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A Polynomial-Time Algorithm for Minimizing the
Deep Coalescence Cost for Level-1 Species
Networks

Matthew LeMay, Ran Libeskind-Hadas ', and Yi-Chieh Wu

Abstract—Phylogenetic analyses commonly assume that the species history can be represented as a tree. However, in the presence
of hybridization, the species history is more accurately captured as a network. Despite several advances in modeling phylogenetic
networks, there is no known polynomial-time algorithm for parsimoniously reconciling gene trees with species networks while
accounting for incomplete lineage sorting. To address this issue, we present a polynomial-time algorithm for the case of level-1
networks, in which no hybrid species is the direct ancestor of another hybrid species. This work enables more efficient reconciliation of
gene trees with species networks, which in turn, enables more efficient reconstruction of species networks.

Index Terms—Phylogenetics, reconciliation, deep coalescence, hybridization

1 INTRODUCTION

RECONSI‘RUCT]NG the evolutionary histories of a group of
pecies is a fundamental step in phylogenetic analysis.
While it is possible to infer trees from whole-genome align-
ments or from concatenated alignments, a common
approach relies on first reconstructing individual gene trees,
then reconstructing a species tree from the gene trees. How-
ever, gene trees and species trees may be incongruent due
to various evolutionary processes, thus requiring reconcilia-
tion methods that map a gene tree “within” a species tree
and explain topological differences by postulating a
sequence of evolutionary events, with different models
allowing for different types of events.

In the popular multispecies coalescent (MSC) model [1], spe-
cies are treated as populations of individuals, and incongru-
ence is assumed to be caused by incomplete lineage sorting
(ILS) (Figs. 1a and 1b). Formally, two lineages may fail to
coalescence at their most recent opportunity, a phenomenon
known as deep coalescence. ILS occurs when one lineage
then coalesces with a lineage from a less closely-related
population [2].

Coalescent theory allows for computing the probability
of a gene tree topology given a species tree topology and
parameters such as population size and divergence time [3],
[4]. Thus, given multiple gene trees, it is possible to infer a
species tree using either probabilistic or parsimony
approaches (see Degnan and Rosenberg [2] for a review of
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such methods). Probabilistic approaches rely on maximum
likelihood or Bayesian estimation, whereas a parsimony
approach chooses a species tree by minimizing deep coales-
cences (MDC), which “minimizes the number of extra line-
ages that had to coexist along species lineages” [1]. In
general, probababilistic approaches tend to be more accu-
rate, whereas parsimony approaches require only topolo-
gies and are more efficient than probabilistic approaches,
and thus are more broadly applicable.

However, the MSC model commonly assumes that spe-
cies histories can be represented as a tree and therefore can-
not account for hybridization (Fig. 1c), in which separate
species exchange genetic information, either through intro-
gression or hybrid speciation [5], [6], [7]. Studies have
shown that hybridization can play a role in the evolution of
eukaryotic species [8], [9], [10], [11].

In the last decade, several algorithms have been devel-
oped to infer species networks by simultaneously modelling
ILS and hybridization. In a species network, species
branches can join together at hybridization nodes (also known
as reticulation nodes). As with the simpler MSC model, there
exist both probabilistic [12], [13], [14], [15], [16], [17], [18],
[19] and parsimony approaches [14], [16], [20] for inferring
species networks under these models. Many of the parsi-
mony approaches rely on converting a species network to a
multi-labeled tree (MUL-tree), considering all mappings of
alleles sampled to the leaves of the MUL-tree, and finding
the mapping that yields the minimum number of extra line-
ages. Because there can exist an exponential number of
allele mappings, such approaches may not scale to large
numbers of species or hybridizations.

Rather than model ILS and hybridization, some models
instead allow for ILS and horizontal gene transfer, often
with gene duplication and loss [21], [22]. However, such
models also assume the species history can be represented
as a tree and that gene transfers result in gene trees that are
incongruent with the species tree. In contrast, by relying on
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Fig. 1. Gene trees, species trees, and species networks. (a) A gene tree. (b) A species tree and reconciliation. Under the multispecies coalescent
model, the gene tree evolves within the species tree, and incongruence between the trees is due to ILS. (c) A species network and reconciliation.
The same gene tree evolves within the species network, and no ILS is necessary. (d) A level-1 species network and a level-2 species network.

a species network rather than a tree, hybridization allows
different segments of the gene tree to have different histo-
ries naturally by using different edges leading to a hybrid-
ization node.

In parallel with these advances in ILS and hybridization,
To and Scornavacca [23] developed two algorithms for rec-
onciling gene trees and species networks that take into
account duplication and loss events. They studied two var-
iations: first, finding an optimal tree in a network such that
the reconciliation of the gene tree and the “displayed” spe-
cies tree has minimum cost, and second, finding a minimum
cost reconciliation between the gene tree and the full species
network. Interestingly, the time complexity of their first
algorithm depends not on the number of hybridization
events but on a parameter of the network called its level
[24], intuitively a measure of “how much the network is
tangled” [23] or how densely its hybridization nodes are
distributed (Fig. 1d). This algorithm is fixed-parameter trac-
table when parameterized by the level of the network and
the number of biconnected components in the network.
Their second algorithm is polynomial in the number of
hybridization nodes, the size of the gene tree, and the size
of the species network.

Despite these advances, there is currently no known
polynomial-time algorithm for inferring a reconciliation
between a gene tree G and a species network S that mini-
mizes the deep coalescence cost. We address this challenge
with the following contributions:

1) We present a O(|G| - |S|*) algorithm for reconciling a
gene tree G and species network S when S has one
hybridization node. Like many parsimony
approaches, our algorithm relies on dynamic pro-
gramming. Our key insight is to introduce a new
parameter of the reconciliation, the signature, which
specifies which hybridization edges are used by dif-
ferent parts of the reconciliation.

2) Wereduce the time complexity of the previous algo-
rithm to O(|G| - |S|) by generalizing the concept of a

single lowest common ancestor (LCA) in trees to
multiple LCAs in networks.

3) We present a O(|G| - |S]) algorithm for reconciling G
and S when S is a level-1 network. Intuitively, in a
level-1 network, no hybrid species is the direct
ancestor of another hybrid species. For a general
level-k network, the time complexity increases to
O(4* - |G| - |8]), which, while exponential, is still
smaller than existing algorithms that are exponential
in the number of species and hybridization nodes.

2 BACKGROUND

2.1 Preliminaries

We start by giving some basic definitions using notation
largely verbatim from To and Scormnavacca [23]. A summary
of notation can be found in Supplemental Table S1.1, which
can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TCBB.
2021.3105922.

A rooted phylogenetic network refers to a rooted directed
acyclic graph with a single root with in-degree 0 and out-
degree 2; additional internal nodes with either in-degree 1
and out-degree 2, called branch nodes, or in-degree 2 and
out-degree 1, called hybridization nodes; and one or more
leaves with in-degree 1 and out-degree 0. Edges leading to
hybridization nodes are called hybridization edges. Given a
network N, let V(N) denote its node set and E(N) denote
its edge set. Let L(N) C V(N) denote its leaf set, I(N) =
V(N)\ L(N) denote its set of internal nodes, and r(N) €
I(N) denote its root node. For node v € V(N), let ¢(v)
denote its set of children, p(v) denote its parent (either a sin-
gle node or a set of two nodes), and, if v has a single parent,
e(v) denote the edge (p(v), v). The size of N, denoted by | N|,
is equal to |V(N)| + |E(N)|. Given v € V(N), let N, denote
the subnetwork of N rooted at v, i.e., the subgraph of N con-
sisting of all nodes and edges reachable from v.

Define <y (< y) to be the partial order on V(N), where
given two nodes u and v of N, u <y v (u < y v) if and only
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if there exists a path in N from v to u (and u # v). The partial
order >y (> y) is defined analogously. In such a case, u is
said to be lower or equal to (lower than) v, and u a (strict)
descendant of v, and v a (strict) ancestor of u.

Given two nodes u and v of N such that u <y v, a path
from v to u in N is a sequence’ of contiguous edges from v
tou in N. Note that if v = u, the path from v to u is empty.
As there can be multiple paths between pairs of vertices in a
network, let pathsy (v, u) denote the set of all paths from v
to u. Let paths(N) denote the set of all paths in network N.

Let N be the underlying undirected graph corresponding
to N. An undirected graph is said to be biconnected if it
remains connected when any single node is removed. A
subgraph of a graph N is said to be a biconnected component
if it is a maximal biconnected subgraph of N. If every bicon-
nected component of N has at most k hybridization nodes,
we say that N is of level-k [25]. A rooted phylogenetic tree is a
rooted phylogenetic network with no hybridization nodes,
i.e., a level-0 network. In the remainder of this paper, we
refer to rooted phylogenetic networks and rooted phyloge-
netic trees simply as networks and trees, respectively. We
allow trees to contain artificial nodes, i.e, nodes with in-
degree and out-degree 1, and origin nodes, ie., nodes with
in-degree 0 and out-degree 1. For trees with origin nodes,
there exists an edge between the origin node and root node,
so the root node has in-degree 1 and out-degree 2.

Let a species network S depict the evolutionary history of a
set of species, and let a gene tree G depict the evolutionary
history of a set of genes sampled from these species. To
compare a gene tree with a species network, let a leaf map-
ping Le : L(G) — L(S) label each leaf of the gene tree with
the leaf of the species network from which the gene was
sampled. The mapping need not be one-to-one nor onto.

2.2 Reconciliations

Definition 2.1 (Reconciliation). Given a gene tree G, a spe-
cies network S, and a leaf mapping Le, a reconciliation’ R for
(G, S, Le) is a pair of mappings (R,, R,) where R, : V(G) —
V(S) is a vertex mapping and R, : V(G) — paths(S) is a
path mapping subject to the following constraints:

1) Ifge L(G), then R,(g) = Le(g).

2) Ifg e I(G), then foreach g € c(g), R,(d) <s Ru(9).

3) If g#1(G), then Ry(g) € pathss(R,(p(9)), Ru(9)).

Otherwise, Ry(g) = 0.

Constraint 1 asserts that R, extends the leaf mapping Le.
Constraint 2 asserts that R, satisfies the temporal constraints
implied by S. Constraint 3 asserts that the vertex mapping and
path mapping are consistent.

The vertex mapping specifies which node of S anode of G is
mapped to, and the path mapping specifies a path in §
between a node of GG and its parent. Note that if S'is a tree, a
reconciliation can be specified by the vertex mapping alone,
and the paths between nodes in the species tree would be
implied. However, when hybridization is allowed, there

1. Though we have defined a path as a sequence, we will often use
set operators on these sequences when the context is clear.

2. When explaining topological incongruence through only deep
coalescence, a reconciliation is sometimes called a coalescent history [6].
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can exist multiple paths between nodes in the species net-
work, thus requiring the path mapping.

It will be convenient to consider several variants of a rec-
onciliation. In the first, given g € V(G), a reconciliation RY
denotes the reconciliation R restricted to subtree Gy. In the
second, a reconciliation is restricted to a subnetwork of the
species network (that consists of a subset of nodes and all
edges between those nodes), and only the parts of the gene
tree that evolve within the subnetwork are considered. In
the third, a reconciliation is extended to a forest of multiple
gene trees, all of which evolve within the same species net-
work. Henceforth, the term reconciliation encompasses
these variants.

As typical in a multispecies coalescent process, evolution
in the species network is viewed backward in time, from
the leaves toward the root. Then, given a reconciliation R,
one can directly count the number of gene lineages
“exiting” each edge e of the species network. Specifically,
given edge e € E(S),

Lr(e) = {g € V(G) : e € Ry(9)}],
and the number of extra lineages is

XLg(e) = max(0, Lg(e) — 1).

Finally, the deep coalescence cost of a reconciliation is the
sum of extra lineages across all edges of the species network

DCr= ) XLg(e).
ecE(S)

This value is also known as the reconciliation cost. Given a
reconciliation R, the edgeset of R is the set of species edges
used in the path mapping

edgeset(R) = U R,(g).
9eV(G)
Clearly, for e € edgeset(R), XLgr(e) = Lg(e) — 1, and thus,
the following is an equivalent definition for the deep coales-
cence cost:

DCjp =

D

ecedgeset(R)

(Lr(e) —1).

Finally, we define the Most Parsimonious Reconciliation
Problem:>

Problem 2.1 (Most Parsimonious Reconciliation
(MPR)). Given G, S, and Le, the MPR problem is to find a
reconciliation with minimum cost.

When S is a tree, the MPR is unique (the LCA reconcilia-
tion") [26] and can be found in O(|G|-|S|) time [27].

3. The term most parsimonious reconciliation is more popularly used in
the context of macro-evolutionary gene events, for example, to mini-
mize duplications (D); duplications and losses (DL); or duplications,
horizontal transfers, and losses (DTL). In this work, we understand
MPRs to refer to reconciliations using the parsimony criterion of mini-
mizing deep coalescences (MDC).

4. Specifically, R, is the LCA reconciliation, and R, can be inferred
from R,.
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Fig. 2. Species networks with one hybridization node. (a) Key nodes are labeled, including the hybridization node v, the left and right parents +* and
v of v, the split node v*, and the left and right edges e and e to +7. (b) Tree S; constructed from S with e® removed, and tree S, constructed from
S with e removed. (c) Two reconciliations B and R* between the same gene tree and species network. R* subsumes R.

However, when S is a network, the MPR is not necessarily
unique.

In this work, we consider the MPR Problem for the spe-
cial case of a binary gene tree and a level-1 species network.

3 METHODS

In this section, we provide a polynomial-time algorithm for
inferring an MPR between a binary gene tree G and a level-
1 species network S with leaf mapping Le. Like many parsi-
mony approaches, our algorithm relies on dynamic pro-
gramming. For the sake of simplicity, we present only the
algorithm for minimizing the cost of a reconciliation. By
using standard annotation of the dynamic programming
table, we can subsequently perform a traceback and recon-
struct a reconciliation. A summary of notation can be found
in Supplemental Table S1.2, available online. For brevity,
proofs appear in Supplemental Section S2, available online.
In the remainder of this section, also for the sake of sim-
plicity, we often omit Le in our exposition and theorems,
with the understanding that given a gene tree G and species
network S, we are given a leaf mapping Le as well. We do
make the dependence on Le explicit in our algorithms.

3.1 Starting With a Simpler Problem

We start with the simpler problem of reconciling a gene tree
G and a species network S with one hybridization node v¥.
For two nodes u and v of S, it can be easily shown that there
exists a single node, called the lowest common ancestor (LCA)
and denoted lcag(u, v), that is the lowest element of S that is
an ancestor of both u and v. Let v* and v* denote the left
and right parents of v, and let ef = (vf,v) and ef =
(vR,v") denote the left and right edges to v. Let v =
leas(vt, v®), called the split node, denote the lowest common
ancestor of v* and v® (Fig. 2a).

Let LR = {n,l,r,b} be a set of four symbols which will
be used to denote the hybridization edges in a set. Because
the species network has a single hybridization node, there
are four options: none, left edge, right edge, both edges. We
define the binary operator + over LR as follows:

Foreachz€elR,m+z=z+4+n = .
Foreachz € LR,b+z=z+b =b.
I+l=landr+r=r.
l+r=r+l1l=Dhb.

We define a partial order < over LR as follows:
n<lr<bhb.

For a set of elements X, let P(X) denote the power set
over the elements. Then, for a set of edges E € E(S), define

a function signature(E):P(E) — LR that denotes the
hybridization edges in the set

n, el ef¢E
. I, eleEef¢E
signature(E) = r, el ¢ B, R g B
b, el efeE.

?

It is easily verified that given two subsets E; and E; of E(S),
signature(E,) + signature(E,) = signature(E) U Ej).

Given a reconciliation R, the signature of R, denoted
signature(R), is defined to be the signature of edgeset(R).
Conceptually, the signature of a reconciliation R denotes
whether R uses neither edge, only the left edge, only the
right edge, or both edges leading to the hybridization node.

Lemma 3.1 (Equivalent Edgesets). Given a gene tree G and a
species network S with one hybridization node, let R' =
(R}, R;) and R? = (R?, R2) denote two reconciliations between
G and S. If Ri\(r(G)) = Ri(r(G)) and signature(R') =
signature(R?), then edgeset(R') = edgeset(R?).

Given a gene tree (, species network S, and reconcilia-
tion R between G and S, the roof of R is defined to be
R,(r(G)). Recall that a reconciliation R between G and S
is said to be optimal if it has the minimum cost among all
reconciliations R’ between G and S. A reconciliation R
between G and S is said to be root-signature-optimal (rs-opti-
mal) if it has the minimum cost among all reconciliations
R’ between G and S such that R)(r(G)) = R,(r(G)) and
signature(R') = signature(R).

Lemma 3.2 (Optimal Substructure Property). Given a
gene tree G and a species network S with one hybridization
node, let R* = (R?, R?) be an rs-optimal reconciliation between
G and S. Then for each g € V(G), R*9 is rs-optimal.

We are now ready to describe our dynamic program-
ming algorithm for reconciling G and S (Algorithm 1). Our
algorithm constructs a dynamic programming table ECrs,
where given any g€ V(G), s € V(S), and z €LR, entry
ECrs(g, s, ) is an ordered pair (E, ¢) for an rs-optimal recon-
ciliation R = (R,, R,) between G, and S such that R,(g) = s
and signature(R) = z. E € P(E(S)) denotes the edgeset of
R, and non-negative integer c denotes the cost of R. Note
that by Lemma 3.1, all rs-optimal reconciliations between
Gy and S that have the same root s and signature z share
the same edgeset E but not necessarily the same cost. Let
cost(ECrs(-, -, -)) denote the cost component of an entry.
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Algorithm 1.

1: function RECONCILESIMPLESNETWORK (G, S, Le)
input: gene tree G, species network S with one hybridiza-
tion node, leaf mapping Le
output: mapping ECrs(g, s, x)

2:  foreach g € V(G) and each s € V(S) and each z € LR do

3: Initialize ECrs(g, s, z) = (), 00)-

4: foreachgec L(G)do

5 SetECrs(g, Le(g),n) = (0,0).

6: foreach g € I(G) in post-order do

7: Set (g1,92) = c(g)-

8: foreach (z;,27) € LR x LR do

9: for each (sy,s7) € V(S) x V(S) do
10: for each s € V(S) such that s; <g sand s; <g sdo
11: for each (py,p2) € pathsg(s, s1) x pathsg(s,ss) do
12: Set (E1, ¢1) = ECrs( ¢, 81, 21)-
13: Set (Es, ¢a) = ECrs(ga, 82, 22)-
14: Set E=FE U E,Up Ups.
15: Setc=ci+ e +|E1N Ey| +|E1Npo| + | B

O pi|+ |p1 Npal.

16: Set z = 1 + 2 + signature(p ) + signature(p).
17: if ¢ < cost(ECrs(g, s,z)) then
18: Update ECrs(g, 5, z) = (E, c).

19: return ECrs.

In the base case, if g€ L(G), then, by Definition 2.1,
R,(g9) = Le(g) and R,(g) = 0. The reconciliation uses neither
of the two hybridization edges and has cost 0. That is, for
g € L(G), our table is initialized with entries ECrs(g, Le
(9),m) = (,0).

Otherwise, the algorithm considers g € I(G) in post-
order and posits a (not necessarily rs-optimal) reconciliation
R between G4 and S. Let g1 and g» denote the children of g.
By Lemma 32, if R is rs-optimal, it must extend some rs-
optimal reconciliation R' between G, and S and some rs-
optimal reconciliation R? between G, and S. Let 51, z1, Ei,
and ¢; denote the root, signature, edgeset, and cost of R,
respectively, and similarly, let sy, z3, E», and c; denote the
respective components of R%. Note that R must have a root
s that is an ancestor of s; and s,, and gene tree edges (g, 9;)
and (g, g») must be mapped to some path p; from s to s; and
some path p, from s to sy, respectively, in S. The signature
z, edgeset F, and cost ¢ of R is computed using the compo-
nents of R' and R? and paths p; and p. To update
ECrs(g, s, z), what remains is to retain only the edgeset E
and cost ¢ for some reconciliation that is rs-optimal with
respect to a specificroot s and signature x.

Note that once all entries ECrs(-,-,-) have been com-
puted, the optimal cost between G' and S is simply
mincy(s) zerr C0st(ECrs(r(G), s, z)).

Theorem 3.3. For each g € V(G), s € V(5), and = € LR, Algo-
rithm 1 correctly computes ECrs(g, s, ).

Theorem 3.4. The time complexity of Algorithm 1 is
4
O(G1 - ST)-

3.2 Reducing the Time Complexity

Next, we present an approach for speeding up the computa-
tion of table ECrs by a factor of O(|S|*). Our approach relies
on the observation that many entries of ECrs will never cor-
respond to an rs-optimal reconciliation and thus need not
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be considered in the dynamic program. Specifically, we
show that for g € V(G) and z € LR, the set of species s €
V(S) that must be considered for entry ECrs(g, s,x) can be
restricted to a set of constant size that corresponds to a gen-
eralization of the LCA.

Let S; denote the tree constructed from S with ef
removed, and let S; denote the tree constructed from S with
el removed (Fig. 2b). We extend the definition of the LCA
to the left lowest common ancestor, denoted by licas(u, v), and
right lowest common ancestor, denoted by rlecag(u, v), defined
as the lowest common ancestor of u and v in trees S; and 5.
Let BLC'Ag(u,v) denote the set containing both the left and
right lowest common ancestors.

Given a gene tree (¢ and a species network S with one
hybridization node, a reconciliation R between G and S is
said to be a BLCA mapping if, for each internal node g of G
with children ¢, and g5, R,(g) € BLCAg(R,(q1), R.(g2))-
Note that if G has no internal nodes, then any reconciliation
between G and S is trivially a BLCA mapping.

Let R and R* be two reconciliations between GG and S. R*
is said to subsume R if R;(r(G)) <s R.,(r(G)),
signature(R*) < signature(R), edgeset(R*) C edgeset(R),
and DCp < DCp, (Fig. 2¢).

Lemma 3.5. Given a gene tree G and a species network S with
one hybridization node, let R = (R,,R,) be a reconciliation
between G and S. If there exists an internal node g € I(G)
with children g, and go such that R,(g) ¢ BLCAs(R,(g1),
R,(g2)), then there exists some other reconciliation R* =

Algorithm 2. 1: function RECONCILEBLCASIMPLESNET-

WORK (G, S, Le)
input: gene tree G, species network S with one hybridiza-
tion node, leaf mapping Le
output: mapping candidates(g, ), mapping ECrs(g, s, x)
2:  foreach g € V(G) and each s € V(S) and each z € LR do
3 Initialize ECrs(g, s, z) = (), 00)-
4: foreach g € V(G) and each z € LR do
5 Initialize candidates(g, ) = (.
6: foreachge L(G) do
7. SetECrs(g, Le(g),n) = (0,0).
8: Set candidates(g,n) = {Le(g)}.
9.
10
11
12

foreach g € I(G) in post-order do

Set (g1, 92) = (g)-
for each (1, z3) € LR x LR do
for each (sy,s2) € candidates(g;, ) x candidates

(9'2:3:2) do
13: for each s € BLCAs(S1 , 52) do
14: for each (p1,p2) € pathss(s,s1) x pathss(s, s2)
do
15: Set (E],Cl) = ECI‘S(gl,Sl,Il).
16: Set (Ey, ¢a) = ECrs(ga, 52, T2)-
17: Set E=E; U E, Upy U ps.
18: Setc=c1 +c2 +|E1 N E2| +|E1Np2| + | E2N
pil + [pr Npel-
19: Set x = x; + x5 + signature(p, ) + signature(p,).
20: if ¢ < cost(ECrs(g, s, z)) then
21: Update candidates(g, z) = candidates(g, z)
22: Update ECrs(g, s,z) = (E,c).

23: return candidates, ECrs.
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(R;, Ry) between G and S such that for each u € V(G) where
g <¢ u, R*" subsumes R".

Corollary 3.5.1. Given a gene tree G and species network S with
one hybridization node, then for any reconciliation R =
(R, Rp) between G and S that is not a BLCA mapping, there
exists some other reconciliation R* that is a BLCA mapping
and subsumes R.

We are now ready to describe our revised dynamic pro-
gramming algorithm for reconciling a gene tree G and a spe-
cies network S with one hybridization node (Algorithm 2). In
addition to ECrs, we construct a second table candidates that
limits the set of species that need to be considered in complet-
ing ECrs. As in Algorithm 1, given any g € V(G), s € V(5),
and z € LR, let R = (R,, R,) be an rs-optimal reconciliation
between G, and S such that R,(g) = s and signature(R) = .
By Corollary 3.5.1, the algorithm need only consider
R that are BLCA mappings; that is, for each internal
node g with children g1 and ¢», R must satisfy R.(g) €
BLCAg(R,(g1), Ry(g2)). Let entry candidates(g, z) denote the
set of possible values for R,(g), that is, the set of species nodes
to which g can be mapped as part of some R. Then, for entry
ECrs(g,s, ), only entries for s € candidates(g,z) need be
computed. As before, the tables candidates and ECrs can be
completed via post-order traversal of the gene tree. Note that
once all entries candidates(-, -) and ECrs(-, -) have been com-
puted, the optimal cost between G and S is simply

MM e R se(r(G),z)cost((7(G),5,7)) -

Theorem 3.6. For each g € V(G) and = € LR, Algorithm 2 cor-
rectly computes candidates(g,x). Furthermore, for each s €
candidates(g, ), Algorithm 2 correctly computes ECrs(g, s, x).

Lemma 3.7. In Algorithm 2, each set candidates(g, z) contains
at most two elements.

Theorem 3.8. The time complexity of Algorithm 2 is
O(G[ - 1S])-

3.3 Extendingto Multiple Gene Trees
Next, we extend the previous results towards the ultimate goal
of allowing for reconciliations with a level-1 species network.

Algorithm 3. 1: function RECONCILEORIGINSIMPLES-

NETWORK (G, S, Le)
input: gene tree G' with an origin node, species network S

with one hybridization node, leaf mapping Le
output: mapping ECrs(g, s, x)

2:  Set candidates, ECrs = RECONCILEBLCASIMPLESNETWORK
(Gr(c), S, Le).
3: foreachz € LR do
4: Initialize ECrs(o(G),r(S), z) = (0, 00)
5: foreach z; € LR do
6: for each s, € candidates(r(G), z;) do
7: for each p; € pathsg(r(S),s1) do
8: Set(Ej,Cl):ECI'S(T(G),Sl,Il).
9: Set E = E; Up;.
10: Sete =¢;.
11: Set z = x; + signature(p,).
12: ifc < cost(ECrs(o(G),r(S),z)) then
13: Update ECrs(o(G), (S),z) = (E,c).

14: return ECrs.
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Given a gene tree (¢ and a species network S with one
hybridization node, the root of the gene tree may not be
mapped to the species in which the gene family originated,
for example, due to gene losses or missing samples. To
address this issue, we add an origin node o(G) and a root
branch (o(G), r(G)) to G.

We now consider the problem of reconciling G with an
origin node and S. Let R = (R,, R;) denote an rs-optimal
reconciliation between G and S such that R,(o(G)) = r(S)
and signature(R) = z. Note that R is not restricted to be a
BLCA mapping. However, it is straightforward to show
that, to minimize the deep coalescence cost between G and
S, a reconciliation between G ) and S is restricted to be a
BLCA mapping. Algorithm 3 describes how to update ECrs
accordingly via a simple modification of Algorithm 2.

Lemma 3.9. For each g € V(G) and x € LR, Algorithm 3 cor-
rectly computes candidates(g, «). Furthermore, for each s €
candidates(g,z), Algorithm 3  correctly  computes
ECrs(g, s, x).

Lemma 3.10. The time complexity of Algorithm 3 is O(|G| - |S|).

Next, we consider the problem of reconciling a forest G of
gene trees with origin nodes and a species network S with
one hybridization node. We start by extending the defini-
tion of a reconciliation to a forest of gene trees.

Definition 3.1 (Forest Reconciliation). Let §=
{G\, ..., Gk} denote a forest of gene trees with origin nodes. A
forest reconciliation for G and S is a pair of mappings
(Ry,R,) and a set of subreconciliations {R', ..., RX} subject
to the following constraints:

1)  For each k such that 1 < k < K, R* is a reconciliation
between G and S.
2)  Foreach g€ V(G), if g € V(Gr), then R,(g) = R¥(g)
and R, (g) = R%(9).
Constraint 1 asserts that each R* is associated with G, and
Constraint 2 asserts that R extends each R*.

For convenience, we often refer to a forest reconciliation
as simply a reconciliation. To distinguish the two, we denote
forest reconciliations using calligraphic font R and (tree) rec-
onciliations using standard math font R. In the remainder of
this work, we include one additional constraint on all R: For
each Gy, € G, R,(0o(Gr)) = R¥(o(G)) = r(S). This constraint
will be necessary later when we combine the forest of gene
trees into a single tree. It is straightforward to extend defini-
tions of lineages, edgeset, signature, and cost from (tree) rec-
onciliations to forest reconciliations.

for e € E(S),Lz(e) = |[{g € V(G) : e € Ry(9)}]
edgeset(R) = U Ry(9)
geV(g)
signature(R) = signature(edgeset(R))
DCr= Y  (Lr(e)—1).

ecedgeset(R)

Lemma 3.11 (Equivalent Edgesets for Forest Reconcilia-
tions). Given a forest G = {Gh,...,Gk} of gene trees with
origin nodes and a species network S with one hybridization
node, let Q and R denote two reconciliations between G and S.
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If signature(Q) = signature(R), then

edgeset(R).

edgeset(Q) =

Given a gene tree G with an origin node and a species net-
work § with one hybridization node, a reconciliation R =
(Ry, R,) between G and S is said to be signature-optimal (s-opti-
mal) if it has the minimum cost among all reconciliations R’
between G and S such that R, (o(G)) = R,(o(G)) = r(S) and
signature(R') = signature(R). Similarly, given a forest G of
gene trees with origin nodes and a species network S, a recon-
ciliation R is said to be signature-optimal (s-optimal) if it has the
minimum cost among all reconciliations R’ between G and S
such that signature(R’) = signature(R).

Now, define some (arbitrary) order on the trees in a for-
est G. For each ksuch that 1 < k< K, let ¢* = {G,..., Gy}
denote the first k gene trees of G. Let R* = {R!,..., R*}
denote a reconciliation between Q'PC and S. It follows that
G¥ = Gand R¥ = R.

Lemma 3.12 (Optimal Substructure Property for Forest
Reconciliations). Given a forest G = {G1, ..., Gk} of gene
trees with origin nodes and a species network S with one
hybridization node, let R* = {R*',... ,R*K} denote an s-
optimal reconciliation between G and S. Then, for each k such
that 1 < k < K, R** and R** are s-optimal.

We are now ready to describe our dynamic programming
algorithm for reconciling G and S (Algorithm 4). Our algo-
rithm constructs another table ECs. Givenany G, € Gand x €
LR, entry ECs(G', x) is an ordered pair (E, ¢) for an s-optimal
reconciliation R* between G* and S such that signature(R*) =
z. E € P(E(S)) denotes the edgeset of R*, and non-negative
integer c denotes the cost of R*. Note that by Lemma 3.11, all
s-optimal reconciliations between G* and S that have the same
signature share the same edgeset but not necessarily the same
cost. As with ECrs, let cost(ECs(-, -)) denote the cost compo-
nent of an entry.

function RECONCILEFORESTSIMPLES-
NETWORK (G, S, Le)

input: forest G of gene trees {Gi,...,Gk} with origin
nodes, species network S with one hybridization node, leaf
mapping Le -

output: minimum reconciliation cost between G and S such
that each origin node is mapped to r(5)

Algorithm 4. 1:

2: foreachkfrom1to K and each z € LR do
3: Initialize ECs(Gk, z) = (0, 00).
4: foreachkfrom1to K do
5: Set ECrs = RECONCILEORIGINSIMPLESNETWORK (G, S, Le).
6: if k=1 then
7: foreachz € LR do
8: Update ECs(G1, z) = ECrs(o(G1),r(5), z).
9: else
10: foreach (z;,27) € LR x LR do
11: Set (E],Cl) = ECS(Gk_l,Il).
12: Set (Eg, ¢a) = ECrs(o(Gy),7(9), x2)-
13: Set E= E1 U Es.
14: Setc=c1+ ¢z + |E1 N Ey|-
15: Setx =z, + 12.
16: if ¢ < cost(ECs(Gy, ) then
17: Update ECs(Gy, z) = (E, ¢).

18: return min.cppcost(ECs(Gg,x)).
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The procedure for completing table ECs (Algorithm 4) is
conceptually similar to the procedure for completing ECrs
(Algorithm 1) but relies on Lemma 3.12 on the substructure
for a forest reconciliation rather than Lemma 3.2 on the sub-
structure for a tree reconciliation. Once all entries have been
computed, the cost of reconciliation R* is returned.

Lemma 3.13. Algorithm 4 correctly computes the reconciliation
cost.

Lemma 3.14. The time complexity of Algorithm 4 is
O(Xgyeg Gl - 151)-

3.4 Putting the Pieces Together

In this section, we give an efficient algorithm for solving the
most parsimonious reconciliation problem for a gene tree
and a level-1 species network. This algorithm has some sim-
ilarities with Algorithm 1 of To and Scornavacca [23], which
finds an optimal switching® of a level-k species network that
minimizes the duplication-loss cost between a gene tree and
the resulting species tree. We demonstrate that their general
approach of decomposing the gene tree and species net-
work can be applied to our problem of minimizing the deep
coalescence cost, where we reconcile each component of the
decomposition using our previously presented algorithms.

We are given as input a gene tree G, a level-1 species net-
work S, and a leaf mapping Le, and our goal is to compute
the minimum deep coalescence cost between G and 5. Our
algorithm relies on several definitions and lemmas, largely
taken verbatim from To and Scornavacca [23] except for
minor modifications to notation.

We start by identifying and contracting all biconnected
components of the species network (Figs. 3a and 3b). As
presented in To and Scornavacca [23], let B be a biconnected
component of a network S.° Then B contains exactly one
node without ancestors in B; let (B) denote the root of B. If
B consists of more than one node, we can contract it by
removing all nodes of B other than r(B), then connect r(B)
to every node with in-degree 0 created by this removal.

Definition 3.2 (Tree bc(S); Fig. 3b; To and Scorna-
vacca [23], Definition 2). Given a network S, the tree be(S)
is obtained from S by contracting all its biconnected
components.

Next, we present notation for mapping between a net-
work S, the biconnected components of 5, and the con-
tracted tree be(S).

Definition 3.3 (Mapping M). Given a network S, let M be a
mapping from nodes of S to biconnected components of S. For
every s € V(S), M(s) is the component to which s contracts.

As in To and Scornavacca [23], let B denote the node in
be(S) that corresponds to a biconnected component B in S.

5. Per Definition 4 of To and Scornavacca [23], a switching chooses,
“for each hybridization edge, an incoming edge to switch on and the
other to switch off.”

6. For consistency with To and Scomavacca [23], we take some liber-
ties with the formal definition of biconnected components. In particu-
lar, we omit biconnected components with only two vertices.
Additionally, we consider any single cut vertex not part of another
biconnected component to be a biconnected component, and we con-
sider each leaf to be a biconnected component.
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Fig. 3. Annotated species networks and gene trees. (a) A level-1 species network S with four biconnected components B; and four elementary networks
S(B;), where 1 < i < 4. (b) The tree be(S) where, for each i such that 1 < i < 4, node B; in be(S) corresponds to biconnected component B; in S. (c) A
gene tree G along with its mapping B(-). (d) The tree G's along with its mapping B(-) and subgraphs G, where 1 < i < 4. Artificial nodes are circled (if added
fromthe Definition 3.6, normal font) or boxed (if added from Definition 3.6, bold font). Figures and caption adapted from To and Scornavacca [23].

Given two biconnected components B; and B;, we say that
B.g Sg BJ (resp. B§ <g BJ) if and Ol"l]y if B.g Sbc(g) BJ (Iesp.
B; <es) Bj).Insucha case, B; is said to be lower than or equal
to (resp. lower than) B;. We say that B; is the parent (resp. a
child) of B; if B; is the parent (resp. a child) of B; in be(S).

Our last step for processing the species network S is to
decompose it into disjoint networks based on its bicon-
nected components.

Definition 3.4 (Elementary network; Fig. 3a; To and
Scornavacca [23], Definition 3). Given a network S, each
biconnected component B that is not a leaf of S defines an ele-
mentary network, denoted by S(B), consisting of B and all
edges (u,v) such that uw € V(B).

Note that because S is a level-1 network, each elementary
network of § is either a binary tree or a network with one
hybridization node. While we have presented algorithms
for reconciling one or more gene trees with a species net-
work with one hybridization node, it is straightforward to
modify each of our previous algorithms to instead reconcile
one or more gene trees with a species tree (Supplemental

7.To and Scomavacca [23] defines 5(B) as “consisting of B and all
cut-edges coming out from B”.

Algorithms S1, S2, S3), available online. The proofs of cor-
rectness and complexity are analogous to those of the corre-
sponding algorithms and are therefore omitted.

Our next step is to similarly decompose the gene tree G
into disjoint forests that evolve within each elementary net-
work (Figs. 3c and 3d). We make some minor modifications
to the definitions and lemmas of To and Scomavacca [23] to
require origins for each decomposed gene tree (modifica-
tions in bold).

Definition 3.5 (Mapping B; Fig. 3c; To and Scorna-
vacca [23], Definition 6). Given a tree G and network S, let
B be a mapping from nodes of G to biconnected components of
S. For every u € V(G), B(u) is the lowest biconnected compo-
nent B of S such that L(S,(p)) contains { Le(v) | v € L(G,)}.?

Definition 3.6 (Tree G'g; Fig. 3d; Modified from To and
Scornavacca [23], Definition 7). The tree Gs is obtained
from G as follows: For each internal node u in G with child
nodes uy and uy such that there exist k biconnected components
B;, >gs... >g B, strictly below B(u) and strictly above
B(ui1), we add k artificial nodes vy > ... > v on the edge

8. To and Scornavacca [23] denoted this mapping as B and phrased
the definition in terms of leaf labels. We use B(-) to distinguish the map-
ping from a biconnected component B.
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(u,u1), and we fix B(v;) to B,;J.. We do the same for u,. Then,
for each non-root, non-artificial internal node « in GG such
that B(u) # B(p(u)), we add an artificial node v on the
edge (p(u),u), and we fix B(v) to B(u). Furthermore, we
add an origin node v above u = r(G), and we fix B(v) to
B(u).

Definition 3.7 (Subgraph Gg; Fig. 3d; To and Scorna-
vacca [23], Definition 8). Let B be a biconnected component
of S that is not a leaf. Then Gp is the set of all maximal con-
nected subgraphs H of Gg such that B(u) = B for every
u € I(H).

Lemma 3.15 (Modified from To and Scornavacca [23],
Lemma 2). Let B be a biconnected component of S that is not
a leaf. Then we have the following:

(i)  for every H € Gp, H is either a binary tree with an
origin node or an edge whose upper extremity is an
artificial node. Moreover, for every leaf u of H, B(u) is
a child of B.

(i) if B= B(r(G)), then Gp consists of one binary tree
with an origin node.

It can be easily shown that adding artificial nodes and an
origin node to G does not change the minimum reconcilia-
tion cost between G and 5.

Next, we extend the definition of subsume, previously
defined for reconciliations with a species network with one
hybridization node, to reconciliations with a level-1 species
network. Let R and R* be two reconciliations between a
gene tree G and a level-1 species network S. R is said to
subsume R if R!(r(G)) <s R,(r(G)), edgeset(R*)C
edgeset(R), and DCg < DCp, (Fig. 4¢).

Lemma 3.16. Given a gene tree G and a level-1 species network
S, let R = (R, Ry) be a reconciliation between G and S. Given
a mapping M and a mapping B, if there exists an internal node
g € I1(G) with children g, and g such that M(R,(g)) # B(g),
M(Ro(91)) = Blgr), and M(R.(g2)) = Bge), then there
exists some other reconciliation R* = (R;, R;) between G and
S such that R* subsumes R.

Given a gene tree G, a level-1 species network S, a map-
ping M, and a mapping B, a reconciliation R between G
and S is said to be consistent with M and B if, for each inter-
nal node g of G with children g and g,, M(R,(g)) = B(g)-
Note that if G has no internal nodes, then any reconciliation
between G and S is trivially consistent.

Corollary 3.16.1. Given a gene tree G, a level-1 species network
S, a mapping M, and a mapping B, then for any reconciliation
R = (R, R,) between G and S that is not consistent with M
and B, there exists some other reconciliation R* that is consis-
tent with M and B and subsumes R.

We are now ready to describe an algorithm for reconcil-
ing a binary gene tree G and a level-1 species network S
(Algorithm 5, Fig. 4). Let R denote an optimal reconciliation
between G and S. By Corollary 3.16.1, we need only con-
sider reconciliations R that are consistent with M and B.
That is, for each g of G, R must satisfy M(R,(g)) = B(g).
Our algorithm relies on independently considering each
biconnected component B; of S, reconciling the correspond-
ing gene subgraph Gp, and species subnetwork S(B;), and
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Algorithm 5. 1: function RECONCILE (G, S, Le)

input: gene tree (7, level-1 species network S, leaf mapping

Le
output: minimum reconciliation cost between G and § with

Le
2:  Compute tree be(S) and mapping M(-).
3: Compute tree G and mapping B(-).
4:  Compute subgraph Gg, for each biconnected component

B; of S that is not a leaf.
5: Initialize ¢ = 0.
6:  for each biconnected component B; of S that is not a leaf
do
7: for each leaf g € L(Gp,) do
8  SetLen() = r(Blo)).
9: if S(B;) is a tree then
10: Set ¢; = RECONCILEFORESTSTREE(G,, S(B;), Leg,)."”
11: else
12: Set ¢; = RECONCILEFORESTSIMPLESNETWORK (G, , S(B;),
Leg,).
13: Updatec =c+ ¢;.
14:  returnc.

adding together the reconciliation costs of the independent
components.

Theorem 3.17. Algorithm 5 correctly computes the minimum
reconciliation cost between G and S with leaf mapping Le.

Theorem 3.18. The time complexity of Algorithm 5 is
oGl - 151)-

3.5 Beyond Level-1 Networks

Algorithm 5 can be extended for general species networks S
of level-k. To do so, Algorithms 2, 3, and 4 are easily
extended to take species networks with up to k hybridiza-
tion nodes. Such a modification requires tracking k separate
signatures, one for each hybridization node. As there are
four possible values for each signature, the time complexity
of each extended algorithm would gain an additional factor
of 4%, resulting in an overall time complexity of O(4* - |G| -
|S]) for Algorithm 4. Since the complexity of Algorithm 4
dominates the complexity of Algorithm 5, the extended ver-
sion of Algorithm 5 would then also have a time complexity
of O(4¥-|G| - |8]). Although this time complexity is expo-
nential in the level of the network, we might expect & to be
small for most phylogenies. Thus, the algorithm could still
be practical in most cases.

4 DISCUSSION

In this work, we have presented a polynomial-time algo-
rithm for inferring a most parsimonious reconciliation
between a gene tree and a level-1 species networks that
explains topological incongruence through hybridization
and ILS. Our dynamic program required several develop-
ments. First, we introduced the concept of a reconciliation
signature, which specifies which hybridization edges are
used by different parts of the reconciliation. Next, we
showed that the number of candidate species to consider in
the dynamic program can be restricted to a set of constant
size that corresponds to a generalization of the LCA. Finally,
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Fig. 4. Reconciliation algorithm. (a) Continuing the example from Fig. 3, optimal reconciliations R; between subgraphs Gs, and S(B;), where1 < i < 4.
(There exist two optimal reconciliations R;.) R} induces 1 extralineage, and R;, R;, and R} eachinduce 0 extra lineages. (b} The full optimal reconcilia-
tion R* between GG and S. (c) A different reconciliation R between G and S such that R* subsumes R. Note that for node u, B(u) = Bs. In R*, uis mapped
to R} (u) = s3 so that M(R;(u)) = M(sz) = B». In contrast, in R, u is mapped to R,(u) = s, so that M(R,(u)) = M(s1) = B:. Furthermore, R* is con-
sistent with M and B whereas R is not consistent with A1 and B. Comparedto R*, R induces an additional extra lineage to exit s, into s, .

we decomposed the gene tree and species network using
biconnected components and reconciled each component
independently. While we have focused on level-1 networks,
our algorithm can be extended to level-k species networks,
though the time complexity is exponential in &.

We believe that our algorithm can be applied in several
contexts. When the gene tree and species network are fixed,
the algorithm can be used directly to infer reconciliations.
Perhaps more interesting applications include incorporating
the algorithm as part of a larger pipeline. For example, if the
species network is considered known but the gene trees

must be reconstructed from gene alignments that lack phy-
logenetic signal, reconciliation can be used to correct errors
in gene tree topology [28], [29]. On the other hand, given a
set of reconstructed gene trees, there exist several methods
for species network inference using a parsimony crite-
rion [14], [16], [20]. However, since more complex networks
(with more hybridization) can better fit data (yielding rec-
onciliations with equal or smaller numbers of extra line-
ages), methods are needed to balance this classic trade-off
between complexity and fit. While there exist information
criteria such as AIC and BIC for model selection when
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measuring fit through likelihood, no similar metrics exist
when measuring fit through parsimony. Perhaps more trou-
bling, species tree inference by minimizing deep coales-
cence is inconsistent [30], and similar consistency issues are
likely to arise for species network inference using the MDC
criterion. But promisingly, parsimony and probabilistic
approaches can sometimes reconstruct the same species
network [20].

There are numerous directions for future work. There
can exist multiple MPRs for a fixed gene tree and species
network, and reconciliations are sensitive to user-defined
event costs. While several papers have investigated the
space of MPRs wunder the duplication-transfer-loss
model [31], [32] and the duplication-loss-coalescence
model [33], [34], we believe that similar problems can be
explored under a joint hybridization and ILS model. Simi-
larly, several reconciliation algorithms have been extended
to handle non-binary gene trees [35], [36] or to incorporate
macro-evolutionary events such as gene duplication, loss,
and transfer [23], [37]. While hybridization and gene trans-
fer may result in similar types of incongruence, more inves-
tigation is needed to see how we might disentangle the two
signals. Finally, theoretical analysis has shown that the
MPR problem under a hybridization and ILS model is NP-
hard in general, e.g., for level-k species networks for arbi-
trary values of k [38]. Similar analysis might address
whether there exist approximation algorithms or fixed-
parameter tractable algorithms.
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