

The expanding Asgard archaea invoke novel insights into Tree of Life and Eukaryogenesis

Zhichao Zhou^{1,†}, Yang Liu^{2,3,†}, Karthik Anantharaman¹, Meng Li^{2,3,*}

¹ Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, 53706, USA

² Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.

³ Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China

[†]Zhichao Zhou and Yang Liu contributed equally to this review and Yang Liu is the co-first author.

*Correspondence: Meng Li, limeng848@szu.edu.cn

1 **Abstract**

2 The division of organisms on the tree of life into either a three-domain (3D) tree or a two-domain
3 (2D) tree has been disputed for a long-time. Ever since the discovery of Archaea by Carl Woese
4 in 1977 using 16S rRNA sequence as the evolutionary marker, there has been a great advance in
5 our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships
6 between different lineages of living organisms. Here, we present this perspective to summarize the
7 progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the
8 latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest
9 relative of Eukaryotes. Furthermore, we proposed three major directions for future research on
10 exploring the “next one” closest Eukaryote relative, deciphering the function of archaeal
11 eukaryotic signature proteins (ESPs) and eukaryogenesis from both genomic and physiological
12 aspects, and understanding the roles of horizontal gene transfer (HGT), viruses, and mobile
13 elements in eukaryogenesis.

14 **The discovery of Archaea and two notions of the Tree of Life**

15 The wide usage of 16S ribosomal RNA as the gold standard for determining the taxonomy of
16 prokaryotes roots back to the late 1970s. In 1977, Woese and Fox discovered a new kind of
17 microbial life that is not the same as typical bacteria based on 16S rRNA phylogeny (1). They
18 initially named them “archaeabacteria”, representing a new group of life besides Bacteria and
19 Eukarya. This is the emergence of the notion of a three-domain (3D) tree of life represented by –
20 Bacteria, Archaea, and Eukarya ([Figure 1A](#)). They proposed this name because they believed
21 “archaeabacteria” were ancient, living in extreme environments, and had robust evolutionary
22 connections to the organisms living on early earth (2). The short name “archaea” was then widely
23 adopted by the scientific community after this finding was gradually accepted.

24

25 Nevertheless, in the late 1980s, there came two theories to deal with the placement of Archaea and
26 Eukarya. One was the “Eocyte tree” model developed by James Lake (3). Eocytes, a group of
27 extreme thermophiles without a nucleus, are believed to be the ancestors of Eukaryotes. They
28 formed the “Karyotes” branch with Eukaryotes, comparable to the other branch composed of
29 Prokaryotes ([Figure 1B](#)) (3, 4). On the contrary, Woese *et al.* claimed the division of Prokaryotes
30 into two life domains – Bacteria and Archaea, and posited the Eukaryote branch as an independent
31 lineage ([Figure 1A](#)) (1). Beyond this, other pieces of biochemical evidence were added;
32 phylogenetic trees based on proteins encoding the information-processing machinery (RNA
33 polymerases I, II, and III, DNA-dependent RNA polymerase, and ribosomal protein L11, L1, L10,
34 and L12) were observed to be congruent with the 3D tree (5-7).

35

36 When it comes to the late 1990s and 2000s, the topology of 3D tree was depicted with the following
37 features (8): 1) the root of three domains could not be determined from rRNA sequences; 2)
38 Eukarya and Archaea had a common ancestral branch which was different from the Bacterial
39 branch; 3) Eukarya and Archaea were close but were separated into two branches, in this manner,
40 Archaea were distantly related to Bacteria, they were not monophyletic as previously thought (9).
41 The establishment of the 3D tree since the late 1970s soon replaced the old taxonomic clustering
42 system mainly based on morphological subjects (9). It challenged the simple division of Eukarya
43 and Prokarya by the existence of a membrane-bounded nucleus. In terms of the evolutionary line
44 of cell nucleus genetic material, the Eukarya line is as ancient as that of Archaea in the ribosomal

45 RNA-based 3D tree ([Figure 1A](#)), in this way, Eukarya was posited not directly evolving from
46 either Archaea or Bacteria.

47

48 **The Growing diversity of Archaea**

49 Currently, based on NCBI Taxonomy data updated through October 2022, there are 39 phylum-
50 level archaeal lineages: Euryarchaeota, Thermoplasmatota, Hydrothermarchaeota, TACK group
51 ($n=10$), DPANN group ($n=11$), and Asgard group ($n=15$). While the classification of Archaea
52 started from quite a few numbers of lineages. Ever since the establishment of Archaea,
53 Euryarchaeota and Crenarchaeota were the first two major clades identified in Archaea (10).
54 Euryarchaeota contains methanogens, anaerobic methanotrophs, and halophilic archaea (10). It
55 also includes thermophilic *Thermococcales* which usually are acidophilic and do not contain a cell
56 wall (10). Thermoplasmatota was first proposed by Rinke et al. (11) in 2019. It contains
57 Poseidonia (formerly Marine Group II and III), Thermoplasmata, and DHVE2 group.
58 Hydrothermarchaeota was formerly the Marine Benthic Group E and was proposed as a new
59 archaea phylum by Carr et al. (12) in 2019. It is named after its first discovered place of the
60 continental slope and abyssal sediments (13).

61

62 Crenarchaeota was the most abundant component within the TACK group (including
63 Thaumarchaeota, Aigarchaeota, Crenarchaeota, and Korarchaeota). Crenarchaeota mostly
64 comprises of hyperthermophiles that are discovered in geothermally-heated/acidic hot spring
65 environments (10). Most of them are obligate anaerobes with either chemoorganotrophic or
66 chemolithotrophic lifestyles (10). Many of them also live in hot springs, submarine volcanic, or
67 hydrothermal vent habitats (10). In the middle 1990s, Korarchaeota was added to the tree of life
68 ([Figure 1C](#)) (14). *Korarchaeum cryptofilum* is the first representative of this phylum (15). It is an
69 obligate anaerobe with a chemoorganotrophic and hyperthermophilic lifestyle. From its genome,
70 it is posited to live a fermentative lifestyle using peptides and amino acids (10). Additionally, it
71 lacks the machinery to perform anaerobic respiration and likely depends on other community
72 members in the form of a mutual dependence relationship to acquire co-factors (10). It was
73 assumed that all archaeal lineages were obligate anaerobes and lived in extreme environments until
74 the discovery of Thaumarchaeota in the 2000s. The first isolated strain of Thaumarchaeota,
75 *Nitrosopumilus maritimus*, is a representative of their aerobic lifestyle dependent on oxidizing

76 ammonia to nitrite (16). It is adapted to a life that can grow at ammonia concentrations that are
77 one hundred times lower than those required by bacterial nitrifiers, which explains their
78 widespread distribution in the open ocean (10). Aigarchaeota was formerly the HWCG I group
79 and was proposed to be a new phylum by Nunoura et al. (17) in 2010. It contains two candidate
80 genera – *Caldiarchaeum* and *Calditenuis*. The study of the Aigarchaeota genome reveals the first
81 evidence of eukaryotic ubiquitin system homologues in archaea (17).

82

83 The DPANN superphylum of Archaea was first proposed in 2013 (18). The name is an acronym
84 of the initials of the first five groups discovered – Diapherotrites, Parvarchaeota, Aenigmarchaeota,
85 Nanoarchaeota, and Nanohaloarchaeota. While, later on, many other groups were added –
86 Altiarchaeota, Huberarchaea, Micrarchaeota, Pacearchaeota, Undinarchaeota, and
87 Woesearchaeota. They are characterized as ultra-small archaea with nanometric cell size. They
88 have small genome sizes with limited metabolic capabilities. Many members of DPANN depend
89 on symbiotic/parasitic interactions with other organisms (19, 20). The specific placement of
90 DPANN lineages on the archaeal tree is somewhat controversial (20). Studies have claimed
91 DPANN to be a deep-branching archaeal superphylum in the basal position of the archaeal tree
92 (21, 22). While, others have suggested that DPANN lineages are fast-evolving and have high
93 mutational rates causing them to be grouped at the base of the phylogenetic tree caused by long-
94 branch attraction artifacts without being actually related (23).

95

96 The emergence and development of Asgard group are described in detail in the following section.
97 Many new lineages under the four above-mentioned archaeal groups have been discovered and
98 characterized by the metagenomics method as well as the single-cell genomics, transcriptomics,
99 proteomics, and enrichment culturing methods. For example, Marsarchaeota (25), Brockarchaeota
100 (26), Bathyarchaeota (27), Geothermarchaeota (28), and Verstraetarchaeota (29) are newly
101 discovered phyla within TACK superphylum. Hadesarchaea (30), Methanofastidiosa (31),
102 Theionarchaea (32), and Nanohaloarchaea (33) are newly discovered classes within Euryarchaeota;
103 Proteinoplasmatales (34) and Thermopropfungales (35) are newly discovered families within
104 Euryarchaeota and Thermoplasmata. The large volume of newly emerging archaea as well as
105 bacteria has significantly increased the diversity and physiology knowledge while requiring
106 improved classification and nomenclature. Consequently, a new classification platform, GTDB

107 database, arises to achieve a better assessment of the diversity of archaea based on genomic
108 materials (36). Based on the GTDB database (07-RS207), there are 18 phylum-level archaeal
109 lineages. The archaeal reference phylogenomic unrooted tree containing 3412 representative
110 species was inferred from 53 conserved marker proteins and decorated with GTDB taxonomy
111 (Figure S1), showing a scene of flourishing branches and leaves of expanded archaeal lineages.
112 Meanwhile, their corresponding NCBI taxonomy information was also provided (Supplementary
113 Data 1). GTDB uses a relative evolutionary divergence (RED) method to delineate high-ranking
114 microbial taxa, which normalizes the contents of each phylum by quantitative criteria based on
115 genetic distance (36). Currently, a consensus statement for creating consistent rules for
116 nomenclature of uncultivated taxa (37) and SeqCode to use genomic sequence of prokaryote as
117 the nomenclatural type (38) are introduced to the scientific community to solve the issue. The
118 diversity of archaea to discover, as well as the tools and platforms for classifying and naming
119 microbial diversity, will continue in the foreseeable future.

120

121 **Changing the Tree of Life (3D to 2D)**

122 Since the very beginning of the discovery of Archaea, it has been a dispute to solve the
123 phylogenetic position of Archaea and Eukarya. In the early stage before the 1990s, Woese's 3D
124 tree and Lake's "Eocyte tree" model are the major competing notions. While both trees are quite
125 limited by the small number of archaeal genomes available at that time. For instance, Korarchaeota
126 was the third archaeal clade introduced to the 3D tree until the middle 1990s (14). Korarchaeota
127 branched prior to the bifurcation of Crenarchaeota and Euryarchaeota and even formed a sister
128 clade to Eukarya (14). On the other hand, Eocyte, which was believed to be a new biological
129 kingdom in the "Eocyte tree" model, was later proved to be a member in Crenarchaeota (39). In
130 addition, at that time, Archaea was limitedly represented by methanogens and halobacteria. It
131 appears that the separation between Eocyte and Archaea at that time was caused by the absence of
132 the intermediate archaea. Both examples indicate that the discovery of new archaeal clades will
133 reform our knowledge on the Tree of Life, which leads to a better understanding of the emergence
134 of eukaryotes.

135

136 Along with the increasing diversity of Archaea discovered, the general idea of the placement of
137 Eukaryotes in the Tree of Life and the relationship between protoeukaryotes and the Archaea 'stem'

138 in the tree has gradually changed. A key issue is where to place the protoeukaryotes or the last
139 eukaryote common ancestor (LECA) in the phylogenetic tree. It was posited that the notion that
140 LECA is parallel to the branch that leads to extant archaeal lineages brings out the 3D tree model
141 (40). While, placing LECA as rooted from the Archaea ‘stem’ gives the 2D tree model (40). Ever
142 since the 1990s, increasingly available genomic data of microorganisms and advanced
143 evolutionary reconstruction methods have driven the revival of 2D tree – which is obviously
144 different from the previous paradigm of dividing life forms simply into Eukaryotes and
145 Prokaryotes (40) (based on the presence/absence of nucleus), or Karyotes and Prokaryotes (the
146 “Eocyte tree” model) (3). By analyzing 26 universally conserved protein clusters, one of the first
147 studies with genomic evidence from newly discovered archaea looked back to the 2D tree theory,
148 and Eukarya was placed as the sister clade of the TACK superphylum (41) ([Figure 1D](#)). This study
149 suggested that eukaryotes have an archaeal parent that is most likely affiliated with the TACK
150 superphylum, and that archaeal gene sets found in eukaryotes were vertically inherited from the
151 archaeal parent. It was once hypothesized that Eukarya was nested within the TACK superphylum
152 (close to Korarchaeota; see [Figure 1D](#) topology) or emerging as a sister group adjacent to the TACK
153 superphylum (41, 42).

154

155 In 2015, the Asgard superphylum was discovered and characterized as containing the lineages
156 bridging Eukarya and Archaea (43-50). Since the early time of placing Thorarchaeota and
157 Lokiarchaeota as the closest lineages to Eukarya in a 2016 “Tree of Life” ([Figure 1E](#)), currently,
158 there have been 17 Asgard lineages reported ([Figure 1F](#)). The reconstruction of the phylogeny of
159 Asgard, other archaeal lineages, Bacteria, and Eukarya based on concatenated 29 universal
160 markers supports either the origin of eukaryotes within Asgard superphylum or a deeper branch of
161 eukaryote ancestor within archaea – both suggest a 2D tree topology for the Tree of Life (45).
162 Simultaneously, Asgard archaea have been identified to contain a more expanded repertoire of
163 eukaryotic signature proteins (ESPs) compared to the other archaeal lineages such as the TACK
164 superphylum. The majority of Asgard ESPs belong to the ‘intracellular trafficking, secretion and
165 vesicular transport’ and ‘posttranslational modification, protein turnover and chaperones’
166 functional categories (45). Many of them are from the roadblock superfamily and small GTPases
167 family – two families that constitute or build the intra-cellular membrane-bound compartments of
168 eukaryotes (45, 51). Both the phylogeny and ESP evidence support the archaeal origin of

169 eukaryotes in that protoeukaryotes are either rooted within Asgard or derived from an even basal
170 branch within the archaea domain, thus supporting the topology of a 2D tree of life.

171

172 **Future directions**

173 **Unraveling the phylogenetic relationship between Archaea and eukaryotes and identifying 174 the closest relative of eukaryotes**

175 Phylogenetic advances are needed to determine the placement between archaea and eukaryotes.
176 The key issue is the usage of the marker set of proteins used for these analyses. Normally, the
177 disparity of different inter-phylum relationships is rooted in the choice of marker set. By ranking
178 each marker based on the congruency of supporting the monophyly of well-established archaeal
179 lineages, Dombrowski *et al.* provided two sets of markers with reasonable robustness (52).
180 Meanwhile, the metrics for tree certainty have been developed for identifying the set of single-
181 copy markers that perform best for predicting phylogeny (53). Collectively, a reasonable approach
182 to reconciling the distinction of different tree topologies would involve choosing a reliable marker
183 set. Inclusion of conserved core genes with few or no signal of duplications and horizontal gene
184 transfers either within or among genomes/lineages would be a possible solution. It is also
185 suggested to use a set of custom ranked markers that are suitable for the depth of phylogeny that
186 is intended to be solved (54). Meanwhile, improved/balanced sampling of taxa for better
187 representation of tree topology and lineage placement is required (53).

188

189 Asgard superphylum has been discovered and characterized as the lineages bridging between
190 Eukarya and Archaea (43-50). Ever since the discovery of the first Asgard archaea lineage of
191 Lokiarchaeota in 2015 (43), the knowledge of the closest relative of eukaryotes continues to push
192 forward. In 2017, Zaremba-Niedzwiedzka *et al.* expanded Asgard superphylum with additional
193 Thor-, Odin-, and Heimdallarchaeota and further suggested that Asgard archaea were affiliated
194 with eukaryotes in phylogenomic analyses (44). Later on, many Asgard lineages were discovered
195 in the recent five years from groups around the world (47, 48, 50, 55). In 2021, Wukongarchaeota
196 – the Asgard archaea named after Sun Wukong (The Monkey King), a figure in Chinese mythology,
197 was discovered and believed to be currently the closest relative (45, 48, 54). Based on different
198 ways to reconstruct the phylogeny of eukaryotes and archaea, there is still some support for placing

199 eukaryotes basal within archaea other than within the “expanded Heimdallarchaeota–
200 Wukongarchaeota” branch (45). Discovery of more close relatives of eukaryotes from diverse
201 environments continues to take place today. The search for the “next relative” is not only an
202 attempt to solve or refine the phylogeny puzzle but also provides genomic context that is valuable
203 to explore eukaryotic features of archaea in the context of the landmark of eukaryogenesis, deduce
204 the metabolism of Asgard archaea ancestors, and the syntrophic relationship between
205 protoeukaryotes and hosts (45).

206

207 **The function of archaeal ESPs and eukaryogenesis**

208 In 2008, it was reported that the cell division machinery (Cdv) of Crenarchaeota has sequence
209 homology to core domains with eukaryotic endosomal sorting complexes required for transport
210 (ESCRT) machinery, which suggested common evolutionary origins between Archaea and
211 Eukarya (56). Later, more reports on ESPs and evidence of phylogenetic reconstruction indicated
212 the close relationship between Archaea and Eukarya. When Asgard archaea were first uncovered
213 with four phyla (Loki-, Thor-, Odin-, and Heimdallarchaeota), their genomes encoded the highest
214 number of ESPs among prokaryotes (43, 44) ([Figure 2](#)). The functions of these ESPs mainly
215 discovered in Asgard archaea can be categorized into trafficking machinery, cytoskeleton,
216 ubiquitin system, etc. (43, 44, 57).

217

218 In 2021, more phylum-level lineages of Asgard archaea were proposed including *Ca.*
219 Wukongarchaeota (45). Meanwhile, the increased number of Asgard genomes has resulted in a
220 major expansion of the set of ESPs (45); more than half of them have not been described previously
221 (44). The ESCRT machinery as components of the ubiquitin system has one of the most conserved
222 genomic neighborhoods in the genomes of Asgard archaea, implying signatures of vertical
223 inheritance of ESCRT machinery from the ancestor (45). The physiological functions of the
224 ESCRT genes in Asgard archaea have been studied (58–61). Collectively, this posits that these cell
225 structure and trafficking machinery involving ESPs are functionally active in Asgard archaea,
226 resembling similar activities in eukaryotic cells. However, phyletic patterns of ESPs in Asgard
227 archaea are extremely patchy and each largely follows a lineage-specific pattern, indicating that
228 some ESPs might be acquired through horizontal gene transfer from a protoeukaryote to Asgard
229 archaea (45).

230

231 On the other hand, understanding the functions and evolutionary mechanisms of these ESPs in
232 Asgard archaea can further support the bridging role of Asgard archaea in prokaryotes and
233 eukaryotes. By comparing the enzymatic activity and selectivity from different life domains,
234 scientists can study the ESPs in the context of evolution, such as a recent study on adenylate kinase
235 (67). Furthermore, using heterogeneous *in vivo* expression, recent studies have also demonstrated
236 the functions of Asgard ESCRT-III and Vsp4, implying they have similar functional potential as
237 their eukaryotic counterparts (58-61), yet the regulating mechanism of Asgard ESCRT and its role
238 on eukaryogenesis need further investigations. Meanwhile, as Asgard archaea possess eukaryotic-
239 like actin-regulating proteins but with much more primitive characters, many actin regulators
240 might be annotated with unknown functions and have different protein architectures as eukaryotes
241 (68). Since a sophisticated regulated actin cytoskeleton is the hallmark of eukaryotic cells, in the
242 future, more efforts can be paid to determine and characterize other actin regulators and to link
243 actin cytoskeleton to specific functions and structures in model Asgard archaea (68).

244

245 **The roles of HGT, viruses, and mobile elements in eukaryogenesis**

246 Based on inference from Asgard archaea genome collections, the deduced last Asgard archaea
247 common ancestor (LACA) can use organic matter, i.e., fatty acids, hydrocarbons, and aromatics
248 (69). Horizontal gene transfer (HGT) signals can be found in enzymes that are essential for these
249 metabolisms beyond Asgard archaeal lineages and spanning across various groups in Bacteria and
250 Archaea (69). Additionally, it is believed that HGT also contributes significantly to the
251 symbiogenesis process between the archaeal progenitor and proto-mitochondria (69). Gene
252 repertoire from free-living bacterial cells occupies a considerable size within the eukaryotic cells
253 by HGTs during the evolution process (70). With more evidence from either cultured or uncultured
254 Asgard archaea discovered in the future, the syntrophic patterns between archaea and its partner
255 would be clearer. The next step could be to investigate explicit HGT processes by identifying the
256 origin of HGT donors along with the evolutionary process. Possibly, Asgard archaea interacted
257 with bacterial partners in either different partnerships or forms of energy exchange. Furthermore,
258 indirect HGTs of bacterial genetic components to protoeukaryotes via Asgard archaea may be
259 possible, resulting in a high functional volume and flexibility for protoeukaryotes to customize
260 their functional capacity and adapt to the environment. The discovery of HGT content, origin, and

261 timeline will help reconstruct the scenario of the partnership during the ancient eukaryogenesis
262 process.

263

264 Three Asgard archaea virus families were discovered to be widely distributed in different marine
265 sediments – Wyrdviruses, Verdandiviruses, and Skuldviruses (71). Verdandiviruses and
266 Skuldviruses belong to Realm Duplodnaviria and Varidnaviria, respectively. Although members
267 from both Duplodnaviria and Varidnaviria can also infect eukaryotes, and have been proposed
268 present in LACA and the last universal cellular ancestor (71), current results indicate no direct
269 evidence of these two Asgard archaea virus families infecting eukaryotes. Simultaneously, two
270 other studies also reported Asgard archaea viruses (72, 73). They reported more eukaryotic virus
271 features found in Asgard archaea viruses, i.e., ~1-5% genes associated with eukaryotic
272 nucleocytoplasmic large DNA viruses and being able to hijack host ubiquitin systems. These
273 newly discovered unique archaeal and eukaryotic virus hybridized features for Asgard archaea
274 viruses consistently reflect the evolutionary position of their hosts. More research targeting viruses
275 is encouraged to complement current findings due to little/no overlap of the currently discovered
276 Asgard archaeal virome pools and their globally ubiquitous distribution. As Asgard archaea viruses
277 are evolving along with the evolution of Asgard hosts, it remains unknown whether viruses have
278 played promotive roles in the evolution of Asgard archaea or in eukaryogenesis. Furthermore, it is
279 also intriguing to find whether there are any extant eukaryote viruses directly evolving from
280 Asgard archaea viruses.

281

282 Viruses and mobile genetic elements (without viral feature proteins) constitute the mobilomes of
283 Asgard archaea (71, 74). They can still reflect remnant HGT signals that descend from ancient
284 Asgard archaea during eukaryogenesis to extant Asgard archaeal genomes (74). Expanded
285 mobilomes in the future will help us better trace the evolutionary history of HGT events before or
286 after eukaryogenesis. According to the conceptualized framework of “Heimdall nucleation–
287 decentralized innovation–hierarchical import”
288 (HDH) model for explaining eukaryogenesis (74), the step of forming fully-fledged
289 protoeukaryotes involved domain-specific hierarchical HGTs indirectly through Asgard archaea
290 lineages and/or other related lineages (such as TACK superphylum or other transitional lineages
291 between Asgard and TACK). The expanded genomic contents of Asgard and related archaea

292 lineages will facilitate our understanding of the process of formation of eukaryotic complexity
293 from its archaeal ancestor. Different Asgard archaeal lineages have considerably small overlaps
294 on ESP pools, and their ESP pool volume seems to be not associated with their phylogenetic
295 distance to eukaryotes. It is intriguing to examine why there is a high mobility of ESPs and what
296 factors govern the distribution of ESPs among the Asgard archaeal lineages. Furthermore, since
297 during evolutionary history, protoeukaryotes gained their functional complexity significantly
298 through HGT and mobilomes from donors, it is unknown how the cells determine the fates of
299 imported genes and orchestrate functional patches into essential, organized functions. Many
300 aspects of this conceptualized framework require attention in the future. The newly discovered
301 content and proposed hypotheses will help us better understand eukaryogenesis.

302

303 **Acknowledgments**

304 This work was supported by grants from the National Natural Science Foundation of China
305 (92251306, 32225003, 31970105, 92051102), the Innovation Team Project of Universities in
306 Guangdong Province (No. 2020KCXTD023), and the Shenzhen Science and Technology Program
307 (JCYJ20200109105010363). This work was partially funded by the US-National Science
308 Foundation grants OCE-2049478 and DBI-2047598 to K.A.

309

310 **Author Contributions**

311 ML, ZZ, and YL designed the study; ZZ and YL wrote the paper with contributions from all
312 authors; KA provided valuable suggestions. All authors approved the final version of the
313 manuscript.

314

315 **Competing Interests statement**

316 The authors declare that they have no competing interests.

317

318

319 **Figure caption**

320 **Figure 1. Progress in the “tree of life” as increasing archaeal lineages having been identified
321 in recent decades.** A) The unrooted Woese 3D tree first conceived in 1977 by Carl Woese group

322 (1) B) The unrooted Eocyte 2D tree drawn in 1988 by James Lake (4), C) The Korarchaeota “add-
323 on” tree constructed in 1996 by Barnes, Pace and others (14), D) The TACK “add-on” tree
324 constructed in 2011 by Guy and Ettema (41), E) The Tree of Life constructed in 2016 by Hug,
325 Banfield and others (75), F) The Asgard “add-on” tree constructed in 2022 in this study. This tree
326 includes all the 17 Asgard lineages to have been discovered since 2015. The shape of this tree is
327 derived from Fig. 1 by Zhou et al., 2018 (40). All these trees are conceptualized trees based on the
328 original topology. The branching order of Asgard lineages within the Asgard “add-on” tree was
329 not represented for simplicity.

330

331 **Figure 2. Eukaryotic signature proteins present in major archaeal groups.** This figure
332 indicates the emergence of homologues of eukaryotic signature proteins (ESPs) along the
333 schematic tree of Archaea (referred to Eme et al., 2017 (57)). Note: the dash-lined illustration of
334 nuclei and endoplasmic reticulum currently have not been proven to be present in the common
335 ancestor of eukaryotes and Asgard archaea.

336

337 **Figure S1. The archaeal reference phylogenomic unrooted tree.** This tree contained 3412
338 representative species, was inferred from 53 conserved marker proteins and was decorated with
339 GTDB taxonomy at the phylum level. The raw tree file was obtained from
340 “https://data.ace.uq.edu.au/public/gtdb/data/releases/release207/207.0/ar53_r207.tree”. The
341 visualization of the tree is achieved using ChiPlot (<https://www.chiplot.online/>).

342

343 **Supplementary Data 1. GTDB and NCBI taxonomy information (phylum-level) about 3412
344 archaeal representative species in GTDB r207.** The missing NCBI taxonomy information of
345 minor species in this table is due to that their entries have been suppressed by NCBI, but are still
346 kept in GTDB database (07-RS207).

347

348

349

350 **References:**

351 1. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: The primary
352 kingdoms. Proc Natl Acad Sci U S A. 1977;74(11):5088-90.

353 2. Kelly S, Wickstead B, Gull K. Archaeal phylogenomics provides evidence in support of a
354 methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. *Proc R Soc
355 Lond B Biol Sci.* 2011;278(1708):1009-18.

356 3. Lake JA. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA
357 sequences. *Nature.* 1988;331(6152):184-6.

358 4. Lake JA, Henderson E, Oakes M, Clark MW. Eocytes: a new ribosome structure indicates
359 a kingdom with a close relationship to eukaryotes. *Proc Natl Acad Sci U S A.* 1984;81(12):3786-
360 90.

361 5. Iwabe N, Kuma K-i, Kishino H, Hasegawa M, Miyata T. Evolution of RNA polymerases and
362 branching patterns of the three major groups of archaeabacteria. *J Mol Evol.* 1991;32(1):70-8.

363 6. Klenk H-P, Palm P, Zillig W. DNA-Dependent RNA Polymerases as Phylogenetic Marker
364 Molecules. *Syst Appl Microbiol.* 1993;16(4):638-47.

365 7. Liao D, Dennis PP. Molecular phylogenies based on ribosomal protein L11, L1, L10, and
366 L12 sequences. *J Mol Evol.* 1994;38(4):405-19.

367 8. Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for
368 the domains Archaea, Bacteria, and Eucarya. *Proc Natl Acad Sci U S A.* 1990;87(12):4576-9.

369 9. Pace NR. Time for a change. *Nature.* 2006;441(7091):289.

370 10. Madigan M, Bender K, Buckley D, Sattley W, Stahl D. *Brock Biology of Microorganisms.*
371 15th Global Edition. Boston: Pearson Education; 2018.

372 11. Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic
373 and ecological analysis of the globally abundant Marine Group II archaea (Ca. *Poseidoniales* ord.
374 nov.). *ISME J.* 2019;13(3):663-75.

375 12. Carr SA, Jungbluth SP, Eloë-Fadrosch EA, Stepanauskas R, Woyke T, Rappé MS, et al.
376 Carboxydotrophy potential of uncultivated Hydrothermarchaeota from the subseafloor crustal
377 biosphere. *ISME J.* 2019; 13(6):1457-68.

378 13. Vetriani C, Jannasch HW, MacGregor BJ, Stahl DA, Reysenbach AL. Population structure
379 and phylogenetic characterization of marine benthic archaea in deep-sea sediments. *Appl
380 Environ Microbiol.* 1999;65(10):4375-84.

381 14. Barns SM, Delwiche CF, Palmer JD, Pace NR. Perspectives on archaeal diversity,
382 thermophily and monophyly from environmental rRNA sequences. *Proc Natl Acad Sci U S A.*
383 1996;93(17):9188-93.

384 15. Elkins JG, Podar M, Graham DE, Makarova KS, Wolf Y, Randau L, et al. A korarchaeal
385 genome reveals insights into the evolution of the Archaea. *Proc Natl Acad Sci U S A.*
386 2008;105(23):8102-7.

387 16. Konneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of
388 an autotrophic ammonia-oxidizing marine archaeon. *Nature.* 2005;437(7058):543-6.

389 17. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, et al. Insights into the
390 evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel
391 archaeal group. *Nucleic Acids Res.* 2011;39(8):3204-23.

392 18. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into
393 the phylogeny and coding potential of microbial dark matter. *Nature.* 2013;499(7459):431.

394 19. Dombrowski N, Lee JH, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and
395 evolutionary origins of DPANN archaea. *FEMS Microbiol Lett.* 2019;366(2).

396 20. He C, Keren R, Whittaker ML, Farag IF, Doudna JA, Cate JHD, et al. Genome-resolved
397 metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in
398 groundwater ecosystems. *Nat Microbiol.* 2021;6(3):354-65.

399 21. Spang A, Caceres EF, Ettema TJG. Genomic exploration of the diversity, ecology, and
400 evolution of the archaeal domain of life. *Science.* 2017;357(6351):eaaf3883.

401 22. Williams TA, Szöllősi GJ, Spang A, Foster PG, Heaps SE, Boussau B, et al. Integrative
402 modeling of gene and genome evolution roots the archaeal tree of life. *Proc Natl Acad Sci U S A.*
403 2017;114(23):E4602-E11.

404 23. Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier-Armanet C. Extreme halophilic
405 archaea derive from two distinct methanogen Class II lineages. *Mol Phylogen Evol.* 2018;127:46-
406 54.

407 24. Setubal JC. Metagenome-assembled genomes: concepts, analogies, and challenges.
408 *Biophysical Reviews.* 2021;13(6):905-9.

409 25. Jay ZJ, Beam JP, Dlakić M, Rusch DB, Kozubal MA, Inskeep WP. Marsarchaeota are an
410 aerobic archaeal lineage abundant in geothermal iron oxide microbial mats. *Nat Microbiol.*
411 2018;3(6):732-40.

412 26. De Anda V, Chen L-X, Dombrowski N, Hua Z-S, Jiang H-C, Banfield JF, et al. Brockarchaeota,
413 a novel archaeal phylum with unique and versatile carbon cycling pathways. *Nat Commun.*
414 2021;12(1):2404.

415 27. Meng J, Xu J, Qin D, He Y, Xiao X, Wang F. Genetic and functional properties of
416 uncultivated MCG archaea assessed by metagenome and gene expression analyses. *ISME J.*
417 2014;8(3):650-9.

418 28. Jungbluth SP, Amend JP, Rappé MS. Metagenome sequencing and 98 microbial genomes
419 from Juan de Fuca Ridge flank subsurface fluids. *Sci Data.* 2017;4:170037.

420 29. Vanwonterghem I, Evans PN, Parks DH, Jensen PD, Woodcroft BJ, Hugenholtz P, et al.
421 Methylotrophic methanogenesis discovered in the archaeal phylum *Verstraetarchaeota*. *Nat*
422 *Microbiol.* 2016;1:16170.

423 30. Baker BJ, Saw JH, Lind AE, Lazar CS, Hinrichs K-U, Teske AP, et al. Genomic inference of
424 the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. *Nat Microbiol.*
425 2016;1:16002.

426 31. Nobu MK, Narihiro T, Kuroda K, Mei R, Liu W-T. Chasing the elusive Euryarchaeota class
427 WSA2: genomes reveal a uniquely fastidious methyl-reducing methanogen. *ISME J.*
428 2016;10(10):2478-87.

429 32. Lazar CS, Baker BJ, Seitz KW, Teske AP. Genomic reconstruction of multiple lineages of
430 uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. *ISME J.*
431 2017;11(5):1118-29.

432 33. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, et al. De
433 novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline
434 microbial communities. *ISME J.* 2012;6(1):81-93.

435 34. Yin X, Zhou G, Cai M, Zhu Q-Z, Richter-Heitmann T, Aromokeye DA, et al. Catabolic protein
436 degradation in marine sediments confined to distinct archaea. *ISME J.* 2022;16(6):1617-26.

437 35. Zhou Z, Liu Y, Lloyd KG, Pan J, Yang Y, Gu J-D, et al. Genomic and transcriptomic insights
438 into the ecology and metabolism of benthic archaeal cosmopolitan, Thermopropofundales (MBG-D
439 archaea). *ISME J.* 2018.

440 36. Parks DH, Chuvochina M, Rinke C, Mussig AJ, Chaumeil P-A, Hugenholtz P. GTDB: an
441 ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank
442 normalized and complete genome-based taxonomy. *Nucleic Acids Res.* 2022;50(D1):D785-D94.

443 37. Murray AE, Freudenstein J, Gribaldo S, Hatzenpichler R, Hugenholtz P, Kämpfer P, et al.
444 Roadmap for naming uncultivated Archaea and Bacteria. *Nat Microbiol.* 2020;5(8):987-94.

445 38. Hedlund BP, Chuvochina M, Hugenholtz P, Konstantinidis KT, Murray AE, Palmer M, et al.
446 SeqCode: a nomenclatural code for prokaryotes described from sequence data. *Nat Microbiol.*
447 2022;7(10):1702-8.

448 39. Koonin EV. Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of
449 gene gain: eukaryogenesis just made easier? *Phil Trans R Soc B.* 2015;370(1678):20140333.

450 40. Zhou Z, Liu Y, Li M, Gu J-D. Two or three domains: a new view of tree of life in the genomics
451 era. *Appl Microbiol Biotechnol.* 2018;102(7):3049-58.

452 41. Guy L, Ettema TJ. The archaeal 'TACK' superphylum and the origin of eukaryotes. *Trends
453 Microbiol.* 2011;19(12):580-7.

454 42. Williams TA, Foster PG, Nye TMW, Cox CJ, Embley TM. A congruent phylogenomic signal
455 places eukaryotes within the Archaea. *Proc R Soc Lond B Biol Sci.* 2012;279(1749):4870-9.

456 43. Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex
457 archaea that bridge the gap between prokaryotes and eukaryotes. *Nature.* 2015;521(7551):173-
458 9.

459 44. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et
460 al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. *Nature.*
461 2017;541(7637):353-8.

462 45. Liu Y, Makarova KS, Huang W-C, Wolf YI, Nikolskaya AN, Zhang X, et al. Expanded diversity
463 of Asgard archaea and their relationships with eukaryotes. *Nature.* 2021;593(7860):553-7.

464 46. Liu Y, Zhou Z, Pan J, Baker BJ, Gu J-D, Li M. Comparative genomic inference suggests
465 mixotrophic lifestyle for Thorarchaeota. *ISME J.* 2018;12(4):1021-31.

466 47. Cai M, Liu Y, Yin X, Zhou Z, Friedrich MW, Richter-Heitmann T, et al. Diverse Asgard
467 archaea including the novel phylum Gerdarchaeota participate in organic matter degradation. *Sci
468 China Life Sci.* 2020;63(6):886-97.

469 48. Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, et al. Expanding Asgard members in the domain
470 of Archaea sheds new light on the origin of eukaryotes. *Sci China Life Sci.* 2022;65(4):818-29.

471 49. Seitz KW, Lazar CS, Hinrichs K-U, Teske AP, Baker BJ. Genomic reconstruction of a novel,
472 deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction.
473 *ISME J.* 2016;10(7):1696-705.

474 50. Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, et al. Recoding of stop
475 codons expands the metabolic potential of two novel Asgardarchaeota lineages. *ISME Commun.*
476 2021;1(1):30.

477 51. Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the Archaeal Origins of Eukaryotic
478 Membrane-Trafficking System Building Blocks. *Mol Biol Evol.* 2016;33(6):1528-41.

479 52. Dombrowski N, Williams TA, Sun J, Woodcroft BJ, Lee J-H, Minh BQ, et al. Undinarchaeota
480 illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. *Nat
481 Commun.* 2020;11(1):3939.

482 53. Martinez-Gutierrez CA, Aylward FO. Phylogenetic Signal, Congruence, and Uncertainty
483 across Bacteria and Archaea. *Mol Biol Evol.* 2021;38(12):5514-27.

484 54. Liu Y, Li M. The unstable evolutionary position of Korarchaeota and its relationship with
485 other TACK and Asgard archaea. *mLife.* 2022;1(2):218-22.

486 55. Seitz KW, Dombrowski N, Eme L, Spang A, Lombard J, Sieber JR, et al. Asgard archaea
487 capable of anaerobic hydrocarbon cycling. *Nat Commun.* 2019;10(1):1822.

488 56. Lindås A-C, Karlsson EA, Lindgren MT, Ettema TJG, Bernander R. A unique cell division
489 machinery in the Archaea. *Proc Natl Acad Sci U S A.* 2008;105(48):18942-6.

490 57. Eme L, Spang A, Lombard J, Stairs CW, Ettema TJ. Archaea and the origin of eukaryotes.
491 *Nat Rev Microbiol.* 2017;15(12).

492 58. Lu Z, Fu T, Li T, Liu Y, Zhang S, Li J, et al. Coevolution of Eukaryote-like Vps4 and ESCRT-III
493 Subunits in the Asgard Archaea. *mBio.* 2020;11(3):e00417-20.

494 59. Akil C, Tran LT, Orhant-Prioux M, Baskaran Y, Manser E, Blanchoin L, et al. Insights into
495 the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin
496 proteins from Asgard archaea. *Proc Natl Acad Sci U S A.* 2020;117(33):19904-13.

497 60. Higuchi A, Shihoya W, Konno M, Ikuta T, Kandori H, Inoue K, et al. Crystal structure of
498 schizorhodopsin reveals mechanism of inward proton pumping. *Proc Natl Acad Sci U S A.*
499 2021;118(14):e2016328118.

500 61. Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-picchoto Y, et al. Asgard ESCRT-
501 III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. *ISME J.* 2022.
502 doi: 10.1038/s41396-022-01328-2.

503 62. Wang H-W, Wang J-W. How cryo-electron microscopy and X-ray crystallography
504 complement each other. *Protein Sci.* 2017;26(1):32-9.

505 63. Hansson T, Oostenbrink C, van Gunsteren W. Molecular dynamics simulations. *Curr Opin
506 Struct Biol.* 2002;12(2):190-6.

507 64. Velázquez-Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E. Isothermal Titration
508 Calorimetry. *Curr Protoc Cell Biol.* 2004;23(1):17.8.1-8.24.

509 65. Chan K-M, Delfert D, Junger KD. A direct colorimetric assay for Ca^{2+} -stimulated ATPase
510 activity. *Anal Biochem.* 1986;157(2):375-80.

511 66. Kumar A, Balbach J. Real-time protein NMR spectroscopy and investigation of assisted
512 protein folding. *Biochim Biophys Acta.* 2015;1850(10):1965-72.

513 67. Verma A, Åberg-Zingmark E, Sparrman T, Mushtaq AU, Rogne P, Grundström C, et al.
514 Insights into the evolution of enzymatic specificity and catalysis: From Asgard archaea to human
515 adenylate kinases. *Science Advances.* 2022;8(44):eabm4089.

516 68. Akil C, Kitaoku Y, Tran LT, Liebl D, Choe H, Muengsaen D, et al. Mythical origins of the actin
517 cytoskeleton. *Curr Opin Cell Biol.* 2021;68:55-63.

518 69. Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, et al. Proposal of the
519 reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard
520 archaeal metabolism. *Nat Microbiol.* 2019;4(7):1138-48.

521 70. Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria.
522 *Curr Biol.* 2017;27(21):R1177-R92.

523 71. Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, et al. Three families of Asgard
524 archaeal viruses identified in metagenome-assembled genomes. *Nat Microbiol*. 2022;7(7):962-
525 73.

526 72. Rambo IM, Langwig MV, Leão P, De Anda V, Baker BJ. Genomes of six viruses that infect
527 Asgard archaea from deep-sea sediments. *Nat Microbiol*. 2022;7(7):953-61.

528 73. Tamarit D, Caceres EF, Krupovic M, Nijland R, Eme L, Robinson NP, et al. A closed
529 *Candidatus Odinarchaeum* chromosome exposes Asgard archaeal viruses. *Nat Microbiol*.
530 2022;7(7):948-52.

531 74. Wu F, Speth DR, Philosof A, Crémère A, Narayanan A, Barco RA, et al. Unique mobile
532 elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized
533 Asgard archaea genomes. *Nat Microbiol*. 2022;7(2):200-12.

534 75. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of
535 the tree of life. *Nat Microbiol*. 2016;1:16048.

536