
Modeling Network-level Traffic Flow Transitions on Sparse Data
Xiaoliang Lei

∗

shawlenleo@stu.xjtu.edu.cn

Xi’an Jiaotong University

Hao Mei
∗

hm467@njit.edu

New Jersey Institute of

Technology

Bin Shi

shibin@xjtu.edu.cn

Xi’an Jiaotong University

Hua Wei
†

hua.wei@njit.edu

New Jersey Institute of

Technology

ABSTRACT
Modeling how network-level traffic flow changes in the urban en-

vironment is useful for decision-making in transportation, public

safety and urban planning. The traffic flow system can be viewed as

a dynamic process that transits between states (e.g., traffic volumes

on each road segment) over time. In the real-world traffic system

with traffic operation actions like traffic signal control or reversible

lane changing, the system’s state is influenced by both the histor-

ical states and the actions of traffic operations. In this paper, we

consider the problem of modeling network-level traffic flow under

a real-world setting, where the available data is sparse (i.e., only

part of the traffic system is observed). We present DTIGNN , an ap-

proach that can predict network-level traffic flows from sparse data.

DTIGNN models the traffic system as a dynamic graph influenced by

traffic signals, learns the transition models grounded by fundamen-

tal transition equations from transportation, and predicts future

traffic states with imputation in the process. Through comprehen-

sive experiments, we demonstrate that our method outperforms

state-of-the-art methods and can better support decision-making

in transportation.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Traffic state modeling, traffic flow prediction, urban computing

ACM Reference Format:
Xiaoliang Lei, Hao Mei, Bin Shi, and Hua Wei. 2022. Modeling Network-

level Traffic Flow Transitions on Sparse Data. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’22), August 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3534678.3539236

1 INTRODUCTION
Modeling how network-level traffic flow changes in the urban

environment is useful for decision-making in various applications,

∗
Both authors contributed equally to this research.

†
Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00

https://doi.org/10.1145/3534678.3539236

P
<latexit sha1_base64="bGbRMDgbSxBl0eLtvX2Oy94YT6c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY9FLx4rmFpoQ9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwxHtzP/8YlrIxL1gOOUBzEdKBEJRtFKftX0sNorV9yaOwdZJV5OKpCj2St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBxOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJq17zLmsX9/VK4yaPowgncArn4MEVNOAOmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHJMOOQQ==</latexit>st

<latexit sha1_base64="Ufy3jjQg8ia6JjQgR6/PZRfJf4k=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYCIIQtgNoh6DXjxGMA9JQpidzCZDZnaXmV4hLPkKLx4U8ernePNvnCR70MSChqKqm+4uP5bCoOt+Oyura+sbm7mt/PbO7t5+4eCwYaJEM15nkYx0y6eGSxHyOgqUvBVrTpUvedMf3U795hPXRkThA45j3lV0EIpAMIpWeiyZXorn3qTUKxTdsjsDWSZeRoqQodYrfHX6EUsUD5FJakzbc2PsplSjYJJP8p3E8JiyER3wtqUhVdx009nBE3JqlT4JIm0rRDJTf0+kVBkzVr7tVBSHZtGbiv957QSD624qwjhBHrL5oiCRBCMy/Z70heYM5dgSyrSwtxI2pJoytBnlbQje4svLpFEpe5fli/tKsXqTxZGDYziBM/DgCqpwBzWoAwMFz/AKb452Xpx352PeuuJkM0fwB87nD8Toj70=</latexit>st+1 P

<latexit sha1_base64="bGbRMDgbSxBl0eLtvX2Oy94YT6c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY9FLx4rmFpoQ9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwxHtzP/8YlrIxL1gOOUBzEdKBEJRtFKftX0sNorV9yaOwdZJV5OKpCj2St/dfsJy2KukElqTMdzUwwmVKNgkk9L3czwlLIRHfCOpYrG3AST+bFTcmaVPokSbUshmau/JyY0NmYch7Yzpjg0y95M/M/rZBhdBxOh0gy5YotFUSYJJmT2OekLzRnKsSWUaWFvJWxINWVo8ynZELzll1dJq17zLmsX9/VK4yaPowgncArn4MEVNOAOmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHJMOOQQ==</latexit>st
<latexit sha1_base64="Ufy3jjQg8ia6JjQgR6/PZRfJf4k=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYCIIQtgNoh6DXjxGMA9JQpidzCZDZnaXmV4hLPkKLx4U8ernePNvnCR70MSChqKqm+4uP5bCoOt+Oyura+sbm7mt/PbO7t5+4eCwYaJEM15nkYx0y6eGSxHyOgqUvBVrTpUvedMf3U795hPXRkThA45j3lV0EIpAMIpWeiyZXorn3qTUKxTdsjsDWSZeRoqQodYrfHX6EUsUD5FJakzbc2PsplSjYJJP8p3E8JiyER3wtqUhVdx009nBE3JqlT4JIm0rRDJTf0+kVBkzVr7tVBSHZtGbiv957QSD624qwjhBHrL5oiCRBCMy/Z70heYM5dgSyrSwtxI2pJoytBnlbQje4svLpFEpe5fli/tKsXqTxZGDYziBM/DgCqpwBzWoAwMFz/AKb452Xpx352PeuuJkM0fwB87nD8Toj70=</latexit>st+1

<latexit sha1_base64="5Xl9Npom87289fE859rG0jnZJIA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxVbwVJIi6rHoxWMF+wFtKJvtpl262YTdiVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94iThfkSHSoSCUbRSu0L7GU4r/VLZrbpzkFXi5aQMORr90ldvELM04gqZpMZ0PTdBP6MaBZN8WuylhieUjemQdy1VNOLGz+bnTsm5VQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jsZCM0ZyokllGlhbyVsRDVlaBMq2hC85ZdXSatW9a6qlw+1cv02j6MAp3AGF+DBNdThHhrQBAZjeIZXeHMS58V5dz4WrWtOPnMCf+B8/gDPOI87</latexit>at

(a) Modeling traffic flow transition (b) Modeling transition with action

(c) Performance w.r.t. RMSE and standard deviation. The lower, the better.

RMSE

ASTGCN

ASTGCN w/ action

0.3 0.4 0.5 0.6 0.7

Figure 1: Two perspectives in modeling traffic flow. (a) Ex-
isting data-driven models directly predict the next state 𝑠𝑡+1
based on its past states with amodel 𝑃 . (b)Modeling the traffic
state transition takes both past states and trafficmanagement
actions. (c) The method with traffic management actions as
input (ASTGCN [8] w/ action) shows better performance.

ranging from transportation [5, 16], public safety [26, 41] to urban

planning [10]. For example, modeling the network-level traffic flow

can help build a good simulator and serve as a foundation and a

testbed for reinforcement learning (RL) on traffic signal control [30],

routing [25] and autonomous driving [31].

The modeling of the traffic flow system can be viewed as a

dynamic process that transits from state 𝑠𝑡 to state 𝑠𝑡+1. The state
of the system can include traffic conditions like traffic volume,

average speed, etc. The ultimate objective to build a real predictor

is to minimize the error between estimated state 𝑠𝑡+1 and true state
observation 𝑠𝑡+1. Traditional transportation approaches assume the

state transition model is given and calibrate parameters accordingly

using observed data [3, 13, 20, 28]. However, the assumption on the

state transition model is often far from the real world because the

real-world system is a highly complex process, especially for the

system in which humans are key players.

Recently, growing research studies have developed data-driven

methods to model state transitions. Unlike traditional transporta-

tion approaches, data-driven methods do not assume the under-

lying form of the transition model and can directly learn from

the observed data. With the data-driven methods, a more sophisti-

cated state transition model can be represented by a parameterized

model like neural nets and provides a promising way to mimic

the real-world state transitions. These data-driven models predict

the next states based on the current state and historical states

with spatial information, through deep neural networks like Re-

current Neural Network (RNN) [35, 38] or Graph Neural Network

(GNN) [4, 8, 11, 15, 22, 27, 33, 42, 44]. As shown in Figure 1(a), these

methods focus on directly minimizing the error between estimated

state 𝑠𝑡+1 and true observed state 𝑠𝑡+1, with an end-to-end pre-

diction model 𝑃 . Although having shown great effectiveness over

traditional methods, these approaches face two major challenges:

https://doi.org/10.1145/3534678.3539236
https://doi.org/10.1145/3534678.3539236

• The influence of traffic management actions. In the real-

world traffic system with traffic management actions like traffic

signal control or reversible lane changing, the system’s state is

influenced not only by its previous states, but more importantly, by

the actions of traffic management actions. Simply taking previous

states (e.g.., volumes) as input may cause conflicting learning prob-

lems. For example, given a road segment𝐴with𝐾 vehicles at time 𝑡 ,

the road segment has traffic signals at its end, controlling whether

the vehicles can leave the road or not. When 𝐴 is having green

light, the future traffic volume on the road is likely to drop, but if 𝐴

is having red light, the future traffic volume is likely to rise. When

the model only considers historical traffic volumes, the conflicting

traffic volume will confuse the learning process. As a result, the

learned model is likely to predict 𝑠𝑡+1 with a large error or variance.

As is shown in Figure 1, if we take the traffic management actions

(e.g., how traffic signal changes) into consideration, the traffic flow

will be predicted more accurately. To the best of our knowledge,

none of the existing literature has integrated traffic actions into

data-driven models.

It is worth noting that modeling the traffic flow state transition

with traffic management actions is more than improving the pre-

diction accuracy. A well-trained state transition model with traffic

management actions can be utilized to provide actionable insights:

it can be used to find the best decision to mitigate the problems in

traffic flow system (e.g., traffic congestion), and then on prescribing

the best actions to implement such a decision in the physical world

and study the impact of such implementation on the physical world.

• The sparsity of traffic data. In most real-world cases, the avail-

able observation is sparse, i.e., the traffic flow states at every location

are difficult to observe. It is infeasible to install sensors for every

vehicle in the road network or to install cameras covering every

location in the road network to capture the whole traffic situation.

Most real-world cases are that the camera data usually only covers

some intersections of the city, and the GPS trajectories may only

be available on some cars, like taxis. As data sparsity is considered

as a critical issue for unsatisfactory accuracy in machine learning,

directly using datasets with missing observations to learn the traf-

fic flow transitions could make the model fail to learn the traffic

situations at the unobserved roads.

To deal with sparse observations, a typical approach is to infer

the missing observations first [2, 6, 14, 18, 21, 37] and then learn the

model with the transition of traffic states. This two-step approach

has an obvious weakness, especially in the problem of learning

transition models with some observations entirely missing. For ex-

ample, mean imputation [6] is often used to infer the missing states

on the road by averaging the states from nearby observed roads.

However, not all the traffic from nearby roads would influence the

unobserved road because of traffic signals, making the imputed

traffic states different from the true states. Then training models on

the inaccurate data would further lead to inaccurate predictions. A

better approach is to integrate imputation with prediction because

they should inherently be the one model: the traffic state on the

unobserved road at time 𝑡 is actually influenced by the traffic flows

before 𝑡 , including the flows traversed from nearby roads and the

remaining flows of its own, which is also unobserved and needs

inference.

In this paper, we present DTIGNN , a GNN-based approach that

can predict network-level traffic flows from sparse observations,

with Dynamic adjacency matrix, Transition equations from trans-

portation, and Imputation. To model the influence of traffic manage-

ment actions, DTIGNN represents the road network as a dynamic

graph, with the road segments as the nodes, road connectivity as

the edges, and traffic signals changing the road connectivity from

time to time. To deal with the sparse observation issue, we design a

Neural Transition Layer to incorporate the fundamental transition

equations from transportation, with theoretical proof on the equiv-

alence between Neural Transition Layer and the transportation

equations. DTIGNN further imputes the unobserved states itera-

tively and predict future states in one model. The intuition behind

is, the imputation and prediction provided by data-driven models

should also follow the transition model, even though some flows

are unobservable.

We conduct comprehensive experiments using both synthetic

and real-world data. We demonstrate that our proposed method out-

performs state-of-the-art methods and can also be easily integrated

with existing GNN-based methods. The ablation studies show that

the dynamic graph is necessary, and integrating transition equation

leads to an efficient learning process. We further discuss several

interesting results to show that our method can help downstream

decision-making tasks like traffic signal control.

2 RELATED WORK
Traffic Prediction with Deep Learning. Recently, many efforts

have been devoted to developing traffic prediction techniques based

on various neural network architectures. One straightforward so-

lution is to apply the RNN, or convolutional networks (CNN) to

encode the temporal [17, 39] and spatial dependency [34, 35, 41].

Recent works introduce GNN to learn the traffic networks [42].

DCRNN [15] utilizes the bi-directional random walks on the traffic

graph to model spatial information and captures temporal dynam-

ics by RNN. Transformer models [11, 27, 33, 43, 44] utilize spatial

and temporal attention modules in transformer for spatial-temporal

modeling. STGCN [38] and GraphWaveNet [32] model the spatial

and temporal dependency separately with graph convolution and

1-D convolution. Later studies [8, 22] attempt to incorporate spa-

tial and temporal blocks altogether by localized spatial-temporal

synchronous graph convolution module regardless of global mu-

tual effect. However, when predicting traffic states, all the previous

GNN-based models assume that the node feature information is

complete, which is unfeasible in real-world cases. Our work can

be easily integrated into these GNN-based methods and handle

incomplete and missing feature scenarios, which have not been

well explored in existing solutions.

Traffic Inference with Missing Data. Incomplete and missing

data is common in real-world scenario. In machine learning area,

imputation techniques are widely used for data completion, such

as mean imputation [6], matrix factorization [12, 19], KNN [2] and

generative adversarial networks [14, 18, 37]. However, general im-

putation methods are not always competent to handle the specific

challenge of spatial and temporal dependencies between traffic

flows, especially when traffic flows on unmonitored road segments

are entirely missing in our problem setting.

7

1

8

2

3

6 5

4 5

1 4

8

2

3

2 6

6

4

73

7

1

5 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

5

1 4

8

2

3

2 6

6

4

73

7

1

5 8

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
Upstream road segment

8 6 4 2 8 6 6 4 24 2 8

1 1 1 3 3 3 7 7 75 5 5

Downstream road segment

Downstream road segment

Dark cell: self-connected
Grey cell: connected through intersection

White cell: not connected
Four right-turn signals and two left-turn signals (dashed

arrows) are activated (colored in green) in the right figure

Dark cell: self-connected
Grey and colored cell: connected by signals

White cell: not connected

(a) An example intersection

(b) Signals and the controlled road segments

(c) Phase representation for activated signals (d) Static adjacency matrix (e) Phase-activated adjacency matrix

U
ps

tr
ea

m
 ro

ad
 s

eg
m

en
t

Downstream road segment

U
ps

tr
ea

m
 ro

ad
 s

eg
m

en
t

1 0 0 1 0 1 1 0 11 0 0

<latexit sha1_base64="cxFPztXaWQlEQueF/HW5pUnJXS0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUUY9FLx4rmFpoQ9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwxHtzP/8YlrIxL1gOOUBzEdKBEJRtFKfjXtYbVXrrg1dw6ySrycVCBHs1f+6vYTlsVcIZPUmI7nphhMqEbBJJ+WupnhKWUjOuAdSxWNuQkm82On5MwqfRIl2pZCMld/T0xobMw4Dm1nTHFolr2Z+J/XyTC6DiZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+SVr3mXdYu7uuVxk0eRxFO4BTOwYMraMAdNMEHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPIC6OPg==</latexit>pt

Figure 2: Illustration of traffic signals and their influence on the connectivity between road segments. (a) An intersection with
eight connecting road segments and traffic signals. (b) The signals set and their controlled road segments in the example, with
right-turn signals illustrated in grey cells. (c) The phase representation for the activated signals in the example intersection.(d)
The static adjacency matrix between road segments induced by road network structure. (e) the dynamic adjacency matrix
induced by traffic signals. Best viewed in color.

Many recent studies [23, 36] use graph embeddings or GNN to

model the spatio-temporal dependencies in data for network-wide

traffic state estimation. Researchers further combine temporal GCN

with variational autoencoder and generative adversarial network

to impute network-wide traffic state [21]. However, most of these

methods assume the connectivity between road segments is static,

whereas the connectivity changes dynamically with traffic signals

in the real world. Moreover, all the graph-based methods do not

explicitly consider the flow transition between road segments in

their model. As a result, the model would likely infer a volume for

a road segment when the nearby road segments do not hold that

volume in the past.

3 PRELIMINARIES
Definition 3.1 (Road network and traffic flow). A road network

consists of road segments, intersections, and traffic signals. Road

segments are connected through intersections, and their connectiv-

ity changes with the action of traffic signals. The traffic flow on a

road segment is directional, with incoming traffic flow from several

upstream road segments, and different outgoing traffic flows to

downstream road segments.

Definition 3.2 (Traffic signal action 𝑝). The traffic signal action

𝑝𝑡 ∈ {0, 1}𝑃 represents a traffic signal phase [29] at time 𝑡 , where

there are 𝑃 signals in total, and its 𝑘-th value 𝑝𝑡 [𝑘] = 1, indicating

the signal is green, and corresponding traffic flows are allowed to

travel from upstream roads to downstream roads.

Definition 3.3 (Road adjacency graph G). We represent the road

network as a directed dynamic graph G𝑡 = {R,A𝑡 } at time 𝑡 , where

R = {𝑟1, ..., 𝑟𝑁 } is a set of 𝑁 road segments and A𝑡 ∈ R𝑁×𝑁 is

the adjacency matrix indicating the connectivity between road

segments at time t. In this paper, A𝑡 is dynamically changing with

time 𝑡 due to the actions of traffic signals.

Figure 2(a) shows an example intersection. Figure 2(b) indicates

the intersection has 12 different signals, each of which changes

the traffic connectivity from the upstream road segments to corre-

sponding the downstream roads. Now the intersection is at signal

phase 𝑝𝑡 . In Figure 2(c), 𝑝𝑡 [0] = 1 denotes that traffic flows can

move from the upstream road #1 to downstream road #8. A static ad-

jacency matrix is constructed based on the road network topology,

and a dynamic adjacency matrix can be constructed based on the

connectivity of between upstream and downstream road segments

with signal phases.

Definition 3.4 (Observability mask M). In real-world traffic sys-

tems, some road segments are unobserved for the entire time due to

the lack of sensors. We denote the observability of traffic states as

a static binary mask matrixM ∈ {0, 1}𝑁×𝐹 , and 𝐹 is the length of a

state feature (also called channels), where 𝐹 = 3 when the road has

three outgoing flows. When the road segment is observed,M𝑖 = 1𝐹 ;
when the road segment is unobserved, M𝑖 = 0𝐹 .

Definition 3.5 (Graph state tensor X, observed ¤X, unobserved ¥X,
predicted X̂, merged X′). We use x𝑖𝑡 ∈ R𝐹 to denote the traffic

volumes on road 𝑟 𝑖 ∈ R at time 𝑡 . X𝑡 = (x1𝑡 , x2𝑡 , · · · , x𝑁𝑡) ∈ R𝑁×𝐹
denotes the states of all the road segments at time 𝑡 , including the

observed part ¤X𝑡 = X𝑡 ⊙M and unobserved part ¥X𝑡 = X𝑡 ⊙ (1−M),
where ⊙ is the element-wise multiplication. The graph state tensor

X = (X1,X2, · · · ,X𝑇) ∈ R𝑁×𝐹×𝑇 denotes the states of all the road

segments of all time, with
¤X = (¤X1, ¤X2, · · · , ¤X𝑇) as observed state

tensor and
¥X as unobserved state tensor. The predicted values of

X will be denoted with X̂, and the merged values for X will be

denoted as X′.
Problem 1 (Traffic FlowTransitionModeling). Based on the

definitions above, the modeling of traffic flow transition is formulated
as: given the observed tensor ¤X on a road adjacency graph G, the goal
of modeling traffic flow transition is to learn a mapping function 𝑓
from the historical 𝑇 observations to predict the next traffic state,

[¤X𝑡−𝑇+1, · · · , ¤X𝑡 ;G𝑡−𝑇+1, · · · ,G𝑡]
𝑓
−→ [X𝑡+1] (1)

It’s worth noting that the modeling of state transitions focuses

on predicting the next state X𝑡+1, rather than predicting future 𝑇 ′

steps (𝑇 ′ ≥ 2), since it requires future G𝑡+𝑇 ′−1 which is influenced

by future traffic operation actions. The learned mapping function

𝑓 can be easily extended to predict for longer time steps in an

auto-regressive way if future traffic operation actions are preset.

4 METHODOLOGY
4.1 Overall Framework
Figure 3 shows the framework of our proposed network which

mainly consists of three components: a base GNN module, a Neural

Transition Layer, and an output Layer. The base GNN module takes

the static adjacency matrix A𝑠𝑡𝑎𝑡𝑖𝑐 and observed state tensor
¤X =

(¤X𝑡−𝑇+1, ¤X𝑡−𝑇+2, · · · , ¤X𝑡) as input, and output an attention matrix

𝐴𝑡𝑡 . Grounded by the transition equations from transportation, the

Base GNN Module

Linear

ReLU

Neural Transition
Layer

(𝐗̇!"#$%, 𝐗̇!"#$&, … , 𝐗̇!)

('𝐗!"#$%, … , '𝐗!)

Residual

Phase-
activated

Impute Unobserved States

Attention
Matrix

'𝐗'$%

Output
Layer

Imputation on Imputation on

!𝑿!"#$%

𝐗̈!"#$%
Imputation on

(a) Framework (b) Pipeline

DTIGNN DTIGNN

…

DTIGNN

…

!𝐗!"#$&

𝐗̈!"#$& 𝐗̈!
!𝐗!$'

𝐗′!"#$%

𝐗̇!

…

𝐗′!"#$%

𝐗̇!

…

𝐗′!"#$&
𝐗′!"#$%
𝐗′!"#$&

𝐗′!
𝓐!"#$%,𝓐!"#$&, … ,𝓐!,

𝓐(')'*+

𝓐!"#$%,𝓐!"#$&, … ,𝓐!,
𝓐(')'*+

𝓐!"#$%,𝓐!"#$&, … ,
𝓐(')'*+

𝓐!"#$%,𝓐!"#$&, … ,𝓐!

𝓐!"#"$%

𝐗̇!"#$%

Figure 3: Model framework and training pipeline. (a) The framework of DTIGNN network. The network can be built upon
exiting spatial-temporal GNNs with our Attention based Spatial-Temporal GNNs Layer appended after existing GNNs. (b)
The training pipeline of DTIGNN . One training round goes through data in an auto-regressive way, and the predictions from
previous time steps are used as imputations to update the unobserved data at the current time step.

Neural Transition Layer takes the Γ along with dynamic Phase-

activated Adjacency Matrix A and
¤X to predict the state tensor

X̂𝑡+1. As is shown in Figure 3(b), there are iterative imputation steps

from the time step 𝑡 −𝑇 + 1 toward 𝑡 + 1, where the unobserved part
of the predict state tensor ¥̂X𝑡−𝜏+1 from the time step 𝑡 −𝜏 would be
merged with ¤X𝑡−𝜏+1 and used for the prediction for ¤X𝑡−𝜏+2. Then
the Output Layer generates a prediction of X𝑡+1.The details and
implementation of the models will be described in the following

section.

4.2 Phase-activated Adjacency Matrix
As introduced in Section 2, existing traffic flow prediction methods

rely heavily on a static adjacency matrix A𝑠𝑡𝑎𝑡𝑖𝑐 generated from

the road network, which is defined as:

A𝑖, 𝑗
𝑠𝑡𝑎𝑡𝑖𝑐

=

{
1, road segment 𝑖 is the upstream of 𝑗

0, otherwise

(2)

Considering that traffic signal phases change the connectivity

of the road segments, we construct a Phase-activated Adjacency

Matrix A𝑡 through the signal phase 𝑝𝑡 at time 𝑡 :

A𝑖, 𝑗
𝑡 =

{
1, ∃ 𝑘 ∈ {1, · · · , 𝑃}, 𝑢𝑝 [𝑘] = 𝑖 , 𝑑𝑜𝑤𝑛[𝑘] = 𝑗 , 𝑝𝑡 [𝑘] = 1

0, otherwise

(3)

where 𝑝𝑡 [𝑘] denotes the activation state of the 𝑘-th element in 𝑝𝑡
at time 𝑡 , 𝑢𝑝 [𝑘] and 𝑑𝑜𝑤𝑛[𝑘] denote the upstream road segment

and the downstream road segment that associated with the 𝑘-th

signal. Intuitively, upstream road 𝑖 will be connected with road 𝑗 ,

when the 𝑘-th signal in current phase 𝑝𝑡 is green.

4.3 Transition-based Spatial Temporal GNN
4.3.1 Base GNN Module. To capture the complex and spatial-

temporal relationships simultaneously, a base GNN module is ap-

plied. GNNs update embeddings of nodes through a neighborhood

aggregation scheme, where the computation of node representation

is carried out by sampling and aggregating features of neighboring

nodes. In this paper, any graph attention network (GAT) or graph

convolutional network (GCN) model with multiple stacked layers

could be adopted as our base GNN module. Without losing gen-

erality, here we introduce the first layer for GAT and GCN model

stacks and then how to integrate them into our model.

• The classic form of modeling dependencies in GAT can be for-

mulated as [8]: S = V𝑠 · 𝜎 ((XW(1)𝑠)W
(2)
𝑠 (W

(3)
𝑠 X)⊺ + b𝑠), where

X = (X1,X2, · · · ,X𝑇) ∈ R𝑁×𝐹×𝑇 is the input of the GAT module,

𝐹 is the channels of input feature. V𝑠 ∈ R𝑁×𝑁 ,b𝑠 ∈ R𝑁×𝑁 ,W(1)𝑠

∈ R𝑇 ,W(2)𝑠 ∈ R𝐹×𝑇 , and W(3)𝑠 ∈ R𝐹 are learnable parameters.

𝜎 denotes sigmoid activation function. Then the attention matrix

Att ∈ R𝑁×𝑁 is calculated as:

Att𝑖, 𝑗 =
𝑒𝑥𝑝 (S𝑖, 𝑗)∑𝑁
𝑗=1 𝑒𝑥𝑝 (S𝑖, 𝑗)

(4)

where the attention coefficient is calculated by softmax function to

capture the influences between nodes.

• The classic form of modeling spatial influences in GCN can

be formulated as H(1) = 𝜎 (ÂXW), where H(1) ∈ R𝑁×𝐹×𝑇 de-

notes the output of the 1st layer in GCN module, W ∈ R𝐹×𝐹 is

a learnable parameter matrix. 𝜎 represents nonlinear activation.

Â = D−
1

2A𝑠𝑡𝑎𝑡𝑖𝑐D−
1

2 ∈ R𝑁×𝑁 represents the normalized adja-

cency matrix, where A𝑠𝑡𝑎𝑡𝑖𝑐 is the static adjacency matrix, and

D𝑖𝑖 =
∑

𝑗 A
𝑖, 𝑗
𝑠𝑡𝑎𝑡𝑖𝑐

is the diagonal matrix.

The output of GCN model is then feed into the following equa-

tion to align the outputs with GAT-based module: Q = V𝑞 ·
𝜎 ((H(𝑙)W(1)𝑞)W

(2)
𝑞 (W(3)𝑞 H(𝑙))⊺+b𝑞), and we have the attention

matrix for GCN-based module:

Att𝑖, 𝑗 =
𝑒𝑥𝑝 (Q𝑖, 𝑗)∑𝑁
𝑗=1 𝑒𝑥𝑝 (Q𝑖, 𝑗) (5)

where H(𝑙) ∈ R𝑁×𝐹×𝑇 denotes the output of the last layer (𝑙-th)

in the GCN model, V𝑞 ∈ R𝑁×𝑁 ,b𝑞 ∈ R𝑁×𝑁 ,W(1)𝑞 ∈ R𝑇 ,W(2)𝑞 ∈

Figure 4: The transition of traffic flows for road 𝑞.
R𝐹×𝑇 , andW(3)𝑞 ∈ R𝐹 are learnable parameters. 𝜎 denotes sigmoid

activation function.

In this case, the final outputs of both GAT- and GCN-based

modules are attentionmatrixAtt, whichwill be used in later parts of
our model to facilitate imputation on subsequent layers in DTIGNN .

4.3.2 Neural Transition Layer. After the base GNN module, we

can obtain the attention matrix Att. Then a dot product operation

between attention matrix and Phase-activated Adjacency Matrix

is required to get activated proportion matrix, which is defined as

Γ𝑡 = A𝑡 ⊙ Att.
After getting the activated proportion matrix, we can calculate

the latent traffic volume for all the road segments Ẑ at time 𝑡 + 1 as:
Ẑ𝑡+1 = Γ⊺𝑡 ¤X𝑡 = (A𝑡 ⊙ Att)⊺ ¤X𝑡 (6)

As we will show in the next section, Eq. (6) is actually supported

by the fundamental transition equations from transportation.

Transition equations from transportation. From the perspec-

tive of transportation [1, 24], the traffic flow on a road segment

consists of incoming and outgoing flow. In Figure 4, the traffic flows

on road segment 𝑞 can be formulated as:

x𝑞
𝑡+1 [𝑠𝑢𝑚] = x𝑞𝑡 [𝑠𝑢𝑚] − x

𝑞
𝑡 [𝑜𝑢𝑡] + x

𝑞

𝑡+1 [𝑖𝑛] (7)

where x𝑞
𝑡+1 [𝑠𝑢𝑚] denotes the total volume of traffic flow on road

segment 𝑞 at time 𝑡 + 1, x𝑞𝑡 [𝑜𝑢𝑡] denotes the traffic volume leaving

road segment 𝑞 at time 𝑡 , and x𝑞
𝑡+1 [𝑖𝑛] denotes the traffic volume

that will arrive 𝑞 at time 𝑡 + 1.
Since the traffic flow is directional with downstream traffic flow

coming from its upstream, which can be formulated as:

x𝑞𝑡 [𝑜𝑢𝑡] = A
𝑞,𝑢
𝑡 ·𝛾

𝑞,𝑢 ·x𝑞𝑡 [𝑙] +A
𝑞,𝑤
𝑡 ·𝛾𝑞,𝑤 ·x𝑞𝑡 [𝑠] +A

𝑞,𝑣
𝑡 ·𝛾

𝑞,𝑣 ·x𝑞𝑡 [𝑟]
(8)

x𝑞
𝑡+1 [𝑖𝑛] = A

𝑚,𝑞
𝑡 ·𝛾𝑚,𝑞 ·x𝑚𝑡 [𝑙]+A

𝑝,𝑞
𝑡 ·𝛾

𝑝,𝑞 ·x𝑝𝑡 [𝑟]+A
𝑛,𝑞
𝑡 ·𝛾

𝑛,𝑞 ·x𝑛𝑡 [𝑠]
(9)

where 𝑢, 𝑣 ,𝑤 denote the downstream road segments of 𝑞, A𝑖, 𝑗
𝑡 de-

notes the connectivity of road segment 𝑖 and 𝑗 based on the Phase-

activated Adjacency Matrix at time 𝑡 , A𝑖, 𝑗
𝑡 = 1 if road segment 𝑖

and 𝑗 is connected. 𝛾𝑖, 𝑗 is the saturation flow rate in transporta-

tion [9, 24], which is a physical constant for 𝑖 and 𝑗 , indicating the

proportion of traffic volume that flows from 𝑖 to downstream 𝑗 .

Intuitively, Eq. (8) indicates the outgoing flows are directional,

moving from 𝑞 to its downstream roads that are permitted by traffic

signals. Similarly, Eq. (9) indicates the incoming flows are also

directional, moving from 𝑞’s upstream roads to 𝑞 are permitted

by traffic signals. Specifically, as the proportion of traffic volume

from 𝑖 to 𝑗 , 𝛾𝑖, 𝑗 considers the real-world situations where not all

the intended traffic from 𝑖 to 𝑗 could be satisfied, due to physical

road designs like speed limit, number of lanes, etc. [9].
Theorem 4.1 (Connection with transition eqations). The

latent traffic volume calculated by Eq. (6) equals to the transition
equations, Eq. (8) and Eq. (9) from transportation.

Proof. See Appendix. □

The transition equations (8) and (9) could be considered as the

propagation and aggregation process of X𝑡 toward Ẑ𝑡+1 under

the guidance of Phase-activated Adjacency Matrix A𝑡 , and the

attention matrix Att modeled by the base GNN module. According

to Eq. (7), a combination between X𝑡 and Ẑ𝑡+1 could be applied for

the final prediction for X𝑡+1 to combine Eq. (8) and Eq. (9).

4.3.3 Output Layer. After Neural Transition Layer, an output layer

is designed to model the combinations indicated by Eq. (7). The

output layer contains residual connections to comply with Eq. (7)

and alleviate the over-smoothing problem. A fully connected layer

is also applied to make sure the output of the network and the

forecasting target have the same dimension. The final output is:

X̂𝑡+1 = 𝑅𝑒𝐿𝑈 (𝜎 (Ẑ𝑡+1 + X𝑡)W𝐿 + b𝐿) (10)

where W𝐿 and b𝐿 are learnable weights.

4.4 Iterative Imputation for Prediction
Our model takes𝑇 slices of X as input, and output two types of val-

ues: the prediction traffic volume of road segments in the historical

𝑇 − 1 time steps (X̂𝑡−𝑇+2, X̂𝑡−𝑇+3, · · · , X̂𝑡) and states of all road

segments in the next time step X̂𝑡+1. At iteration 𝜏 , the model would

provide the predicted traffic volumes X̂𝑡−𝜏 on all the road segments

for time 𝑡 − 𝜏 + 1 , no matter accurate or not. Then the unobserved

part from predicted traffic volume ¥̂X𝑡−𝜏+1 will be merged with the

observed states ¤X𝑡−𝜏+1 as merged states X′
𝑡−𝜏+1 for 𝑡 − 𝜏 + 1:

X′𝑡−𝜏+1 = ¤X𝑡−𝜏+1 + ¥̂X𝑡−𝜏+1 = X𝑡−𝜏+1 ⊙ M + X̂𝑡−𝜏+1 ⊙ (1 − M) (11)

Then X′
𝑡−𝜏+1, along with the imputed states from previous itera-

tions {X′
𝑡−𝑇+1, · · · ,X

′
𝑡−𝜏 } and observed states for future iterations

{ ¤X𝑡−𝜏+2, · · · , ¤X𝑡 }, would be used to predict X̂𝑡−𝜏+2 for the next

iteration. Since the first iteration do not have predictions from the

past, random values are generated as X̂𝑡−𝑇+1. At the last iteration,
we will have all the past merged states (X′

𝑡−𝑇+1,X
′
𝑡−𝜏+1, · · · ,X

′
𝑡),

and the predicted value X̂𝑡+1 will be used as the final prediction.

Loss function. Our loss function is proposed as follows:

min

𝜃
L𝑝 (𝜃) =

1

𝑇 − 1

1

𝑁

𝑇 −1∑︁
𝑖=1

𝑁∑︁
𝑗=1

∥ (x𝑗

𝑇 −𝑖 − x̂𝑗

𝑇 −𝑖) ⊙M𝑗 ∥2

+ 1

𝑁

𝑁∑︁
𝑗=1

∥ (x𝑗

𝑇+1 − x̂𝑗

𝑇+1) ⊙M𝑗 ∥2
(12)

where 𝜃 are the model parameters to update,𝑇 is the historical time

step, and N is the number of all the road segments in the network.

The first part of Eq. (12) aims to minimize loss for imputation, and

the second part aims to minimize loss for prediction. With the mask

matrix M, our model is optimized over the observed tensor ¤X𝑗 ,

but with iterative imputation, the prediction on unobserved states

could also be optimized. The detailed algorithm can be found in

Appendix B.

5 EXPERIMENTS
In this section, we conduct experiments to answer the following

research questions:

• RQ1: Compared with state-of-the-arts, how does DTIGNN per-

form?

• RQ2: How do different components affect DTIGNN?

• RQ3: Is DTIGNN flexible to be integrated into existing methods?

• RQ4: How does DTIGNN support downstream tasks?

5.1 Datasets
We verify the performance of DTIGNN on a synthetic traffic dataset

𝐷4×4 and two real-world datasets, 𝐷𝐻𝑍 and 𝐷𝑁𝑌 , where the road-

segment level traffic volume are recorded with traffic signal phases.

We generate sparse data by randomly masking several intersections

out to mimic the real-world situation where the roadside surveil-

lance cameras are not installed at certain intersections. Detailed

descriptions and statistics can be found in Appendix C.

• 𝐷4×4. The synthetic dataset is generated by the open-source mi-

croscopic traffic simulator CityFlow [40]. The traffic simulator takes

4 × 4 grid road network and the traffic demand data as input, and

simulates vehicles movements and traffic signal phases. The dataset

is collected by logging the traffic states and signal phases provided

by the simulator at every 10 seconds and randomly masking out

several intersections.

• 𝐷𝐻𝑍 . This is a public traffic dataset that covers a 4 × 4 network
in Hangzhou, collected from surveillance cameras near intersec-

tions in 2016. This dataset records the position and speed of every

vehicle at every second. Then we aggregate the real-world observa-

tions into 10-second intervals on road-segment level traffic volume,

which means there are 360 time steps in the traffic flow for one hour.

We treat these records as groundtruth observations and sample ob-

served traffic states by randomly masking out several intersections.

• 𝐷𝑁𝑌 . This is a public traffic dataset that covers a 7 × 28 network
in New York, collected by both camera data and taxi trajectory data

in 2016. We sampled the observations in a similar way as in 𝐷𝐻𝑍 .

5.2 Baseline Methods
We compare our model with both traditional transportation mod-

els and data-driven baseline methods. For fair comparison, unless

specified, all the methods are using the same data input, including

the observed traffic volumes and traffic signal information.

• Spatio-Temporal Graph Convolution Network (STGCN) [38]:

STGCN is a data-driven model that utilizes graph convolution and

1D convolution to capture spatial and temporal dependencies re-

spectively.

• Spatial-Temporal Synchronous Graph Convolutional Networks

(STSGCN) [22]: STSGCN utilizes multiple localized spatial-temporal

subgraph modules to capture the localized spatial-temporal corre-

lations directly.

• Attention based Spatial Temporal Graph Convolutional Networks

(ASTGCN) [8]: ASTGCN uses spatial and temporal attention mech-

anisms to model spatial-temporal dynamics.

• Attention based Spatial Temporal Graph Neural Networks (AST-

GNN) [7]: Based on ASTGCN, ASTGNN further uses a dynamic

graph convolution module to capture dynamic spatial correlations.

• GraphWaveNet (WaveNet) [32]: WaveNet combines adaptive

graph convolution with dilated casual convolution to capture

spatial-temporal dependencies.

5.3 Experimental Settings and Metrics
Here we introduce some of the important experimental settings

and detailed hyperparameter settings can be found in Appendix D.

We split all datasets with a ratio 6: 2: 2 into training, validation, and

test sets. We generate sequence samples by sliding a window of

width𝑇 +𝑇 ′. Specifically, each sample sequence consists of 31 time

steps, where 30 time steps are treated as the input while the last

one is regarded as the groundtruth for prediction.

Following existing studies [7, 8, 15, 22, 34], MAE, RMSE and

MAPE are adopted to measure the errors between predicted against

groundtruth traffic volume. Their detailed formula for calculation

can be found in Appendix E.

5.4 Overall Performance (RQ1)
In this section, we investigate the performance of DTIGNN on

predicting the next traffic states under both synthetic data and real-

world data. Table 1 shows the performance of DTIGNN , traditional

transportation models and state-of-the-art data-driven methods.

We have the following observations:

• Data-driven methods perform better than the traditional trans-

portation model SFM. SFM requires extensive calibrations on its

parameters, and the calibrated parameters would remain static

during the experiment. In real-world cases where the traffic is dy-

namically changing, the calibrated models are likely to fail.

• Among the data-driven baseline models, WaveNet and ASTGNN

perform relatively better than other baseline methods in 𝐷4×4 and
𝐷𝑁𝑌 . One reason is that these two models have a special design to

capture the dynamic spatial graph, which could explicitly model

the dynamic connectivity between road segments.

• DTIGNN can achieve consistent performance improvements over

state-of-the-art prediction methods, including the best baseline

models like Wavenet and ASTGNN. This is because DTIGNN not

only models the dynamic connectivity explicitly with the dynamic

adjacency matrix, but also incorporates transition equations and

imputation in the training process, the influences of missing obser-

vations are further mitigated. As we will see in Section 5.5.3, our

proposed method can be easily integrated into the existing baseline

methods and achieve consistent improvements.

5.5 Model Analysis
To get deeper insights into DTIGNN , we also investigate the fol-

lowing aspects about our model with empirical results: (1) ablation

study on different parts of proposed components, (2) the effec-

tiveness of imputation with prediction in one model, and (3) the

sensitivity of DTIGNN on different base models and under different

data sparsity.

5.5.1 Ablation Study (RQ2). In this section, we perform an ablation

study to measure the importance of dynamic graph and imputation

on the following variants:

Table 1: The MAE, RMSE and MAPE of different methods on synthetic data and real-world data. The lower, the better.

Datasets Metrics STGCN [38] STSGCN [22] ASTGCN[8] ASTGNN[7] WaveNet [32]

Ours

(ASTGNN)

Ours

(WaveNet)

𝐷4×4

MAE 0.0563 0.1244 0.0605 0.0562 0.0427 0.0484 0.0378
RMSE 0.1885 0.2993 0.2092 0.2124 0.1981 0.1920 0.1825
MAPE 0.0216 0.0460 0.0302 0.0256 0.0165 0.0215 0.0145

𝐷𝐻𝑍

MAE 0.4909 0.6079 0.4458 0.4020 0.4556 0.3810 0.4071

RMSE 0.8756 0.9104 0.7425 0.7408 0.8668 0.6618 0.6883

MAPE 0.3135 0.3863 0.2953 0.2527 0.2987 0.2455 0.2599

𝐷𝑁𝑌

MAE 0.2651 0.4476 0.3136 0.2437 0.2168 0.2437 0.2306

RMSE 1.1544 1.1235 1.0625 1.0704 1.1485 0.9493 1.1002

MAPE 0.1146 0.2358 0.1620 0.1272 0.0988 0.1283 0.1207

ASTGNN
0.370

0.375

0.380

0.385

0.390
DTIGNN-I-T
DTIGNN-I
DTIGNN

ASTGNN
0.650

0.657

0.664

0.671

0.678
DTIGNN-I-T
DTIGNN-I
DTIGNN

ASTGNN
0.240

0.243

0.246

0.249

0.252
DTIGNN-I-T
DTIGNN-I
DTIGNN

(a) MAE (b) RMSE (c) MAPE

Figure 5: MAE, RSME and MAPE of DTIGNN with the influ-
ence of different components on 𝐷𝐻𝑍 . The lower, the better.

• DTIGNN-I-T . This model takes both the network-level traffic

volume and signal phases as its input and outputs the future traffic

volume directly, which does not include Neural Transition Layer

to model the transition equations and does not have imputation

in the training process. It can also be seen as the baseline model

ASTGNN with additional node features of traffic signal phases.

• DTIGNN-I . Based on DTIGNN-I-T , this model additionally uses

Neural Transition Layer to incorporate transition equations, while

it does not impute the sparse data in the training process.

• DTIGNN . This is our final model, which integrates Neural Transi-

tion Layer, and imputes sparse observations in the training process.

Figure 5 shows the performance of the variants. We can observe

that DTIGNN-I outperforms DTIGNN-I-T , indicating the effective-
ness of Neural Transition Layer as a way to incorporate transition

equations. DTIGNN further outperforms DTIGNN-I , since it itera-
tively imputes the sparse data in the training process and optimize

the imputation and prediction at the same time.

5.5.2 Imputation Study. To better understand how imputation

helps prediction, we compare two representative baselines with

their two-step variants. Firstly, we use a pre-trained imputation

model to impute the sparse data following the idea of [23, 36]. Then

we train the baselines on the imputed data.

Table 2 shows the performance of baseline methods in 𝐷𝐻𝑍 . We

find out that the vanilla baseline methods without any imputation

show inferior performance than the two-step approaches, which

indicates the importance of imputation in dealing with missing

states. DTIGNN further outperforms the two-step approaches. This

is because DTIGNN learns imputation and prediction in one step,

combining the imputation and prediction iteratively across the

whole framework. Similar results can also be found in𝐷4×4 and

𝐷𝑁𝑌 , and we omit these results due to page limits.

Table 2: Performance of DTIGNN against different base-
lines and their corresponding two-step variants on 𝐷𝐻𝑍 . The
lower, the better. Vanilla baselinemethods andDTIGNN learn
from sparse observations, while the two-step variants im-
pute sparse observations first and train on the imputed data.
DTIGNN achieves the best performance in all cases. Similar
trends are also found on other datasets.

Method MSE RMSE MAPE

ASTGCN (vanilla) 0.4458 0.7425 0.2953

ASTGCN (two step) 0.4423 0.7417 0.2928

WaveNet (vanilla) 0.4556 0.8668 0.2987

WaveNet (two step) 0.4104 0.6977 0.2594

ASTGNN (vanilla) 0.4020 0.7408 0.2527

ASTGNN (two step) 0.3842 0.6706 0.2490

Ours 0.3810 0.6618 0.2455

5.5.3 Sensitivity Study. In this section, we evaluate the sensitivity

of DTIGNN with different base models and different data sparsity.

• Choice of base model. (RQ3) DTIGNN can be easily integrated

with different GNN structures. To better understand how different

base models influence the final performance, we compare DTIGNN
with different GNN models as base GNN modules against corre-

sponding GNN models. Figure 6 summarizes the experimental re-

sults. Our proposed method performs steadily under different base

models across various metrics, indicating the idea of our method is

valid across different base models. In the rest of our experiments,

we use ASTGNN as our base model and compare it with other

methods.

• Data sparsity. In this section, we investigate how different sam-

pling strategies influence DTIGNN . We randomly sample 1, 3, 6, 9,

12 intersections out of 16 intersections from 𝐷𝐻𝑍 and treat them

unobserved to get different sampling rates. We set the road seg-

ments around the sampled intersections as the missing segments

and evaluate the performance of our model in predicting the traffic

volumes for all the road segments. As is shown in Figure 7, with

sparser observations, DTIGNN performs better than ASTGNN with

lower errors, though the errors of both methods increase. Even

when over half the observations are missing, our proposed method

can still predict future traffic states with lower errors, indicating

the consistency of DTIGNN under a wide range of sparsity.

WaveNet ASTGNN ASTGCN
0.25

0.31

0.37

0.43

0.49

M
AE

Base model Ours+Base model

WaveNet ASTGNN ASTGCN
0.40

0.52

0.64

0.76

0.88

R
M

SE

Base model Ours+Base model

WaveNet ASTGNN ASTGCN
0.15

0.20

0.25

0.30

0.35

M
AP

E

Base model Ours+Base model

(a) MAE (b) RMSE (c) MAPE

Figure 6: MAE, RSME and MAPE of the variants of DTIGNN against different baseline models on 𝐷𝐻𝑍 . The lower, the better.
The variants of DTIGNN are implemented on corresponding baseline models. DTIGNN achieves the better performance over
corresponding baseline models. Similar trends are also found on other datasets.

6.25
(1/16)

18.75
(3/16)

37.50
(6/16)

5.625
(9/16)

75.0
(12/16)

Percentage (%)

0.300

0.525

0.750

0.975

M
AE

ASTGNN
Ours

6.25
(1/16)

18.75
(3/16)

37.50
(6/16)

56.25
(9/16)

75.0
(12/16)

Percentage (%)

0.6

0.9

1.2

1.5
R

M
SE

ASTGNN
Ours

6.25
(1/16)

18.75
(3/16)

37.50
(6/16)

56.25
(9/16)

75.0
(12/16)

Percentage (%)

0.20

0.35

0.50

0.65

M
AP

E

ASTGNN
Ours

(a) MAE (b) RMSE (c) MAPE

Figure 7: MAE, RSME and MAPE of DTIGNN against baseline models under different levels of sparsity on 𝐷𝐻𝑍 . The lower, the
better. The x-axis indicates the percentage of sparsity, which is calculated with the number of unobserved intersections divided
by total number of intersections in the network (here 𝐷𝐻𝑍 has 16 intersections) in percentage. Our proposed model achieves
consistent better performance under different sparsity.
5.6 Case Study (RQ4)
To test the feasibility of using our proposed model in the down-

stream tasks, we conduct experiments on a traffic signal control

task, where only part of traffic states in the road network is observ-

able. Ideally, adaptive signal control models take the full states as

input and provide actions to the environment, which then executes

the traffic signal actions from the control models. However, in the

sparse data setting, the signal models at unobserved intersections

will fail to generate any adaptive actions since there is no state as

input. With a well-trained state transition model, the full traffic

states could be predicted for all the intersections, upon which the

signal control models could generate actions. Intuitively, a good
state transition model would provide the signal controller with more
precise states, and enable better results in traffic signal control.

The experiment is conducted on the traffic simulator

CityFlow [40] with 𝐷𝐻𝑍 . We use the states returned by the traffic

simulator as full states and mask out the observations of several

intersections to mimic the sparse data setting. Based on the sparse

data, state transition models can predict the full future states. Then

the traffic signal control model (here we use an adaptive model,

MaxPressure [24]) will decide the actions and feed the actions into

the simulator. We compare the performance of DTIGNN against

ASTGNN, the best baseline model on 𝐷𝐻𝑍 , for the state transition

task and the traffic signal control task. For traffic signal control

task, the average queue length of each intersection and the average

travel time of all the vehicles are used as metrics, following the

existing studies [30, 40]. Detailed descriptions can be found in

Appendix F.

Figure 8 shows the experimental results for each intersection in

𝐷𝐻𝑍 , and we have the following observations:

• DTIGNN has better performance in both predicting traffic states

and traffic signal control in Figure 8(a) and Figure 8(b). We also

(a) RMSE of baseline (left) and DTIGNN (right). The lower, the better.

(b) Queue length of MaxPressure using predictions from

baseline (left) and DTIGNN (right). The lower, the better.

Figure 8: The performance of the baseline method and
DTIGNN under sparse data on 𝐷𝐻𝑍 for two sequential tasks:
traffic state modeling w.r.t. RMSE, and traffic signal control
w.r.t. queue length using MaxPressure. The x-axis and y-axis
indicate the location of the intersections in the road network
of 𝐷𝐻𝑍 . The black boxes indicate the intersections without
any observation. DTIGNN has lower prediction error in pre-
dicting next traffic states. These predictions are then used
by MaxPressure [24] to achieve better performance with a
lower average queue length. Best viewed in color.
measure the average travel time of all vehicles in the network and

found out that the average travel time byDTIGNN is 494.26 seconds,

compared to the 670.45 seconds by ASTGNN. This indicates that

DTIGNN can better alleviate downstream signal control task that

suffers from missing data problems.

•We also notice that, although ASTGNN shows lower RMSE on

certain intersections (e.g., intersection 1_4, 2_3, 3_3 on the left of

Figure 8(a)), its performance on traffic signal control result is infe-

rior. This is because network-level traffic signal control requires

observation and coordination between neighboring intersections,

which requires accurate modeling on global traffic states. In con-

trast, DTIGNN shows satisfactory prediction performance on the

global states and thus achieve better performance on traffic signal

control task even when the traffic signal controller.

6 CONCLUSION
In this paper, we propose a novel and flexible approach to model

the network-level traffic flow transition. Specifically, our model

learns on the dynamic graph induced by traffic signals with a net-

work design grounded by transition equations from transportation,

and predicts future traffic states with imputation in the process.

We conduct extensive experiments using synthetic and real-world

data and demonstrate the superior performance of our proposed

method over state-of-the-art methods. We further show in-depth

case studies to understand how the state transition models help

downstream tasks like traffic signal control, even for intersections

without any traffic flow observations.

We would like to point out several important future directions

to make the method more applicable to the real world. First, more

traffic operations can be considered in the modeling of transitions,

including road closures and reversible lanes. Second, the raw data

for observation only include the phase and the number of vehi-

cles on each lane. More exterior data like the road and weather

conditions might help to boost model performance.

7 ACKNOWLEDGMENTS
The work was supported in part by NSF award #2153311. The views

and conclusions contained in this paper are those of the authors and

should not be interpreted as representing any funding agencies. We

appreciate the advice and supports from Jiaxiang Wang and Yiming

Xu sharing their pearls of wisdom with us during this work. This

research was partially supported by the MOE Innovation Research

Team No. IRT_17R86 and NSFC No. 62002282.

REFERENCES
[1] Konstantinos Aboudolas, Markos Papageorgiou, and Elias Kosmatopoulos. 2009.

Store-and-forward based methods for the signal control problem in large-scale

congested urban road networks. TR-C 17, 2 (2009).

[2] Gustavo EAPA Batista, Maria Carolina Monard, et al. 2002. A study of K-nearest

neighbour as an imputation method. His 87, 251-260 (2002).
[3] René Boel and Lyudmila Mihaylova. 2006. A compositional stochastic model for

real time freeway traffic simulation. TR-C (2006).

[4] Zheng Fang, Qingqing Long, Guojie Song, and Kunqing Xie. 2021. Spatial-

temporal graph ode networks for traffic flow forecasting. In KDD’21. 364–373.
[5] Kun Fu, Fanlin Meng, Jieping Ye, and Zheng Wang. 2020. Compacteta: A fast

inference system for travel time prediction. In KDD’20.
[6] Pedro J García-Laencina, José-Luis Sancho-Gómez, et al. 2010. Pattern classifica-

tion with missing data: a review. Neural Computing and Applications (2010).
[7] Shengnan Guo, Youfang Lin, et al. 2021. Learning Dynamics and Heterogeneity

of Spatial-Temporal Graph Data for Traffic Forecasting. TKDE (2021).

[8] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. 2019.

Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic

Flow Forecasting. AAAI’19 (2019).
[9] VF Hurdle. 1984. Signalized intersection delay models–a primer for the uniniti-

ated. TR-B (1984).

[10] Kasthuri Jayarajah, Andrew Tan, and Archan Misra. 2018. Understanding the

interdependency of land use and mobility for urban planning. In UbiComp’18.
[11] Kihwan Kim, Seungmin Jin, et al. 2020. STGRAT: A Spatio-Temporal Graph

Attention Network for Traffic Forecasting. CIKM’20 (2020).
[12] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009).
[13] Apostolos Kotsialos, Markos Papageorgiou, Christina Diakaki, Yannis Pavlis, and

Frans Middelham. 2002. Traffic flow modeling of large-scale motorway networks

using the macroscopic modeling tool METANET. TITS (2002).
[14] Steven Cheng-Xian Li, Bo Jiang, et al. 2019. Misgan: Learning from incomplete

data with generative adversarial networks. arXiv:1902.09599 (2019).
[15] Yaguang Li, Rose Yu, et al. 2017. Diffusion convolutional recurrent neural network:

Data-driven traffic forecasting. arXiv:1707.01926 (2017).
[16] Kaixiang Lin, Renyu Zhao, Zhe Xu, and Jiayu Zhou. 2018. Efficient large-scale

fleet management via multi-agent deep reinforcement learning. In KDD’18.
[17] Qiang Liu, Shu Wu, Liang Wang, and Tieniu Tan. 2016. Predicting the next

location: A recurrent model with spatial and temporal contexts. In AAAI’16.
[18] Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. 2018. Multivariate time

series imputation with generative adversarial networks. In NeurIPS’18.
[19] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. 2010. Spectral regular-

ization algorithms for learning large incomplete matrices. JMLR (2010).

[20] Simon Oh, Young-Ji Byon, Kitae Jang, and Hwasoo Yeo. 2018. Short-term travel-

time prediction on highway: A review on model-based approach. KSCE Journal
of Civil Engineering (2018).

[21] Huiling Qin, Xianyuan Zhan, Yuanxun Li, et al. 2021. Network-Wide Traffic

States Imputation Using Self-interested Coalitional Learning. (2021).

[22] Chao Song, Youfang Lin, Shengnan Guo, and Huaiyu Wan. 2020. Spatial-

temporal synchronous graph convolutional networks: A new framework for

spatial-temporal network data forecasting. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 914–921.

[23] Xianfeng Tang, Boqing Gong, Yanwei Yu, et al. 2019. Joint modeling of dense and

incomplete trajectories for citywide traffic volume inference. In TheWebConf’19.
[24] Pravin Varaiya. 2013. Max pressure control of a network of signalized intersec-

tions. Transportation Research Part C: Emerging Technologies 36 (2013), 177–195.
[25] Hongjian Wang, Xianfeng Tang, et al. 2019. A simple baseline for travel time

estimation using large-scale trip data. TIST (2019).

[26] Jingyuan Wang, Chao Chen, et al. 2017. No longer sleeping with a bomb: a duet

system for protecting urban safety from dangerous goods. In KDD’17.
[27] Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, et al. 2020. Traffic flow

prediction via spatial temporal graph neural network. In TheWebConf’20.
[28] Yibing Wang, Mingming Zhao, et al. 2022. Real-time joint traffic state and model

parameter estimation on freeways with fixed sensors and connected vehicles:

State-of-the-art overview, methods, and case studies. TR-C (2022).

[29] Hua Wei, Chacha Chen, Guanjie Zheng, et al. 2019. Presslight: Learning max

pressure control to coordinate traffic signals in arterial network. In KDD’19.
[30] Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. 2018. Intellilight: A

reinforcement learning approach for intelligent traffic light control. In KDD’18.
[31] Cathy Wu, Alexandre M Bayen, and Ankur Mehta. 2018. Stabilizing traffic with

autonomous vehicles. In ICRA’18. IEEE.
[32] Zonghan Wu, Shirui Pan, Guodong Long, et al. 2019. Graph wavenet for deep

spatial-temporal graph modeling. arXiv:1906.00121 (2019).
[33] Zonghan Wu, Shirui Pan, Guodong Long, et al. 2020. Connecting the dots:

Multivariate time series forecasting with graph neural networks. In CIKM’20.
[34] Huaxiu Yao, Xianfeng Tang, Hua Wei, et al. 2019. Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction. In AAAI’19.
[35] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong,

Jieping Ye, and Zhenhui Li. 2018. Deep multi-view spatial-temporal network for

taxi demand prediction. In AAAI, Vol. 32.
[36] Xiuwen Yi, Zhewen Duan, Ting Li, et al. 2019. Citytraffic: Modeling citywide

traffic via neural memorization and generalization approach. In CIKM’19.
[37] Jinsung Yoon, James Jordon, and Mihaela Schaar. 2018. Gain: Missing data

imputation using generative adversarial nets. In ICML’18.
[38] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2017. Spatio-temporal graph

convolutional networks: A deep learning framework for traffic forecasting.

arXiv:1709.04875 (2017).
[39] Rose Yu, Yaguang Li, Cyrus Shahabi, Ugur Demiryurek, and Yan Liu. 2017. Deep

learning: A generic approach for extreme condition traffic forecasting. In Proceed-
ings of the 2017 SIAM international Conference on Data Mining. SIAM, 777–785.

[40] Huichu Zhang, Siyuan Feng, et al. 2019. Cityflow: A multi-agent reinforcement

learning environment for large scale city traffic scenario. In TheWebConf’19.
[41] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual

networks for citywide crowd flows prediction. In AAAI’17.
[42] Xiyue Zhang, Chao Huang, et al. 2020. Spatial-temporal convolutional graph

attention networks for citywide traffic flow forecasting. In CKIM’18.
[43] Xiyue Zhang, Chao Huang, Yong Xu, et al. 2020. Traffic Flow Forecasting with

Spatial-Temporal Graph Diffusion Network. AAAI’20 (2020).
[44] Ling Zhao, Yujiao Song, et al. 2019. T-gcn: A temporal graph convolutional

network for traffic prediction. TITS’19 (2019).

A PROOF OF THEOREM 4.1
Proof. The proof can be done by expanding out the calculation

for every element in Z𝑡 .
For any 𝜏 ∈ {1, . . . ,𝑇 }, the latent traffic state Ẑ

𝑖

𝑡−𝜏+1 on road

segment 𝑖 at time 𝑡−𝜏+1 can be inferred by aggregating the features
of all upstream traffic flows (allowed by traffic signal phase), which

is similar to transition equations, Eq. (8) and Eq. (9).

Ẑ
𝑖

𝑡−𝜏+1 =
∑︁

𝑗∈N𝑡−𝜏 (𝑖)
A 𝑗,𝑖

𝑡−𝜏 · 𝛾
𝑗,𝑖 · X𝑗

𝑡−𝜏 (13)

=
∑︁

𝑗∈N𝑡−𝜏 (𝑖)
(A𝑡−𝜏 ⊙ 𝛾) 𝑗,𝑖 · X𝑗

𝑡−𝜏 (14)

where N𝑡 (𝑖) denotes upstreams of road segment 𝑖 . When we set

𝛾 𝑗,𝑖 ∈ Att⊺ , the above equation equals to Eq. (6). Similar deduction

also applys for Eq. (9).

□

B ALGORITHM

Algorithm 1: Training procedure of DTIGNN

Input: Observed state tensor

¤X = (¤𝑋𝑡−𝑇+1, ¤𝑋𝑡−𝑇+2, · · · , ¤𝑋𝑡), phase Activate
Matrix (A𝑡−𝑇+1,A𝑡−𝑇+2, · · · ,A𝑡), Static
Adjacency Matrix A, initial training options and

model’s parameters 𝜃0, etc.
Output: 𝑋 = (𝑋𝑡+1), the last dimension is 3 dimensions

represent l,s,r traffic volumes of road

segments,respectively.

for 𝑒𝑝𝑜𝑐ℎ ← 0, 1, · · · do
for 𝜏 ← 𝑡 −𝑇 + 1, · · · , 𝑡 do

// Base GNN Module

Generate Attentation Matrix 𝐴𝑡𝑡 using Eq (4);

// Neural Transition Layer

Generate Proportion Matrix Γ𝑡 ;

Calculate latent states Ẑ𝜏 using Eq (6);

// Output Layer
Predict traffic states of unobserved road segments

using Eq (10) ;

Impute on ¥X𝜏 with Eq (11)

end
Predict 𝑋 ;

Update 𝜃 by minimize the training loss with Eq (12)

end

C DATASET DESCRIPTION
We conduct experiments on one synthetic traffic dataset 𝐷4×4 and
two real-world datasets, 𝐷𝐻𝑍 and 𝐷𝑁𝑌 , where the road-segment

level traffic volume are recorded with traffic signal phases. The

data statistics are shown in Table 3, and the road networks in these

datasets are shown in Figure 9 and Figure 10.

• 𝐷4×4. The synthetic dataset is generated by the open-source

Table 3: Statistics of datasets.

Dataset 𝐷4×4 𝐷𝐻𝑍 𝐷𝑁𝑌

Duration (seconds) 3600 3600 3600

Time steps 360 360 360

of intersections 16 16 196

of road segments 80 80 854

of groundtruth states (full) 23040 23040 282240

% of unobserved intersections 12.5 12.5 10.4

Figure 9: Road networks for synthetic data set. 𝐷4×4 has 16
intersections with bi-directional traffic. Green dot lines rep-
resent traffic flow direction on each lane. Traffic information
in the red regions is unobservable while in the blue region
information is entirely recorded.

(a) Gudang Sub-district,
Hangzhou, China

(b) Upper-eastside, Manhattan,
New York, USA

Figure 10: Road networks for real-world datasets. Red poly-
gons are the areas we select to model, blue dots are inter-
sections with traffic signals. (a) 𝐷𝐻𝑍 , 16 intersections with
uni- & bi-directional traffic. (b) 𝐷𝑁𝑌 , 196 intersections with
uni-directional traffic.

microscopic traffic simulator CityFlow [40]. The traffic simulator

takes 4 × 4 grid road network and the traffic demand data (repre-

sented as the origin and destination location, the route and the start

time) as input, and simulates vehicles movements and traffic signal

phases. Each intersection in the road network has four directions

(West→East, East→West, South→North, and North→South), and

3 lanes (300 meters in length and 3 meters in width) for each direc-

tion. Vehicles come uniformly with 180 vehicles/lane/hour in both

West↔East direction and South↔North direction. The dataset is

collected by logging the traffic states and signal phases provided

by the simulator at every 10 seconds and randomly masking out

several intersections.

• 𝐷𝐻𝑍 . This is a public traffic dataset that covers a 4 × 4 network
of Gudang area in Hangzhou, collected from surveillance cameras

near intersections in 2016. This dataset records the position and

speed of every vehicle at every 1 second. Then we aggregate the

real-world observations into 10-second intervals on road-segment

level traffic volume, which means there are 360 time steps in the

traffic flow for one hour. We treat these records as groundtruth

observations trajectories and sample observed traffic states by ran-

domly masking out several intersections.

• 𝐷𝑁𝑌 . This is a public traffic that dataset covers a 7 × 28 network
of Upper East Side of Manhattan, New York, collected by both cam-

era data and taxi trajectory data in 2016. This dataset records the

lane-level volumes at every 10 second, which means there are 360

time steps in the traffic flow for one hour. We sampled the sparse

observations in a similar way as in 𝐷𝐻𝑍 .

D HYPERPARAMETER SETTINGS
Some of the important hyperparameters can be found in Table 4.

Table 4: Hyper-parameter settings for DTIGNN .

Parameter Value Parameter Value

Batch size 32 Historical time slice 𝑇 30

Convolution kernel 64 Predict time slice 𝑇 ′ 1

Time interval of raw data 10(s) Input channel 11

Chebyshev polynomial 3 Output channel 3

Learning rate 0.001 Training epochs 100

E EVALUATION METRICS
We use MAE, RMSE and MAPE to evaluate the performance of

predicting next state, which are defined as:

𝑀𝐴𝐸 =
1

𝑁

1

𝐹

𝑁∑︁
𝑖=1

𝐹∑︁
𝑗=1

|x𝑖, 𝑗𝑡 − x̂
𝑖, 𝑗
𝑡 | (15)

𝑅𝑀𝑆𝐸 =

√√√√
1

𝑁

1

𝐹

𝑁∑︁
𝑖=1

𝐹∑︁
𝑗=1

| |x𝑖, 𝑗𝑡 − x̂
𝑖, 𝑗
𝑡 | |2 (16)

𝑀𝐴𝑃𝐸 =


1

𝑁
1

𝐹

∑𝑁
𝑖=1

∑𝐹
𝑗=1

|x𝑖,𝑗𝑡 −x̂
𝑖,𝑗
𝑡 |

x𝑖,𝑗𝑡
, x𝑖, 𝑗𝑡 ≠ 0

1, x𝑖, 𝑗𝑡 = 0,&x𝑖, 𝑗𝑡 ≠ x̂𝑖, 𝑗𝑡
0, x𝑖, 𝑗𝑡 = 0,&x𝑖, 𝑗𝑡 = x̂𝑖, 𝑗𝑡

(17)

where 𝑁 is the total number of road segments, 𝐹 is the size of

observed state vector on the road segment, x𝑖, 𝑗𝑡 and x̂𝑖, 𝑗𝑡 are the 𝑗-th

element in the traffic volume states of 𝑖-th road segment at time 𝑡

in the groundtruth and predicted traffic volumes relatively.

F CASE STUDY SETTINGS
The traffic signal control task requires the simulator to provide the

groundtruth states. After having the states, we mask out the states

for several intersections and provide sparse state observations to

the traffic signal models. Ideally, the signal control models would

take the full states as input and provide actions to the simulator,

which would then executes the traffic signal actions from the con-

trol method. However, in the sparse data setting, the traffic signal

controller at unobserved intersections will not be able to generate

any actions since it has no state as input. With a well-trained state

transition model, the full traffic states could be predicted all the

intersections, upon which the signal control models would be able

to generate actions.

Following the settings in traffic signal methods [29, 30],we pro-

cess the traffic dataset into a format acceptable by the simulator

CityFlow [40]. In the processed traffic dataset for the simultor, each

vehicle is described as (𝑜, 𝑡, 𝑑), where 𝑜 is the origin location, 𝑡 is

time, and 𝑑 is the destination location. Locations 𝑜 and 𝑑 are both

locations on the road network. Each green signal is followed by a

three-second yellow signal and two-second all red time.

At each time step, we acquire the full state observations from the

simulator, mask traffic observations in part of intersections as miss-

ing data, and use the state transition model to predict these the next

states for all the road segments. Then baseline model ASTGNN and

DTIGNN are used as the transition model to recover missing values

returned from the simulator and exploit the recovered observations.

MaxPressure controller then decides the next traffic signal phase

and feed the actions into the simulator. During this process, we can

collect groundtruth traffic states from the simulator environment,

and predict values from our transition model. After one round of

simulation (here we set as 3600 seconds with action interval as

10 seconds), we get the average travel time from the environment

and the average queue length for each intersection to evaluate the

performance for traffic signal control task.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Methodology
	4.1 Overall Framework
	4.2 Phase-activated Adjacency Matrix
	4.3 Transition-based Spatial Temporal GNN
	4.4 Iterative Imputation for Prediction

	5 Experiments
	5.1 Datasets
	5.2 Baseline Methods
	5.3 Experimental Settings and Metrics
	5.4 Overall Performance (RQ1)
	5.5 Model Analysis
	5.6 Case Study (RQ4)

	6 Conclusion
	7 ACKNOWLEDGMENTS
	References
	A Proof of Theorem 4.1
	B algorithm
	C Dataset Description
	D Hyperparameter Settings
	E Evaluation Metrics
	F Case Study Settings

