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1. Introduction and statement of results

A partition of a nonnegative integer n, denoted 𝜆 � 𝑛, is any nonincreasing sequence of positive integers,

say 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚), that satisfies |𝜆 | := 𝜆1 + · · · +𝜆𝑚 = 𝑛. As usual, we let 𝑝(𝑛) denote the number

of such partitions. One hundred years ago, Hardy and Ramanujan [16] proved their striking asymptotic

formula

𝑝(𝑛) ∼ 1

4
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 , (1.1)

as 𝑛 → ∞. This work marked the birth of the so-called Circle Method.

Partitions appear in many areas of mathematics. We consider recently discovered structures that arise

at the interface of algebraic combinatorics, algebraic geometry, number theory and topology, where the

size n partitions play a prominent role in defining various integer-valued invariants. These invariants

can be sorted by congruence conditions, resulting in identities of the form

𝑝(𝑛) = 𝐶 (0, 𝑏; 𝑛) + 𝐶 (1, 𝑏; 𝑛) + · · · + 𝐶 (𝑏 − 1, 𝑏; 𝑛), (1.2)

where 𝐶 (𝑎, 𝑏; 𝑛) counts those partitions whose invariant is in the congruence class 𝑎 (mod 𝑏). In the

spirit of Dirichlet’s Theorem on primes, where primes are equidistributed over admissible congruence

classes, one may ask how the partitions are distributed, as 𝑛 → ∞, over the arithmetic progressions

modulo 𝑏. We answer these questions for t-hooks, which arise in work of Han [14] that refined the

Nekrasov–Okounkov hook product formula and for Betti numbers of various Hilbert schemes on n
points in C2, as established by Göttsche [10, 11] and Buryak, Feigin and Nakajima [4, 10, 11].

We first consider the distribution of t-hooks. Each partition has a Ferrers–Young diagram

• • • . . . • ← 𝜆1 many nodes

• • . . . • ← 𝜆2 many nodes
...

...
...

• . . . • ← 𝜆𝑚 many nodes,

and each node has a hook length. The node in row k and column j has hook length ℎ(𝑘, 𝑗) := (𝜆𝑘 − 𝑘) +
(𝜆′

𝑗 − 𝑗) + 1, where 𝜆′
𝑗 is the number of nodes in column j. These numbers play many significant roles

in combinatorics, number theory and representation theory (for example, see [17, 26]).

We investigate those hook lengths that are multiples of a fixed positive integer t, the so-called t-hooks.
We let H𝑡 (𝜆) denote the multiset of t-hooks of a partition 𝜆. In recent work, the second author and Pun

[7] analysed the t-hook partition functions

𝑝𝑒𝑡 (𝑛) := #{𝜆 � 𝑛 : #H𝑡 (𝜆) is even}, 𝑝𝑜𝑡 (𝑛) := #{𝜆 � 𝑛 : #H𝑡 (𝜆) is odd},
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which divide the partitions of n into two subsets: those with an even (respectively, odd) number of

t-hooks. For even t, they proved that partitions are equidistributed between these subsets as 𝑛 → ∞.

Namely, they showed that

lim
𝑛→∞

𝑝𝑒𝑡 (𝑛)
𝑝(𝑛) = lim

𝑛→∞

𝑝𝑜𝑡 (𝑛)
𝑝(𝑛) =

1

2
.

However, for odd t, they found that the partitions are not equidistributed. More precisely, if 𝑎 ∈ {0, 1},
then they proved that1

lim
𝑛→∞

𝑝𝑒𝑡 (2𝑛 + 𝑎)
𝑝(2𝑛 + 𝑎) =

1

2
+ (−1)𝑎

2
1
2
(𝑡+1)

.

In view of this unexpected result, it is natural to consider the more general t-hook partition

functions

𝑝𝑡 (𝑎, 𝑏; 𝑛) := #{𝜆 � 𝑛 : #H𝑡 (𝜆) ≡ 𝑎 (mod 𝑏)}.

The 𝑝𝑡 (𝑎, 𝑏; 𝑛) are clear generalisations of 𝑝𝑒𝑡 (𝑛) and 𝑝𝑜𝑡 (𝑛). In this setting, (1.2) is

𝑝(𝑛) = 𝑝𝑡 (0, 𝑏; 𝑛) + 𝑝𝑡 (1, 𝑏; 𝑛) + 𝑝𝑡 (2, 𝑏; 𝑛) + · · · + 𝑝𝑡 (𝑏 − 1, 𝑏; 𝑛).

For odd primes b, we determine the distribution of these decompositions as 𝑛 → ∞, and in many

situations they turn out to be nonuniform. To this end, we first obtain asymptotic formulas for 𝑝𝑡 (𝑎, 𝑏; 𝑛).
For this, we define a modified indicator function I by

I(𝑎, 𝑏, 𝑡, 𝑛) :=

{
𝑏 − 1 if 1

24

(
1 − 𝑡2

) (
1 − 𝑏2

)
+ 𝑎𝑡 − 𝑛 ≡ 0 (mod 𝑏),

−1 otherwise,
(1.3)

and a distribution function

𝑐𝑡 (𝑎, 𝑏; 𝑛) :=
1

𝑏
+

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if 𝑏 |𝑡,

(−1)
(1−𝑡 ) (𝑏−1)

4 I(𝑎, 𝑏, 𝑡, 𝑛)𝑏− 𝑡+1
2

(
𝑡
𝑏

)
if 𝑏 � | 𝑡 and 𝑡 is odd,

𝑖
(1−𝑡 ) (𝑏−1)

2 𝜀𝑏𝑏
− 𝑡

2

(
1
24 (1−𝑡2)(1−𝑏2)+𝑎𝑡−𝑛

𝑏

)
if 𝑏 � | 𝑡 and 𝑡 is even,

(1.4)

where ( •
𝑏
) is the Legendre symbol and 𝜀𝑑 := 1 if 𝑑 ≡ 1 (mod 4) and 𝜀𝑑 := 𝑖 if 𝑑 ≡ 3 (mod 4). This

function exactly characterises the distribution properties of the 𝑝𝑡 (𝑎, 𝑏; 𝑛). In particular, the second

summand in equation (1.4) represents the obstruction to equidistribution.

We prove the following asymptotic formulae for 𝑝𝑡 (𝑎, 𝑏; 𝑛).

Theorem 1.1. If 𝑡 > 1, b is an odd prime and 0 ≤ 𝑎 < 𝑏, then as 𝑛 → ∞, we have

𝑝𝑡 (𝑎, 𝑏; 𝑛) ∼ 𝑐𝑡 (𝑎, 𝑏; 𝑛)
4
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 .

Remark. Thanks to equation (3.7) in the proof of Theorem 1.1, we actually obtain an exact formula for

𝑝𝑡 (𝑎, 𝑏; 𝑛) as a complicated convergent infinite sum.

As a corollary, we obtain the following limiting distributions.

1This claim is trivial if 𝑡 = 1, as 𝑝𝑒
1
(𝑛) = 𝑝 (𝑛) (respectively, 𝑝𝑜

1
(𝑛) = 𝑝 (𝑛)) if n is even (respectively, odd).

https://doi.org/10.1017/fms.2022.45 Published online by Cambridge University Press



4 Kathrin Bringmann et al.

Corollary 1.2. Assuming the hypotheses in Theorem 1.1, if 0 ≤ 𝑎1 < 𝑏 and 0 ≤ 𝑎2 < 𝑏, then

lim
𝑛→∞

𝑝𝑡 (𝑎1, 𝑏; 𝑏𝑛 + 𝑎2)
𝑝(𝑏𝑛 + 𝑎2)

= 𝑐𝑡 (𝑎1, 𝑏; 𝑎2).

Example. For 4-hooks with 𝑏 = 3, the collection of values 𝑐4 (𝑎1, 3; 𝑎2) in Corollary 1.2 implies that

lim
𝑛→∞

𝑝4 (𝑎, 3; 3𝑛)
𝑝(3𝑛) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
9

if 𝑎 = 0,
1
3

if 𝑎 = 1,
2
9

if 𝑎 = 2.

Further examples are offered in Section 5.

The cases where 𝑡 ∈ {2, 3} are particularly striking. In addition to many instances of nonuniform

distribution, there are situations where certain counts are identically zero.

Theorem 1.3. The following are true.

(1) If ℓ is an odd prime and 0 ≤ 𝑎1, 𝑎2 < ℓ satisfy ( −16𝑎1+8𝑎2+1
ℓ

) = −1, then for every nonnegative
integer n, we have

𝑝2(𝑎1, ℓ; ℓ𝑛 + 𝑎2) = 0.

(2) If ℓ ≡ 2 (mod 3) is prime and 0 ≤ 𝑎1, 𝑎2 < ℓ2 have the property that ordℓ (−9𝑎1 + 3𝑎2 + 1) = 1,
then for every nonnegative integer n, we have

𝑝3

(
𝑎1, ℓ

2; ℓ2𝑛 + 𝑎2

)
= 0.

Example. For ℓ = 3, Theorem 1.3 (1) implies that

𝑝2 (0, 3; 3𝑛 + 2) = 𝑝2 (1, 3; 3𝑛 + 1) = 𝑝2 (2, 3; 3𝑛) = 0.

More generally, for every odd prime ℓ and each 0 ≤ 𝑎1 < ℓ, there are 1
2
(ℓ − 1) choices of 0 ≤ 𝑎2 < ℓ

satisfying the given hypotheses. In particular, there are 1
2
(ℓ2 − ℓ) many pairs of 𝑎1 and 𝑎2 giving rise to

vanishing arithmetic progressions for 2-hooks.

Example. For ℓ = 2, Theorem 1.3 (2) gives

𝑝3 (0, 4; 4𝑛 + 3) = 𝑝3 (1, 4; 4𝑛 + 2) = 𝑝3 (2, 4; 4𝑛 + 1) = 𝑝3 (3, 4; 4𝑛) = 0.

Moreover, for each ℓ and each 0 ≤ 𝑎1 < ℓ2, there are ℓ − 1 choices for 𝑎2.

Remark. Theorem 1.3 depends on the paucity of 2-core and 3-core partitions. Recall that a partition

𝜆 is a t-core if H𝑡 (𝜆) = ∅. There are no such vanishing results for 𝑡 ≥ 4. This follows from the proof

of the t-core conjecture by Granville and the fourth author [12]. McSpirit and Scheckelhoff [18] have

found a beautiful combinatorial proof of Theorem 1.3 that makes use of the theory of abaci, t-cores and

t-quotients.

We now turn to applications of partitions in algebraic geometry and topology. The fundamental goal

of topology is to determine whether two spaces have the same topological, differentiable or complex

analytic structure. One seeks invariants that distinguish dissimilar spaces. For complex manifolds,

the Hodge numbers are one class of invariants. For any n-dimensional complex manifold M and any

0 ≤ 𝑠, 𝑡, ≤ 𝑛, the Hodge number ℎ𝑠,𝑡 (𝑀) gives the dimension of a certain vector space of differential

forms on M. For the manifolds we consider, the Betti numbers arise as linear combinations of the

Hodge numbers (for example, see [29]). We shall determine the asymptotics and modular distribution

properties of certain Betti numbers.
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We consider examples occurring in the algebraic geometry of Hilbert schemes (for example, see [20]).

The nth Hilbert scheme of a projective variety S is a projective variety Hilb𝑛 (𝑆) that is a ‘smoothed’

version of the nth symmetric product of S (for example, see [11, 20]). The nth symmetric product of a

manifold M admits a simple combinatorial interpretation: outside of a negligible subset, the symmetric

product is the collection of subsets of M of size n assembled as a manifold on its own. Rather nicely,

the Hodge numbers of a complex projective surface S determine the Hodge numbers of Hilb𝑛 (𝑆) in a

beautiful combinatorial way. This is captured by the pleasing formula of Göttsche [10, 11]

∑
𝑛,𝑠,𝑡

(−1)𝑠+𝑡ℎ𝑠,𝑡 (Hilb𝑛 (𝑆))𝑥𝑠−𝑛𝑦𝑡−𝑛𝑞𝑛 =

∞∏
𝑛=1

∏
𝑠+𝑡 odd

(
1 − 𝑥𝑠−1𝑦𝑡−1𝑞𝑛

)ℎ𝑠,𝑡 (𝑆)
∏

𝑠+𝑡 even

(
1 − 𝑥𝑠−1𝑦𝑡−1𝑞𝑛

)ℎ𝑠,𝑡 (𝑆) .
These q-infinite products often essentially specialise to modular forms, which then leads to asymptotics

and distribution results via a standard application of the Circle Method. Indeed, the fourth author and his

collaborators carried this out in [9]. Here we consider a prominent situation involving partitions, where

modular forms do not arise, a fact that complicates the computation of asymptotics and distributions.

Namely, we investigate the Hilbert schemes that arise from n points on C2 that have been considered

recently by Göttsche [10, 11] and Buryak, Feigin and Nakajima [3, 4].

We denote the Hilbert scheme of n points of C2 by (C2) [𝑛] . For 0 ≤ 𝑎 < 𝑏, we consider the modular

sums of Betti numbers

𝐵

(
𝑎, 𝑏;

(
C2
) [𝑛] )

:=
∑

𝑗≡𝑎 (mod 𝑏)
𝑏 𝑗

((
C2
) [𝑛] )

=

∑
𝑗≡𝑎 (mod 𝑏)

dim

(
𝐻 𝑗

((
C2
) [𝑛]

,Q

))
.

We also consider their quasihomogeneous versions. To define them, we use the torus (C×)2-action on

C2 defined by scalar multiplication (i.e., (𝑡1, 𝑡2) · (𝑥, 𝑦) := (𝑡1𝑥, 𝑡2𝑦)). This action lifts to (C2) [𝑛] . For

relatively prime 𝛼, 𝛽 ∈ N, we let 𝑇𝛼,𝛽 := {(𝑡𝛼, 𝑡𝛽) : 𝑡 ∈ C×}, a one-dimensional subtorus. The

quasihomogeneous Hilbert scheme ((C2) [𝑛])𝑇𝛼,𝛽 is the fixed point set of (C2) [𝑛] . We consider their

modular sums of Betti numbers

𝐵

(
𝑎, 𝑏;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

�

∑
𝑗≡𝑎 (mod 𝑏)

𝑏 𝑗

(((
C2
) [𝑛] )𝑇𝛼,𝛽 )

=

∑
𝑗≡𝑎 (mod 𝑏)

dim

(
𝐻 𝑗

(((
C2
) [𝑛] )𝑇𝛼,𝛽

,Q

))
.

Remark. The odd index Betti numbers for these Hilbert schemes are always zero. In fact, for a odd and b
even, simple calculations using Corollary 4.3 reveal that both 𝐵(𝑎, 𝑏; (C2) [𝑛]) and 𝐵(𝑎, 𝑏; ((C2) [𝑛])𝑇𝛼,𝛽 )
identically vanish. Moreover, in accord with (1.2), we have the homology decompositions for 𝑝(𝑛)

𝑝(𝑛) =
𝑏−1∑
𝑎=0

𝐵

(
𝑎, 𝑏;

(
C2
) [𝑛] )

=

𝑏−1∑
𝑎=0

𝐵

(
𝑎, 𝑏;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

. (1.5)

These results require the rational numbers

𝑑 (𝑎, 𝑏) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
𝑏

if 𝑏 is odd,
2
𝑏

if 𝑎 and 𝑏 are even,

0 if 𝑎 is odd and 𝑏 is even.

(1.6)
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Theorem 1.4. Assuming the notation above, the following are true.

(1) As 𝑛 → ∞, we have

𝐵

(
𝑎, 𝑏;

(
C2
) [𝑛] )

∼ 𝑑 (𝑎, 𝑏)
4
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 .

(2) If 𝛼, 𝛽 ∈ N are relatively prime, then as 𝑛 → ∞, we have

𝐵

(
𝑎, 𝑏;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

∼ 𝑑 (𝑎, 𝑏)
4
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 .

As a consequence of Theorem 1.4, we obtain distributions (i.e., see (1.5)) for the proportions

𝛿(𝑎, 𝑏; 𝑛) :=
𝐵
(
𝑎, 𝑏;

(
C2
) [𝑛] )

𝑝(𝑛) and 𝛿𝛼,𝛽 (𝑎, 𝑏; 𝑛) :=

𝐵

(
𝑎, 𝑏;

( (
C2
) [𝑛] )𝑇𝛼,𝛽 )

𝑝(𝑛) .

Corollary 1.5. If 0 ≤ 𝑎 < 𝑏, then the following are true.

(1) We have that

lim
𝑛→∞

𝛿(𝑎, 𝑏; 𝑛) = 𝑑 (𝑎, 𝑏).

(2) If 𝛼, 𝛽 ∈ N are relatively prime, then we have

lim
𝑛→∞

𝛿𝛼,𝛽 (𝑎, 𝑏; 𝑛) = 𝑑 (𝑎, 𝑏).

This paper is organised as follows. In Section 2, we state and prove a general theorem (see Theorem

2.1) on the asymptotic properties (near roots of unity) of the three infinite products given in the abstract,

a result that is of independent interest. The proof is obtained by suitably adapting the method of Euler–

Maclaurin summation in two cases and via modularity in the other. In Section 3, we recall recent work

of Han extending the Nekrasov–Okounkov partition formula, and we prove Theorems 1.1 and 1.3. To

show Theorem 1.1 and Corollary 1.2, we employ Theorem 2.1 (2) and results of Zuckerman pertaining

to exact formulas for Fourier coefficients of modular forms. In Section 4, we recall the work of Göttsche

and Buryak, Feigin and Nakajima on homogeneous and quasihomogeneous Hilbert schemes for n points,

which we then employ to prove Theorem 1.4 and Corollary 1.5 using Theorem 2.1 (1) and (3) and results

of Ngo–Rhoades using Wright’s Circle Method. Finally, in Section 5, we offer numerical examples of

these results.

2. Asymptotics for special q-infinite products

The Hardy–Ramanujan asymptotic formula given in equation (1.1) marked the birth of the Circle

Method. Its proof relied on the modular transformation properties of Dedekind’s eta-function 𝜂(𝜏) :=

𝑞
1
24
∏∞

𝑛=1 (1−𝑞𝑛), where 𝑞 := 𝑒2𝜋𝑖𝜏 (for example, see Chapter 1 of [23]). Their work has been thoroughly

developed in the theory of modular forms and harmonic Maass forms (for example, see Chapter 15 of

[1]) and has been generalised beyond this setting in papers by Grosswald, Meinardus, Richmond, Roth

and Szekeres [13, 19, 27, 28], to name a few.

2.1. Statement of the results

Generalising the infinite product that defines 𝜂, we consider the ubiquitous q-infinite products

𝐹1 (𝜉; 𝑞) :=

∞∏
𝑛=1

(1 − 𝜉𝑞𝑛), 𝐹2 (𝜉; 𝑞) :=

∞∏
𝑛=1

(1 − (𝜉𝑞)𝑛), and 𝐹3 (𝜉; 𝑞) :=

∞∏
𝑛=1

(
1 − 𝜉−1 (𝜉𝑞)𝑛

)
.
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These infinite products are common as factors of generating functions in combinatorics, number theory

and representation theory. We obtain the asymptotic properties for 𝐹1 (𝜉; 𝑞), 𝐹2 (𝜉; 𝑞) and 𝐹3 (𝜉; 𝑞),
where 𝜉 is a root of unity, which are generally required for implementing the Circle Method to such

generating functions. This result is of independent interest.

To make this precise, we recall Lerch’s transcendent

Φ(𝑧, 𝑠, 𝑎) :=

∞∑
𝑛=0

𝑧𝑛

(𝑛 + 𝑎)𝑠 .

Moreover, for coprime ℎ, 𝑘 ∈ N, we define

𝜔ℎ,𝑘 := exp(𝜋𝑖 · 𝑠(ℎ, 𝑘)), (2.1)

using the Dedekind sum

𝑠(ℎ, 𝑘) :=
∑

𝜇 (mod 𝑘)

(( 𝜇
𝑘

)) (( ℎ𝜇
𝑘

))
.

Here we use the standard notation

((𝑥)) :=

{
𝑥 − �𝑥� − 1

2
if 𝑥 ∈ R \ Z,

0 if 𝑥 ∈ Z.

For arbitrary positive integers m and n, we define 𝜔𝑚,𝑛 := 𝜔 𝑚
gcd(𝑚,𝑛) ,

𝑛
gcd(𝑚,𝑛)

. Note that 𝑠(ℎ, 𝑘) only

depends on ℎ (mod 𝑘) and that 𝑠(0, 1) = 0. Moreover, we let

𝜆𝑡 ,𝑎,𝑏,ℎ,𝑘 := gcd(𝑘, 𝑡)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if 𝑘 = 1 or
(
𝑘 > 1 and 𝑏 � | 𝑘

gcd(𝑘,𝑡)

)
,

𝑏 if 𝑏 | 𝑘
gcd(𝑘,𝑡) and ℎ𝑡

gcd(𝑘,𝑡) + 𝑎 𝑘
𝑏 gcd(𝑘,𝑡) � 0 (mod 𝑏),

𝑏2 if 𝑏 | 𝑘
gcd(𝑘,𝑡) and ℎ𝑡

gcd(𝑘,𝑡) + 𝑎 𝑘
𝑏 gcd(𝑘,𝑡) ≡ 0 (mod 𝑏).

(2.2)

For 0 ≤ 𝜃 < 𝜋
2

, we define the domain

𝐷 𝜃 �
{
𝑧 = 𝑟𝑒𝑖𝛼 : 𝑟 ≥ 0 and |𝛼 | ≤ 𝜃

}
. (2.3)

Theorem 2.1. Assume the notation above. For 𝑏 > 0, let 𝜉 be a primitive bth root of unity; then the
following are true.

(1) As 𝑧 → 0 in 𝐷 𝜃 , we have

𝐹1 (𝜉; 𝑒−𝑧) = 1√
1 − 𝜉

𝑒−
𝜉Φ(𝜉 ,2,1)

𝑧 (1 +𝑂 ( |𝑧 |)).

(2) Suppose that b is an odd prime, and let 𝜉 = 𝑒
2𝜋𝑖𝑎
𝑏 , 𝑡 ∈ N, 𝑞 = 𝑒

2𝜋𝑖
𝑘

(ℎ+𝑖𝑧) for 0 ≤ ℎ < 𝑘 with
gcd(ℎ, 𝑘) = 1 and 𝑧 ∈ C with Re(𝑧) > 0. Then as 𝑧 → 0, we have

𝐹2

(
𝜉; 𝑞𝑡
)
∼ 𝜔−1

ℎ𝑏𝑡+𝑎𝑘
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

, 𝑘𝑏
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

(
𝜆𝑡 ,𝑎,𝑏,ℎ,𝑘

𝑡𝑏𝑧

) 1
2

𝑒
−

𝜋𝜆2
𝑡,𝑎,𝑏,ℎ,𝑘

12𝑏2𝑘𝑡𝑧 .
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(3) As 𝑧 → 0 in 𝐷 𝜃 , we have

𝐹3 (𝜉; 𝑒−𝑧) =
√

2𝜋
(
𝑏2𝑧
) 1

2
− 1

𝑏

Γ

(
1
𝑏

) 𝑏−1∏
𝑗=1

1

(1 − 𝜉 𝑗 )
𝑗

𝑏

𝑒
− 𝜋2

6𝑏2𝑧 (1 +𝑂 (|𝑧 |)).

Remark. If 𝜉 = 1 and 𝑞 = 𝑒2𝜋𝑖𝜏 , then we have

𝐹1 (1; 𝑞) = 𝐹2 (1; 𝑞) = 𝐹3 (1; 𝑞) = 𝑞−
1
24 𝜂(𝜏).

Asymptotic properties in this case are well-known consequences of the modularity of 𝜂(𝜏).

2.2. The Euler–Maclaurin summation formula

We require the following generalisation of the Euler–Maclaurin summation formula. To state it, we need

some notation. For 𝑠, 𝑧 ∈ C with Re(𝑠) > 1,Re(𝑧) > 0, we recall the Hurwitz zeta function 𝜁 (𝑠, 𝑧) :=∑∞
𝑛=0

1
(𝑛+𝑧)𝑠 , the digamma function𝜓(𝑥) :=

Γ′ (𝑥)
Γ(𝑥) and the Euler–Mascheroni constant 𝛾. Furthermore, we

let 𝐵𝑛 (𝑥) denote the nth Bernoulli polynomial defined via its generating function 𝑡𝑒𝑥𝑡

𝑒𝑡−1
=
∑∞
𝑛=0 𝐵𝑛 (𝑥) 𝑡

𝑛

𝑛!
.

The consequence of the Euler–Maclaurin summation formula required is described by the following

lemma. A function f on a domain inC is of sufficient decay if there exists 𝜀 > 0 such that 𝑓 (𝑤) � 𝑤−1−𝜀

as |𝑤 | → ∞ in the domain. Throughout, we say that

𝑓 (𝑧) ∼
∞∑
𝑛=0

𝑎𝑛𝑧
𝑛

if for any 𝑁 ∈ N0, 𝑓 (𝑧) = ∑𝑁
𝑛=0 𝑎𝑛𝑧

𝑛 +𝑂 (|𝑧 |𝑁+1).

Lemma 2.2. Let 0 < 𝑎 ≤ 1 and 𝐴 ∈ R+, and let 𝐷 𝜃 be defined by equation (2.3). Assume that
𝑓 (𝑧) ∼ ∑∞

𝑛=𝑛0
𝑐𝑛𝑧

𝑛 (𝑛0 ∈ Z) as 𝑧 → 0 in 𝐷 𝜃 . Furthermore, assume that f and all of its derivatives are
of sufficient decay in 𝐷 𝜃 in the above sense. Then we have that

∞∑
𝑛=0

𝑓 ((𝑛 + 𝑎)𝑧) ∼
−2∑
𝑛=𝑛0

𝑐𝑛𝜁 (−𝑛, 𝑎)𝑧𝑛 +
𝐼∗
𝑓 ,𝐴

𝑧
− 𝑐−1

𝑧
(Log(𝐴𝑧) + 𝜓(𝑎) + 𝛾) −

∞∑
𝑛=0

𝑐𝑛
𝐵𝑛+1(𝑎)
𝑛 + 1

𝑧𝑛,

as 𝑧 → 0 uniformly in 𝐷 𝜃 , where

𝐼∗𝑓 ,𝐴 :=

∫ ∞

0

(
𝑓 (𝑢) −

−2∑
𝑛=𝑛0

𝑐𝑛𝑢
𝑛 − 𝑐−1𝑒

−𝐴𝑢

𝑢

)
𝑑𝑢.

Remark. Note that for 𝑎 = 1, we have that 𝜓(𝑎) + 𝛾 = 0.

Proof of Lemma 2.2. A generalisation of an observation of Zagier [32, Proposition 3] is that of [2,

Theorem 1.2], which states the following. Let h be a holomorphic function on a domain containing 𝐷 𝜃

so that in particular h is holomorphic at the origin, such that h and all of its derivatives have sufficient

decay and ℎ(𝑧) ∼ ∑∞
𝑛=0 𝑐𝑛𝑧

𝑛 as 𝑧 → 0 in 𝐷 𝜃 . Furthermore, let 𝐼ℎ �
∫ ∞
0

ℎ(𝑥)𝑑𝑥. Then we have for

𝑎 ∈ R
∞∑
𝑛=0

ℎ((𝑛 + 𝑎)𝑧) ∼ 𝐼ℎ

𝑧
−

∞∑
𝑛=0

𝑐𝑛
𝐵𝑛+1 (𝑎)
𝑛 + 1

𝑧𝑛, (2.4)
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as 𝑧 → 0 in 𝐷 𝜃 . For the given A, write

𝑓 (𝑧) = 𝑔(𝑧) + 𝑐−1𝑒
−𝐴𝑧

𝑧
+

−2∑
𝑛=𝑛0

𝑐𝑛𝑧
𝑛, (2.5)

which means that

𝑔(𝑧) = 𝑓 (𝑧) − 𝑐−1𝑒
−𝐴𝑧

𝑧
−

−2∑
𝑛=𝑛0

𝑐𝑛𝑧
𝑛.

The final term in equation (2.5) yields the first term in the right-hand side of the lemma. Since g has no

pole, equation (2.4) gives that

∞∑
𝑛=0

𝑔((𝑛 + 𝑎)𝑧) ∼
𝐼𝑔

𝑧
−

∞∑
𝑛=0

𝑐𝑛 (𝑔)
𝐵𝑛+1 (𝑎)
𝑛 + 1

𝑧𝑛,

where 𝑐𝑛 (𝑔) are the coefficients of g. Note that 𝐼𝑔 = 𝐼∗
𝑓 ,𝐴

. We compute that

−
∞∑
𝑛=0

𝑐𝑛 (𝑔)
𝐵𝑛+1 (𝑎)
𝑛 + 1

𝑧𝑛 = −
∞∑
𝑛=0

(
𝑐𝑛 −

(−𝐴)𝑛+1𝑐−1

(𝑛 + 1)!

)
𝐵𝑛+1(𝑎)
𝑛 + 1

𝑧𝑛.

Combining the contribution from the second term with the contribution from the second term from

equation (2.5), we obtain

𝑐−1

𝑧

( ∞∑
𝑛=0

𝑒−𝐴(𝑛+𝑎)𝑧

𝑛 + 𝑎
+

∞∑
𝑛=1

𝐵𝑛 (𝑎)
𝑛 · 𝑛!

(−𝐴𝑧)𝑛
)
.

Using [2, equation (5.10)], the term in the parentheses is equal to −(Log(𝐴𝑧) + 𝜓(𝑎) + 𝛾). Combining

the contributions yields the statement of the lemma. �

2.3. An integral evaluation

We require the following integral evaluation.

Lemma 2.3. We have for 𝑁 ∈ R+

∫ ∞

0

(
𝑒−𝑥

𝑥
(
1 − 𝑒𝑁 𝑥

) − 1

𝑁𝑥2
+
(

1

𝑁
− 1

2

)
𝑒−𝑥

𝑥

)
𝑑𝑥

= log

(
Γ

(
1

𝑁

))
+
(
1

2
− 1

𝑁

)
log

(
1

𝑁

)
− 1

2
log(2𝜋).

Proof. Making the change of variables 𝑥 ↦→ 𝑥
𝑁

, the left-hand side equals

∫ ∞

0

(
𝑒−

𝑥
𝑁

𝑥(1 − 𝑒−𝑥) −
1

𝑥2
+
(

1

𝑁
− 1

2

)
𝑒−

1
𝑁

𝑥

)
𝑑𝑥.

Now write

1

𝑥(1 − 𝑒−𝑥) =
1

𝑥
+ 1

𝑥(𝑒𝑥 − 1) .
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Thus the integral becomes∫ ∞

0

(
1

𝑒𝑥 − 1
+ 1

2
− 1

𝑥

)
𝑒−

𝑥
𝑁

𝑥
𝑑𝑥 +

∫ ∞

0

(
𝑒−

𝑥
𝑁

𝑥
− 1

𝑥2
+
(

1

𝑁
− 1

2

)
𝑒−

𝑥
𝑁

𝑥
− 𝑒−

𝑥
𝑁

2𝑥
+ 𝑒−

𝑥
𝑁

𝑥2

)
𝑑𝑥.

We evaluate the second integral as − 1
𝑁

. The claim now follows, using Binet’s first integral formula (see

12.31 of [31]). �

2.4. Proof of Theorem 2.1

We employ the generalised Euler–Maclaurin summation formula to prove Theorem 2.1 (1) and (3); for

part (2), we use modularity.

2.4.1. Proof of Theorem 2.1 (1)

Let |𝑧 | < 1. Taking logarithms, we have

𝐺 𝜉 (𝑒−𝑧) := Log(𝐹1 (𝜉; 𝑒−𝑧)) = −𝑧
𝑏∑
𝑗=1

𝜉 𝑗
∞∑
𝑚=0

𝑓

((
𝑚 + 𝑗

𝑏

)
𝑏𝑧

)
,

where

𝑓 (𝑧) :=
𝑒−𝑧

𝑧(1 − 𝑒−𝑧) =
1

𝑧2
− 1

2𝑧
+

∞∑
𝑛=0

𝐵𝑛+2

(𝑛 + 2)! 𝑧
𝑛.

By Lemma 2.2, it follows that

∞∑
𝑚=0

𝑓

((
𝑚 + 𝑗

𝑏

)
𝑏𝑧

)
=

𝜁
(
2,

𝑗

𝑏

)
𝑏2𝑧2

+
𝐼∗
𝑓 ,1

𝑏𝑧
+ 1

2𝑏𝑧

(
Log(𝑏𝑧) + 𝜓

(
𝑗

𝑏

)
+ 𝛾

)
+𝑂 (1).

Therefore, we find that

𝐺 𝜉 (𝑒−𝑧) = − 1

𝑏2𝑧

𝑏∑
𝑗=1

𝜉 𝑗 𝜁

(
2,

𝑗

𝑏

)
−

𝐼∗
𝑓 ,1

𝑏

𝑏∑
𝑗=1

𝜉 𝑗 − 1

2𝑏

𝑏∑
𝑗=1

𝜉 𝑗
(
Log(𝑏𝑧) + 𝜓

(
𝑗

𝑏

)
+ 𝛾

)
+𝑂 (|𝑧 |).

Now note that
∑𝑏

𝑗=1 𝜉
𝑗 = 0. Moreover, we require the identity [5, p. 39] (correcting a minus sign and

erroneous k on the right-hand side)

𝑏∑
𝑗=1

𝜓

(
𝑗

𝑏

)
𝜉 𝑗 = 𝑏 Log(1 − 𝜉). (2.6)

Combining these observations, we obtain

𝐺 𝜉 (𝑒−𝑧) = − 1

𝑏2𝑧

𝑏∑
𝑗=1

𝜉 𝑗 𝜁

(
2,

𝑗

𝑏

)
− 1

2
Log(1 − 𝜉) +𝑂 ( |𝑧 |).

After noting that

𝑏∑
𝑗=1

𝜉 𝑗 𝜁

(
2,

𝑗

𝑏

)
= 𝑏2𝜉Φ(𝜉, 2, 1),

the claim follows by exponentiation. �
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2.4.2. Proof of Theorem 2.1 (2)

Note that

𝐹2

(
𝜉; 𝑞𝑡
)
=
(
𝜉𝑞𝑡 ; 𝜉𝑞𝑡

)
∞,

where (𝑞; 𝑞)∞ :=
∏∞

𝑗=1 (1 − 𝑞 𝑗 ). The classical modular transformation law for the Dedekind 𝜂-function

(see 5.8.1 of [6]) along with the identity 𝜂(𝜏) = 𝑞
1
24 (𝑞; 𝑞)∞ implies that

(𝑞; 𝑞)∞ = 𝜔−1
ℎ,𝑘 𝑧

− 1
2 𝑒

𝜋
12𝑘 (𝑧− 1

𝑧 ) (𝑞1; 𝑞1)∞, (2.7)

where 𝑞1 := 𝑒
2𝜋𝑖
𝑘

(ℎ′+ 𝑖
𝑧
) , where 0 ≤ ℎ′ < 𝑘 is defined by ℎℎ′ ≡ −1 (mod 𝑘) and 𝜔ℎ,𝑘 is defined as in

equation (2.1). In particular, this implies that

(𝑞; 𝑞)∞ ∼ 𝜔−1
ℎ,𝑘 𝑧

− 1
2 𝑒−

𝜋
12𝑘𝑧 (2.8)

as 𝑧 → 0 with Re(𝑧) > 0. Now, by using the definitions of 𝜉, 𝑞 given in the statement of Theorem 2.1

(2), we have

𝜉𝑞𝑡 = 𝑒
2𝜋𝑖
𝑘𝑏

(ℎ𝑏𝑡+𝑎𝑘+𝑖𝑡𝑏𝑧) .

We claim that 𝜆𝑡 ,𝑎,𝑏,ℎ,𝑘 as defined in equation (2.2) satisfies 𝜆𝑡 ,𝑎,𝑏,ℎ,𝑘 = gcd(𝑘𝑏, ℎ𝑏𝑡 + 𝑎𝑘). If 𝑘 = 1,

then the claim is clear, so we assume that 𝑘 > 1. Write 𝑘 = gcd(𝑘, 𝑡)𝑘1 and 𝑡 = gcd(𝑘, 𝑡)𝑡1. Then we have

gcd(𝑘𝑏, ℎ𝑏𝑡 + 𝑎𝑘) = gcd(𝑘, 𝑡) gcd(𝑘1𝑏, ℎ𝑏𝑡1 + 𝑎𝑘1).

Noting that gcd(𝑘1, 𝑏) divides each of 𝑘1𝑏, ℎ𝑏𝑡1 and 𝑎𝑘1, it follows that

gcd(𝑘𝑏, ℎ𝑏𝑡 + 𝑎𝑘) = gcd(𝑘, 𝑡) gcd(𝑘1, 𝑏) gcd

(
𝑘1𝑏

gcd(𝑘1, 𝑏)
,

ℎ𝑏𝑡1

gcd(𝑘1, 𝑏)
+ 𝑎

𝑘1

gcd(𝑘1, 𝑏)

)
.

Note that since b is prime, gcd(𝑘1, 𝑏) ∈ {1, 𝑏}. If gcd(𝑘1, 𝑏) = 1, then

gcd(𝑘1𝑏, ℎ𝑏𝑡1 + 𝑎𝑘1) = gcd(𝑘1, ℎ𝑏𝑡1) gcd(𝑏, 𝑎𝑘1) = 1.

If, on the other hand gcd(𝑘1, 𝑏) = 𝑏, then write 𝑘1 = 𝑏𝜅 𝑘2 with gcd(𝑘2, 𝑏) = 1. Then

gcd

(
𝑘1, ℎ𝑡1 + 𝑎

𝑘1

𝑏

)
= gcd

(
𝑏𝜅 𝑘2, ℎ𝑡1 + 𝑎𝑘2𝑏

𝜅−1
)
= gcd

(
𝑏𝜅 , ℎ𝑡1 + 𝑎𝑘2𝑏

𝜅−1
)

gcd(𝑘2, ℎ𝑡1)

= gcd
(
𝑏𝜅 , ℎ𝑡1 + 𝑎𝑘2𝑏

𝜅−1
)
.

If 𝜅 > 1, then gcd(𝑏𝜅 , ℎ𝑡1 + 𝑎𝑘2𝑏
𝜅−1) = 1 since gcd(𝑏, ℎ𝑡1) = 1. If 𝜅 = 1, then we are left with

gcd(𝑏, ℎ𝑡1 + 𝑎𝑘2). Therefore, we obtain

gcd(𝑘𝑏, ℎ𝑏𝑡 + 𝑎𝑘) = gcd(𝑘, 𝑡)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 𝑏 � | 𝑘
gcd(𝑘,𝑡) ,

𝑏 if 𝑏 | 𝑘
gcd(𝑘,𝑡) and ℎ𝑡

gcd(𝑘,𝑡) + 𝑎 𝑘
𝑏 gcd(𝑘,𝑡) � 0 (mod 𝑏),

𝑏2 if 𝑏 | 𝑘
gcd(𝑘,𝑡) and ℎ𝑡

gcd(𝑘,𝑡) + 𝑎 𝑘
𝑏 gcd(𝑘,𝑡) ≡ 0 (mod 𝑏),

which is equal to 𝜆𝑡 ,𝑎,𝑏,ℎ,𝑘 .

It follows that gcd( 𝑘𝑏
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

, ℎ𝑏𝑡+𝑎𝑘
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

) = 1. Therefore, by making the replacements ℎ ↦→ ℎ𝑏𝑡+𝑎𝑘
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

,

𝑘 ↦→ 𝑘𝑏
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

and 𝑧 ↦→ 𝑡𝑏𝑧
𝜆𝑡,𝑎,𝑏,ℎ,𝑘

in equation (2.8), the result follows. �
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2.4.3. Proof of Theorem 2.1 (3)

Again assume that |𝑧 | < 1. Writing

𝐹3 (𝜉; 𝑞) =
𝑏∏
𝑗=1

∞∏
𝑛=0

(
1 − 𝜉 𝑗−1𝑞𝑏𝑛+ 𝑗

)
,

we compute

Log(𝐹3 (𝜉; 𝑒−𝑧)) = −𝑧
∑

1≤ 𝑗 ,𝑟 ≤𝑏
𝜉 ( 𝑗−1)𝑟

∞∑
𝑚=0

𝑓 𝑗

((
𝑚 + 𝑟

𝑏

)
𝑏𝑧
)
,

where 𝑓 𝑗 (𝑧) := 𝑒− 𝑗𝑧

𝑧 (1−𝑒−𝑏𝑧 ) . By Lemma 2.2, we obtain

∞∑
𝑚=0

𝑓 𝑗

((
𝑚 + 𝑟

𝑏

)
𝑏𝑧
)
∼

𝜁
(
2, 𝑟

𝑏

)
𝑏3𝑧2

+
𝐼∗
𝑓𝑗,1

𝑏𝑧
+
𝐵1

(
𝑗

𝑏

)
𝑏𝑧

(
Log(𝑏𝑧) + 𝜓

( 𝑟
𝑏

)
+ 𝛾
)
+𝑂 (1).

The first term contributes − 𝜋2

6𝑏2𝑧
. By Lemma 2.3, the second term contributes

− 1

𝑏

𝑏∑
𝑗=1

𝐼∗𝑓𝑗,1

𝑏∑
𝑟=1

𝜉 ( 𝑗−1)𝑟
= −𝐼∗𝑓1,1 = − log

(
Γ

(
1

𝑏

))
−
(
1

2
− 1

𝑏

)
log

(
1

𝑏

)
+ 1

2
log(2𝜋)

= log
����
𝑏

1
2
− 1

𝑏 (2𝜋) 1
2

Γ

(
1
𝑏

) ����
.

Next we evaluate

− 1

𝑏
(Log(𝑏𝑧) + 𝛾)

∑
1≤ 𝑗≤𝑏

𝐵1

(
𝑗

𝑏

) ∑
1≤𝑟 ≤𝑏

𝜉 ( 𝑗−1)𝑟
= −𝐵1

(
1

𝑏

)
(Log(𝑏𝑧) + 𝛾).

Finally we are left to compute

− 1

𝑏

∑
1≤ 𝑗 ,𝑟 ≤𝑏

𝜉 ( 𝑗−1)𝑟
(
𝑗

𝑏
− 1

2

)
𝜓
( 𝑟
𝑏

)
= − 1

𝑏

∑
0≤ 𝑗≤𝑏−1

1≤𝑟 ≤𝑏

𝜉 𝑗𝑟
(
𝑗

𝑏
+ 1

𝑏
− 1

2

)
𝜓
( 𝑟
𝑏

)
.

The ( 1
𝑏
− 1

2
)-term yields 𝛾( 1

𝑏
− 1

2
). Thanks to equation (2.6), the

𝑗

𝑏
term contributes

− 1

𝑏2

∑
0≤ 𝑗≤𝑏−1

𝑗
∑

1≤𝑟 ≤𝑏
𝜓
( 𝑟
𝑏

)
𝜉 𝑗𝑟 = − 1

𝑏

∑
1≤ 𝑗≤𝑏−1

𝑗 Log
(
1 − 𝜉 𝑗

)
.

Combining these observations yields that

Log(𝐹3 (𝜉; 𝑒−𝑧)) = log
����
𝑏

1
2
− 1

𝑏 (2𝜋) 1
2

Γ

(
1
𝑏

) ����
− 𝜋2

6𝑏2𝑧
− 𝐵1

(
1

𝑏

)
Log(𝑏𝑧)

−
∑

1≤ 𝑗≤𝑏−1

𝑗

𝑏
Log
(
1 − 𝜉 𝑗

)
+𝑂 (|𝑧 |).

Exponentiating gives the desired claim. �
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3. Proof of Theorem 1.1, Corollary 1.2 and Theorem 1.3

Here we recall a beautiful q-series identity of Han, who offered the generating functions we require

for Theorems 1.1 and 1.3 and Corollary 1.2. Apart from factors that naturally correspond to quotients

of Dedekind’s eta-function, these generating functions have factors of the form 𝐹2 (𝜉; 𝑞𝑡 )−𝑡 . The proof

of Theorem 1.3 follows directly from this fact along with known identities for the 2-core and 3-core

generating functions. To prove Theorem 1.1, we apply Zuckerman’s exact formulas to these functions,

making strong use of Theorem 2.1 (2).

3.1. Work of Han

Here we derive the generating functions for the modular t-hook functions 𝑝𝑡 (𝑎, 𝑏; 𝑛). To this end, we

recall the following beautiful formula of Han that he derived in his work on extensions of the celebrated

Nekrasov–Okounkov formula2 (see (6.12) of [22]) with 𝑤 ∈ C:∑
𝜆∈P

𝑞 |𝜆 |
∏

ℎ∈H(𝜆)

(
1 − 𝑤

ℎ2

)
=

∞∏
𝑛=1

(1 − 𝑞𝑛)𝑤−1
.

Here P denotes the set of all integer partitions, including the empty partition, and H(𝜆) denotes the

multiset of hook lengths for 𝜆. Han [14] proved the following beautiful identity for the generating

function for t-hooks in partitions

𝐻𝑡 (𝜉; 𝑞) :=
∑
𝜆∈P

𝜉#H𝑡 (𝜆)𝑞 |𝜆 | .

Theorem 3.1 (Corollary 5.1 of [14]). As formal power series, we have

𝐻𝑡 (𝜉; 𝑞) = 1

𝐹2 (𝜉; 𝑞𝑡 )𝑡
∞∏
𝑛=1

(1 − 𝑞𝑡𝑛)𝑡

1 − 𝑞𝑛
.

As a corollary, we obtain the following generating function for 𝑝𝑡 (𝑎, 𝑏; 𝑛).
Corollary 3.2. If 𝑡 > 1 and 0 ≤ 𝑎 < 𝑏, then as formal power series we have

𝐻𝑡 (𝑎, 𝑏; 𝑞) :=

∞∑
𝑛=0

𝑝𝑡 (𝑎, 𝑏; 𝑛)𝑞𝑛 =
1

𝑏

𝑏−1∑
𝑟=0

𝜁−𝑎𝑟𝑏 𝐻𝑡

(
𝜁𝑟𝑏 ; 𝑞

)
,

where 𝜁𝑏 := 𝑒
2𝜋𝑖
𝑏 .

Proof. We have that

1

𝑏

𝑏−1∑
𝑟=0

𝜁−𝑎𝑟𝑏 𝐻𝑡 (𝜁𝑟𝑏 ; 𝑞) = 1

𝑏

∑
𝜆∈P

𝑞 |𝜆 |
𝑏−1∑
𝑟=0

𝜁
(#H𝑡 (𝜆)−𝑎)𝑟
𝑏

= 𝐻𝑡 (𝑎, 𝑏; 𝑞). �

The dependence of 𝐻𝑡 (𝜉; 𝑞) on 𝐹2 (𝜉; 𝑞𝑡 ) enables us to compute asymptotic behavior of 𝐻𝑡 (𝜉; 𝑞)
using Theorem 2.1 (2) and, by Corollary 3.2, the asymptotic behavior of 𝐻𝑡 (𝑎, 𝑏; 𝑞).

3.2. Proof of Theorem 1.3

Here we prove Theorem 1.3. We first consider the case (1), where ℓ is an odd prime. We consider the

generating function, using Corollary 3.2

𝐻2(𝑎1, ℓ; 𝑞) =
∞∑
𝑛=0

𝑝2 (𝑎1, ℓ; 𝑛)𝑞𝑛 =
1

ℓ

ℓ−1∑
𝑟1=0

𝜁
−𝑎1𝑟1

ℓ
𝐻2

(
𝜁
𝑟1

ℓ
; 𝑞
)
.

2This formula was also obtained by Westbury (see Proposition 6.1 and 6.2 of [30]).
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Applying again orthogonality of roots of unity, keeping only those terms 𝑎2 (mod ℓ), where 𝑎2 ∈
{0, 1, . . . , ℓ − 1}, we find that

∞∑
𝑛=0

𝑝2 (𝑎1, ℓ; ℓ𝑛 + 𝑎2)𝑞ℓ𝑛+𝑎2 =
1

ℓ2

∑
𝑟1 ,𝑟2 (mod ℓ)

𝜁
−𝑎1𝑟1−𝑎2𝑟2

ℓ
𝐻2

(
𝜁
𝑟1

ℓ
; 𝜁

𝑟2

ℓ
𝑞
)
.

Making use of the definition of 𝐻𝑡 (𝜉; 𝑞), if we define B2(𝑞) and C2 (𝑞) by

B2 (𝑞) =
∞∑
𝑛=0

𝑏2 (𝑛)𝑞𝑛 :=

∞∏
𝑛=1

1

(1 − 𝑞𝑛)2
and C2(𝑞) :=

∞∏
𝑛=1

(
1 − 𝑞2𝑛

)2
1 − 𝑞𝑛

, (3.1)

then we have

∑
𝑛≥0

𝑛≡𝑎2 (mod ℓ)

𝑝2 (𝑎1, ℓ; 𝑛)𝑞𝑛 =
1

ℓ2

∑
𝑟1 ,𝑟2 (mod ℓ)

𝜁
−𝑎1𝑟1−𝑎2𝑟2

ℓ
B2

(
𝜁
𝑟1+2𝑟2

ℓ
𝑞2
)
C2

(
𝜁
𝑟2

ℓ
𝑞
)
.

Thanks to the classical identity of Jacobi

C2(𝑞) =
∞∑
𝑘=0

𝑞
𝑘 (𝑘+1)

2 ,

for 𝑁 ≡ 𝑎2 (mod ℓ), we find that

𝑝2 (𝑎1, ℓ; 𝑁) =
1

ℓ2

∑
𝑟1 ,𝑟2 (mod ℓ)

𝜁
−𝑎1𝑟1−𝑎2𝑟2

ℓ

∑
𝑘,𝑚≥0

2𝑚+ 𝑘 (𝑘+1)
2

=𝑁

𝑏2 (𝑚)𝜁 (𝑟1+2𝑟2)𝑚+𝑟2
𝑘 (𝑘+1)

2

ℓ

=

∑
𝑚≡𝑎1 (mod ℓ)
2𝑚+ 𝑘 (𝑘+1)

2
=𝑁

𝑏2 (𝑚), (3.2)

by making the linear change of variables 𝑟1 ↦→ 𝑟1 − 2𝑟2 and again using orthogonality of roots of unity.

This then requires the solvability of the congruence 𝑎2 − 2𝑎1 ≡ 𝑘 (𝑘+1)
2

(mod ℓ). Completing the square

produces the quadratic residue condition that prohibits this solvability and hence completes the proof

of (1).

The proof of (2) follows similarly, with ℓ replaced by ℓ2 for primes ℓ ≡ 2 (mod 3). The functions in

(3.1) are replaced with

B3(𝑞) =
∞∑
𝑛=0

𝑏3 (𝑛)𝑞𝑛 :=

∞∏
𝑛=1

1

(1 − 𝑞𝑛)3
and C3(𝑞) :=

∞∏
𝑛=1

(
1 − 𝑞3𝑛

)3
1 − 𝑞𝑛

.

It is well-known that (for example, see Section 3 of [12] or [15, Lemma 2.5]),

C3 (𝑞) =:

∞∑
𝑛=0

𝑐3 (𝑛)𝑞𝑛 =

∞∑
𝑛=0

∑
𝑑 | (3𝑛+1)

(
𝑑

3

)
𝑞𝑛.

For primes ℓ ≡ 2 (mod 3), this implies that 𝑐3(ℓ2𝑛 + 𝑎) = 0 for every positive integer n, whenever

ordℓ (3𝑎 + 1) = 1. For example, this means that 𝑐3 (4𝑛 + 3) = 0 if ℓ = 2.

https://doi.org/10.1017/fms.2022.45 Published online by Cambridge University Press



Forum of Mathematics, Sigma 15

Let 0 ≤ 𝑎1, 𝑎2 < ℓ2. In direct analogue with (3.2), a calculation reveals that nonvanishing for

𝑁 ≡ 𝑎2 (mod ℓ2) relies on sums of the form

∑
𝑚≡𝑎1 (mod ℓ2)

3𝑚+𝑘=𝑁

𝑏3 (𝑚)𝑐3(𝑘).

If ordℓ (3𝑎 + 1) = 1 and 𝑎2 − 3𝑎1 ≡ 𝑎 (mod ℓ2), then 𝑝3 (𝑎1, ℓ
2; ℓ2 + 𝑎) = 0. This is claim (2).

3.3. Evaluating certain Kloosterman sums

The proof of Theorem 1.1 relies on the arithmetic of the Kloosterman sums

𝐾 (𝑎, 𝑏, 𝑡; 𝑛) :=

𝑏−1∑
ℎ=1

𝜔ℎ,𝑏

𝜔𝑡
𝑡ℎ,𝑏

𝜁
(𝑎𝑡−𝑛)ℎ
𝑏

,

where b is an odd prime and 𝑠 ≥ 1, 𝑡 > 1 are integers. We evaluate this sum if t is coprime to b. We

start by computing 𝜔ℎ,𝑏𝜔
−𝑡
𝑡ℎ,𝑏

.

Proposition 3.3. Let b be an odd prime, h, t integers coprime to b, and let 𝜔ℎ,𝑘 be defined by equation
(2.1). Then we have

𝜔ℎ,𝑏

𝜔𝑡
𝑡ℎ,𝑏

=

(
ℎ

𝑏

) (
𝑡ℎ

𝑏

) 𝑡
𝑒𝜋𝑖

(1−𝑡 ) (𝑏−1)
4 𝑒

2𝜋𝑖
𝑏

1
24 (1−𝑡2)(1−𝑏2)ℎ .

Proof. The proof of this proposition uses the 𝜂-multiplier, which we label 𝜓. Theorem 5.8.1 of [6]

yields that for
(
𝛼 𝛽
𝛾 𝛿

)
∈ SL2 (Z) with 𝛾 > 0 odd, we have

𝜓

(
𝛼 𝛽

𝛾 𝛿

)
=

(
𝛿

𝛾

)
𝑒

𝜋𝑖
12 ( (𝛼+𝛿)𝛾−𝛽𝛿(𝛾2−1)−3𝛾) .

We also have from formula (57b) of [25] that for
(
𝛼 𝛽
𝛾 𝛿

)
∈ SL2 (Z)

𝜓

(
𝛼 𝛽

𝛾 𝛿

)
= 𝑒

𝜋𝑖
(
𝛼+𝛿
12𝛾

− 1
4

)
𝜔−1
𝛿,𝛾 .

By letting 𝛿 = ℎ, 𝛾 = 𝑏, we obtain

𝜔ℎ,𝑏 =

(
ℎ

𝑏

)
𝑒𝜋𝑖( 1

12𝑏
(𝛼+ℎ−𝛽ℎ𝑏) (1−𝑏2)+ 𝑏−1

4 ) ,

where 𝛼, 𝛽 satisfy 𝛼ℎ − 𝛽𝑏 = 1. We therefore may conclude that

𝜔ℎ,𝑏

𝜔𝑡
𝑡ℎ,𝑏

=

(
ℎ

𝑏

) (
𝑡ℎ

𝑏

) 𝑡
𝑒𝜋𝑖

(1−𝑡 ) (𝑏−1)
4 𝑒

𝜋𝑖
12𝑏 ( (𝛼−𝑡 𝐴) (1−𝑏2)+ℎ(1−𝛽𝑏−𝑡2 (1−𝐵𝑏))(1−𝑏2)) ,

where 𝛼ℎ − 𝛽𝑏 = 𝐴𝑡ℎ − 𝐵𝑏 = 1. A straightforward calculation then gives the claim. �

We now turn to evaluating the Kloosterman sum 𝐾 (𝑎, 𝑏, 𝑡; 𝑛).
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Proposition 3.4. Suppose that b is an odd prime, 𝑎, 𝑛 are integers, and 𝑡 > 1 is an integer coprime to
b. Then we have

𝐾 (𝑎, 𝑏, 𝑡; 𝑛) =
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
I(𝑎, 𝑏, 𝑡, 𝑛) (−1)

(1−𝑡 ) (𝑏−1)
4

(
𝑡
𝑏

)
if 𝑡 is odd,

(−1)
(1−𝑡 ) (𝑏−1)

4 𝜀𝑏

(
1
24 (1−𝑡2)(1−𝑏2)+𝑎𝑡−𝑛

𝑏

)√
𝑏 if 𝑡 is even,

where I(𝑎, 𝑏, 𝑡, 𝑛) is defined by equation (1.3).

Proof. By Proposition 3.3, we have

𝐾 (𝑎, 𝑏, 𝑡; 𝑛) = 𝑒
𝜋𝑖
4
(1−𝑡) (𝑏−1)

𝑏−1∑
ℎ=1

(
ℎ

𝑏

) (
𝑡ℎ

𝑏

) 𝑡
𝜁
(𝑎𝑡−𝑛)ℎ+ 1

24 (1−𝑡2)(1−𝑏2)ℎ
𝑏

.

The multiplicativity of the Legendre symbol implies

(
ℎ

𝑏

) (
𝑡ℎ

𝑏

) 𝑡
=

(
ℎ

𝑏

) 𝑡+1 ( 𝑡
𝑏

) 𝑡
=

⎧⎪⎪⎨
⎪⎪⎩
(
𝑡
𝑏

)
if 𝑡 is odd,(

ℎ
𝑏

)
if 𝑡 is even.

We proceed to distinguish the parity of t. Suppose first that t is odd. Then since b is odd, 1
4
(1−𝑡) (𝑏−1)

is an integer, and the claim directly follows.

Suppose next that t is even. Then we have

𝐾 (𝑎, 𝑏, 𝑡; 𝑛) = 𝑒𝜋𝑖
(1−𝑡 ) (𝑏−1)

4

𝑏−1∑
ℎ=1

(
ℎ

𝑏

)
𝜁
ℎ( 1

24 (1−𝑡2)(1−𝑏2)+𝑎𝑡−𝑛)
𝑏

.

Using the classical evaluation of the Gauss sum (see for example pages 12-13 of [8]), we obtain

𝑏−1∑
ℎ=1

(
ℎ

𝑏

)
𝜁
( 1

24 (1−𝑡2)(1−𝑏2)+𝑎𝑡−𝑛)ℎ
𝑏

=

(
1
24

(
1 − 𝑡2

) (
1 − 𝑏2

)
+ 𝑎𝑡 − 𝑛

𝑏

)
𝜀𝑏

√
𝑏.

�

3.4. An exact formula of Zuckerman

Here we recall a result of Zuckerman [33], building on work of Rademacher [24]. Using the Circle

Method, Zuckerman computed exact formulae for Fourier coefficients for weakly holomorphic modular

forms of arbitrary nonpositive weight on finite index subgroups of SL2(Z) in terms of the cusps of the

underlying subgroup and the principal parts of the form at each cusp. Let F be a weakly holomorphic

modular form of weight 𝜅 ≤ 0 with transformation law

𝐹 (𝛾𝜏) = 𝜒(𝛾) (𝑐𝜏 + 𝑑)𝜅𝐹 (𝜏),

for all 𝛾 =
(
𝑎 𝑏
𝑐 𝑑

)
in some finite index subgroup of SL2(Z). The transformation law can be viewed

alternatively in terms of the cusp ℎ
𝑘
∈ Q. Let ℎ′ be defined through the congruence ℎℎ′ ≡ −1 (mod 𝑘).

Taking 𝜏 =
ℎ′

𝑘
+ 𝑖
𝑘𝑧

and choosing 𝛾 = 𝛾ℎ,𝑘 :=
(
ℎ 𝛽

𝑘 −ℎ′
)
∈ SL2(Z), we obtain the equivalent transformation

law

𝐹

(
ℎ

𝑘
+ 𝑖𝑧

𝑘

)
= 𝜒(𝛾ℎ,𝑘 ) (−𝑖𝑧)−𝜅𝐹

(
ℎ′

𝑘
+ 𝑖

𝑘𝑧

)
.
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Let F have the Fourier expansion at 𝑖∞ given by

𝐹 (𝜏) =
∑

𝑛�−∞
𝑎(𝑛)𝑞𝑛+𝛼

and Fourier expansions at each rational number 0 ≤ ℎ
𝑘
< 1 given by

𝐹 |𝜅𝛾ℎ,𝑘 (𝜏) =
∑

𝑛�−∞
𝑎ℎ,𝑘 (𝑛)𝑞

𝑛+𝛼ℎ,𝑘
𝑐𝑘 .

Furthermore, let 𝐼𝛼 denote the usual I-Bessel function. In this framework, the relevant theorem of

Zuckerman [33, Theorem 1] may be stated as follows.

Theorem 3.5. Assume the notation and hypotheses above. If 𝑛 + 𝛼 > 0, then we have

𝑎(𝑛) = 2𝜋(𝑛 + 𝛼) 𝜅−1
2

∞∑
𝑘=1

1

𝑘

∑
0≤ℎ<𝑘

gcd(ℎ,𝑘)=1

𝜒(𝛾ℎ,𝑘 )𝑒−
2𝜋𝑖 (𝑛+𝛼)ℎ

𝑘

×
∑

𝑚+𝛼ℎ,𝑘 ≤0

𝑎ℎ,𝑘 (𝑚)𝑒
2𝜋𝑖
𝑘𝑐𝑘

(𝑚+𝛼ℎ,𝑘 )ℎ′
( |𝑚 + 𝛼ℎ,𝑘 |

𝑐𝑘

) 1−𝜅
2

𝐼−𝜅+1
���

4𝜋

𝑘

√
(𝑛 + 𝛼) |𝑚 + 𝛼ℎ,𝑘 |

𝑐𝑘

���
.

3.5. Proof of Theorem 1.1 and Corollary 1.2

We next provide proofs of both Theorem 1.1 and Corollary 1.2. Our main tool is the powerful theorem

of Zuckerman described in Section 3.4.

Proof of Theorem 1.1. Using Corollary 3.2, we have

𝐻𝑡 (𝑎, 𝑏; 𝑞) = 1

𝑏(𝑞; 𝑞)∞
+
𝑏−1∑
𝑟=1

𝜁−𝑎𝑟𝑏 𝐻𝑡

(
𝜁𝑟𝑏 ; 𝑞

)
. (3.3)

From Theorem 3.1, we conclude

𝐻𝑡

(
𝜁𝑟𝑏 ; 𝑞

)
=

(𝑞𝑡 ; 𝑞𝑡 )𝑡∞(
𝜁𝑟
𝑏
𝑞𝑡 ; 𝜁𝑟

𝑏
𝑞𝑡
) 𝑡
∞
(𝑞; 𝑞)∞

.

To obtain the transformation formula for 𝐻𝑡 (𝜁𝑟𝑏 ; 𝑞) at the cusp ℎ
𝑘
, we write

𝑞𝑡 = 𝑒
2𝜋𝑖𝑡
𝑘

(ℎ+𝑖𝑧)
= 𝑒

2𝜋𝑖
𝑘

gcd(𝑘,𝑡 )

(
ℎ 𝑡

gcd(𝑘,𝑡 ) +𝑖
𝑡

gcd(𝑘,𝑡 ) 𝑧
)
,

where we note that gcd(ℎ 𝑡
gcd(𝑘,𝑡) ,

𝑘
gcd(𝑘,𝑡) ) = 1. Thus we may use equation (2.7) with 𝑘 ↦→ 𝑘

gcd(𝑘,𝑡) , ℎ ↦→
ℎ 𝑡

gcd(𝑘,𝑡) , 𝑧 ↦→
𝑡

gcd(𝑘,𝑡) 𝑧 to obtain

(
𝑞𝑡 ; 𝑞𝑡

)
∞ = 𝜔−1

ℎ 𝑡
gcd(𝑘,𝑡 ) ,

𝑘
gcd(𝑘,𝑡 )

(
𝑡

gcd(𝑘, 𝑡) 𝑧
)− 1

2

𝑒
𝜋 gcd(𝑘,𝑡 )

12𝑘

(
𝑡

gcd(𝑘,𝑡 ) 𝑧−
gcd(𝑘,𝑡 )

𝑡𝑧

)

×
(
𝑒

2𝜋𝑖 gcd(𝑘,𝑡 )
𝑘

(
ℎ𝑘,𝑡+𝑖 gcd(𝑘,𝑡 )

𝑡𝑧

)
; 𝑒

2𝜋𝑖 gcd(𝑘,𝑡 )
𝑘

(
ℎ𝑘,𝑡+𝑖 gcd(𝑘,𝑡 )

𝑡𝑧

) )
∞
, (3.4)

where 0 ≤ ℎ𝑘,𝑡 <
𝑘

gcd(𝑘,𝑡) is defined by ℎ 𝑡
gcd(𝑘,𝑡) ℎ𝑘,𝑡 ≡ −1 (mod 𝑘

gcd(𝑘,𝑡) ).
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Similarly, for
(
𝜁𝑟
𝑏
𝑞𝑡 ; 𝜁𝑟

𝑏
𝑞𝑡
)
∞ the proof of Theorem 2.1 (2) implies that we may use equation (2.7)

with ℎ ↦→ ℎ𝑏𝑡+𝑟 𝑘
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

, 𝑘 ↦→ 𝑘𝑏
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

, 𝑧 ↦→ 𝑡𝑏𝑧
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

and obtain

(
𝜁𝑟𝑏𝑞

𝑡 ; 𝜁𝑟𝑏𝑞
𝑡
)
∞ = 𝜔−1

ℎ𝑏𝑡+𝑟𝑘
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

, 𝑘𝑏
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

(
𝑡𝑏𝑧

𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘

)− 1
2

𝑒

𝜋𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
12𝑘𝑏

(
𝑡𝑏𝑧

𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
− 𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

𝑡𝑏𝑧

)

×
(
𝑒

2𝜋𝑖𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑘𝑏

(
ℎ𝑘,𝑡,𝑏,𝑟+𝑖

𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑡𝑏𝑧

)
; 𝑒

2𝜋𝑖𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑘𝑏

(
ℎ𝑘,𝑡,𝑏,𝑟+𝑖

𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑡𝑏𝑧

) )
∞
, (3.5)

where 0 ≤ ℎ𝑘,𝑡 ,𝑏,𝑟 < 𝑘𝑏
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

is defined by ℎ𝑏𝑡+𝑟 𝑘
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

ℎ𝑘,𝑡 ,𝑏,𝑟 ≡ −1 (mod 𝑘𝑏
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

).
Combining equation (2.7), equation (3.4), and equation (3.5) yields

𝐻𝑡

(
𝜁𝑟𝑏 ; 𝑞

)
= Ω𝑏,𝑡 (𝑟; ℎ, 𝑘)

(
gcd(𝑘, 𝑡)𝑏
𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘

) 𝑡
2

𝑧
1
2 𝑒

𝜋
12𝑘

(
−𝑧+
(
1−gcd(𝑘,𝑡)2+

𝜆2
𝑡,𝑟 ,𝑏,ℎ,𝑘

𝑏2

)
1
𝑧

)

×

(
𝑒

2𝜋𝑖 gcd(𝑘,𝑡 )
𝑘

(
ℎ𝑘,𝑡+𝑖 gcd(𝑘,𝑡 )

𝑡𝑧

)
; 𝑒

2𝜋𝑖 gcd(𝑘,𝑡 )
𝑘

(
ℎ𝑘,𝑡+𝑖 gcd(𝑘,𝑡 )

𝑡𝑧

) ) 𝑡
∞(

𝑒
2𝜋𝑖𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

𝑘𝑏

(
ℎ𝑘,𝑡,𝑏,𝑟+𝑖

𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑡𝑏𝑧

)
; 𝑒

2𝜋𝑖𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑘𝑏

(
ℎ𝑘,𝑡,𝑏,𝑟+𝑖

𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘
𝑡𝑏𝑧

)) 𝑡
∞

(
𝑒

2𝜋𝑖
𝑘 (ℎ′+ 𝑖

𝑧) ; 𝑒 2𝜋𝑖
𝑘 (ℎ′+ 𝑖

𝑧)
)
∞

,

(3.6)

where

Ω𝑏,𝑡 (𝑟; ℎ, 𝑘) �
𝜔𝑡

ℎ𝑏𝑡+𝑟𝑘
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

, 𝑘𝑏
𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘

𝜔ℎ,𝑘

𝜔𝑡

ℎ 𝑡
gcd(𝑘,𝑡 ) ,

𝑘
gcd(𝑘,𝑡 )

.

As usual, we define 𝑃𝑡 (𝑞) := (𝑞; 𝑞)𝑡∞ =:
∑∞
𝑛=0 𝑞𝑡 (𝑛)𝑞𝑛 and 𝑃(𝑞)𝑡 =:

∑∞
𝑛=0 𝑝𝑡 (𝑛)𝑞𝑛. Then we see that

the principal part of equation (3.6) is governed by the sum∑
𝑛1 ,𝑛2 ,𝑛3≥0

𝑟𝑘,ℎ,𝑡,𝑏 (𝑛1 ,𝑛2 ,𝑛3) ≥0

𝑞𝑡 (𝑛1)𝑝𝑡 (𝑛2)𝑝(𝑛3)𝜁gcd(𝑘,𝑡)𝑏ℎ𝑘,𝑡𝑛1+𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘ℎ𝑘,𝑡,𝑏,𝑟𝑛2+𝑏ℎ′𝑛3

𝑘𝑏
𝑒

𝜋
12𝑘𝑧

𝑟𝑘,ℎ,𝑡,𝑏 (𝑛1 ,𝑛2 ,𝑛3) ,

where

𝑟𝑘,ℎ,𝑡 ,𝑏 (𝑛1, 𝑛2, 𝑛3) � 1 − gcd(𝑘, 𝑡)2 +
𝜆2
𝑡 ,𝑟 ,𝑏,ℎ,𝑘

𝑏2
− 24

(
gcd(𝑘, 𝑡)2

𝑡
𝑛1 +

𝜆2
𝑡 ,𝑟 ,𝑏,ℎ,𝑘

𝑡𝑏2
𝑛2 + 𝑛3

)
.

We denote the Fourier coefficients of 𝐻𝑡 (𝜁𝑟𝑏 ; 𝑞) by 𝑐𝑡 ,𝑏,𝑟 (𝑛). Using Theorem 3.5, we conclude that

𝑐𝑡 ,𝑏,𝑟 (𝑛) =
2𝜋

𝑛
3
4

𝑏
𝑡
2

∞∑
𝑘=1

gcd(𝑘, 𝑡) 𝑡
2

𝑘

∑
0≤ℎ<𝑘

gcd(ℎ,𝑘)=1

Ω𝑏,𝑡 (𝑟; ℎ, 𝑘)𝑒−
2𝜋𝑖𝑛ℎ

𝑘 𝜆
− 𝑡

2

𝑡 ,𝑟 ,𝑏,ℎ,𝑘

∑
𝑛1 ,𝑛2 ,𝑛3≥0

𝑟𝑘,ℎ,𝑡,𝑏 (𝑛1 ,𝑛2 ,𝑛3) ≥0

𝑞𝑡 (𝑛1)𝑝𝑡 (𝑛2)𝑝(𝑛3)

× 𝜁
gcd(𝑘,𝑡)𝑏ℎ𝑘,𝑡𝑛1+𝜆𝑡,𝑟 ,𝑏,ℎ,𝑘ℎ𝑘,𝑡,𝑏,𝑟𝑛2+𝑏ℎ′𝑛3

𝑘𝑏

(
𝑟𝑘,ℎ,𝑡 ,𝑏 (𝑛1, 𝑛2, 𝑛3)

24

) 3
4

𝐼 3
2

(
𝜋

𝑘

√
2𝑛𝑟𝑘,ℎ,𝑡 ,𝑏 (𝑛1, 𝑛2, 𝑛3)

3

)
. (3.7)

Since 𝑥𝛼 𝐼𝛼 (𝑥) is monotonically increasing as 𝑥 → ∞ for any fixed 𝛼, the terms that dominate

asymptotically are those which have the largest possible value of 1
𝑘

√
𝑟𝑘,ℎ,𝑡 ,𝑏 (𝑛1, 𝑛2, 𝑛3). In particular
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for this we require 𝑛1 = 𝑛2 = 𝑛3 = 0. Note that we have 𝑞𝑡 (0) = 𝑝𝑡 (0) = 𝑝(0) = 1. Since the expression

in question is positive, we can maximise its square: that is, we maximise

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1

𝑘2

(
1 − gcd(𝑘, 𝑡)2 +

𝜆2
𝑡 ,𝑟 ,𝑏,ℎ,𝑘

𝑏2

)
.

We consider the three possible values of 𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘 . If 𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘 = gcd(𝑘, 𝑡); then

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1

𝑘2

(
1 +
(

1

𝑏2
− 1

)
gcd(𝑘, 𝑡)2

)
≤
(
1 +
(
1

9
− 1

))
< 1.

If 𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘 = 𝑏 gcd(𝑘, 𝑡), then (noting that in this case 𝑘 > 1)

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1

𝑘2
< 1.

Finally, if 𝜆𝑡 ,𝑟 ,𝑏,ℎ,𝑘 = 𝑏2 gcd(𝑘, 𝑡), then we have

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1

𝑘2

(
1 +
(
𝑏2 − 1

)
gcd(𝑘, 𝑡)2

)
.

Since 𝑏 | | 𝑘

gcd(𝑘, 𝑡) in this case, we may write gcd(𝑘, 𝑡) = 𝑏 𝜚𝑑, where gcd(𝑏, 𝑑) = 1, 𝑏 𝜚 | | 𝑡 and

𝑘 = 𝑏 𝜚+1𝑑𝑘0 for gcd(𝑘0,
𝑡

gcd(𝑘,𝑡) ) = gcd(𝑘0, 𝑏) = 1. Therefore,

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1 +
(
𝑏2 − 1

)
𝑏2𝜚𝑑2

𝑏2𝜚+2𝑑2𝑘2
0

,

which is maximised if 𝑘0 = 1. In this case, we have 𝑘 = 𝑏 gcd(𝑘, 𝑡), and therefore we may write

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

=
1 +
(
𝑏2 − 1

)
gcd(𝑘, 𝑡)2

𝑏2 gcd(𝑘, 𝑡)2
=

𝑏2 − 1

𝑏2
+ 1

𝑏2 gcd(𝑘, 𝑡)2
.

To maximise this, we need to minimise gcd(𝑘, 𝑡), which is gcd(𝑘, 𝑡) = 1. Note that in this case

𝑟𝑘,ℎ,𝑡 ,𝑏 (0, 0, 0)
𝑘2

= 1.

Since ℎ𝑡 + 𝑟 ≡ 0 (mod 𝑏), we have

Ω𝑏,𝑡 (𝑟; ℎ, 𝑏) =
𝜔𝑡

ℎ𝑡+𝑟
𝑏

,1
𝜔ℎ,𝑏

𝜔𝑡
ℎ𝑡 ,𝑏

=
𝜔−𝑟𝑡 ,𝑏
𝜔𝑡
−𝑟 ,𝑏

,

where 𝑡 denotes the inverse of 𝑡 (mod 𝑏). Then by equation (3.7), we have

𝑐𝑡 ,𝑏,𝑟 (𝑛) ∼
2𝜋𝑏

𝑡
2 𝜔−𝑟𝑡 ,𝑏𝑒

2𝜋𝑖𝑛𝑟𝑡
𝑏

(24𝑛) 3
4 𝜔𝑡

−𝑟 ,𝑏𝑏
𝑡+1

𝐼 3
2

(
𝜋

√
2𝑛

3

)
∼ 𝑒

𝜋

√
2𝑛
3

4
√

3𝑛𝑏
𝑡
2
+1

𝜔−𝑟𝑡 ,𝑏
𝜔𝑡
−𝑟 ,𝑏

𝑒
2𝜋𝑖𝑛𝑟𝑡

𝑏 ,
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as 𝑛 → ∞, where we use that 𝐼𝛼 (𝑥) ∼ 𝑒𝑥√
2𝜋𝑥

as 𝑥 → ∞. Using equation (1.1), we obtain

𝑐𝑡 ,𝑏,𝑟 (𝑛)
𝑝(𝑛) ∼

⎧⎪⎪⎨
⎪⎪⎩

1

𝑏
𝑡
2
+1

𝜔−𝑟𝑡 ,𝑏
𝜔𝑡
−𝑟 ,𝑏

𝑒
2𝜋𝑖𝑛𝑟𝑡

𝑏 if 𝑏 � | 𝑡,

0 otherwise.

By equation (3.3), we have

𝑝𝑡 (𝑎, 𝑏; 𝑛) = 1

𝑏
𝑝(𝑛) + 1

𝑏

𝑏−1∑
𝑟=1

𝜁−𝑎𝑟𝑏 𝑐𝑡 ,𝑏,𝑟 (𝑛),

and so dividing through by 𝑝(𝑛) yields

𝑝𝑡 (𝑎, 𝑏; 𝑛)
𝑝(𝑛) =

1

𝑏
+ 1

𝑏

𝑏−1∑
𝑟=1

𝜁−𝑎𝑟𝑏

𝑐𝑡 ,𝑏,𝑟 (𝑛)
𝑝(𝑛) ∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

𝑏
+ 1

𝑏
𝑡
2
+2

𝑏−1∑
𝑟=1

𝜔−𝑟𝑡 ,𝑏
𝜔𝑡
−𝑟 ,𝑏

𝜁
(𝑛𝑡−𝑎)𝑟
𝑏

if 𝑏 � | 𝑡,

1

𝑏
otherwise

as 𝑛 → ∞. This completes the proof in the case where 𝑏 |𝑡. Otherwise, setting ℎ = −𝑟𝑡 shows

𝑝𝑡 (𝑎, 𝑏; 𝑛)
𝑝(𝑛) ∼ 1

𝑏
+ 1

𝑏
𝑡
2
+2

𝑏−1∑
ℎ=1

𝜔ℎ,𝑏

𝜔𝑡
𝑡ℎ,𝑏

𝜁
(𝑎𝑡−𝑛)ℎ
𝑏

=
1

𝑏

(
1 + 𝐾 (𝑎, 𝑏, 𝑡; 𝑛)

𝑏
𝑡
2
+1

)

as 𝑛 → ∞. The evaluation of 𝐾 (𝑎, 𝑏, 𝑡; 𝑛) in Proposition 3.4 then completes the proof. �

Proof of Corollary 1.2. To derive Corollary 1.2, it is enough to consider the leading constants in

Theorem 1.1. Namely, it suffices to show that for 𝑎, 𝑏 fixed, 𝑐𝑡 (𝑎, 𝑏; 𝑛) depends only on 𝑛 (mod 𝑏),
which is clear from the definition of equation (1.4). �

4. Proof of Theorem 1.4 and Corollary 1.5

Here we recall the relevant generating functions for the Poincaré polynomials of the Hilbert schemes

that pertain to Theorem 1.4.

4.1. Work of Göttsche and Buryak, Feigin and Nakajima

For convenience, we let 𝑃(𝑋;𝑇) be the usual Poincaré polynomial

𝑃(𝑋;𝑇) :=
∑
𝑗

𝑏 𝑗 (𝑋)𝑇 𝑗
=

∑
𝑗

dim
(
𝐻 𝑗 (𝑋,Q)

)
𝑇 𝑗 ,

which is the generating function for the Betti numbers of X. For the various Hilbert schemes on n points

we consider, the work of Göttsche and Buryak, Feigin and Nakajima [3, 4, 10, 11] offers the generating

function of these Poincaré polynomials as a formal power series in q. Namely, we have the following.

Theorem 4.1 (Göttsche). We have that

𝐺 (𝑇 ; 𝑞) :=

∞∑
𝑛=0

𝑃

((
C2
) [𝑛]

;𝑇

)
𝑞𝑛 =

∞∏
𝑚=1

1

1 − 𝑇2𝑚−2𝑞𝑚
=

1

𝐹3 (𝑇2; 𝑞)
.
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Theorem 4.2 (Buryak and Feigin). If 𝛼, 𝛽 ∈ N are relatively prime, then we have that

𝐺𝛼,𝛽 (𝑇 ; 𝑞) :=

∞∑
𝑛=0

𝑃

(((
C2
) [𝑛] )𝑇𝛼,𝛽

;𝑇

)
𝑞𝑛 =

1

𝐹1 (𝑇2; 𝑞𝛼+𝛽)

∞∏
𝑚=1

1 − 𝑞 (𝛼+𝛽)𝑚

1 − 𝑞𝑚
.

Remark. The Poincaré polynomials in these cases only have even degree terms. The odd index Betti

numbers are always zero. Moreover, letting 𝑇 = 1 in these generating functions give Euler’s generating

function for 𝑝(𝑛). Therefore, we directly see that

𝑝(𝑛) = 𝑃

((
C2
) [𝑛]

; 1

)
= 𝑃

(((
C2
) [𝑛] )𝑇𝛼,𝛽

; 1

)
,

confirming (1.5). Of course, the proofs of these theorems begin with partitions of size n.

Arguing as in the proof of Corollary 3.2, we obtain the following generating functions for the modular

sums of Betti numbers.

Corollary 4.3. For 0 ≤ 𝑎 < 𝑏, the following are true.
(1) We have that

∞∑
𝑛=0

𝐵

(
𝑎, 𝑏;

(
C2
) [𝑛] )

𝑞𝑛 =
1

𝑏

𝑏−1∑
𝑟=0

𝜁−𝑎𝑟𝑏 𝐺 (𝜁𝑟𝑏 ; 𝑞).

(2) If 𝛼, 𝛽 ∈ N are relatively prime, then we have

∞∑
𝑛=0

𝐵

(
𝑎, 𝑏;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

𝑞𝑛 =
1

𝑏

𝑏−1∑
𝑟=0

𝜁−𝑎𝑟𝑏 𝐺𝛼,𝛽 (𝜁𝑟𝑏 ; 𝑞).

4.2. Wright’s variant of the Circle Method

The classical Circle Method, as utilised by Hardy–Ramanujan and many others, derives asymptotic or

exact formulas for the Fourier coefficients of q-series by leveraging modular properties of the generating

functions. More recently, a variation of the Circle Method due to Wright has grown increasingly

important in number theory. For the proof of Theorem 1.4 and Corollary 1.5, we use Wright’s variation,

which obtains asymptotic formulas for generating functions carrying suitable analytic properties.

Remark. Ngo and Rhoades [21] proved a more restricted version3 of the following proposition where

the generating function F split as two functions. Our purposes do not require such a splitting, so we

state the proposition in terms of a single function F.

Proposition 4.4. Suppose that 𝐹 (𝑞) is analytic for 𝑞 = 𝑒−𝑧 , where 𝑧 = 𝑥 + 𝑖𝑦 ∈ C satisfies 𝑥 > 0 and
|𝑦 | < 𝜋, and suppose that 𝐹 (𝑞) has an expansion 𝐹 (𝑞) = ∑∞

𝑛=0 𝑐(𝑛)𝑞𝑛 near 1. Let 𝑐, 𝑁, 𝑀 > 0 be fixed
constants. Consider the following hypotheses:

(1) As 𝑧 → 0 in the bounded cone |𝑦 | ≤ 𝑀𝑥 (major arc), we have

𝐹 (𝑒−𝑧) = 𝑧𝐵𝑒
𝐴
𝑧
���
𝑁−1∑
𝑗=0

𝛼 𝑗 𝑧
𝑗 +𝑂 𝛿

(
|𝑧 |𝑁
)���
,

where 𝛼𝑠 ∈ C, 𝐴 ∈ R+ and 𝐵 ∈ R.

3We note that hypothesis 4 in Proposition 1.8 of [21] is stated differently than our hypothesis 2 in Proposition 4.4 below.
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(2) As 𝑧 → 0 in the bounded cone 𝑀𝑥 ≤ |𝑦 | < 𝜋 (minor arc), we have

|𝐹 (𝑒−𝑧) | �𝛿 𝑒
1

Re(𝑧) (𝐴−𝜅) .

for some 𝜅 ∈ R+.

If (1) and (2) hold, then as 𝑛 → ∞, we have for any 𝑁 ∈ R+

𝑐(𝑛) = 𝑛
1
4
(−2𝐵−3)𝑒2

√
𝐴𝑛

(
𝑁−1∑
𝑟=0

𝑝𝑟𝑛
− 𝑟

2 +𝑂
(
𝑛−

𝑁
2

))
,

where 𝑝𝑟 :=
𝑟∑
𝑗=0

𝛼 𝑗𝑐 𝑗 ,𝑟− 𝑗 and 𝑐 𝑗 ,𝑟 :=
(− 1

4
√
𝐴
)𝑟
√
𝐴
𝑗+𝐵+ 1

2

2
√
𝜋

Γ( 𝑗 + 𝐵 + 3
2
+ 𝑟)

𝑟!Γ( 𝑗 + 𝐵 + 3
2
− 𝑟)

.

Proof. By Cauchy’s Theorem, we have

𝑐(𝑛) = 1

2𝜋𝑖

∫
C

𝐹 (𝑞)
𝑞𝑛+1

𝑑𝑞,

where C is a circle centred at the origin inside the unit circle surrounding zero exactly once counter-

clockwise. We choose |𝑞 | = 𝑒−𝜆 with 𝜆 :=

√
𝐴
𝑛

. Set

𝐴 𝑗 (𝑛) :=
1

2𝜋𝑖

∫
C1

𝑧𝐵+ 𝑗𝑒
𝐴
𝑧

𝑞𝑛+1
𝑑𝑞,

where C1 is the major arc. We claim that

𝑐(𝑛) =
𝑁−1∑
𝑗=0

𝛼 𝑗𝐴 𝑗 (𝑛) +𝑂
(
𝑛

1
2
(−𝐵−𝑁−1)𝑒2

√
𝐴𝑛
)
. (4.1)

For this, write

𝑐(𝑛) −
𝑁−1∑
𝑗=0

𝛼 𝑗𝐴 𝑗 (𝑛) = E1 (𝑛) + E2(𝑛),

where

E1 (𝑛) :=
1

2𝜋𝑖

∫
C2

𝐹 (𝑞)
𝑞𝑛+1

𝑑𝑞, E2 (𝑛) :=
1

2𝜋𝑖

∫
C1

���
𝐹 (𝑞)𝑧−𝐵𝑒− 𝐴

𝑧 −
𝑁−1∑
𝑗=0

𝛼 𝑗 𝑧
𝑗���
𝑧𝐵𝑒

𝐴
𝑧 𝑞−𝑛−1𝑑𝑞,

where C2 is the minor arc.

We next bound E1(𝑛) and E2 (𝑛). For E2(𝑛), we have, by condition (1)!!!!!!𝐹 (𝑒−𝑧)𝑧−𝐵𝑒−
𝐴
𝑧 −

𝑁−1∑
𝑗=0

𝛼 𝑗 𝑧
𝑗

!!!!!! �𝛿 |𝑧 |𝑁 .

Note that on C, 𝑥 = 𝜆 and that !!!!exp

(
𝐴

𝑧
+ 𝑛𝑧

)!!!! ≤ exp
(
2
√
𝐴𝑛
)
.
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Since the length of C1 is ≈ 𝜆, we obtain

E2 (𝑛) � 𝜆 |𝑧 |𝑁+𝐵 exp
(
2
√
𝐴𝑛
)
.

On C1, we have 𝑦 � 𝜆, implying |𝑧 | ∼ 1√
𝑛
. This gives E1(𝑛) satisfies the bound required in equation (4.1).

On C2, we estimate

|𝐹 (𝑞) | � 𝑒
1
𝜆
(𝐴−𝜅) .

Therefore,

E1(𝑛) � |𝐹 (𝑞) | |𝑞 |−𝑛 � 𝑒
1
𝜆
(𝐴−𝜅)+𝑛𝜆 � 𝑒 (2−𝜅)

√
𝐴𝑛.

The required bound equation (4.1) follows. Using Lemma 3.7 of [21] to estimate the integrals 𝐴 𝑗 (𝑛)
now gives the claim. �

4.3. Proof of Theorem 1.4 and Corollary 1.5

We now apply the Circle Method to the generating functions in Theorems 4.1 and 4.2.

Proof of Theorem 1.4. Using first Corollary 4.3 (1) and then Theorem 4.1, we obtain

𝐻𝑎,𝑏 (𝑞) :=

∞∑
𝑛=0

𝐵

(
𝑎, 𝑏;

(
C2
) [𝑛] )

𝑞𝑛 =
1

𝑏

(
1 + 𝛿2 |𝑏

) 1

(𝑞; 𝑞)∞
+ 1

𝑏

∑
1≤𝑟 ≤𝑏−1
𝑟≠ 𝑏

2

𝜁−𝑎𝑟𝑏

1

𝐹3

(
𝜁2𝑟
𝑏

; 𝑞
) .

We want to apply Proposition 4.4. For this, we first show (𝑀 > 0 arbitrary) that we have as 𝑧 → 0 on

the major arc |𝑦 | ≤ 𝑀𝑥

𝐻𝑎,𝑏 (𝑒−𝑧) =
1

𝑏

(
1 + 𝛿2 |𝑏

)√ 𝑧

2𝜋
𝑒

𝜋2

6𝑧 (1 +𝑂 (|𝑧 |)). (4.2)

Recall that we have 𝑃(𝑞) :=
∑∞
𝑛=0 𝑝(𝑛)𝑞𝑛 = (𝑞; 𝑞)−1

∞ . First we note the well-known bound (for |𝑦 | ≤ 𝑀𝑥,

as 𝑧 → 0)

𝑃(𝑒−𝑧) =
√

𝑧

2𝜋
𝑒

𝜋2

6𝑧 (1 +𝑂 (|𝑧 |)).

Next we consider 1

𝐹3 (𝜁 2𝑟
𝑏

;𝑞) for 𝜁2𝑟
𝑏

≠ 1 on the major arc. By Theorem 2.1 (3)

1

𝐹3

(
𝜁2𝑟
𝑏

; 𝑒−𝑧
) =

(
𝑏2𝑧
) 1
𝑏
− 1

2 Γ

(
1
𝑏

)
√

2𝜋

𝑏−1∏
𝑗=1

(
1 − 𝜁

2𝑟 𝑗

𝑏

) 𝑗

𝑏

𝑒
𝜋2

6𝑏2𝑧 (1 +𝑂 (|𝑧 |)) � |𝑧 |−𝑁 𝑒
𝜋2

6𝑧

for any 𝑁 ∈ N. This gives equation (4.2).

Next we show that we have as 𝑧 → 0 on the minor arc |𝑦 | ≥ 𝑀𝑥

𝐻𝑎,𝑏 (𝑒−𝑧) � 𝑒

(
𝜋2

6
−𝜅
)

1
𝑥 . (4.3)

It is well-known (and follows by logarithmic differentiation) that for some C > 0

|𝑃(𝑒−𝑧) | ≤ 𝑥
1
2 𝑒

𝜋
6𝑥

− C

𝑥 .
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We are left to bound 1

𝐹3 (𝜁 2𝑟
𝑏

;𝑞) on the minor arc. For this, we write

Log
����

1

𝐹3

(
𝜁2𝑟
𝑏

; 𝑞
) ����

=

∞∑
𝑚=1

𝑞𝑚

𝑚
(
1 − 𝜁2𝑟𝑚

𝑏
𝑞𝑚
) .

Noting that |1 − 𝜁2𝑟𝑚
𝑏

𝑞𝑚 | ≥ 1 − |𝑞 |𝑚, we obtain

!!!!!!!Log
����

1

𝐹3

(
𝜁2𝑟
𝑏

; 𝑞
) ����

!!!!!!! ≤
!!!!! 𝑞

1 − 𝜁2𝑟
𝑏
𝑞

!!!!! − |𝑞 |
1 − |𝑞 | + log(𝑃 |𝑞 |)

so we are done once we show that !!!!! 𝑞

1 − 𝜁2𝑟
𝑏
𝑞

!!!!! − |𝑞 |
1 − |𝑞 | < −C

𝑥

for some C > 0. Note that

1

1 − 𝜁2𝑟
𝑏
𝑞
= 𝑂𝑏,𝑟 (1)

and thus !!!!! 𝑞

1 − 𝜁2𝑟
𝑏
𝑞

!!!!! − |𝑞 |
1 − |𝑞 | = −1

𝑥
+𝑂𝑏,𝑟 (1),

giving equation (4.3). The claim of (1) now follows by Proposition 4.4.

(2) By Corollary 4.3 (2) and Theorem 4.2, we have

H𝑎,𝑏,𝛼,𝛽 (𝑞) �
∞∑
𝑛=0

𝐵

(
𝑎, 𝑏;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

𝑞𝑛

=
1

𝑏
(1 + 𝛿2 |𝑏)𝑃(𝑞) +

1

𝑏

∑
1≤𝑟 ≤𝑏−1
𝑟≠ 𝑏

2

𝜁−𝑎𝑟𝑏

(
𝑞𝛼+𝛽; 𝑞𝛼+𝛽

)
∞

𝐹1

(
𝜁2𝑟
𝑏

; 𝑞𝛼+𝛽
)
(𝑞; 𝑞)∞

.

We show the same bounds as in (1) with the only additional condition that

𝑀 <
2𝜋2

𝑏2
min

1≤𝑟< 𝑏
2

𝑟 (𝑏 − 2𝑟)!!!!∑∞
𝑛=1

sin( 4𝜋𝑟
𝑏 )

𝑛2

!!!!
. (4.4)

We only need to prove the bounds for

H𝛼,𝛽 (𝑞) :=

(
𝑞𝛼+𝛽; 𝑞𝛼+𝛽

)
∞

𝐹1

(
𝜁2𝑟
𝑏

; 𝑞𝛼+𝛽
)
(𝑞; 𝑞)∞
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for 𝜁2𝑟
𝑏

≠ 1. We may assume without loss of generality that 1 ≤ 2𝑟 < 𝑏. We start by showing the major

arc bound. By Theorem 2.1 (1) and equation (2.8), we have, for z on the major arc

H𝛼,𝛽 (𝑞) �
!!!!!𝑒 𝜋2

6𝑧
− 𝜋2

6(𝛼+𝛽)𝑧 +
𝜁 2𝑟
𝑏

𝜙(𝜁 2𝑟
𝑏

,2,1)
(𝛼+𝛽)𝑧

!!!!!.
So to prove the major arc bound, we need to show that for some 𝜀 > 0

(
𝜋2

6
− 𝜀

)
Re

(
1

𝑧

)
− Re

(
𝜁2𝑟
𝑏
𝜙
(
𝜁2𝑟
𝑏
, 2, 1
)

𝑧

)
> 0.

We first rewrite

𝜁2𝑟
𝑏 𝜙
(
𝜁2𝑟
𝑏 , 2, 1

)
=

∞∑
𝑛=1

cos
(

4𝜋𝑟𝑛
𝑏

)
+ 𝑖 sin

(
4𝜋𝑟𝑛
𝑏

)
𝑛2

.

Now note the evaluation for 0 ≤ 𝜃 ≤ 2𝜋 (see, for example, [32])

∞∑
𝑛=1

cos(𝑛𝜃)
𝑛2

=
𝜋2

6
− 𝜃 (2𝜋 − 𝜃)

4
.

Thus we are left to show

2𝜋2𝑟

𝑏2
(𝑏 − 2𝑟)𝑥 ≥

!!!!!!!
∞∑
𝑛=1

sin
(

4𝜋𝑟𝑛
𝑏

)
𝑛2

!!!!!!!𝑦.

This follows by the definition of M given in equation (4.4). �

Proof of Corollary 1.5. This follows immediately from Theorem 1.4 and the definition of 𝑑 (𝑎, 𝑏) in

equation (1.6). �

5. Examples

This section includes examples of the main results in this paper.

5.1. Examples of Theorem 1.1 and Corollary 1.2

This subsection pertains to Han’s t-hook generating functions. For convenience, we define the proportion

functions

Ψ𝑡 (𝑎, 𝑏; 𝑛) :=
𝑝𝑡 (𝑎, 𝑏; 𝑛)

𝑝(𝑛) .

Example. In the case of 𝑡 = 3, we find that

𝐻3(𝜉; 𝑞) = 1 + 𝑞 + 2𝑞2 + 3𝜉𝑞3 + (2 + 3𝜉)𝑞4 + (1 + 6𝜉)𝑞5 +
(
2 + 9𝜉2

)
𝑞6 +

(
6𝜉 + 9𝜉2

)
𝑞7

+
(
1 + 3𝜉 + 18𝜉2

)
𝑞8 + . . . .
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and the three generating functions 𝐻3(𝑎, 3; 𝑞) begin with the terms

𝐻3(0, 3; 𝑞) = 1 + 𝑞 + 2𝑞2 + 2𝑞4 + 𝑞5 + 2𝑞6 + 𝑞8 + . . . ,

𝐻3(1, 3; 𝑞) = 3𝑞3 + 3𝑞4 + 6𝑞5 + 6𝑞7 + 3𝑞8 + . . . ,

𝐻3(2, 3; 𝑞) = 9𝑞6 + 9𝑞7 + 18𝑞8 + . . . .

Theorem 1.1 implies (independently of a) that

𝑝3 (𝑎, 3; 𝑛) ∼ 1

12
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 ∼ 1

3
· 𝑝(𝑛).

The next table illustrates the conclusion of Corollary 1.2, that the proportions Ψ3(𝑎, 𝑏; 𝑛) → 1
3
.

n Ψ3 (0, 3; 𝑛) Ψ3 (1, 3; 𝑛) Ψ3 (2, 3; 𝑛)

100 ≈ 0.4356 ≈ 0.1639 ≈ 0.4003

.

.

.
.
.
.

.

.

.
.
.
.

500 ≈ 0.3234 ≈ 0.3670 ≈ 0.3096

600 ≈ 0.3318 ≈ 0.3114 ≈ 0.3567

.

.

.
.
.
.

.

.

.
.
.
.

2100 ≈ 0.3320 ≈ 0.3348 ≈ 0.3332

2300 ≈ 0.3330 ≈ 0.3345 ≈ 0.3325

2500 ≈ 0.3324 ≈ 0.3337 ≈ 0.3339

Example. We consider a typical case where the modular sums of t-hook functions are not equidis-

tributed. We consider 𝑡 = 2, where we have

𝐻2(𝜉; 𝑞) = 1 + 𝑞 + 2𝜉𝑞2 + (1 + 2𝜉)𝑞3 + 5𝜉2𝑞4 +
(
2𝜉 + 5𝜉2

)
𝑞5 +

(
1 + 10𝜉3

)
𝑞6 +

(
5𝜉2 + 10𝜉3

)
𝑞7

+
(
2𝜉 + 20𝜉4

)
𝑞8 + . . . .

The three generating functions 𝐻2 (𝑎, 3; 𝑞) begin with the terms

𝐻2 (0, 3; 𝑞) = 1 + 𝑞 + 𝑞3 + 11𝑞6 + 10𝑞7 + . . . ,

𝐻2 (1, 3; 𝑞) = 2𝑞2 + 2𝑞3 + 2𝑞5 + 22𝑞8 + . . . ,

𝐻2 (2, 3; 𝑞) = 5𝑞4 + 5𝑞5 + 5𝑞7 + . . . .

Theorem 1.1 implies that

𝑝2 (𝑎, 3; 𝑛) ∼ 𝐴(𝑎, 𝑛)
12
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 ∼ 𝐴(𝑎, 𝑛)

3
· 𝑝(𝑛),

where 𝐴(𝑎, 𝑛) ∈ {0, 1, 2} satisfies the congruence 𝐴(𝑎, 𝑛) ≡ 2 − 𝑎 − 𝑛 (mod 3). This explains the

uneven distribution established by Corollary 1.2 in this case. In particular, we have that

lim
𝑛→∞

𝑝𝑡 (𝑎, 3; 3𝑛 + 2 − 𝑎)
𝑝(𝑛) = 0.

Of course, this zero distribution is weaker than the vanishing obtained in Theorem 1.3.

The next table illustrates the uneven asymptotics for 𝑛 ≡ 0 (mod 3).
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n Ψ2 (0, 3; 𝑛) Ψ2 (1, 3; 𝑛) Ψ2 (2, 3; 𝑛)

300 ≈ 0.7347 ≈ 0.2653 0

.

.

.
.
.
.

.

.

.
.
.
.

600 ≈ 0.6977 ≈ 0.3022 0

900 ≈ 0.6837 ≈ 0.3163 0

.

.

.
.
.
.

.

.

.
.
.
.

4500 ≈ 0.6669 ≈ 0.3330 0

4800 ≈ 0.6669 ≈ 0.3330 0

5100 ≈ 0.6668 ≈ 0.3331 0

Example. We consider another typical case where the modular sums of t-hook functions are not

equidistributed. We consider 𝑡 = 4, where we have

𝐻4(𝜉; 𝑞) = 1 + 𝑞 + 2𝑞2 + 3𝑞3 + (1 + 4𝜉)𝑞4 + (3 + 4𝜉)𝑞5 + (3 + 8𝜉)𝑞6 + (3 + 12𝜉)𝑞7

+
(
4 + 4𝜉 + 14𝜉2

)
𝑞8 + . . . .

The three generating functions 𝐻4 (𝑎, 3; 𝑞) begin with the terms

𝐻4(0, 3; 𝑞) = 1 + 𝑞 + 2𝑞2 + 3𝑞3 + 𝑞4 + 3𝑞5 + 3𝑞6 + 3𝑞7 + 4𝑞8 + . . . ,

𝐻4(1, 3; 𝑞) = 4𝑞4 + 4𝑞5 + 8𝑞6 + 12𝑞7 + 4𝑞8 + . . . ,

𝐻4(2, 3; 𝑞) = 14𝑞8 + . . . .

Theorem 1.1, restricted to partitions of integers that are multiples of 12, gives

𝑝4 (𝑎, 3; 12𝑛) ∼
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4
9
· 𝑝(12𝑛) if 𝑎 = 0,

1
3
· 𝑝(12𝑛) if 𝑎 = 1,

2
9
· 𝑝(12𝑛) if 𝑎 = 2.

The next table illustrates these asymptotics.

n Ψ4 (0, 3; 12𝑛) Ψ4 (1, 3; 12𝑛) Ψ4 (2, 3; 12𝑛)

10 ≈ 0.4804 ≈ 0.3373 ≈ 0.1823

.

.

.
.
.
.

.

.

.
.
.
.

50 ≈ 0.4500 ≈ 0.3381 ≈ 0.2119

60 ≈ 0.4485 ≈ 0.3373 ≈ 0.2142

.

.

.
.
.
.

.

.

.
.
.
.

180 ≈ 0.4447 ≈ 0.3340 ≈ 0.2212

190 ≈ 0.4447 ≈ 0.3339 ≈ 0.2214

200 ≈ 0.4446 ≈ 0.3338 ≈ 0.2215

5.2. Examples of Theorem 1.4 and Corollary 1.5

Finally, we consider examples of the asymptotics and distributions in the setting of Hilbert schemes on

n points.
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Example. By Göttsche’s Theorem (i.e., Theorem 4.1), we have

𝐺 (𝑇 ; 𝑞) :=

∞∑
𝑛=0

𝑃

((
C2
) [𝑛]

;𝑇

)
𝑞𝑛 =

∞∏
𝑚=1

1

1 − 𝑇2𝑚−2𝑞𝑚
=

1

𝐹3 (𝑇−2;𝑇2𝑞)

= 1 + 𝑞 +
(
1 + 𝑇2

)
𝑞2 +

(
1 + 𝑇2 + 𝑇4

)
𝑞3 +

(
1 + 𝑇2 + 2𝑇4 + 𝑇6

)
𝑞4 + . . . .

Theorem 1.4 (1) implies that

𝐵

(
𝑎, 3;

(
C2
) [𝑛] )

∼ 1

12
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 ,

and so Corollary 1.5 implies that 𝛿(𝑎, 3; 𝑛) → 1
3
. The next table illustrates this phenomenon.

n 𝛿 (0, 3; 𝑛) 𝛿 (1, 3; 𝑛) 𝛿 (2, 3; 𝑛)

1 1 0 0

2 0.5000 0 0.500

.

.

.
.
.
.

.

.

.
.
.
.

18 ≈ 0.3377 ≈ 0.3325 ≈ 0.3299

19 ≈ 0.3367 ≈ 0.3306 ≈ 0.3327

20 ≈ 0.3333 ≈ 0.3317 ≈ 0.3349

Example. By Theorem 4.2, for 𝛼 = 2 and 𝛽 = 3, we have

𝐺2,3(𝑇 ; 𝑞) :=

∞∑
𝑛=0

𝑃

(((
C2
) [𝑛] )𝑇2,3

;𝑇

)
𝑞𝑛 =

1

𝐹1 (𝑇2; 𝑞5)

∞∏
𝑚=1

(
1 − 𝑞5𝑚

)
1 − 𝑞𝑚

= 1 + 𝑞 + 2𝑞2 + · · · +
(
6 + 𝑇2

)
𝑞5 +

(
10 + 𝑇2

)
𝑞6 +

(
13 + 2𝑇2

)
𝑞7 + . . . .

Theorem 1.4 (2) implies that

𝐵

(
𝑎, 3;

((
C2
) [𝑛] )𝑇𝛼,𝛽 )

∼ 1

12
√

3𝑛
· 𝑒𝜋

√
2𝑛
3 ,

so Corollary 1.5 yields that 𝛿2,3 (𝑎, 3; 𝑛) → 1
3
. The next table illustrates this phenomenon.

n 𝛿2,3 (0, 3; 𝑛) 𝛿2,3 (1, 3; 𝑛) 𝛿2,3 (2, 3; 𝑛)

1 1 0 0

2 1 0 0

.

.

.
.
.
.

.

.

.
.
.
.

100 ≈ 0.3693 ≈ 0.2658 ≈ 0.3649

200 ≈ 0.3343 ≈ 0.3176 ≈ 0.3481

300 ≈ 0.3313 ≈ 0.3293 ≈ 0.3393

400 ≈ 0.3318 ≈ 0.3324 ≈ 0.3358

500 ≈ 0.3324 ≈ 0.3332 ≈ 0.3343
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