Modeling Network-level Traffic

Xiaoliang Lei" Hao Mei"
shawlenleo@stu.xjtu.edu.cn hm467@njit.edu
Xi’an Jiaotong University New Jersey Institute of
Technology

ABSTRACT

Modeling how network-level traffic flow changes in the urban en-
vironment is useful for decision-making in transportation, public
safety and urban planning. The traffic flow system can be viewed as
a dynamic process that transits between states (e.g., traffic volumes
on each road segment) over time. In the real-world traffic system
with traffic operation actions like traffic signal control or reversible
lane changing, the system’s state is influenced by both the histor-
ical states and the actions of traffic operations. In this paper, we
consider the problem of modeling network-level traffic flow under
a real-world setting, where the available data is sparse (i.e., only
part of the traffic system is observed). We present DTIGNN, an ap-
proach that can predict network-level traffic flows from sparse data.
DTIGNN models the traffic system as a dynamic graph influenced by
traffic signals, learns the transition models grounded by fundamen-
tal transition equations from transportation, and predicts future
traffic states with imputation in the process. Through comprehen-
sive experiments, we demonstrate that our method outperforms
state-of-the-art methods and can better support decision-making
in transportation.

CCS CONCEPTS

« Information systems — Spatial-temporal systems; - Com-
puting methodologies — Neural networks.

KEYWORDS
Traffic state modeling, traffic flow prediction, urban computing

ACM Reference Format:

Xiaoliang Lei, Hao Mei, Bin Shi, and Hua Wei. 2022. Modeling Network-
level Traffic Flow Transitions on Sparse Data. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
'22), August 14-18, 2022, Washington, DC, USA. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3534678.3539236

1 INTRODUCTION

Modeling how network-level traffic flow changes in the urban
environment is useful for decision-making in various applications,

“Both authors contributed equally to this research.
1\Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539236

Flow Transitions on Sparse Data

Hua Wei®
hua.wei@njit.edu
New Jersey Institute of
Technology

St—
St—>| St+1 St+1
Ap—

(a) Modeling traffic flow transition

Bin Shi
shibin@xjtu.edu.cn
Xi’an Jiaotong University

(b) Modeling transition with action

asten [
ASTGCN w/ action _

03 04 05 06 0.7 RMSE

(¢) Performance w.r.t. RMSE and standard deviation. The lower, the better.

Figure 1: Two perspectives in modeling traffic flow. (a) Ex-
isting data-driven models directly predict the next state s;.1
based on its past states with a model P. (b) Modeling the traffic
state transition takes both past states and traffic management
actions. (c) The method with traffic management actions as
input (ASTGCN [8] w/ action) shows better performance.

ranging from transportation [5, 16], public safety [26, 41] to urban
planning [10]. For example, modeling the network-level traffic flow
can help build a good simulator and serve as a foundation and a
testbed for reinforcement learning (RL) on traffic signal control [30],
routing [25] and autonomous driving [31].

The modeling of the traffic flow system can be viewed as a
dynamic process that transits from state s; to state s;41. The state
of the system can include traffic conditions like traffic volume,
average speed, efc. The ultimate objective to build a real predictor
is to minimize the error between estimated state $;.1 and true state
observation s;41. Traditional transportation approaches assume the
state transition model is given and calibrate parameters accordingly
using observed data [3, 13, 20, 28]. However, the assumption on the
state transition model is often far from the real world because the
real-world system is a highly complex process, especially for the
system in which humans are key players.

Recently, growing research studies have developed data-driven
methods to model state transitions. Unlike traditional transporta-
tion approaches, data-driven methods do not assume the under-
lying form of the transition model and can directly learn from
the observed data. With the data-driven methods, a more sophisti-
cated state transition model can be represented by a parameterized
model like neural nets and provides a promising way to mimic
the real-world state transitions. These data-driven models predict
the next states based on the current state and historical states
with spatial information, through deep neural networks like Re-
current Neural Network (RNN) [35, 38] or Graph Neural Network
(GNN) [4, 8, 11, 15, 22, 27, 33, 42, 44]. As shown in Figure 1(a), these
methods focus on directly minimizing the error between estimated
state s;4+1 and true observed state s;41, with an end-to-end pre-
diction model P. Although having shown great effectiveness over
traditional methods, these approaches face two major challenges:

https://doi.org/10.1145/3534678.3539236
https://doi.org/10.1145/3534678.3539236

o The influence of traffic management actions. In the real-
world traffic system with traffic management actions like traffic
signal control or reversible lane changing, the system’s state is
influenced not only by its previous states, but more importantly, by
the actions of traffic management actions. Simply taking previous
states (e.g.., volumes) as input may cause conflicting learning prob-
lems. For example, given a road segment A with K vehicles at time ¢,
the road segment has traffic signals at its end, controlling whether
the vehicles can leave the road or not. When A is having green
light, the future traffic volume on the road is likely to drop, but if A
is having red light, the future traffic volume is likely to rise. When
the model only considers historical traffic volumes, the conflicting
traffic volume will confuse the learning process. As a result, the
learned model is likely to predict s;41 with a large error or variance.
As is shown in Figure 1, if we take the traffic management actions
(e.g., how traffic signal changes) into consideration, the traffic flow
will be predicted more accurately. To the best of our knowledge,
none of the existing literature has integrated traffic actions into
data-driven models.

It is worth noting that modeling the traffic flow state transition
with traffic management actions is more than improving the pre-
diction accuracy. A well-trained state transition model with traffic
management actions can be utilized to provide actionable insights:
it can be used to find the best decision to mitigate the problems in
traffic flow system (e.g., traffic congestion), and then on prescribing
the best actions to implement such a decision in the physical world
and study the impact of such implementation on the physical world.
o The sparsity of traffic data. In most real-world cases, the avail-
able observation is sparse, i.e., the traffic flow states at every location
are difficult to observe. It is infeasible to install sensors for every
vehicle in the road network or to install cameras covering every
location in the road network to capture the whole traffic situation.
Most real-world cases are that the camera data usually only covers
some intersections of the city, and the GPS trajectories may only
be available on some cars, like taxis. As data sparsity is considered
as a critical issue for unsatisfactory accuracy in machine learning,
directly using datasets with missing observations to learn the traf-
fic flow transitions could make the model fail to learn the traffic
situations at the unobserved roads.

To deal with sparse observations, a typical approach is to infer
the missing observations first [2, 6, 14, 18, 21, 37] and then learn the
model with the transition of traffic states. This two-step approach
has an obvious weakness, especially in the problem of learning
transition models with some observations entirely missing. For ex-
ample, mean imputation [6] is often used to infer the missing states
on the road by averaging the states from nearby observed roads.
However, not all the traffic from nearby roads would influence the
unobserved road because of traffic signals, making the imputed
traffic states different from the true states. Then training models on
the inaccurate data would further lead to inaccurate predictions. A
better approach is to integrate imputation with prediction because
they should inherently be the one model: the traffic state on the
unobserved road at time ¢ is actually influenced by the traffic flows
before t, including the flows traversed from nearby roads and the
remaining flows of its own, which is also unobserved and needs
inference.

In this paper, we present DTIGNN, a GNN-based approach that
can predict network-level traffic flows from sparse observations,

with Dynamic adjacency matrix, Transition equations from trans-
portation, and Imputation. To model the influence of traffic manage-

ment actions, DTIGNN represents the road network as a dynamic
graph, with the road segments as the nodes, road connectivity as
the edges, and traffic signals changing the road connectivity from
time to time. To deal with the sparse observation issue, we design a
Neural Transition Layer to incorporate the fundamental transition
equations from transportation, with theoretical proof on the equiv-
alence between Neural Transition Layer and the transportation
equations. DTIGNN further imputes the unobserved states itera-
tively and predict future states in one model. The intuition behind
is, the imputation and prediction provided by data-driven models
should also follow the transition model, even though some flows
are unobservable.

We conduct comprehensive experiments using both synthetic
and real-world data. We demonstrate that our proposed method out-
performs state-of-the-art methods and can also be easily integrated
with existing GNN-based methods. The ablation studies show that
the dynamic graph is necessary, and integrating transition equation
leads to an efficient learning process. We further discuss several
interesting results to show that our method can help downstream
decision-making tasks like traffic signal control.

2 RELATED WORK

Traffic Prediction with Deep Learning. Recently, many efforts
have been devoted to developing traffic prediction techniques based
on various neural network architectures. One straightforward so-
lution is to apply the RNN, or convolutional networks (CNN) to
encode the temporal [17, 39] and spatial dependency [34, 35, 41].
Recent works introduce GNN to learn the traffic networks [42].
DCRNN [15] utilizes the bi-directional random walks on the traffic
graph to model spatial information and captures temporal dynam-
ics by RNN. Transformer models [11, 27, 33, 43, 44] utilize spatial
and temporal attention modules in transformer for spatial-temporal
modeling. STGCN [38] and GraphWaveNet [32] model the spatial
and temporal dependency separately with graph convolution and
1-D convolution. Later studies [8, 22] attempt to incorporate spa-
tial and temporal blocks altogether by localized spatial-temporal
synchronous graph convolution module regardless of global mu-
tual effect. However, when predicting traffic states, all the previous
GNN-based models assume that the node feature information is
complete, which is unfeasible in real-world cases. Our work can
be easily integrated into these GNN-based methods and handle
incomplete and missing feature scenarios, which have not been
well explored in existing solutions.

Traffic Inference with Missing Data. Incomplete and missing
data is common in real-world scenario. In machine learning area,
imputation techniques are widely used for data completion, such
as mean imputation [6], matrix factorization [12, 19], KNN [2] and
generative adversarial networks [14, 18, 37]. However, general im-
putation methods are not always competent to handle the specific
challenge of spatial and temporal dependencies between traffic
flows, especially when traffic flows on unmonitored road segments
are entirely missing in our problem setting.

Upstream road segment

Downstream road segment Downstream road segment

1/1(1|3|3|3|5|5|5]|7

4 Sl T | >

8|/ 6|4 |2|8|6|4 |28

)

Downstream road segment

(b) Signals and the controlled road segments

Upstream road segment
Upstream road segment

of1]o]r]

1
i
I
| [1]efofe]o e]e]o
1
5

(a) An example intersection

Four right-turn signals and two left-turn signals (dashed
arrows) are activated (colored in green) in the right figure

(c) Phase representation Pt for activated signals

Dark cell: self-connected Dark cell: self-connected

Grey cell: connected through intersection Grey and colored cell: connected by signals

White cell: not connected White cell: not connected

(d) Static adjacency matrix (e) Phase-activated adjacency matrix

Figure 2: Illustration of traffic signals and their influence on the connectivity between road segments. (a) An intersection with
eight connecting road segments and traffic signals. (b) The signals set and their controlled road segments in the example, with
right-turn signals illustrated in grey cells. (c) The phase representation for the activated signals in the example intersection.(d)
The static adjacency matrix between road segments induced by road network structure. (e) the dynamic adjacency matrix

induced by traffic signals. Best viewed in color.

Many recent studies [23, 36] use graph embeddings or GNN to
model the spatio-temporal dependencies in data for network-wide
traffic state estimation. Researchers further combine temporal GCN
with variational autoencoder and generative adversarial network
to impute network-wide traffic state [21]. However, most of these
methods assume the connectivity between road segments is static,
whereas the connectivity changes dynamically with traffic signals
in the real world. Moreover, all the graph-based methods do not
explicitly consider the flow transition between road segments in
their model. As a result, the model would likely infer a volume for
a road segment when the nearby road segments do not hold that
volume in the past.

3 PRELIMINARIES

Definition 3.1 (Road network and traffic flow). A road network
consists of road segments, intersections, and traffic signals. Road
segments are connected through intersections, and their connectiv-
ity changes with the action of traffic signals. The traffic flow on a
road segment is directional, with incoming traffic flow from several
upstream road segments, and different outgoing traffic flows to
downstream road segments.

Definition 3.2 (Traffic signal action p). The traffic signal action
pr € {0,1}F represents a traffic signal phase [29] at time ¢, where
there are P signals in total, and its k-th value p;[k] = 1, indicating
the signal is green, and corresponding traffic flows are allowed to
travel from upstream roads to downstream roads.

Definition 3.3 (Road adjacency graph G). We represent the road
network as a directed dynamic graph G; = {R, A;} at time t, where
R = {rl, rN} is a set of N road segments and A; € RNXN g
the adjacency matrix indicating the connectivity between road
segments at time t. In this paper, A; is dynamically changing with
time ¢ due to the actions of traffic signals.

Figure 2(a) shows an example intersection. Figure 2(b) indicates
the intersection has 12 different signals, each of which changes
the traffic connectivity from the upstream road segments to corre-
sponding the downstream roads. Now the intersection is at signal
phase p;. In Figure 2(c), p;[0] = 1 denotes that traffic flows can
move from the upstream road #1 to downstream road #8. A static ad-
jacency matrix is constructed based on the road network topology,
and a dynamic adjacency matrix can be constructed based on the
connectivity of between upstream and downstream road segments
with signal phases.

Definition 3.4 (Observability mask M). In real-world traffic sys-
tems, some road segments are unobserved for the entire time due to
the lack of sensors. We denote the observability of traffic states as
a static binary mask matrix M € {0, 1}’V*F and F is the length of a
state feature (also called channels), where F = 3 when the road has
three outgoing flows. When the road segment is observed, M’ = 1F;
when the road segment is unobserved, M! = oF.

Definition 3.5 (Graph state tensor X, observed X, unobserved X,
predicted X, merged X’). We use xi € RF to denote the traffic
volumes on road r' € R at time ¢. X; = (x},x%, e ,xjt\]) e RN*F
denotes the states of all the road segments at time ¢, including the
observed part X; = X; ©M and unobserved part X; = X; ® (1-M),
where O is the element-wise multiplication. The graph state tensor
X = (X, Xg, -+, X7) € RNXFXT denotes the states of all the road
segments of all time, with X = (X1,Xy, -+, Xr) as observed state
tensor and X as unobserved state tensor. The predicted values of
X will be denoted with X, and the merged values for X will be
denoted as X’.

PrROBLEM 1 (TRAFFIC FLOW TRANSITION MODELING). Based on the
definitions above, the modeling of traffic flow transition is formulated
as: given the observed tensor X on a road adjacency graph G, the goal
of modeling traffic flow transition is to learn a mapping function f
from the historical T observations to predict the next traffic state,

. . f
[Xi—T41, -, X5 Ge—T41, -+ Gt] — [Xp41] (1)

It’s worth noting that the modeling of state transitions focuses
on predicting the next state Xz41, rather than predicting future T’
steps (T’ > 2), since it requires future G;,77—1 which is influenced
by future traffic operation actions. The learned mapping function
f can be easily extended to predict for longer time steps in an
auto-regressive way if future traffic operation actions are preset.

4 METHODOLOGY
4.1 Overall Framework

Figure 3 shows the framework of our proposed network which
mainly consists of three components: a base GNN module, a Neural
Transition Layer, and an output Layer. The base GNN module takes
the static adjacency matrix Agzqric and observed state tensor X =
(X;—T+1, X¢—T42, -+ » X¢) as input, and output an attention matrix
Att. Grounded by the transition equations from transportation, the

Xt-l-l
t-T+1 Ae-T42, -, A
Output < < Astatic
Layer Ke-rs1, -0 Xp) 0
4 TCT
foTe) Q H
PANTY

Residual

L

Attention
Matrix

Base GNN Module

ﬂsmtie

Imputation on

Impute Unobserved States
Ar-rs1, Ae-T42,) Ar
- (X141, Xe-T425 o0, Xe)

Xe-T+2

(a) Framework

A1, A2, 0 Ap
: Astatic
=

At Ar-T42, 0
"Astatl

X, H

DTIGNN

Imputation on

X

(b) Pipeline

Figure 3: Model framework and training pipeline. (a) The framework of DTIGNN network. The network can be built upon
exiting spatial-temporal GNNs with our Attention based Spatial-Temporal GNNs Layer appended after existing GNNss. (b)
The training pipeline of DTIGNN. One training round goes through data in an auto-regressive way, and the predictions from
previous time steps are used as imputations to update the unobserved data at the current time step.

Neural Transition Layer takes the I' along with dynamic Phase-
activated Adjacency Matrix A and X to predict the state tensor
X;41. Asis shown in Figure 3(b), there are iterative imputation steps
from the time step t — T + 1 toward ¢ + 1, where the unobserved part

of the predict state tensor X;_ ;41 from the time step t — 7 would be
merged with X;_,.1 and used for the prediction for X;_,+2. Then
the Output Layer generates a prediction of X;4;1.The details and
implementation of the models will be described in the following
section.

4.2 Phase-activated Adjacency Matrix

As introduced in Section 2, existing traffic flow prediction methods
rely heavily on a static adjacency matrix Assqric generated from
the road network, which is defined as:

@

static ~

A - {l, road segment i is the upstream of j

0, otherwise

Considering that traffic signal phases change the connectivity
of the road segments, we construct a Phase-activated Adjacency
Matrix A; through the signal phase p; at time ¢:

ij)L Jke{1,---,P}, uplk] =i, downlk] = j, p:[k] =1
A = 0
(3)

otherwise
where p;[k] denotes the activation state of the k-th element in p;
at time t, up[k] and down[k] denote the upstream road segment
and the downstream road segment that associated with the k-th
signal. Intuitively, upstream road i will be connected with road j,
when the k-th signal in current phase p; is green.

4.3 Transition-based Spatial Temporal GNN

4.3.1 Base GNN Module. To capture the complex and spatial-
temporal relationships simultaneously, a base GNN module is ap-
plied. GNNs update embeddings of nodes through a neighborhood
aggregation scheme, where the computation of node representation

is carried out by sampling and aggregating features of neighboring
nodes. In this paper, any graph attention network (GAT) or graph
convolutional network (GCN) model with multiple stacked layers
could be adopted as our base GNN module. Without losing gen-
erality, here we introduce the first layer for GAT and GCN model
stacks and then how to integrate them into our model.

e The classic form of modeling dependencies in GAT can be for-
mulated as [8]: S = Vs - o(XW))YWP (WD X)T + by), where
X = (X1, Xy, -+, X7) € RNXFXT j5 the input of the GAT module,
F is the channels of input feature. Vs € RN*N by € RNXN ,ng)

€ RT,Wﬁz) e RFXT and W£3) € RF are learnable parameters.
o denotes sigmoid activation function. Then the attention matrix
Att € RVXN s calculated as:
exp(S~/)

2_1,11 EXP(Si’j)
where the attention coefficient is calculated by softmax function to
capture the influences between nodes.

e The classic form of modeling spatial influences in GCN can
be formulated as H() = ¢(AXW), where H(1) ¢ RNXFXT ge.
notes the output of the 1st layer in GCN module, W € RF*F js
a learnable parameter matrix. o represents nonlinear activation.

Atth) = (4)

A = D_%ﬂsmticD_% e RNXN represents the normalized adja-
cency matri_x3 where Agzaric is the static adjacency matrix, and
D;i =2; .?l;t] atic 1s the diagonal matrix.

The output of GCN model is then feed into the following equa-
tion to align the outputs with GAT-based module: Q = V, -
0((H(1)W,(]1)) W;Z) (W((;)H(l))T +bg), and we have the attention
matrix for GCN-based module:

exp(Q™/)
Zjvzl exP(Qi’j)
where H) € RNXFXT denotes the output of the last layer (I-th)
in the GCN model, Vq € RNXN,bq € RNXN,W‘(II) € RT,W((IZ) €

Atth) = (5)

- (s]

t

| [sum)]

"""" xf[r N Y "\'J'z [r

I >
I g

period t period t+1
Figure 4: The transition of traffic flows for road q.

RFXT and Wr(f) € RF are learnable parameters. o denotes sigmoid
activation function.

In this case, the final outputs of both GAT- and GCN-based
modules are attention matrix Att, which will be used in later parts of
our model to facilitate imputation on subsequent layers in DTIGNN.

4.3.2 Neural Transition Layer. After the base GNN module, we
can obtain the attention matrix Att. Then a dot product operation
between attention matrix and Phase-activated Adjacency Matrix
is required to get activated proportion matrix, which is defined as
Iy = A © Att.
After getting the activated proportion matrix, we can calculate
the latent traffic volume for all the road segments Z at time ¢ + 1 as:
Zi = I[X; = (A 0 At)TX; (6)
As we will show in the next section, Eq. (6) is actually supported
by the fundamental transition equations from transportation.
Transition equations from transportation. From the perspec-
tive of transportation [1, 24], the traffic flow on a road segment

consists of incoming and outgoing flow. In Figure 4, the traffic flows
on road segment g can be formulated as:

X?H [sum] = x? [sum] - x‘t][out] + X?_H [in] 7)
where X?+1 [sum] denotes the total volume of traffic flow on road

segment g at time t + 1, x? [out] denotes the traffic volume leaving
road segment q at time ¢, and X?_H [in] denotes the traffic volume
that will arrive g at time ¢ + 1.

Since the traffic flow is directional with downstream traffic flow
coming from its upstream, which can be formulated as:

x? [out] = ﬂ?’u -yt ~x(t] [1] +ﬂ?’w . yq’w-x?[s] +?[?’U -y?? -x?[r]

®)
x?, [in] = A7y 9P [+ ALy P9 XD [r]+ A7y x] 5]
©)

where u, v, w denote the downstream road segments of g, ﬂ;’] de-
notes the connectivity of road segment i and j based on the Phase-
activated Adjacency Matrix at time ¢, .ﬂ;’l = 1 if road segment i
and j is connected. y*/ is the saturation flow rate in transporta-
tion [9, 24], which is a physical constant for i and j, indicating the
proportion of traffic volume that flows from i to downstream j.
Intuitively, Eq. (8) indicates the outgoing flows are directional,
moving from q to its downstream roads that are permitted by traffic
signals. Similarly, Eq. (9) indicates the incoming flows are also

directional, moving from q¢’s upstream roads to g are permitted
by traffic signals. Specifically, as the proportion of traffic volume
from i to j, yi’j considers the real-world situations where not all
the intended traffic from i to j could be satisfied, due to physical
road designs like speed limit, number of lanes, etc. [9].

THEOREM 4.1 (CONNECTION WITH TRANSITION EQUATIONS). The
latent traffic volume calculated by Eq. (6) equals to the transition
equations, Eq. (8) and Eq. (9) from transportation.

PRrROOF. See Appendix. O

The transition equations (8) and (9) could be considered as the
propagation and aggregation process of X; toward Z:4+1 under
the guidance of Phase-activated Adjacency Matrix A;, and the
attention matrix Att modeled by the base GNN module. According
to Eq. (7), a combination between X; and Z41 could be applied for
the final prediction for X;41 to combine Eq. (8) and Eq. (9).

4.3.3 Output Layer. After Neural Transition Layer, an output layer
is designed to model the combinations indicated by Eq. (7). The
output layer contains residual connections to comply with Eq. (7)
and alleviate the over-smoothing problem. A fully connected layer
is also applied to make sure the output of the network and the
forecasting target have the same dimension. The final output is:

Xt41 = ReLU(0(Z41 + X)WL +bp) (10)

where Wy and by are learnable weights.

4.4 Tterative Imputation for Prediction

Our model takes T slices of X as input, and output two types of val-
ues: the prediction traffic volume of road segments in the historical
T — 1 time steps ()’Zt_T+2,)A(t_T+3, e ,f(;) and states of all road
segments in the next time step X;H, At iteration 7, the model would
provide the predicted traffic volumes X;_; on all the road segments
for time t — 7+ 1, no matter accurate or not. Then the unobserved
part from predicted traffic volume X;_ .1 will be merged with the

observed states X;_,41 as merged states X;—r+l fort—r+1:

X; 41 = Xemgt1 + Xpor41 = Xpor41 OM+Xp—741 © (1= M) (11)

Then X;__, ,, along with the imputed states from previous itera-
tions {X;_T WL , X} _,} and observed states for future iterations

{X¢—z42, -, X;}, would be used to predict Xt—nz for the next
iteration. Since the first iteration do not have predictions from the
past, random values are generated as Xt—T+1~ At the last iteration,
we will have all the pastAmerged states (X;_TH, X;—T+1’ X)),
and the predicted value X;41 will be used as the final prediction.
Loss function. Our loss function is proposed as follows:

T-1 N
‘ 11 D »
min L, (6) ==— & >~ %) oM |,
i=1 j=1
N (12)
1 . . .
J </
b 2 (= %) O I

Il
-

J
where 0 are the model parameters to update, T is the historical time
step, and N is the number of all the road segments in the network.
The first part of Eq. (12) aims to minimize loss for imputation, and
the second part aims to minimize loss for prediction. With the mask
matrix M, our model is optimized over the observed tensor X >
but with iterative imputation, the prediction on unobserved states

could also be optimized. The detailed algorithm can be found in
Appendix B.

5 EXPERIMENTS

In this section, we conduct experiments to answer the following
research questions:

© RQ1: Compared with state-of-the-arts, how does DTIGNN per-
form?

o RQ2: How do different components affect DTIGNN?

® RQ3: Is DTIGNN flexible to be integrated into existing methods?
© RQ4: How does DTIGNN support downstream tasks?

5.1 Datasets

We verify the performance of DTIGNN on a synthetic traffic dataset
D4x4 and two real-world datasets, Dy and Dy, where the road-
segment level traffic volume are recorded with traffic signal phases.
We generate sparse data by randomly masking several intersections
out to mimic the real-world situation where the roadside surveil-
lance cameras are not installed at certain intersections. Detailed
descriptions and statistics can be found in Appendix C.

® Dy4x4. The synthetic dataset is generated by the open-source mi-
croscopic traffic simulator CityFlow [40]. The traffic simulator takes
4 X 4 grid road network and the traffic demand data as input, and
simulates vehicles movements and traffic signal phases. The dataset
is collected by logging the traffic states and signal phases provided
by the simulator at every 10 seconds and randomly masking out
several intersections.

® Dyyz. This is a public traffic dataset that covers a 4 X 4 network
in Hangzhou, collected from surveillance cameras near intersec-
tions in 2016. This dataset records the position and speed of every
vehicle at every second. Then we aggregate the real-world observa-
tions into 10-second intervals on road-segment level traffic volume,
which means there are 360 time steps in the traffic flow for one hour.
We treat these records as groundtruth observations and sample ob-
served traffic states by randomly masking out several intersections.
e Dyy. This is a public traffic dataset that covers a 7 X 28 network
in New York, collected by both camera data and taxi trajectory data
in 2016. We sampled the observations in a similar way as in Dy 7.

5.2 Baseline Methods

We compare our model with both traditional transportation mod-
els and data-driven baseline methods. For fair comparison, unless
specified, all the methods are using the same data input, including
the observed traffic volumes and traffic signal information.

e Spatio-Temporal Graph Convolution Network (STGCN) [38]:
STGCN is a data-driven model that utilizes graph convolution and
1D convolution to capture spatial and temporal dependencies re-
spectively.

o Spatial-Temporal Synchronous Graph Convolutional Networks
(STSGCN) [22]: STSGCN utilizes multiple localized spatial-temporal
subgraph modules to capture the localized spatial-temporal corre-
lations directly.

o Attention based Spatial Temporal Graph Convolutional Networks
(ASTGCN) [8]: ASTGCN uses spatial and temporal attention mech-
anisms to model spatial-temporal dynamics.

o Attention based Spatial Temporal Graph Neural Networks (AST-
GNN) [7]: Based on ASTGCN, ASTGNN further uses a dynamic
graph convolution module to capture dynamic spatial correlations.
e GraphWaveNet (WaveNet) [32]: WaveNet combines adaptive
graph convolution with dilated casual convolution to capture
spatial-temporal dependencies.

5.3 Experimental Settings and Metrics

Here we introduce some of the important experimental settings
and detailed hyperparameter settings can be found in Appendix D.
We split all datasets with a ratio 6: 2: 2 into training, validation, and
test sets. We generate sequence samples by sliding a window of
width T + T’. Specifically, each sample sequence consists of 31 time
steps, where 30 time steps are treated as the input while the last
one is regarded as the groundtruth for prediction.

Following existing studies [7, 8, 15, 22, 34], MAE, RMSE and
MAPE are adopted to measure the errors between predicted against
groundtruth traffic volume. Their detailed formula for calculation
can be found in Appendix E.

5.4 Overall Performance (RQ1)

In this section, we investigate the performance of DTIGNN on
predicting the next traffic states under both synthetic data and real-
world data. Table 1 shows the performance of DTIGNN, traditional
transportation models and state-of-the-art data-driven methods.
We have the following observations:

e Data-driven methods perform better than the traditional trans-
portation model SFM. SFM requires extensive calibrations on its
parameters, and the calibrated parameters would remain static
during the experiment. In real-world cases where the traffic is dy-
namically changing, the calibrated models are likely to fail.

e Among the data-driven baseline models, WaveNet and ASTGNN
perform relatively better than other baseline methods in D4x4 and
Dpy. One reason is that these two models have a special design to
capture the dynamic spatial graph, which could explicitly model
the dynamic connectivity between road segments.

e DTIGNN can achieve consistent performance improvements over
state-of-the-art prediction methods, including the best baseline
models like Wavenet and ASTGNN. This is because DTIGNN not
only models the dynamic connectivity explicitly with the dynamic
adjacency matrix, but also incorporates transition equations and
imputation in the training process, the influences of missing obser-
vations are further mitigated. As we will see in Section 5.5.3, our
proposed method can be easily integrated into the existing baseline
methods and achieve consistent improvements.

5.5 Model Analysis

To get deeper insights into DTIGNN, we also investigate the fol-
lowing aspects about our model with empirical results: (1) ablation
study on different parts of proposed components, (2) the effec-
tiveness of imputation with prediction in one model, and (3) the
sensitivity of DTIGNN on different base models and under different
data sparsity.

5.5.1 Ablation Study (RQ2). In this section, we perform an ablation
study to measure the importance of dynamic graph and imputation
on the following variants:

Table 1: The MAE, RMSE and MAPE of different methods on synthetic data and real-world data. The lower, the better.

Ours Ours
D Metri TGCN T. 22 ASTH AST 2

atasets etrics STGCN [38] STSGCN [22] STGCN[8] STGNN[7] WaveNet [32] (ASTGNN) ~ (WaveNet)

MAE 0.0563 0.1244 0.0605 0.0562 0.0427 0.0484 0.0378

Dyxa RMSE 0.1885 0.2993 0.2092 0.2124 0.1981 0.1920 0.1825

MAPE 0.0216 0.0460 0.0302 0.0256 0.0165 0.0215 0.0145

MAE 0.4909 0.6079 0.4458 0.4020 0.4556 0.3810 0.4071

Dy~ RMSE 0.8756 0.9104 0.7425 0.7408 0.8668 0.6618 0.6883

MAPE 0.3135 0.3863 0.2953 0.2527 0.2987 0.2455 0.2599

MAE 0.2651 0.4476 0.3136 0.2437 0.2168 0.2437 0.2306

Dny RMSE 1.1544 1.1235 1.0625 1.0704 1.1485 0.9493 1.1002

MAPE 0.1146 0.2358 0.1620 0.1272 0.0988 0.1283 0.1207

s DTIGNN-I-T B DTIGNN-I-T B DTIGNN-I-T

0.390 mmm DTIGNN-I 0.678 mmm DTIGNN-I 0.252 mmm DTIGNN-I
mE DTIGNN m DTIGNN = DTIGNN
0.385 0.671 0.249
0.380 0.664 0.246
0.375 0.657 0.243
0.370 0.650 0.240
ASTGNN ASTGNN ASTGNN
(a) MAE (b) RMSE (c) MAPE

Figure 5: MAE, RSME and MAPE of DTIGNN with the influ-
ence of different components on Df~. The lower, the better.

o DTIGNN-I-T. This model takes both the network-level traffic
volume and signal phases as its input and outputs the future traffic
volume directly, which does not include Neural Transition Layer
to model the transition equations and does not have imputation
in the training process. It can also be seen as the baseline model
ASTGNN with additional node features of traffic signal phases.
® DTIGNN-I. Based on DTIGNN-I-T, this model additionally uses
Neural Transition Layer to incorporate transition equations, while
it does not impute the sparse data in the training process.
® DTIGNN . This is our final model, which integrates Neural Transi-
tion Layer, and imputes sparse observations in the training process.
Figure 5 shows the performance of the variants. We can observe
that DTIGNN-I outperforms DTIGNN-I-T, indicating the effective-
ness of Neural Transition Layer as a way to incorporate transition
equations. DTIGNN further outperforms DTIGNN-I, since it itera-
tively imputes the sparse data in the training process and optimize
the imputation and prediction at the same time.

5.5.2 Imputation Study. To better understand how imputation
helps prediction, we compare two representative baselines with
their two-step variants. Firstly, we use a pre-trained imputation
model to impute the sparse data following the idea of [23, 36]. Then
we train the baselines on the imputed data.

Table 2 shows the performance of baseline methods in Dgz. We
find out that the vanilla baseline methods without any imputation
show inferior performance than the two-step approaches, which
indicates the importance of imputation in dealing with missing
states. DTIGNN further outperforms the two-step approaches. This
is because DTIGNN learns imputation and prediction in one step,
combining the imputation and prediction iteratively across the
whole framework. Similar results can also be found inD4x4 and
DNy, and we omit these results due to page limits.

Table 2: Performance of DTIGNN against different base-
lines and their corresponding two-step variants on Dy 7. The
lower, the better. Vanilla baseline methods and DTIGNN learn
from sparse observations, while the two-step variants im-
pute sparse observations first and train on the imputed data.
DTIGNN achieves the best performance in all cases. Similar
trends are also found on other datasets.

Method MSE RMSE MAPE
ASTGCN (vanilla) 0.4458 0.7425 0.2953
ASTGCN (two step) 0.4423 0.7417 0.2928
WaveNet (vanilla) 0.4556 0.8668 0.2987
WaveNet (two step) 0.4104 0.6977 0.2594
ASTGNN (vanilla) 0.4020 0.7408 0.2527
ASTGNN (two step) 0.3842 0.6706 0.2490
Ours 0.3810 0.6618 0.2455

5.5.3 Sensitivity Study. In this section, we evaluate the sensitivity
of DTIGNN with different base models and different data sparsity.
e Choice of base model. (RQ3) DTIGNN can be easily integrated
with different GNN structures. To better understand how different
base models influence the final performance, we compare DTIGNN
with different GNN models as base GNN modules against corre-
sponding GNN models. Figure 6 summarizes the experimental re-
sults. Our proposed method performs steadily under different base
models across various metrics, indicating the idea of our method is
valid across different base models. In the rest of our experiments,
we use ASTGNN as our base model and compare it with other
methods.

o Data sparsity. In this section, we investigate how different sam-
pling strategies influence DTIGNN. We randomly sample 1, 3, 6, 9,
12 intersections out of 16 intersections from Dy and treat them
unobserved to get different sampling rates. We set the road seg-
ments around the sampled intersections as the missing segments
and evaluate the performance of our model in predicting the traffic
volumes for all the road segments. As is shown in Figure 7, with
sparser observations, DTIGNN performs better than ASTGNN with
lower errors, though the errors of both methods increase. Even
when over half the observations are missing, our proposed method
can still predict future traffic states with lower errors, indicating
the consistency of DTIGNN under a wide range of sparsity.

N Base model BN Ours+Base model

0.49

WaveNet ASTGNN WaveNet

(a) MAE

ASTGCN

Base model
) 0.88
w 043 wo.76
=037 Z 064
0.31 . 0.52
0.25 0.40

I Ours+Base model N Base model B Ours+Base model

0.35

& 0.30

<

=0.25
0.20
0.15

ASTGNN

(b) RMSE

ASTGNN

(c) MAPE

ASTGCN WaveNet ASTGCN

Figure 6: MAE, RSME and MAPE of the variants of DTIGNN against different baseline models on Dyy. The lower, the better.
The variants of DTIGNN are implemented on corresponding baseline models. DTIGNN achieves the better performance over
corresponding baseline models. Similar trends are also found on other datasets.

—¥— ASTGNN —*— ASTGNN
0.975 —— Ours 15 —e— Ours
w
<
£ 0.750 E 1 2
0.525

0.300 .6
6.25 18.75 37.50 5.625 75.0 6.25 18.75

(1/16) (3/16) (6/16) (9/16) (12/16) (1/16) (3/16)
Percentage (%)

(a) MAE

—¥— ASTGNN
065 —e— Ours

<050
=035

37.50 56.25 75.0 6 25 18.75 37.50 56.25 75.0
(6/16) (9/16)
Percentage (%)

(b) RMSE

(12/16) (1116) (3/16) (6/16) (9/16)

Percentage (%)

(c) MAPE

(12/16)

Figure 7: MAE, RSME and MAPE of DTIGNN against baseline models under different levels of sparsity on Dyyz. The lower, the
better. The x-axis indicates the percentage of sparsity, which is calculated with the number of unobserved intersections divided
by total number of intersections in the network (here Dy~ has 16 intersections) in percentage. Our proposed model achieves

consistent better performance under different sparsity.
5.6 Case Study (RQ4)

To test the feasibility of using our proposed model in the down-
stream tasks, we conduct experiments on a traffic signal control
task, where only part of traffic states in the road network is observ-
able. Ideally, adaptive signal control models take the full states as
input and provide actions to the environment, which then executes
the traffic signal actions from the control models. However, in the
sparse data setting, the signal models at unobserved intersections
will fail to generate any adaptive actions since there is no state as
input. With a well-trained state transition model, the full traffic
states could be predicted for all the intersections, upon which the
signal control models could generate actions. Intuitively, a good
state transition model would provide the signal controller with more
precise states, and enable better results in traffic signal control.

The experiment is conducted on the traffic simulator
CityFlow [40] with Dgyz. We use the states returned by the traffic
simulator as full states and mask out the observations of several
intersections to mimic the sparse data setting. Based on the sparse
data, state transition models can predict the full future states. Then
the traffic signal control model (here we use an adaptive model,
MaxPressure [24]) will decide the actions and feed the actions into
the simulator. We compare the performance of DTIGNN against
ASTGNN, the best baseline model on D, for the state transition
task and the traffic signal control task. For traffic signal control
task, the average queue length of each intersection and the average
travel time of all the vehicles are used as metrics, following the
existing studies [30, 40]. Detailed descriptions can be found in
Appendix F.

Figure 8 shows the experimental results for each intersection in
Dpz, and we have the following observations:

o DTIGNN has better performance in both predicting traffic states
and traffic signal control in Figure 8(a) and Figure 8(b). We also

2.00

175

1.50

1.25

1.00

0.50

0

(b) Queue length of MaxPressure using predictions from

baseline (left) and DTIGNN (right). The lower, the better.
Figure 8: The performance of the baseline method and
DTIGNN under sparse data on Dy for two sequential tasks:
traffic state modeling w.r.t. RMSE, and traffic signal control
w.r.t. queue length using MaxPressure. The x-axis and y-axis
indicate the location of the intersections in the road network
of Dgyz. The black boxes indicate the intersections without
any observation. DTIGNN has lower prediction error in pre-
dicting next traffic states. These predictions are then used
by MaxPressure [24] to achieve better performance with a
lower average queue length. Best viewed in color.

measure the average travel time of all vehicles in the network and
found out that the average travel time by DTIGNN is 494.26 seconds,
compared to the 670.45 seconds by ASTGNN. This indicates that
DTIGNN can better alleviate downstream signal control task that

suffers from missing data problems.

o We also notice that, although ASTGNN shows lower RMSE on
certain intersections (e.g., intersection 1_4, 2_3, 3_3 on the left of
Figure 8(a)), its performance on traffic signal control result is infe-
rior. This is because network-level traffic signal control requires
observation and coordination between neighboring intersections,
which requires accurate modeling on global traffic states. In con-
trast, DTIGNN shows satisfactory prediction performance on the
global states and thus achieve better performance on traffic signal
control task even when the traffic signal controller.

6 CONCLUSION

In this paper, we propose a novel and flexible approach to model
the network-level traffic flow transition. Specifically, our model
learns on the dynamic graph induced by traffic signals with a net-
work design grounded by transition equations from transportation,
and predicts future traffic states with imputation in the process.
We conduct extensive experiments using synthetic and real-world
data and demonstrate the superior performance of our proposed
method over state-of-the-art methods. We further show in-depth
case studies to understand how the state transition models help
downstream tasks like traffic signal control, even for intersections
without any traffic flow observations.

We would like to point out several important future directions
to make the method more applicable to the real world. First, more
traffic operations can be considered in the modeling of transitions,
including road closures and reversible lanes. Second, the raw data
for observation only include the phase and the number of vehi-
cles on each lane. More exterior data like the road and weather
conditions might help to boost model performance.

7 ACKNOWLEDGMENTS

The work was supported in part by NSF award #2153311. The views
and conclusions contained in this paper are those of the authors and
should not be interpreted as representing any funding agencies. We
appreciate the advice and supports from Jiaxiang Wang and Yiming
Xu sharing their pearls of wisdom with us during this work. This
research was partially supported by the MOE Innovation Research
Team No. IRT _17R86 and NSFC No. 62002282.

REFERENCES

[1] Konstantinos Aboudolas, Markos Papageorgiou, and Elias Kosmatopoulos. 2009.
Store-and-forward based methods for the signal control problem in large-scale
congested urban road networks. TR-C 17, 2 (2009).

[2] Gustavo EAPA Batista, Maria Carolina Monard, et al. 2002. A study of K-nearest
neighbour as an imputation method. His 87, 251-260 (2002).

[3] René Boel and Lyudmila Mihaylova. 2006. A compositional stochastic model for
real time freeway traffic simulation. TR-C (2006).

[4] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. 2021. Spatial-
temporal graph ode networks for traffic flow forecasting. In KDD’21. 364-373.

[5] Kun Fu, Fanlin Meng, Jieping Ye, and Zheng Wang. 2020. Compacteta: A fast
inference system for travel time prediction. In KDD’20.

[6] Pedro J Garcia-Laencina, José-Luis Sancho-Gomez, et al. 2010. Pattern classifica-
tion with missing data: a review. Neural Computing and Applications (2010).

[7] Shengnan Guo, Youfang Lin, et al. 2021. Learning Dynamics and Heterogeneity
of Spatial-Temporal Graph Data for Traffic Forecasting. TKDE (2021).

[8] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.
Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic
Flow Forecasting. AAAI’'19 (2019).

[9] VF Hurdle. 1984. Signalized intersection delay models—a primer for the uniniti-
ated. TR-B (1984).

[10] Kasthuri Jayarajah, Andrew Tan, and Archan Misra. 2018. Understanding the
interdependency of land use and mobility for urban planning. In UbiComp’18.

[11] Kihwan Kim, Seungmin Jin, et al. 2020. STGRAT: A Spatio-Temporal Graph
Attention Network for Traffic Forecasting. CIKM’20 (2020).

[12] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009).

Apostolos Kotsialos, Markos Papageorgiou, Christina Diakaki, Yannis Pavlis, and

Frans Middelham. 2002. Traffic flow modeling of large-scale motorway networks

using the macroscopic modeling tool METANET. TITS (2002).

Steven Cheng-Xian Li, Bo Jiang, et al. 2019. Misgan: Learning from incomplete

data with generative adversarial networks. arXiv:1902.09599 (2019).

Yaguang Li, Rose Yu, et al. 2017. Diffusion convolutional recurrent neural network:

Data-driven traffic forecasting. arXiv:1707.01926 (2017).

[16] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient large-scale

fleet management via multi-agent deep reinforcement learning. In KDD’18.

Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the next

location: A recurrent model with spatial and temporal contexts. In AAAI'16.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. 2018. Multivariate time

series imputation with generative adversarial networks. In NeurIPS’18.

[19] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. 2010. Spectral regular-

ization algorithms for learning large incomplete matrices. JMLR (2010).

Simon Oh, Young-Ji Byon, Kitae Jang, and Hwasoo Yeo. 2018. Short-term travel-

time prediction on highway: A review on model-based approach. KSCE Journal

of Civil Engineering (2018).

Huiling Qin, Xianyuan Zhan, Yuanxun Li, et al. 2021. Network-Wide Traffic

States Imputation Using Self-interested Coalitional Learning. (2021).

[22] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-

temporal synchronous graph convolutional networks: A new framework for

spatial-temporal network data forecasting. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 34. 914-921.

Xianfeng Tang, Boging Gong, Yanwei Yu, et al. 2019. Joint modeling of dense and

incomplete trajectories for citywide traffic volume inference. In TheWebConf’19.

[24] Pravin Varaiya. 2013. Max pressure control of a network of signalized intersec-
tions. Transportation Research Part C: Emerging Technologies 36 (2013), 177-195.

[25] Hongjian Wang, Xianfeng Tang, et al. 2019. A simple baseline for travel time
estimation using large-scale trip data. TIST (2019).

[26] Jingyuan Wang, Chao Chen, et al. 2017. No longer sleeping with a bomb: a duet
system for protecting urban safety from dangerous goods. In KDD’17.

[27] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, et al. 2020. Traffic flow
prediction via spatial temporal graph neural network. In TheWebConf“20.

[28] Yibing Wang, Mingming Zhao, et al. 2022. Real-time joint traffic state and model
parameter estimation on freeways with fixed sensors and connected vehicles:
State-of-the-art overview, methods, and case studies. TR-C (2022).

[29] Hua Wei, Chacha Chen, Guanjie Zheng, et al. 2019. Presslight: Learning max
pressure control to coordinate traffic signals in arterial network. In KDD’19.

[30] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. Intellilight: A
reinforcement learning approach for intelligent traffic light control. In KDD’18.

[31] Cathy Wu, Alexandre M Bayen, and Ankur Mehta. 2018. Stabilizing traffic with
autonomous vehicles. In ICRA’18. IEEE.

[32] Zonghan Wu, Shirui Pan, Guodong Long, et al. 2019. Graph wavenet for deep
spatial-temporal graph modeling. arXiv:1906.00121(2019).

[33] Zonghan Wu, Shirui Pan, Guodong Long, et al. 2020. Connecting the dots:
Multivariate time series forecasting with graph neural networks. In CIKM20.

[34] Huaxiu Yao, Xianfeng Tang, Hua Wei, et al. 2019. Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction. In AAAI'19.

Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,

Jieping Ye, and Zhenhui Li. 2018. Deep multi-view spatial-temporal network for

taxi demand prediction. In AAAI Vol. 32.

[36] Xiuwen Yi, Zhewen Duan, Ting Li, et al. 2019. Citytraffic: Modeling citywide

traffic via neural memorization and generalization approach. In CIKM’19.

Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018. Gain: Missing data

imputation using generative adversarial nets. In ICML’18.

[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph

convolutional networks: A deep learning framework for traffic forecasting.

arXiv:1709.04875 (2017).

Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, and Yan Liu. 2017. Deep

learning: A generic approach for extreme condition traffic forecasting. In Proceed-

ings of the 2017 SIAM international Conference on Data Mining. SIAM, 777-785.

Huichu Zhang, Siyuan Feng, et al. 2019. Cityflow: A multi-agent reinforcement

learning environment for large scale city traffic scenario. In TheWebConf’19.

[41] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual

networks for citywide crowd flows prediction. In AAAI’17.

Xiyue Zhang, Chao Huang, et al. 2020. Spatial-temporal convolutional graph

attention networks for citywide traffic flow forecasting. In CKIM’18.

Xiyue Zhang, Chao Huang, Yong Xu, et al. 2020. Traffic Flow Forecasting with

Spatial-Temporal Graph Diffusion Network. AAAI’20 (2020).

[44] Ling Zhao, Yujiao Song, et al. 2019. T-gcn: A temporal graph convolutional
network for traffic prediction. TITS’19 (2019).

[13

[14

[15

(17

[18

[20

[21

~
&

@
2

[37

[39

[40

[42

[43

A PROOF OF THEOREM 4.1

ProoF. The proof can be done by expanding out the calculation
for every element in Z;.

For any 7 € {1,...,T}, the latent traffic state 2;_T+1 on road
segment i at time ¢ —7+1 can be inferred by aggregating the features
of all upstream traffic flows (allowed by traffic signal phase), which
is similar to transition equations, Eq. (8) and Eq. (9).

~i L . .

Zi 141 = Z ‘ﬂ{if ’ Y]’l ’ X;—T (13)
jENt—T(i)

= > (Acopx], (14)
jENt—T(i)

where N (i) denotes upstreams of road segment i. When we set
Y/t € AttT, the above equation equals to Eq. (6). Similar deduction
also applys for Eq. (9).

O

B ALGORITHM

Algorithm 1: Training procedure of DTIGNN

Input: Observed state tensor
X = (X;_141. X¢—T42, - » Xz), phase Activate
Matrix (Ap_14+1, Ap—T42, - -+, Ay), Static
Adjacency Matrix A, initial training options and
model’s parameters 6y, etc.

Output: X = (Xz41), the last dimension is 3 dimensions
represent Ls,r traffic volumes of road
segments,respectively.

for epoch «— 0,1,--- do

fortr—t-T+1,---,tdo

// Base GNN Module

Generate Attentation Matrix Att using Eq (4);

// Neural Transition Layer

Generate Proportion Matrix I};

Calculate latent states ZT using Eq (6);

// Output Layer

Predict traffic states of unobserved road segments
using Eq (10) ;

Impute on X, with Eq (11)

end

Predict X;

Update 6 by minimize the training loss with Eq (12)

end

C DATASET DESCRIPTION

We conduct experiments on one synthetic traffic dataset Dgx4 and
two real-world datasets, Dy and Dyy, where the road-segment
level traffic volume are recorded with traffic signal phases. The
data statistics are shown in Table 3, and the road networks in these
datasets are shown in Figure 9 and Figure 10.

® Dyx4. The synthetic dataset is generated by the open-source

Table 3: Statistics of datasets.

Dataset Dyxsa Dyz Dny
Duration (seconds) 3600 3600 3600
Time steps 360 360 360
of intersections 16 16 196
of road segments 80 80 854

of groundtruth states (full) 23040 23040 282240
% of unobserved intersections 12.5 12.5 10.4

180 vehicles/lane/hour
e 40

N E E o

180 vehicles/lane/hour

HH

180 vehlcles/lane/!';our

Figure 9: Road networks for synthetic data set. D44 has 16
intersections with bi-directional traffic. Green dot lines rep-
resent traffic flow direction on each lane. Traffic information
in the red regions is unobservable while in the blue region
information is entirely recorded.

(b) Upper-eastside, Manhattan,
New York, USA

(a) Gudang Sub-district,

Hangzhou, China
Figure 10: Road networks for real-world datasets. Red poly-
gons are the areas we select to model, blue dots are inter-
sections with traffic signals. (a) Dy, 16 intersections with
uni- & bi-directional traffic. (b) Dyy, 196 intersections with
uni-directional traffic.

microscopic traffic simulator CityFlow [40]. The traffic simulator
takes 4 X 4 grid road network and the traffic demand data (repre-
sented as the origin and destination location, the route and the start
time) as input, and simulates vehicles movements and traffic signal
phases. Each intersection in the road network has four directions
(West—East, East— West, South—North, and North—South), and
3 lanes (300 meters in length and 3 meters in width) for each direc-
tion. Vehicles come uniformly with 180 vehicles/lane/hour in both
West—East direction and South«<North direction. The dataset is
collected by logging the traffic states and signal phases provided

by the simulator at every 10 seconds and randomly masking out
several intersections.

® Dyyz. This is a public traffic dataset that covers a 4 X 4 network
of Gudang area in Hangzhou, collected from surveillance cameras
near intersections in 2016. This dataset records the position and
speed of every vehicle at every 1 second. Then we aggregate the
real-world observations into 10-second intervals on road-segment
level traffic volume, which means there are 360 time steps in the
traffic flow for one hour. We treat these records as groundtruth
observations trajectories and sample observed traffic states by ran-
domly masking out several intersections.

e Dyy. This is a public traffic that dataset covers a 7 X 28 network
of Upper East Side of Manhattan, New York, collected by both cam-
era data and taxi trajectory data in 2016. This dataset records the
lane-level volumes at every 10 second, which means there are 360
time steps in the traffic flow for one hour. We sampled the sparse
observations in a similar way as in Dyz.

D HYPERPARAMETER SETTINGS

Some of the important hyperparameters can be found in Table 4.

Table 4: Hyper-parameter settings for DTIGNN.

Parameter Value ‘ Parameter Value
Batch size 32 Historical time slice T 30
Convolution kernel 64 Predict time slice T’ 1
Time interval of raw data 10(s) Input channel 11
Chebyshev polynomial 3 Output channel 3
Learning rate 0.001 Training epochs 100

E EVALUATION METRICS

We use MAE, RMSE and MAPE to evaluate the performance of
predicting next state, which are defined as:

1 1 N F P ..
MAE= - - Z Z s — % | (15)
i=1 j=1
RMSE = | Z Z [IxT — &2 (16)
i=1 j=1
11vN wF IX/-%7 i 0
NF Ziz1 2j=1 X
MAPE = 1 x;,] =0, &X;’j #)A(;,] (17)

0, x = 0,&x = &1
where N is the total number of road segments, F is the size of
observed state vector on the road segment, x;’j and f(;’] are the j-th
element in the traffic volume states of i-th road segment at time ¢
in the groundtruth and predicted traffic volumes relatively.

F CASE STUDY SETTINGS

The traffic signal control task requires the simulator to provide the
groundtruth states. After having the states, we mask out the states
for several intersections and provide sparse state observations to
the traffic signal models. Ideally, the signal control models would

take the full states as input and provide actions to the simulator,
which would then executes the traffic signal actions from the con-
trol method. However, in the sparse data setting, the traffic signal
controller at unobserved intersections will not be able to generate
any actions since it has no state as input. With a well-trained state
transition model, the full traffic states could be predicted all the
intersections, upon which the signal control models would be able
to generate actions.

Following the settings in traffic signal methods [29, 30],we pro-
cess the traffic dataset into a format acceptable by the simulator
CityFlow [40]. In the processed traffic dataset for the simultor, each
vehicle is described as (o, t, d), where o is the origin location, ¢ is
time, and d is the destination location. Locations o and d are both
locations on the road network. Each green signal is followed by a
three-second yellow signal and two-second all red time.

At each time step, we acquire the full state observations from the
simulator, mask traffic observations in part of intersections as miss-
ing data, and use the state transition model to predict these the next
states for all the road segments. Then baseline model ASTGNN and
DTIGNN are used as the transition model to recover missing values
returned from the simulator and exploit the recovered observations.
MaxPressure controller then decides the next traffic signal phase
and feed the actions into the simulator. During this process, we can
collect groundtruth traffic states from the simulator environment,
and predict values from our transition model. After one round of
simulation (here we set as 3600 seconds with action interval as
10 seconds), we get the average travel time from the environment
and the average queue length for each intersection to evaluate the
performance for traffic signal control task.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Overall Framework
	4.2 Phase-activated Adjacency Matrix
	4.3 Transition-based Spatial Temporal GNN
	4.4 Iterative Imputation for Prediction

	5 Experiments
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Experimental Settings and Metrics
	5.4 Overall Performance (RQ1)
	5.5 Model Analysis
	5.6 Case Study (RQ4)

	6 Conclusion
	7 ACKNOWLEDGMENTS
	References
	A Proof of Theorem 4.1
	B algorithm
	C Dataset Description
	D Hyperparameter Settings
	E Evaluation Metrics
	F Case Study Settings

