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Abstract— Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence

of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic

networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while

accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1

networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of

gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.

Index Terms—Phylogenetics, reconciliation, deep coalescence, hybridization
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1 INTRODUCTION

RECONSTRUCTINGthe evolutionary histories of a group of
species is a fundamental step in phylogenetic analysis.

While it is possible to infer trees from whole-genome align-
ments or from concatenated alignments, a common
approach relies on first reconstructing individualgene trees,
then reconstructing aspecies treefrom the gene trees. How-
ever, gene trees and species trees may be incongruent due
to various evolutionary processes, thus requiringreconcilia-
tionmethods that map a gene tree “within” a species tree
and explain topological differences by postulating a
sequence of evolutionary events, with different models
allowing for different types of events.
In the popularmultispecies coalescent (MSC) model[1], spe-

cies are treated as populations of individuals, and incongru-
ence is assumed to be caused byincomplete lineage sorting
(ILS)(Figs. 1a and 1b). Formally, two lineages may fail to
coalescence at their most recent opportunity, a phenomenon
known asdeep coalescence. ILS occurs when one lineage
then coalesces with a lineage from a less closely-related
population [2].
Coalescent theory allows for computing the probability

of a gene tree topology given a species tree topology and
parameters such as population size and divergence time [3],
[4]. Thus, given multiple gene trees, it is possible to infer a
species tree  using either  probabilistic or  parsimony
approaches (see Degnan and Rosenberg [2] for a review of

such methods). Probabilistic approaches rely on maximum
likelihood or Bayesian estimation, whereas a parsimony
approach chooses a species tree by minimizing deep coales-
cences (MDC), which “minimizes the number of extra line-
ages that had to coexist along species lineages” [1]. In
general, probababilistic approaches tend to be more accu-
rate, whereas parsimony approaches require only topolo-
gies and are more efficient than probabilistic approaches,
and thus are more broadly applicable.
However, the MSC model commonly assumes that spe-

cies histories can be represented as a tree and therefore can-
not account for hybridization (Fig. 1c), in which separate
species exchange genetic information, either through intro-
gression or hybrid speciation [5], [6], [7]. Studies have
shown that hybridization can play a role in the evolution of
eukaryotic species [8], [9], [10], [11].
In the last decade, several algorithms have been devel-

oped to infer species networks by simultaneously modelling
ILS and hybridization. In a species network, species
branches can join together athybridization nodes(also known
asreticulation nodes). As with the simpler MSC model, there
exist both probabilistic [12], [13], [14], [15], [16], [17], [18],
[19] and parsimony approaches [14], [16], [20] for inferring
species networks under these models. Many of the parsi-
mony approaches rely on converting a species network to a
multi-labeled tree (MUL-tree), considering all mappings of
alleles sampled to the leaves of the MUL-tree, and finding
the mapping that yields the minimum number of extra line-
ages. Because there can exist an exponential number of
allele mappings, such approaches may not scale to large
numbers of species or hybridizations.
Rather than model ILS and hybridization, some models

instead allow for ILS and horizontal gene transfer, often
with gene duplication and loss [21], [22]. However, such
models also assume the species history can be represented
as a tree and that gene transfers result in gene trees that are
incongruent with the species tree. In contrast, by relying on
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a species network rather than a tree, hybridization allows
different segments of the gene tree to have different histo-
ries naturally by using different edges leading to a hybrid-
ization node.
In parallel with these advances in ILS and hybridization,

To and Scornavacca [23] developed two algorithms for rec-
onciling gene trees and species networks that take into
account duplication and loss events. They studied two var-
iations: first, finding an optimal tree in a network such that
the reconciliation of the gene tree and the “displayed” spe-
cies tree has minimum cost, and second, finding a minimum
cost reconciliation between the gene tree and the full species
network. Interestingly, the time complexity of their first
algorithm depends not on the number of hybridization
events but on a parameter of the network called itslevel
[24], intuitively a measure of “how much the network is
tangled” [23] or how densely its hybridization nodes are
distributed (Fig. 1d). This algorithm is fixed-parameter trac-
table when parameterized by the level of the network and
the number of biconnected components in the network.
Their second algorithm is polynomial in the number of
hybridization nodes, the size of the gene tree, and the size
of the species network.
Despite these advances, there is currently no known

polynomial-time algorithm for inferring a reconciliation
between a gene treeGand a species networkSthat mini-
mizes the deep coalescence cost. We address this challenge
with the following contributions:

1)   We present aOðjGjjSj4Þalgorithm for reconciling a
gene treeGand species networkSwhenShas one
hybridization  node.  Like   many  parsimony
approaches, our algorithm relies on dynamic pro-
gramming. Our key insight is to introduce a new
parameter of the reconciliation, thesignature, which
specifies which hybridization edges are used by dif-
ferent parts of the reconciliation.

2)   We reduce the time complexity of the previous algo-
rithm toOðjGjjSjÞby generalizing the concept of a

single lowest common ancestor (LCA) in trees to
multiple LCAs in networks.

3)   We present aOðjGjjSjÞalgorithm for reconcilingG
andSwhenSis a level-1 network. Intuitively, in a
level-1 network, no hybrid species is the direct
ancestor of another hybrid species. For a general
level-knetwork, the time complexity increases to
Oð4k jGjjSjÞ, which, while exponential, is still
smaller than existing algorithms that are exponential
in the number of species and hybridization nodes.

2  BACKGROUND

2.1  Preliminaries

We start by giving some basic definitions using notation
largely verbatim from To and Scornavacca [23]. A summary
of notation can be found in Supplemental Table S1.1, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TCBB.
2021.3105922.
Arooted phylogenetic networkrefers to a rooted directed

acyclic graph with a single root with in-degree 0 and out-
degree 2; additional internal nodes with either in-degree 1
and out-degree 2, calledbranch nodes, or in-degree 2 and
out-degree 1, calledhybridization nodes; and one or more
leaves with in-degree 1 and out-degree 0. Edges leading to
hybridization nodes are calledhybridization edges. Given a
networkN, letVðNÞdenote its node set andEðNÞdenote
its edge set. LetLðNÞ VðNÞdenote its leaf set,IðNÞ¼
VðNÞnLðNÞdenote its set of internal nodes, andrðNÞ2
IðNÞdenote its root node. For nodev2VðNÞ, letcðvÞ
denote its set of children,pðvÞdenote its parent (either a sin-
gle node or a set of two nodes), and, ifvhas a single parent,
eðvÞdenote the edgeðpðvÞ;vÞ. The size ofN, denoted byjNj,
is equal tojVðNÞj þ jEðNÞj. Givenv2VðNÞ, letNvdenote
the subnetwork ofNrooted atv, i.e., the subgraph ofNcon-
sisting of all nodes and edges reachable fromv.
Define N (<N) to be the partial order onVðNÞ, where

given two nodesuandvofN,u Nv(u <Nv) if and only

Fig. 1.Gene trees, species trees, and species networks.(a) A gene tree. (b) A species tree and reconciliation. Under the multispecies coalescent
model, the gene tree evolves within the species tree, and incongruence between the trees is due to ILS. (c) A species network and reconciliation.
The same gene tree evolves within the species network, and no ILS is necessary. (d) A level-1 species network and a level-2 species network.
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if there exists a path inNfromvtou(andu6¼v). The partial
order N (>N) is defined analogously. In such a case,uis
said to belower or equal to(lower than)v, andua (strict)
descendantofv, andva (strict)ancestorofu.
Given two nodesuandvofNsuch thatu Nv, a path

fromvtouinNis a sequence1of contiguous edges fromv
touinN. Note that ifv¼u, the path fromvtouis empty.
As there can be multiple paths between pairs of vertices in a
network, letpathsNðv; uÞdenote the set of all paths fromv
tou. LetpathsðNÞdenote the set of all paths in networkN.
LetN̂be the underlying undirected graph corresponding

toN. An undirected graph is said to be biconnected if it
remains connected when any single node is removed. A
subgraph of a graphN̂is said to be abiconnected component
if it is a maximal biconnected subgraph ofN̂. If every bicon-
nected component ofN̂has at mostkhybridization nodes,
we say thatNis of level-k[25]. Arooted phylogenetic treeis a
rooted phylogenetic network with no hybridization nodes,
i.e., a level-0 network. In the remainder of this paper, we
refer to rooted phylogenetic networks and rooted phyloge-
netic trees simply asnetworksandtrees, respectively. We
allow trees to containartificial nodes, i.e., nodes with in-
degree and out-degree 1, andorigin nodes, i.e., nodes with
in-degree 0 and out-degree 1. For trees with origin nodes,
there exists an edge between the origin node and root node,
so the root node has in-degree 1 and out-degree 2.
Let aspecies networkSdepict the evolutionary history of a

set of species, and let agene treeGdepict the evolutionary
history of a set of genes sampled from these species. To
compare a gene tree with a species network, let aleaf map-
pingLe:LðGÞ !LðSÞlabel each leaf of the gene tree with
the leaf of the species network from which the gene was
sampled. The mapping need not be one-to-one nor onto.

2.2  Reconciliations

Definition 2.1 (Reconciliation).Given a gene treeG, a spe-
cies networkS, and a leaf mappingLe,areconciliation2Rfor
ðG; S; LeÞis a pair of mappingsðRv;RpÞwhereRv:VðGÞ !
VðSÞis avertex mappingandRp:VðGÞ !pathsðSÞis a
path mappingsubject to the following constraints:

1)  Ifg2LðGÞ, thenRvðgÞ¼LeðgÞ.
2)  Ifg2IðGÞ, then for eachg02cðgÞ,Rvðg

0Þ SRvðgÞ.
3)  Ifg6¼rðGÞ, thenRpðgÞ2pathsSðRvðpðgÞÞ;RvðgÞÞ.

Otherwise,RpðgÞ¼;.
Constraint 1 asserts thatRvextends the leaf mappingLe.

Constraint 2 asserts thatRvsatisfies the temporal constraints
implied byS. Constraint 3 asserts that the vertex mapping and
path mapping are consistent.

The vertex mapping specifies which node ofSa node ofGis
mapped to, and the path mapping specifies a path in S
between a node ofGand its parent. Note that ifSis a tree, a
reconciliation can be specified by the vertex mapping alone,
and the paths between nodes in the species tree would be
implied. However, when hybridization is allowed, there

can exist multiple paths between nodes in the species net-
work, thus requiring the path mapping.
It will be convenient to consider several variants of a rec-

onciliation. In the first, giveng2VðGÞ, a reconciliationRg

denotes the reconciliationRrestricted to subtreeGg. In the
second, a reconciliation is restricted to a subnetwork of the
species network (that consists of a subset of nodes and all
edges between those nodes), and only the parts of the gene
tree that evolve within the subnetwork are considered. In
the third, a reconciliation is extended to a forest of multiple
gene trees, all of which evolve within the same species net-
work. Henceforth, the term reconciliation encompasses
these variants.
As typical in a multispecies coalescent process, evolution

in the species network is viewed backward in time, from
the leaves toward the root. Then, given a reconciliationR,
one can directly count the number of gene lineages
“exiting” each edgeeof the species network. Specifically,
given edgee2EðSÞ,

LRðeÞ¼ fg2VðGÞ:e2RpðgÞg;

and the number of extra lineages is

XLRðeÞ¼maxð0;LRðeÞ 1Þ:

Finally, thedeep coalescence costof a reconciliation is the
sum of extra lineages across all edges of the species network

DCR¼
X

e2EðSÞ

XLRðeÞ:

This value is also known as thereconciliation cost. Given a
reconciliationR, theedgesetofRis the set of species edges
used in the path mapping

edgesetðRÞ¼
[

g2VðGÞ

RpðgÞ:

Clearly, fore2edgesetðRÞ,XLRðeÞ¼LRðeÞ 1, and thus,
the following is an equivalent definition for the deep coales-
cence cost:

DCR¼
X

e2edgesetðRÞ

LRðeÞ 1ð   Þ:

Finally, we define the Most Parsimonious Reconciliation
Problem:3

Problem  2.1  ( Most  Parsimonious  Reconciliation
(MPR)).GivenG,S, andLe, theMPR problemis to find a
reconciliation with minimum cost.

WhenSis a tree, the MPR is unique (the LCA reconcilia-
tion4) [26] and can be found inOðjGjjSjÞtime [27].

1.Though we have defined a path as a sequence, we will often use
set operators on these sequences when the context is clear.
2.When explaining topological incongruence through only deep

coalescence, a reconciliation is sometimes called acoalescent history[6].

3.The termmost parsimonious reconciliationis more popularly used in
the context of macro-evolutionary gene events, for example, to mini-
mize duplications (D); duplications and losses (DL); or duplications,
horizontal transfers, and losses (DTL). In this work, we understand
MPRs to refer to reconciliations using the parsimony criterion of mini-
mizing deep coalescences (MDC).
4.Specifically,Rvis the LCA reconciliation, andRpcan be inferred

fromRv.
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However, whenSis a network, the MPR is not necessarily
unique.
In this work, we consider the MPR Problem for the spe-

cial case of a binary gene tree and a level-1 species network.

3  METHODS

In this section, we provide a polynomial-time algorithm for
inferring an MPR between a binary gene treeGand a level-
1 species networkSwith leaf mappingLe. Like many parsi-
mony approaches, our algorithm relies on dynamic pro-
gramming. For the sake of simplicity, we present only the
algorithm for minimizing the cost of a reconciliation. By
using standard annotation of the dynamic programming
table, we can subsequently perform a traceback and recon-
struct a reconciliation. A summary of notation can be found
in Supplemental Table S1.2, available online. For brevity,
proofs appear in Supplemental Section S2, available online.
In the remainder of this section, also for the sake of sim-

plicity, we often omitLein our exposition and theorems,
with the understanding that given a gene treeGand species
networkS, we are given a leaf mappingLeas well. We do
make the dependence onLeexplicit in our algorithms.

3.1  Starting With a Simpler Problem

We start with the simpler problem of reconciling a gene tree
Gand a species networkSwith one hybridization nodevH.
For two nodesuandvofS, it can be easily shown that there
exists a single node, called thelowest common ancestor (LCA)
and denotedlcaSðu; vÞ, that is the lowest element ofSthat is
an ancestor of bothuandv. LetvLandvRdenote the left
and right parents ofvH, and leteL¼ðvL;vHÞandeR¼
ðvR;vHÞdenote the left and right edges tovH. LetvA¼
lcaSðv

L;vRÞ, called thesplit node, denote the lowest common
ancestor ofvLandvR(Fig. 2a).
LetLR¼fn;l;r;bgbe a set of four symbols which will

be used to denote the hybridization edges in a set. Because
the species network has a single hybridization node, there
are four options: none, left edge, right edge, both edges. We
define the binary operatorþoverLRas follows:

For eachx2LR,nþx¼xþn¼x.
For eachx2LR,bþx¼xþb¼b.
lþl¼landrþr¼r.
lþr¼rþl¼b.

We define a partial order < overLR as follows:
n<l;r<b.
For a set of elementsX, letPðXÞdenote the power set

over the elements. Then, for a set of edgesE2EðSÞ, define

a functionsignatureðEÞ:PðEÞ !LR that denotes the
hybridization edges in the set

signatureðEÞ¼

n; eL;eR=2E
l; eL2E; eR=2E
r; eL=2E; eR2E
b; eL;eR2E:

8
>><

>>:

It is easily verified that given two subsetsE1andE2ofEðSÞ,

signatureðE1ÞþsignatureðE2Þ¼signatureðE1[E2Þ:

Given a reconciliation R, thesignatureofR, denoted
signatureðRÞ, is defined to be the signature ofedgesetðRÞ.
Conceptually, the signature of a reconciliationRdenotes
whetherRuses neither edge, only the left edge, only the
right edge, or both edges leading to the hybridization node.

Lemma 3.1 (Equivalent Edgesets).Given a gene treeGand a
species networkSwith one hybridization node, let R1¼
ðR1v;R

1
pÞandR

2¼ðR2v;R
2
pÞdenote two reconciliations between

G andS.IfR1vðrðGÞÞ ¼R
2
vðrðGÞÞandsignatureðR

1Þ¼
signatureðR2Þ, thenedgesetðR1Þ¼edgesetðR2Þ.

Given a gene treeG, species networkS, and reconcilia-
tionRbetweenGandS, therootofRis defined to be
RvðrðGÞÞ. Recall that a reconciliationRbetweenGandS
is said to beoptimalif it has the minimum cost among all
reconciliationsR0betweenG andS. A reconciliationR
betweenGandSis said to beroot-signature-optimal (rs-opti-
mal)if it has the minimum cost among all reconciliations
R0betweenGandSsuch thatR0vðrðGÞÞ ¼RvðrðGÞÞand
signatureðR0Þ¼signatureðRÞ.

Lemma 3.2 (Optimal Substructure Property).Given a
gene treeGand a species networkSwith one hybridization
node, letR ¼ðRv;RpÞbe an rs-optimal reconciliation between
GandS. Then for eachg2VðGÞ,R;gis rs-optimal.

We are now ready to describe our dynamic program-
ming algorithm for reconcilingGandS(Algorithm 1). Our
algorithm constructs a dynamic programming tableECrs,
where given any g2VðGÞ,s2VðSÞ, andx2LR, entry
ECrsðg; s; xÞis an ordered pairðE; cÞfor an rs-optimal recon-
ciliationR¼ðRv;RpÞbetweenGgandSsuch thatRvðgÞ¼s
andsignatureðRÞ¼x.E2PðEðSÞÞdenotes the edgeset of
R, and non-negative integercdenotes the cost ofR. Note
that by Lemma 3.1, all rs-optimal reconciliations between
GgandSthat have the same rootsand signaturexshare
the same edgesetEbut not necessarily the same cost. Let
costðECrsð;;ÞÞdenote the cost component of an entry.

Fig. 2.Species networks with one hybridization node.(a) Key nodes are labeled, including the hybridization nodevH, the left and right parentsvLand
vRofvH, the split nodevA, and the left and right edgeseLandeRtovH. (b) TreeSlconstructed fromSwithe

Rremoved, and treeSrconstructed from
SwitheLremoved. (c) Two reconciliationsRandR between the same gene tree and species network.R subsumesR.
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Algorithm 1.

1:functionRECONCILESIMPLESNETWORK (G,S,Le)
input: gene treeG, species networkSwith one hybridiza-
tion node, leaf mappingLe
output: mappingECrsðg; s; xÞ

2: foreachg2VðGÞand eachs2VðSÞand eachx2LRdo
3:    InitializeECrsðg; s; xÞ¼ð;;1Þ.
4: foreachg2LðGÞdo
5:    SetECrsðg; LeðgÞ;nÞ¼ð;;0Þ.
6: foreachg2IðGÞin post-orderdo
7:    Setðg1;g2Þ¼cðgÞ.
8: foreachðx1;x2Þ2LR LRdo
9: foreachðs1;s2Þ2VðSÞ VðSÞdo
10: foreachs2VðSÞsuch thats1 Ssands2 Ssdo
11: foreachðp1;p2Þ2pathsSðs; s1Þ pathsSðs; s2Þdo
12: SetðE1;c1Þ¼ECrsðg1;s1;x1Þ.
13: SetðE2;c2Þ¼ECrsðg2;s2;x2Þ.
14: SetE¼E1[E2[p1[p2.
15: Setc¼c1þc2þjE1\E2jþjE1\p2jþjE2

\p1jþjp1\p2j.
16: Setx¼x1þx2þsignatureðp1Þþsignatureðp2Þ.
17: ifc <costðECrsðg; s; xÞÞthen
18: UpdateECrsðg; s; xÞ¼ðE; cÞ.
19: return ECrs.

In the base case, ifg2LðGÞ, then, by Definition 2.1,
RvðgÞ¼LeðgÞandRpðgÞ¼;. The reconciliation uses neither
of the two hybridization edges and has cost 0. That is, for
g2LðGÞ, our table is initialized with entriesECrsðg; Le
ðgÞ;nÞ¼ð;;0Þ.
Otherwise, the algorithm considers g2IðGÞin post-

order and posits a (not necessarily rs-optimal) reconciliation
RbetweenGgandS. Letg1andg2denote the children ofg.
By Lemma 3.2, ifRis rs-optimal, it must extend some rs-
optimal reconciliationR1betweenGg1andSand some rs-
optimal reconciliationR2betweenGg2andS. Lets1,x1,E1,
andc1denote the root, signature, edgeset, and cost ofR

1,
respectively, and similarly, lets2,x2,E2, andc2denote the
respective components ofR2. Note thatRmust have a root
sthat is an ancestor ofs1ands2, and gene tree edgesðg; g1Þ
andðg; g2Þmust be mapped to some pathp1fromstos1and
some pathp2fromstos2, respectively, inS. The signature
x, edgesetE, and costcofRis computed using the compo-
nents ofR1 andR2 and pathsp1 andp2. To update
ECrsðg; s; xÞ, what remains is to retain only the edgesetE
and costcfor some reconciliation that is rs-optimal with
respect to a specific rootsand signaturex.
Note that once all entries ECrsð;;Þhave been com-

puted, the optimal cost between G andS is simply
mins2VðSÞ;x2LRcostðECrsðrðGÞ;s;xÞÞ.

Theorem 3.3.For eachg2VðGÞ,s2VðSÞ, andx2LR, Algo-
rithm 1 correctly computesECrsðg; s; xÞ.

Theorem 3.4. The time complexity of  Algorithm 1 is
OðjGjjSj4Þ.

3.2  Reducing the Time Complexity

Next, we present an approach for speeding up the computa-
tion of tableECrsby a factor ofOðjSj3Þ. Our approach relies
on the observation that many entries ofECrswill never cor-
respond to an rs-optimal reconciliation and thus need not

be considered in the dynamic program. Specifically, we
show that forg2VðGÞandx2LR, the set of speciess2
VðSÞthat must be considered for entryECrsðg; s; xÞcan be
restricted to a set of constant size that corresponds to a gen-
eralization of the LCA.
LetSldenote the tree constructed fromSwith e

R

removed, and letSrdenote the tree constructed fromSwith
eLremoved (Fig. 2b). We extend the definition of the LCA
to theleft lowest common ancestor, denoted byllcaSðu; vÞ, and
right lowest common ancestor, denoted byrlcaSðu; vÞ, defined
as the lowest common ancestor ofuandvin treesSlandSr.
LetBLCASðu; vÞdenote the set containing both the left and
right lowest common ancestors.
Given a gene treeGand a species networkSwith one

hybridization node, a reconciliationRbetweenGandSis
said to be aBLCA mappingif, for each internal nodegofG
with children g1 andg2,RvðgÞ2BLCASðRvðg1Þ;Rvðg2ÞÞ.
Note that ifGhas no internal nodes, then any reconciliation
betweenGandSis trivially a BLCA mapping.
LetRandR be two reconciliations betweenGandS.R

is  said  to subsume R if RvðrðGÞÞ SRvðrðGÞÞ,
signatureðRÞ signatureðRÞ,edgesetðRÞ edgesetðRÞ,
andDCR DCR(Fig. 2c).

Lemma 3.5.Given a gene treeGand a species networkSwith
one hybridization node, letR¼ðRv;RpÞbe a reconciliation
betweenGandS. If there exists an internal nodeg2IðGÞ
with childreng1andg2such thatRvðgÞ=2BLCASðRvðg1Þ;
Rvðg2ÞÞ, then there exists some other reconciliationR ¼

Algorithm 2. 1: functionRECONCILEBLCASIMPLESNET-
WORK (G,S,Le)

input: gene treeG, species networkSwith one hybridiza-
tion node, leaf mappingLe
output: mappingcandidatesðg; xÞ, mappingECrsðg; s; xÞ

2: foreachg2VðGÞand eachs2VðSÞand eachx2LRdo
3:    InitializeECrsðg; s; xÞ¼ð;;1Þ.
4: foreachg2VðGÞand eachx2LRdo
5:    Initializecandidatesðg; xÞ¼;.
6: foreachg2LðGÞdo
7:    SetECrsðg; LeðgÞ;nÞ¼ð;;0Þ.
8:    Setcandidatesðg;nÞ¼fLeðgÞg.
9: foreachg2IðGÞin post-orderdo
10:    Setðg1;g2Þ¼cðgÞ.
11: foreachðx1;x2Þ2LR LRdo
12: foreachðs1;s2Þ2candidatesðg1;x1Þ candidates

ðg2;x2Þdo
13: foreachs2BLCASðs1;s2Þdo
14: foreachðp1;p2Þ2pathsSðs; s1Þ pathsSðs; s2Þ

do
15: SetðE1;c1Þ¼ECrsðg1;s1;x1Þ.
16: SetðE2;c2Þ¼ECrsðg2;s2;x2Þ.
17: SetE¼E1[E2[p1[p2.
18: Setc¼c1þc2þjE1\E2jþjE1\p2jþjE2\

p1jþjp1\p2j.
19: Setx¼x1þx2þsignatureðp1Þþsignatureðp2Þ.
20: ifc <costðECrsðg; s; xÞÞthen
21: Update candidatesðg; xÞ¼candidatesðg; xÞ

[fsg.
22: UpdateECrsðg; s; xÞ¼ðE; cÞ.
23: return candidates,ECrs.
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ðRv;RpÞbetweenGandSsuch that for eachu2VðGÞwhere
g Gu,R

;usubsumesRu.

Corollary 3.5.1.Given a gene treeGand species networkSwith
one hybridization node, then for any reconciliationR¼
ðRv;RpÞbetweenGandSthat is not a BLCA mapping, there
exists some other reconciliationR that is a BLCA mapping
and subsumesR.

We are now ready to describe our revised dynamic pro-
gramming algorithm for reconciling a gene treeGand a spe-
cies networkSwith one hybridization node (Algorithm 2). In
addition toECrs, we construct a second tablecandidatesthat
limits the set of species that need to be considered in complet-
ingECrs. As in Algorithm 1, given anyg2VðGÞ,s2VðSÞ,
andx2LR,letR¼ðRv;RpÞbe an rs-optimal reconciliation
betweenGgandSsuch thatRvðgÞ¼sandsignatureðRÞ¼x.
By Corollary 3.5.1, the algorithm need only consider
R that are BLCA mappings; that is, for each internal
nodegwith children g1andg2,R must satisfy RvðgÞ2
BLCASðRvðg1Þ;Rvðg2ÞÞ. Let entrycandidatesðg; xÞdenote the
set of possible values forRvðgÞ, that is, the set of species nodes
to whichgcan be mapped as part of someR. Then, for entry
ECrsðg; s; xÞ, only entries fors2candidatesðg; xÞneed be
computed. As before, the tablescandidatesandECrscan be
completed via post-order traversal of the gene tree. Note that
once all entriescandidatesð;ÞandECrsð;Þhave been com-
puted, the optimal cost between G andS is simply
minx2LR;s2ðrðGÞ;xÞcostððrðGÞ;s;xÞÞ.

Theorem 3.6.For eachg2VðGÞandx2LR, Algorithm 2 cor-
rectly computescandidatesðg; xÞ. Furthermore, for eachs2
candidatesðg; xÞ, Algorithm 2 correctly computesECrsðg; s; xÞ.

Lemma 3.7.In Algorithm 2, each setcandidatesðg; xÞcontains
at most two elements.

Theorem 3.8. The time complexity of  Algorithm 2 is
OðjGjjSjÞ.

3.3  Extending to Multiple Gene Trees

Next, we extend the previous results towards the ultimate goal
of allowing for reconciliations with a level-1 species network.

Given a gene treeGand a species networkSwith one
hybridization node, the root of the gene tree may not be
mapped to the species in which the gene family originated,
for example, due to gene losses or missing samples. To
address this issue, we add anorigin nodeoðGÞand a root
branchðoðGÞ;rðGÞÞtoG.
We now consider the problem of reconciling Gwith an

origin node andS. LetR¼ðRv;RpÞdenote an rs-optimal
reconciliation betweenGandSsuch thatRvðoðGÞÞ ¼rðSÞ
andsignatureðRÞ¼x. Note thatRis not restricted to be a
BLCA mapping. However, it is straightforward to show
that, to minimize the deep coalescence cost betweenGand
S, a reconciliation betweenGrðGÞandSis restricted to be a
BLCA mapping. Algorithm 3 describes how to updateECrs
accordingly via a simple modification of Algorithm 2.

Lemma 3.9.For eachg2VðGÞandx2LR, Algorithm 3 cor-
rectly computescandidatesðg; xÞ. Furthermore, for eachs2
candidatesðg; xÞ,   Algorithm  3  correctly  computes
ECrsðg; s; xÞ.

Lemma 3.10.The time complexity of Algorithm 3 isOðjGjjSjÞ.

Next, we consider the problem of reconciling a forestGof
gene trees with origin nodes and a species networkSwith
one hybridization node. We start by extending the defini-
tion of a reconciliation to a forest of gene trees.

Definition  3.1  (Forest  Reconciliation). Let G¼
fG1;...;GKgdenote a forest of gene trees with origin nodes. A
forest reconciliationforGandSis a pair of mappings
ðRv;RpÞand a set of subreconciliationsfR

1;...;RKgsubject
to the following constraints:

1)  For eachksuch that1 k K,Rkis a reconciliation
betweenGkandS.

2)  For eachg2VðGÞ,ifg2VðGkÞ, thenRvðgÞ¼R
k
vðgÞ

andRpðgÞ¼R
k
pðgÞ.

Constraint 1 asserts that eachRkis associated withGk, and
Constraint 2 asserts thatRextends eachRk.

For convenience, we often refer to a forest reconciliation
as simply a reconciliation. To distinguish the two, we denote
forest reconciliations using calligraphic fontRand (tree) rec-
onciliations using standard math fontR. In the remainder of
this work, we include one additional constraint on allR: For
eachGk2G,RvðoðGkÞÞ ¼R

k
vðoðGkÞÞ ¼rðSÞ. This constraint

will be necessary later when we combine the forest of gene
trees into a single tree. It is straightforward to extend defini-
tions of lineages, edgeset, signature, and cost from (tree) rec-
onciliations to forest reconciliations.

fore2EðSÞ;LRðeÞ¼ fg2VðGÞ:e2 RpðgÞg

edgesetðRÞ ¼
[

g2VðGÞ

RpðgÞ

signatureðRÞ ¼signatureðedgesetðRÞÞ

DCR¼
X

e2edgesetðRÞ

LRðeÞ 1ð   Þ:

Lemma 3.11 (Equivalent Edgesets for Forest Reconcilia-
tions).Given a forestG¼fG1;...;GKgof gene trees with
origin nodes and a species networkSwith one hybridization
node, letQandRdenote two reconciliations betweenGandS.

Algorithm 3. 1: functionRECONCILEORIGINSIMPLES-
NETWORK (G,S,Le)

input: gene treeGwith an origin node, species networkS
with one hybridization node, leaf mappingLe
output: mappingECrsðg; s; xÞ

2:  Setcandidates;ECrs¼ReconcileBLCASimpleSnetwork
ðGrðGÞ;S;LeÞ.

3: foreachx2LRdo
4:    InitializeECrsðoðGÞ;rðSÞ;xÞ¼ð;;1Þ
5: foreachx12LRdo
6: foreachs12candidatesðrðGÞ;x1Þdo
7: foreachp12pathsSðrðSÞ;s1Þdo
8:    SetðE1;c1Þ¼ECrsðrðGÞ;s1;x1Þ.
9:    SetE¼E1[p1.
10:    Setc¼c1.
11:    Setx¼x1þsignatureðp1Þ.
12: ifc <costðECrsðoðGÞ;rðSÞ;xÞÞthen
13: UpdateECrsðoðGÞ;rðSÞ;xÞ¼ðE; cÞ.
14: return ECrs.
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If signatureðQÞ ¼signatureðRÞ,  then edgesetðQÞ ¼
edgesetðRÞ.

Given a gene treeGwith an origin node and a species net-
workSwith one hybridization node, a reconciliationR¼
ðRv;RpÞbetweenGandSis said to besignature-optimal (s-opti-
mal)if it has the minimum cost among all reconciliationsR0

betweenGandSsuch thatR0vðoðGÞÞ ¼RvðoðGÞÞ ¼rðSÞand
signatureðR0Þ¼signatureðRÞ. Similarly, given a forestGof
gene trees with origin nodes and a species networkS, a recon-
ciliationRis said to besignature-optimal (s-optimal)if it has the
minimum cost among all reconciliationsR0betweenGandS
such thatsignatureðR0Þ¼signatureðRÞ.
Now, define some (arbitrary) order on the trees in a for-

estG. For eachksuch that1 k K, letGk¼fG1;...;Gkg
denote the firstkgene trees ofG. LetRk¼fR1;...;Rkg
denote a reconciliation betweenGkandS. It follows that
GK¼GandRK¼ R.

Lemma 3.12 (Optimal Substructure Property for Forest
Reconciliations).Given a forestG¼fG1;...;GKgof gene
trees with origin nodes and a species networkSwith one
hybridization node, letR ¼fR;1;...;R;Kgdenote an s-
optimal reconciliation betweenGandS. Then, for eachksuch
that1 k K,R;kandR;kare s-optimal.

We are now ready to describe our dynamic programming
algorithm for reconcilingGandS(Algorithm 4). Our algo-
rithm constructs another tableECs. Given anyGk2Gandx2
LR,entryECsðGk;xÞis an ordered pairðE; cÞfor an s-optimal
reconciliationRkbetweenGkandSsuch thatsignatureðRkÞ¼
x.E2PðEðSÞÞdenotes the edgeset ofRk, and non-negative
integercdenotes the cost ofRk. Note that by Lemma 3.11, all
s-optimal reconciliations betweenGkandSthat have the same
signature share the same edgeset but not necessarily the same
cost. As withECrs,letcostðECsð;ÞÞdenote the cost compo-
nent of an entry.

The procedure for completing tableECs(Algorithm 4) is
conceptually similar to the procedure for completingECrs
(Algorithm 1) but relies on Lemma 3.12 on the substructure
for a forest reconciliation rather than Lemma 3.2 on the sub-
structure for a tree reconciliation. Once all entries have been
computed, the cost of reconciliationRKis returned.

Lemma 3.13.Algorithm 4 correctly computes the reconciliation
cost.

Lemma 3.14. The time complexity of  Algorithm 4 is
Oð
P
Gk2G
jGkjjSjÞ.

3.4  Putting the Pieces Together

In this section, we give an efficient algorithm for solving the
most parsimonious reconciliation problem for a gene tree
and a level-1 species network. This algorithm has some sim-
ilarities with Algorithm 1 of To and Scornavacca [23], which
finds an optimal switching5of a level-kspecies network that
minimizes the duplication-loss cost between a gene tree and
the resulting species tree. We demonstrate that their general
approach of decomposing the gene tree and species net-
work can be applied to our problem of minimizing the deep
coalescence cost, where we reconcile each component of the
decomposition using our previously presented algorithms.
We are given as input a gene treeG, a level-1 species net-

workS, and a leaf mappingLe, and our goal is to compute
the minimum deep coalescence cost betweenGandS. Our
algorithm relies on several definitions and lemmas, largely
taken verbatim from To and Scornavacca [23] except for
minor modifications to notation.
We start by identifying and contracting all biconnected

components of the species network (Figs. 3a and 3b). As
presented in To and Scornavacca [23], letBbe a biconnected
component of a networkS.6ThenBcontains exactly one
node without ancestors inB; letrðBÞdenote the root ofB.If
Bconsists of more than one node, we can contract it by
removing all nodes ofBother thanrðBÞ, then connectrðBÞ
to every node with in-degree 0 created by this removal.

Definition 3.2 (Tree bcðSÞ; Fig. 3b; To and Scorna-
vacca [23], Definition 2).Given a networkS, the treebcðSÞ
is obtained fromS by contracting all its biconnected
components.

Next, we present notation for mapping between a net-
work S, the biconnected components ofS, and the con-
tracted treebcðSÞ.

Definition 3.3 (Mapping M).Given a networkS, letM be a
mapping from nodes ofSto biconnected components ofS. For
everys2VðSÞ,MðsÞis the component to whichscontracts.

As in To and Scornavacca [23], letBdenote the node in
bcðSÞthat corresponds to a biconnected componentBinS.

Algorithm 4. 1: functionRECONCILEFORESTSIMPLES-
NETWORK (G,S,Le)

input: forestGof gene treesfG1;...;GKgwith origin
nodes, species networkSwith one hybridization node, leaf
mappingLe
output: minimum reconciliation cost betweenGandSsuch
that each origin node is mapped torðSÞ

2: foreachkfrom 1 toKand eachx2LRdo
3:    InitializeECsðGk;xÞ¼ð;;1Þ.
4: foreachkfrom 1 toKdo
5:    SetECrs¼ReconcileOriginSimpleSnetworkðGk;S;LeÞ.
6: ifk¼1then
7: foreachx2LRdo
8:    UpdateECsðG1;xÞ¼ECrsðoðG1Þ;rðSÞ;xÞ.
9: else
10: foreachðx1;x2Þ2LR LRdo
11:    SetðE1;c1Þ¼ECsðGk1;x1Þ.
12:    SetðE2;c2Þ¼ECrsðoðGkÞ;rðSÞ;x2Þ.
13:    SetE¼E1[E2.
14:    Setc¼c1þc2þjE1\E2j.
15:    Setx¼x1þx2.
16: ifc <costðECsðGk;xÞthen
17: UpdateECsðGk;xÞ¼ðE; cÞ.
18: returnminx2LRcostðECsðGK;xÞÞ.

5.Per Definition 4 of To and Scornavacca [23], a switching chooses,
“for each hybridization edge, an incoming edge to switch on and the
other to switch off.”
6.For consistency with To and Scornavacca [23], we take some liber-

ties with the formal definition of biconnected components. In particu-
lar,  we omit biconnected components  with only two vertices.
Additionally, we consider any single cut vertex not part of another
biconnected component to be a biconnected component, and we con-
sider each leaf to be a biconnected component.
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Given two biconnected componentsBiandBj, we say that
Bi SBj(resp.Bi<SBj) if and only ifBi bcðSÞBj(resp.
Bi<bcðSÞBj). In such a case,Biis said to belower than or equal
to(resp. lower than)Bj. We say thatBiis the parent (resp. a
child) ofBjifBiis the parent (resp. a child) ofBjinbcðSÞ.
Our last step for processing the species networkSis to

decompose it into disjoint networks based on its bicon-
nected components.

Definition 3.4 (Elementary network; Fig. 3a; To and
Scornavacca [23], Definition 3).Given a networkS, each
biconnected componentBthat is not a leaf ofSdefines an ele-
mentary network, denoted bySðBÞ, consisting ofBand all
edgesðu; vÞsuch thatu2VðBÞ.7

Note that becauseSis a level-1 network, each elementary
network ofSis either a binary tree or a network with one
hybridization node. While we have presented algorithms
for reconciling one or more gene trees with a species net-
work with one hybridization node, it is straightforward to
modify each of our previous algorithms to instead reconcile
one or more gene trees with a species tree (Supplemental

Algorithms S1, S2, S3), available online. The proofs of cor-
rectness and complexity are analogous to those of the corre-
sponding algorithms and are therefore omitted.
Our next step is to similarly decompose the gene treeG

into disjoint forests that evolve within each elementary net-
work (Figs. 3c and 3d). We make some minor modifications
to the definitions and lemmas of To and Scornavacca [23] to
require origins for each decomposed gene tree (modifica-
tions in bold).

Definition 3.5 (Mapping B; Fig. 3c; To and Scorna-
vacca [23], Definition 6).Given a treeGand networkS, let
Bbe a mapping from nodes ofGto biconnected components of
S. For everyu2VðGÞ,BðuÞis the lowest biconnected compo-
nentBofSsuch thatLðSrðBÞÞcontainsfLeðvÞjv2LðGuÞg.

8

Definition 3.6 (TreeGS; Fig. 3d; Modified from To and
Scornavacca [23], Definition 7).The treeGSis obtained
fromGas follows: For each internal nodeuinGwith child
nodesu1andu2such that there existkbiconnected components
Bi1>S...>SBik strictly belowBðuÞand strictly above
Bðu1Þ, we addkartificial nodesv1>...>vkon the edge

Fig. 3.Annotated species networks and gene trees.(a) A level-1 species networkSwith four biconnected componentsBiand four elementary networks
SðBiÞ,where1 i 4.(b)ThetreebcðSÞwhere, for eachisuch that1 i 4, nodeBiinbcðSÞcorresponds to biconnected componentBiinS.(c)A
gene treeGalong with its mappingBðÞ.(d)ThetreeGSalong with its mappingBðÞand subgraphsGBi, where1 i 4. Artificial nodes are circled (if added
from the Definition 3.6, normal font) or boxed (if added from Definition 3.6, bold font). Figures and caption adapted from To and Scornavacca [23].

7.To and Scornavacca [23] definesSðBÞas “consisting ofBand all
cut-edges coming out fromB”.

8.To and Scornavacca [23] denoted this mapping asBand phrased
the definition in terms of leaf labels. We useBðÞto distinguish the map-
ping from a biconnected componentB.
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ðu; u1Þ, and we fixBðvjÞtoBij. We do the same foru2.Then,
for each non-root, non-artificial internal nodeuinGsuch
thatBðuÞ 6¼BðpðuÞÞ, we add an artificial nodevon the
edgeðpðuÞ;uÞ, and we fixBðvÞtoBðuÞ. Furthermore, we
add an origin nodevaboveu¼rðGÞ, and we fixBðvÞto
BðuÞ.

Definition 3.7 (SubgraphGB; Fig. 3d; To and Scorna-
vacca [23], Definition 8).LetBbe a biconnected component
ofSthat is not a leaf. ThenGBis the set of all maximal con-
nected subgraphsH ofGS such thatBðuÞ¼B for every
u2IðHÞ.

Lemma 3.15 (Modified from To and Scornavacca [23],
Lemma 2).LetBbe a biconnected component ofSthat is not
a leaf. Then we have the following:

(i)  for everyH2GB,His either a binary treewith an
origin nodeor an edge whose upper extremity is an
artificial node. Moreover, for every leafuofH,BðuÞis
a child ofB.

(ii)  ifB¼BðrðGÞÞ, thenGB consists of one binary tree
with an origin node.

It can be easily shown that adding artificial nodes and an
origin node toGdoes not change the minimum reconcilia-
tion cost betweenGandS.
Next, we extend the definition of subsume, previously

defined for reconciliations with a species network with one
hybridization node, to reconciliations with a level-1 species
network. LetRandR be two reconciliations between a
gene treeGand a level-1 species networkS.R is said to
subsume R if RvðrðGÞÞ SRvðrðGÞÞ, edgesetðRÞ
edgesetðRÞ, andDCR DCR(Fig. 4c).

Lemma 3.16.Given a gene treeGand a level-1 species network
S, letR¼ðRv;RpÞbe a reconciliation betweenGandS. Given
a mappingM and a mappingB, if there exists an internal node
g2IðGÞwith childreng1andg2such thatMðRvðgÞÞ 6¼BðgÞ,
MðRvðg1ÞÞ¼Bðg1Þ, andMðRvðg2ÞÞ¼Bðg2Þ, then there
exists some other reconciliationR ¼ðRv;RpÞbetweenGand
Ssuch thatR subsumesR.

Given a gene treeG, a level-1 species networkS, a map-
pingM, and a mappingB, a reconciliationRbetweenG
andSis said to beconsistentwithM andBif, for each inter-
nal nodegofGwith childreng1andg2,MðRvðgÞÞ ¼ BðgÞ.
Note that ifGhas no internal nodes, then any reconciliation
betweenGandSis trivially consistent.

Corollary 3.16.1.Given a gene treeG, a level-1 species network
S, a mappingM, and a mappingB, then for any reconciliation
R¼ðRv;RpÞbetweenGandSthat is not consistent withM
andB, there exists some other reconciliationR that is consis-
tent withM andBand subsumesR.

We are now ready to describe an algorithm for reconcil-
ing a binary gene treeGand a level-1 species networkS
(Algorithm 5, Fig. 4). LetRdenote an optimal reconciliation
betweenGandS. By Corollary 3.16.1, we need only con-
sider reconciliationsRthat are consistent withM andB.
That is, for eachgofG,Rmust satisfy MðRvðgÞÞ ¼ BðgÞ.
Our algorithm relies on independently considering each
biconnected componentBiofS, reconciling the correspond-
ing gene subgraphGBiand species subnetworkSðBiÞ, and

adding together the reconciliation costs of the independent
components.

Theorem 3.17.Algorithm 5 correctly computes the minimum
reconciliation cost betweenGandSwith leaf mappingLe.

Theorem 3.18. The time complexity of Algorithm 5 is
OðjGjjSjÞ.

3.5  Beyond Level-1 Networks

Algorithm 5 can be extended for general species networksS
of level-k. To do so, Algorithms 2, 3, and 4 are easily
extended to take species networks with up tokhybridiza-
tion nodes. Such a modification requires trackingkseparate
signatures, one for each hybridization node. As there are
four possible values for each signature, the time complexity
of each extended algorithm would gain an additional factor
of4k, resulting in an overall time complexity ofOð4k jGj
jSjÞfor Algorithm 4. Since the complexity of Algorithm 4
dominates the complexity of Algorithm 5, the extended ver-
sion of Algorithm 5 would then also have a time complexity
ofOð4k jGjjSjÞ. Although this time complexity is expo-
nential in the level of the network, we might expectkto be
small for most phylogenies. Thus, the algorithm could still
be practical in most cases.

4  DISCUSSION

In this work, we have presented a polynomial-time algo-
rithm for inferring a most parsimonious reconciliation
between a gene tree and a level-1 species networks that
explains topological incongruence through hybridization
and ILS. Our dynamic program required several develop-
ments. First, we introduced the concept of a reconciliation
signature, which specifies which hybridization edges are
used by different parts of the reconciliation. Next, we
showed that the number of candidate species to consider in
the dynamic program can be restricted to a set of constant
size that corresponds to a generalization of the LCA. Finally,

Algorithm 5. 1:functionRECONCILE (G,S,Le)

input: gene treeG, level-1 species networkS, leaf mapping
Le
output: minimum reconciliation cost betweenGandSwith
Le

2:  Compute treebcðSÞand mappingMð Þ.9

3:  Compute treeGSand mappingBðÞ.
4:   Compute subgraphGBifor each biconnected component

BiofSthat is not a leaf.
5:  Initializec¼0.
6: foreach biconnected componentBiofSthat is not a leaf

do
7: foreach leafg2LðGBiÞdo
8:    SetLeBiðgÞ¼rðBðgÞÞ.
9: ifSðBiÞis a treethen
10:    Setci¼ReconcileForestStreeðGBi;SðBiÞ;LeBiÞ.

10

11: else
12:    Setci¼ReconcileForestSimpleSnetworkðGBi;SðBiÞ;

LeBiÞ.
13:    Updatec¼cþci.
14: returnc.
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we decomposed the gene tree and species network using
biconnected components and reconciled each component
independently. While we have focused on level-1 networks,
our algorithm can be extended to level-kspecies networks,
though the time complexity is exponential ink.

We believe that our algorithm can be applied in several
contexts. When the gene tree and species network are fixed,
the algorithm can be used directly to infer reconciliations.
Perhaps more interesting applications include incorporating
the algorithm as part of a larger pipeline. For example, if the
species network is considered known but the gene trees

must be reconstructed from gene alignments that lack phy-
logenetic signal, reconciliation can be used to correct errors
in gene tree topology [28], [29]. On the other hand, given a
set of reconstructed gene trees, there exist several methods
for species network inference using a parsimony crite-
rion [14], [16], [20]. However, since more complex networks
(with more hybridization) can better fit data (yielding rec-
onciliations with equal or smaller numbers of extra line-
ages), methods are needed to balance this classic trade-off
between complexity and fit. While there exist information
criteria such as AIC and BIC for model selection when

Fig. 4.Reconciliation algorithm.(a) Continuing the example from Fig. 3, optimal reconciliationsRibetween subgraphsGBiandSðBiÞ, where1 i 4.
(There exist two optimal reconciliationsR2.)R1induces 1 extra lineage, andR2,R3, andR4each induce 0 extra lineages. (b) The full optimal reconcilia-
tionR betweenGandS. (c) A different reconciliationRbetweenGandSsuch thatR subsumesR. Note that for nodeu,BðuÞ¼B2.InR,uis mapped
toRvðuÞ¼s3so thatMðRvðuÞÞ¼ Mðs3Þ¼B2. In contrast, inR,uis mapped toRvðuÞ¼s1so thatMðRvðuÞÞ¼ Mðs1Þ¼B1. Furthermore,R is con-
sistent withM andBwhereasRis not consistent withM andB. Compared toR,Rinduces an additional extra lineage to exits2intos1.
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measuring fit through likelihood, no similar metrics exist
when measuring fit through parsimony. Perhaps more trou-
bling, species tree inference by minimizing deep coales-
cence is inconsistent [30], and similar consistency issues are
likely to arise for species network inference using the MDC
criterion. But promisingly, parsimony and probabilistic
approaches can sometimes reconstruct the same species
network [20].
There are numerous directions for future work. There

can exist multiple MPRs for a fixed gene tree and species
network, and reconciliations are sensitive to user-defined
event costs. While several papers have investigated the
space  of  MPRs  under  the  duplication-transfer-loss
model [31], [32] and the  duplication-loss-coalescence
model [33], [34], we believe that similar problems can be
explored under a joint hybridization and ILS model. Simi-
larly, several reconciliation algorithms have been extended
to handle non-binary gene trees [35], [36] or to incorporate
macro-evolutionary events such as gene duplication, loss,
and transfer [23], [37]. While hybridization and gene trans-
fer may result in similar types of incongruence, more inves-
tigation is needed to see how we might disentangle the two
signals. Finally, theoretical analysis has shown that the
MPR problem under a hybridization and ILS model is NP-
hard in general, e.g., for level-kspecies networks for arbi-
trary values ofk[38]. Similar analysis might address
whether there exist approximation algorithms or fixed-
parameter tractable algorithms.
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