Check for
Updates

SNOWFLAKE: Supporting Programming and Proofs

Oluwatobi Alabi
Grinnell College
Grinnell, IA, USA

alabijem@grinnell.edu

ABSTRACT

Rigorous, mathematical reasoning, i.e., proof, is the foundation of
any undergraduate computer science education. However, students
find mathematical proof exceedingly challenging, but also at the
same time do not see its relevance to programming. We address
these concerns with SNOWFLAKE, an educational proof assistant
designed to help undergraduates overcome these difficulties when
authoring mathematical proof. SNOWFLAKE does this by operating
in a context where mathematical proof is introduced alongside
programming in either a CS1 or CS2 context. The lens that we
use to unite the two concepts is program correctness, a topic that
immediately makes relevant the concept of formal reasoning as
students are perpetually faced with the issue of whether their code
is correct.

SNOWFLAKE is a proof assistant designed for the needs of under-
graduates in courses that closely time programming and proof. It
is a web-based application that helps students author proofs not
only in the context of program correctness in-the-small, but also
other topics found in discrete mathematics courses. We report on
the design of SNOWFLAKE, the kinds of reasoning it enables, and
our plans to deploy SNOWFLAKE in the classroom.

CCS CONCEPTS

- Social and professional topics — Computing education; -
Theory of computation — Proof theory; Automated reasoning.

KEYWORDS
Computer science education, Discrete mathematics, Proof assistant

ACM Reference Format:

Oluwatobi Alabi, Anh Vu, and Peter-Michael Osera. 2023. SNOWFLAKE: Sup-
porting Programming and Proofs. In Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V. 2 (SIGCSE 2023), March 15—
18, 2023, Toronto, ON, Canada. ACM, New York, NY, USA, 1 page. https:
//doi.org/10.1145/3545947.3576342

1 BACKGROUND AND DESIGN

Mathematical skills are essential in writing well-structured pro-
grams and designing efficient algorithms. However, proof-based
mathematics courses are generally perceived by students as chal-
lenging and pointless [3]. The problem stems from not only the
difficulty of the field but also our pedagogical approaches. While

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGCSE 2023, March 15-18, 2023, Toronto, ON, Canada

© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9433-8/23/03.

https://doi.org/10.1145/3545947.3576342

Anh Vu
Grinnell College
Grinnell, IA, USA

vuanh@grinnell.edu

1398

Peter-Michael Osera
Grinnell College
Grinnell, IA, USA

osera@cs.grinnell.edu

introductory CS courses occur in feedback-rich environments, the-
oretical mathematics courses do not. Instructors first explain proof
concepts expecting students to absorb them fully. Then students
follow the model on paper, only receiving limited, external feedback
much later when the work is finally graded [3]. This methodology
seems inadequate for students to fully absorb and become fluent in
reading and writing mathematical proofs.

SNOWFLAKE addresses these concerns by supporting undergrad-
uates authoring mathematical proof in the context of program cor-
rectness and discrete mathematics, situations that, when combined
with appropriate pedagogy, give meaning to formal proof. Our
work expands on prior work [1, 4] by directly supporting pedagogy
in two courses, a CS1 and discrete mathematics course featuring
program correctness to unite the worlds of programming and proof.
SNOWFLAKE is built in Typescript as a browser-based application
to allow for easier integration with a web interface and creation of
a more accessible and interactive experience for students.

SNOWFLAKE features a minimal proof engine core for deductive
reasoning that we instantiate to support particular proof domains.
This core represents proofs in a tree-like structure built upon first-
order logic and natural deduction. Students’ proofs are translated
into this minimal core, and SNOWFLAKE checks their validity using
its internal logic coupled with an off-the-shelf SMT solver. Finally,
SNOWFLAKE informs students about the correctness of their proof,
and where they made mistakes.

In the context of program correctness, SNOWFLAKE allows stu-
dents to reason about the behavior of programs written in a pure,
functional subset of the Python programming language. Students
use SNOWFLAKE to reason about the step-by-step execution of their
program in a simplified style of operational semantics commonly
found in the field of programming language theory [2].

2 CONCLUSION AND FUTURE WORK

We plan to utilize SNOWFLAKE in both a discrete mathematics and
CS1 classroom in an upcoming semester to gauge its effectiveness in
helping students understand, author, and validate well-formed and
appropriate proofs. Additionally, we plan to continue improving
SNOWFLAKE ’s user interface to minimize user friction.

REFERENCES

[1] Graham Leach-Krouse. 2018. Carnap: An Open Framework for Formal Reasoning
in the Browser. Electronic Proceedings in Theoretical Computer Science 267 (March
2018), 70-88. https://doi.org/10.4204/EPTCS.267.5 arXiv: 1803.03092.

[2] Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.

[3] Nikki Sigurdson and Andrew Petersen. 2019. A Survey-based Exploration of
Computer Science Student Perspectives on Mathematics. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education. ACM, Minneapolis MN
USA, 1032-1038. https://doi.org/10.1145/3287324.3287416

[4] David G. Wonnacott and Peter-Michael Osera. 2019. A Bridge Anchored on
Both Sides: Formal Deduction in Introductory CS, and Code Proofs in Discrete
Math. arXiv:1907.04134 [cs] (July 2019). http://arxiv.org/abs/1907.04134 arXiv:
1907.04134.


https://orcid.org/0000-0001-8112-1928
https://doi.org/10.1145/3545947.3576342
https://doi.org/10.1145/3545947.3576342
https://doi.org/10.1145/3545947.3576342
https://doi.org/10.4204/EPTCS.267.5
https://doi.org/10.1145/3287324.3287416
http://arxiv.org/abs/1907.04134
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545947.3576342&domain=pdf&date_stamp=2023-03-06

	Abstract
	1 Background and Design
	2 Conclusion and Future Work
	References



