing them to be grouped at the base of the phylogenetic tree caused by long-

branch attraction artifacts without being actually related (23).

The emergence and development of Asgard group are described in detail in the following section.
Many new lineages under the four above-mentioned archaeal groups have been discovered and
characterized by the metagenomics method as well as the single-cell genomics, transcriptomics,
proteomics, and enrichment culturing methods. For example, Marsarchaeota (25), Brockarchaeota
(26), Bathyarchaeota (27), Geothermarchaeota (28), and Verstraetearchaeota (29) are newly
discovered phyla within TACK superphylum. Hadesarchaea (30), Methanofastidiosa (31),
Theionarchaea (32), and Nanohaloarchaea (33) are newly discovered classes within Euryarchaeota;
Proteinoplasmatales (34) and Thermoprofundales (35) are newly discovered families within
Euryarchaeota and Thermoplasmatota. The large volume of newly emerging archaea as well as
bacteria has significantly increased the diversity and physiology knowledge while requiring

improved classification and nomenclature. Consequently, a new classification platform, GTDB



107
108
109
110
111
112
113
114
115
116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

database, arises to achieve a better assessment of the diversity of archaea based on genomic
materials (36). Based on the GTDB database (07-RS207), there are 18 phylum-level archaeal
lineages. The archaeal reference phylogenomic unrooted tree containing 3412 representative
species was inferred from 53 conserved marker proteins and decorated with GTDB taxonomy
(Figure S1), showing a scene of flourishing branches and leaves of expanded archaeal lineages.
Meanwhile, their corresponding NCBI taxonomy information was also provided (Supplementary
Data 1). GTDB uses a relative evolutionary divergence (RED) method to delineate high-ranking
microbial taxa, which normalizes the contents of each phylum by quantitative criteria based on
genetic distance (36). Currently, a consensus statement for creating consistent rules for
nomenclature of uncultivated taxa (37) and SeqCode to use genomic sequence of prokaryote as
the nomenclatural type (38) are introduced to the scientific community to solve the issue. The
diversity of archaea to discover, as well as the tools and platforms for classifying and naming

microbial diversity, will continue in the foreseeable future.

Changing the Tree of Life (3D to 2D)

Since the very beginning of the discovery of Archaea, it has been a dispute to solve the
phylogenetic position of Archaea and Eukarya. In the early stage before the 1990s, Woese’s 3D
tree and Lake’s “Eocyte tree” model are the major competing notions. While both trees are quite
limited by the small number of archaeal genomes available at that time. For instance, Korarchaeota
was the third archaeal clade introduced to the 3D tree until the middle 1990s (14). Korarchaeota
branched prior to the bifurcation of Crenarchaeota and Euryarchaeota and even formed a sister
clade to Eukarya (14). On the other hand, Eocyte, which was believed to be a new biological
kingdom in the “Eocyte tree” model, was later proved to be a member in Crenarchaeota (39). In
addition, at that time, Archaea was limitedly represented by methanogens and halobacteria. It
appears that the separation between Eocyte and Archaea at that time was caused by the absence of
the intermediate archaea. Both examples indicate that the discovery of new archaeal clades will
reform our knowledge on the Tree of Life, which leads to a better understanding of the emergence

of eukaryotes.

Along with the increasing diversity of Archaea discovered, the general idea of the placement of

Eukaryotes in the Tree of Life and the relationship between protoeukaryotes and the Archaea ‘stem’
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in the tree has gradually changed. A key issue is where to place the protoeukaryotes or the last
eukaryote common ancestor (LECA) in the phylogenetic tree. It was posited that the notion that
LECA is parallel to the branch that leads to extant archaeal lineages brings out the 3D tree model
(40). While, placing LECA as rooted from the Archaea ‘stem’ gives the 2D tree model (40). Ever
since the 1990s, increasingly available genomic data of microorganisms and advanced
evolutionary reconstruction methods have driven the revival of 2D tree — which is obviously
different from the previous paradigm of dividing life forms simply into Eukaryotes and
Prokaryotes (40) (based on the presence/absence of nucleus), or Karyotes and Prokaryotes (the
“Eocyte tree” model) (3). By analyzing 26 universally conserved protein clusters, one of the first
studies with genomic evidence from newly discovered archaea looked back to the 2D tree theory,
and Eukarya was placed as the sister clade of the TACK superphylum (41) (Figure 1D). This study
suggested that eukaryotes have an archaeal parent that is most likely affiliated with the TACK
superphylum, and that archaeal gene sets found in eukaryotes were vertically inherited from the
archaeal parent. It was once hypothesized that Eukarya was nested within the TACK superphylum
(close to Korachaeota; see Figure 1D topology) or emerging as a sister group adjacent to the TACK

superphylum (41, 42).

In 2015, the Asgard superphylum was discovered and characterized as containing the lineages
bridging Eukarya and Archaea (43-50). Since the early time of placing Thorarchaeota and
Lokiarchaeota as the closest lineages to Eukarya in a 2016 “Tree of Life” (Figure 1E), currently,
there have been 17 Asgard lineages reported (Figure 1F). The reconstruction of the phylogeny of
Asgard, other archaeal lineages, Bacteria, and Eukarya based on concatenated 29 universal
markers supports either the origin of eukaryotes within Asgard superphylum or a deeper branch of
eukaryote ancestor within archaea — both suggest a 2D tree topology for the Tree of Life (45).
Simultaneously, Asgard archaea have been identified to contain a more expanded repertoire of
eukaryotic signature proteins (ESPs) compared to the other archaeal lineages such as the TACK
superphylum. The majority of Asgard ESPs belong to the ‘intracellular trafficking, secretion and
vesicular transport’ and ‘posttranslational modification, protein turnover and chaperones’
functional categories (45). Many of them are from the roadblock superfamily and small GTPases
family — two families that constitute or build the intra-cellular membrane-bound compartments of

eukaryotes (45, 51). Both the phylogeny and ESP evidence support the archaeal origin of
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eukaryotes in that protoeukaryotes are either rooted within Asgard or derived from an even basal

branch within the archaea domain, thus supporting the topology of a 2D tree of life.

Future directions

Unraveling the phylogenetic relationship between Archaea and eukaryotes and identifying

the closest relative of eukaryotes

Phylogenetic advances are needed to determine the placement between archaea and eukaryotes.
The key issue is the usage of the marker set of proteins used for these analyses. Normally, the
disparity of different inter-phylum relationships is rooted in the choice of marker set. By ranking
each marker based on the congruency of supporting the monophyly of well-established archaeal
lineages, Dombrowski et al. provided two sets of markers with reasonable robustness (52).
Meanwhile, the metrics for tree certainty have been developed for identifying the set of single-
copy markers that perform best for predicting phylogeny (53). Collectively, a reasonable approach
to reconciling the distinction of different tree topologies would involve choosing a reliable marker
set. Inclusion of conserved core genes with few or no signal of duplications and horizontal gene
transfers either within or among genomes/lineages would be a possible solution. It is also
suggested to use a set of custom ranked markers that are suitable for the depth of phylogeny that
is intended to be solved (54). Meanwhile, improved/balanced sampling of taxa for better

representation of tree topology and lineage placement is required (53).

Asgard superphylum has been discovered and characterized as the lineages bridging between
Eukarya and Archaea (43-50). Ever since the discovery of the first Asgard archaea lineage of
Lokiarchaeota in 2015 (43), the knowledge of the closest relative of eukaryotes continues to push
forward. In 2017, Zaremba-Niedzwiedzka et al. expanded Asgard superphylum with additional
Thor-, Odin-, and Heimdallarchaeota and further suggested that Asgard archaea were affiliated
with eukaryotes in phylogenomic analyses (44). Later on, many Asgard lineages were discovered
in the recent five years from groups around the world (47, 48, 50, 55). In 2021, Wukongarchaeota
—the Asgard archaea named after Sun Wukong (The Monkey King), a figure in Chinese mythology,
was discovered and believed to be currently the closest relative (45, 48, 54). Based on different

ways to reconstruct the phylogeny of eukaryotes and archaea, there is still some support for placing
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eukaryotes basal within archaea other than within the “expanded Heimdallarchaeota—
Wukongarchaeota” branch (45). Discovery of more close relatives of eukaryotes from diverse
environments continues to take place today. The search for the “next relative” is not only an
attempt to solve or refine the phylogeny puzzle but also provides genomic context that is valuable
to explore eukaryotic features of archaea in the context of the landmark of eukaryogenesis, deduce
the metabolism of Asgard archaea ancestors, and the syntrophic relationship between

protoeukaryotes and hosts (45).

The function of archaeal ESPs and eukaryogenesis

In 2008, it was reported that the cell division machinery (Cdv) of Crenarchaeota has sequence
homology to core domains with eukaryotic endosomal sorting complexes required for transport
(ESCRT) machinery, which suggested common evolutionary origins between Archaea and
Eukarya (56). Later, more reports on ESPs and evidence of phylogenetic reconstruction indicated
the close relationship between Archaea and Eukarya. When Asgard archaea were first uncovered
with four phyla (Loki-, Thor-, Odin-, and Heimdallarchaeota), their genomes encoded the highest
number of ESPs among prokaryotes (43, 44) (Figure 2). The functions of these ESPs mainly
discovered in Asgard archaea can be categorized into trafficking machinery, cytoskeleton,

ubiquitin system, etc. (43, 44, 57).

In 2021, more phylum-level lineages of Asgard archaea were proposed including Ca.
Wukongarchaeota (45). Meanwhile, the increased number of Asgard genomes has resulted in a
major expansion of the set of ESPs (45); more than half of them have not been described previously
(44). The ESCRT machinery as components of the ubiquitin system has one of the most conserved
genomic neighborhoods in the genomes of Asgard archaea, implying signatures of vertical
inheritance of ESCRT machinery from the ancestor (45). The physiological functions of the
ESCRT genes in Asgard archaea have been studied (58-61). Collectively, this posits that these cell
structure and trafficking machinery involving ESPs are functionally active in Asgard archaea,
resembling similar activities in eukaryotic cells. However, phyletic patterns of ESPs in Asgard
archaea are extremely patchy and each largely follows a lineage-specific pattern, indicating that
some ESPs might be acquired through horizontal gene transfer from a protoeukaryote to Asgard

archaea (45).
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On the other hand, understanding the functions and evolutionary mechanisms of these ESPs in
Asgard archaea can further support the bridging role of Asgard archaea in prokaryotes and
eukaryotes. By comparing the enzymatic activity and selectivity from different life domains,
scientists can study the ESPs in the context of evolution, such as a recent study on adenylate kinase
(67). Furthermore, using heterogeneous in vivo expression, recent studies have also demonstrated
the functions of Asgard ESCRT-III and Vsp4, implying they have similar functional potential as
their eukaryotic counterparts (58-61), yet the regulating mechanism of Asgard ESCRT and its role
on eukaryogenesis need further investigations. Meanwhile, as Asgard archaea possess eukaryotic-
like actin-regulating proteins but with much more primitive characters, many actin regulators
might be annotated with unknown functions and have different protein architectures as eukaryotes
(68). Since a sophisticated regulated actin cytoskeleton is the hallmark of eukaryotic cells, in the
future, more efforts can be paid to determine and characterize other actin regulators and to link

actin cytoskeleton to specific functions and structures in model Asgard archaea (68).

The roles of HGT, viruses, and mobile elements in eukaryogenesis

Based on inference from Asgard archaea genome collections, the deduced last Asgard archaea
common ancestor (LACA) can use organic matter, i.e., fatty acids, hydrocarbons, and aromatics
(69). Horizontal gene transfer (HGT) signals can be found in enzymes that are essential for these
metabolisms beyond Asgard archaeal lineages and spanning across various groups in Bacteria and
Archaea (69). Additionally, it is believed that HGT also contributes significantly to the
symbiogenesis process between the archaeal progenitor and proto-mitochondria (69). Gene
repertoire from free-living bacterial cells occupies a considerable size within the eukaryotic cells
by HGTs during the evolution process (70). With more evidence from either cultured or uncultured
Asgard archaea discovered in the future, the syntrophic patterns between archaea and its partner
would be clearer. The next step could be to investigate explicit HGT processes by identifying the
origin of HGT donors along with the evolutionary process. Possibly, Asgard archaea interacted
with bacterial partners in either different partnerships or forms of energy exchange. Furthermore,
indirect HGTs of bacterial genetic components to protoeukaryotes via Asgard archaea may be
possible, resulting in a high functional volume and flexibility for protoeukaryotes to customize

their functional capacity and adapt to the environment. The discovery of HGT content, origin, and
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timeline will help reconstruct the scenario of the partnership during the ancient eukaryogenesis

process.

Three Asgard archaea virus families were discovered to be widely distributed in different marine
sediments — Wyrdviruses, Verdandiviruses, and Skuldviruses (71). Verdandiviruses and
Skuldviruses belong to Realm Duplodnaviria and Varidnaviria, respectively. Although members
from both Duplodnaviria and Varidnaviria can also infect eukaryotes, and have been proposed
present in LACA and the last universal cellular ancestor (71), current results indicate no direct
evidence of these two Asgard archaea virus families infecting eukaryotes. Simultaneously, two
other studies also reported Asgard archaea viruses (72, 73). They reported more eukaryotic virus
features found in Asgard archaea viruses, i.e., ~1-5% genes associated with eukaryotic
nucleocytoplasmic large DNA viruses and being able to hijack host ubiquitin systems. These
newly discovered unique archaeal and eukaryotic virus hybridized features for Asgard archaea
viruses consistently reflect the evolutionary position of their hosts. More research targeting viruses
is encouraged to complement current findings due to little/no overlap of the currently discovered
Asgard archaeal virome pools and their globally ubiquitous distribution. As Asgard archaea viruses
are evolving along with the evolution of Asgard hosts, it remains unknown whether viruses have
played promotive roles in the evolution of Asgard archaea or in eukaryogenesis. Furthermore, it is
also intriguing to find whether there are any extant eukaryote viruses directly evolving from

Asgard archaea viruses.

Viruses and mobile genetic elements (without viral feature proteins) constitute the mobilomes of
Asgard archaea (71, 74). They can still reflect remnant HGT signals that descend from ancient
Asgard archaea during eukaryogenesis to extant Asgard archaeal genomes (74). Expanded
mobilomes in the future will help us better trace the evolutionary history of HGT events before or
after eukaryogenesis. According to the conceptualized framework of “Heimdall nucleation—
decentralized innovation—hierarchical import”
(HDH) model for explaining eukaryogenesis (74), the step of forming fully-fledged
protoeukaryotes involved domain-specific hierarchical HGTs indirectly through Asgard archaea
lineages and/or other related lineages (such as TACK superphylum or other transitionary lineages

between Asgard and TACK). The expanded genomic contents of Asgard and related archaea
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lineages will facilitate our understanding of the process of formation of eukaryotic complexity
from its archaeal ancestor. Different Asgard archaeal lineages have considerably small overlaps
on ESP pools, and their ESP pool volume seems to be not associated with their phylogenetic
distance to eukaryotes. It is intriguing to examine why there is a high mobility of ESPs and what
factors govern the distribution of ESPs among the Asgard archaeal lineages. Furthermore, since
during evolutionary history, protoeukaryotes gained their functional complexity significantly
through HGT and mobilomes from donors, it is unknown how the cells determine the fates of
imported genes and orchestrate functional patches into essential, organized functions. Many
aspects of this conceptualized framework require attention in the future. The newly discovered

content and proposed hypotheses will help us better understand eukaryogenesis.
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Figure caption
Figure 1. Progress in the “tree of life” as increasing archaeal lineages having been identified

in recent decades. A) The unrooted Woese 3D tree first conceived in 1977 by Carl Woese group
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(1) B) The unrooted Eocyte 2D tree drawn in 1988 by James Lake (4), C) The Korarchaeota “add-
on” tree constructed in 1996 by Barnes, Pace and others (14), D) The TACK “add-on” tree
constructed in 2011 by Guy and Ettema (41), E) The Tree of Life constructed in 2016 by Hug,
Banfield and others (75), F) The Asgard “add-on” tree constructed in 2022 in this study. This tree
includes all the 17 Asgard lineages to have been discovered since 2015. The shape of this tree is
derived from Fig. 1 by Zhou et al., 2018 (40). All these trees are conceptualized trees based on the
original topology. The branching order of Asgard lineages within the Asgard “add-on” tree was

not represented for simplicity.

Figure 2. Eukaryotic signature proteins present in major archaeal groups. This figure
indicates the emergence of homologues of eukaryotic signature proteins (ESPs) along the
schematic tree of Archaea (referred to Eme et al., 2017 (57)). Note: the dash-lined illustration of
nuclei and endoplasmic reticulum currently have not been proven to be present in the common

ancestor of eukaryotes and Asgard archaea.

Figure S1. The archaeal reference phylogenomic unrooted tree. This tree contained 3412
representative species, was inferred from 53 conserved marker proteins and was decorated with
GTDB taxonomy at the phylum level. The raw tree file was obtained from
“https://data.ace.uq.edu.au/public/gtdb/data/releases/release207/207.0/ar53 r207.tree”. The

visualization of the tree is achieved using ChiPlot (https://www.chiplot.online/).

Supplementary Data 1. GTDB and NCBI taxonomy information (phylum-level) about 3412
archaeal representative species in GTDB r207. The missing NCBI taxonomy information of
minor species in this table is due to that their entries have been suppressed by NCBI, but are still

kept in GTDB database (07-RS207).
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