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Abstract

Recent works at the interface of algebraic combinatorics, algebraic geometry, number theory and topology have
provided new integer-valued invariants on integer partitions. It is natural to consider the distribution of partitions
when sorted by these invariants in congruence classes. We consider the prominent situations that arise from
extensions of the Nekrasov—Okounkov hook product formula and from Betti numbers of various Hilbert schemes
of n points on C2. For the Hilbert schemes, we prove that homology is equidistributed as n — co. For ¢-hooks, we
prove distributions that are often not equidistributed. The cases where ¢ € {2, 3} stand out, as there are congruence
classes where such counts are zero. To obtain these distributions, we obtain analytic results of independent interest.
We determine the asymptotics, near roots of unity, of the ubiquitous infinite products

A& =[[1-&"). P&o=[]1-E") ad Fy&o=[](1-¢"E").
n=1 n=1 n=1
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1. Introduction and statement of results

A partition of a nonnegative integer n, denoted A + n, is any nonincreasing sequence of positive integers,
say A = (11,42, ..., 4,), that satisfies |1| := A1 +- - -+ A,;, = n. As usual, we let p(n) denote the number
of such partitions. One hundred years ago, Hardy and Ramanujan [16] proved their striking asymptotic
formula

1 b
- . 3 1.1
pin) 4\/§n ¢ (D

as n — oo. This work marked the birth of the so-called Circle Method.

Partitions appear in many areas of mathematics. We consider recently discovered structures that arise
at the interface of algebraic combinatorics, algebraic geometry, number theory and topology, where the
size n partitions play a prominent role in defining various integer-valued invariants. These invariants
can be sorted by congruence conditions, resulting in identities of the form

p(n)=C0,b;n)+C(1,b;n)+---+C(b—1,b;n), (1.2)

where C(a, b; n) counts those partitions whose invariant is in the congruence class a (mod b). In the
spirit of Dirichlet’s Theorem on primes, where primes are equidistributed over admissible congruence
classes, one may ask how the partitions are distributed, as n — oo, over the arithmetic progressions
modulo b. We answer these questions for 7-hooks, which arise in work of Han [14] that refined the
Nekrasov—Okounkov hook product formula and for Betti numbers of various Hilbert schemes on n
points in C2, as established by Gottsche [10, 11] and Buryak, Feigin and Nakajima [4, 10, 11].

We first consider the distribution of #-hooks. Each partition has a Ferrers—Young diagram

e o e ... e «— 1 manynodes
e o ... ¢ « A manynodes
o ... o «— A,, many nodes,

and each node has a hook length. The node in row k and column j has hook length i(k, j) := (Ax — k) +
(/1;. —J)+ 1, where /l;. is the number of nodes in column j. These numbers play many significant roles
in combinatorics, number theory and representation theory (for example, see [17, 26]).

We investigate those hook lengths that are multiples of a fixed positive integer ¢, the so-called #-hooks.
We let H, (1) denote the multiset of 7-hooks of a partition A. In recent work, the second author and Pun
[7] analysed the #-hook partition functions

pi(n) =#{Arn : #H, (D) iseven}, pf(n) :=#HArn : #H,(2) is odd},
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which divide the partitions of n into two subsets: those with an even (respectively, odd) number of
t-hooks. For even ¢, they proved that partitions are equidistributed between these subsets as n — oo.
Namely, they showed that

_opi(n) . pt(n) 1

m lim =

li = =—.
noes p(n) noes p(n) 2

However, for odd ¢, they found that the partitions are not equidistributed. More precisely, if a € {0, 1},
then they proved that!

. pi@2n+a) 1 (=)
lim =—+ .
noe p2n+a) 2 93(+D)

In view of this unexpected result, it is natural to consider the more general t-hook partition
functions

pela,b;n) :=#{Arn : #H,(1) = a (mod b)}.
The p; (a, b; n) are clear generalisations of p¢(n) and p¢(n). In this setting, (1.2) is
p(n) =p(0,b;n)+ p:(1,b;n) + p:(2,b;n) +- -+ p:(b—1, by n).

For odd primes b, we determine the distribution of these decompositions as n — co, and in many
situations they turn out to be nonuniform. To this end, we first obtain asymptotic formulas for p; (a, b; n).
For this, we define a modified indicator function I by

b—-1 if 55 (1-7)(1=b%) +at—n=0 (mod b),
I(a, b, 1,n) == if 57 (1 =) (1= b%) +ar—n =0 (mod b) (13)
-1 otherwise,
and a distribution function
0 if bz,
L D" Aa, b, ,mb™% (5)  ifb [ rand tis odd
ci(a,bin) = - + a,9,t,n b and 1 1s odd, (1.4)

if b [t and ¢ is even,

jupn g ( ;7(1_12)(2_;72)%_"

where (7) is the Legendre symbol and &4 := 1 if d = 1 (mod 4) and &4 := i if d = 3 (mod 4). This
function exactly characterises the distribution properties of the p;(a, b;n). In particular, the second
summand in equation (1.4) represents the obstruction to equidistribution.

We prove the following asymptotic formulae for p,(a, b; n).

Theorem 1.1. Ift > 1, b is an odd prime and 0 < a < b, then as n — oo, we have

. b: 2
R GLI RN
4\/§n

Remark. Thanks to equation (3.7) in the proof of Theorem 1.1, we actually obtain an exact formula for
p:(a, b;n) as a complicated convergent infinite sum.

As a corollary, we obtain the following limiting distributions.

'This claim is trivial if # = 1, as p{ (n) = p(n) (respectively, py (n) = p(n)) if n is even (respectively, odd).
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Corollary 1.2. Assuming the hypotheses in Theorem 1.1, if 0 < a; < b and 0 < ap < b, then

lim p:(ay, b;bn+ay)
n—co  p(bn+ay)

=ci(ay, by az).

Example. For 4-hooks with b = 3, the collection of values c4(ay, 3; az) in Corollary 1.2 implies that

4 .

. 9 1fa=0,

Jim % o T
n—oo n

g 2 ifa=2.

Further examples are offered in Section 5.

The cases where t € {2,3} are particularly striking. In addition to many instances of nonuniform
distribution, there are situations where certain counts are identically zero.

Theorem 1.3. The following are true.

(1) If € is an odd prime and 0 < ay,a, < { satisfy (M) = —1, then for every nonnegative

integer n, we have
p2(ar, 6 ¢n+az) = 0.

(2) If £ = 2 (mod 3) is prime and 0 < ay,ay < €* have the property that ord;(=9a; + 3a + 1) = 1,
then for every nonnegative integer n, we have

p3(a1,€2; n + az) =0.
Example. For £ = 3, Theorem 1.3 (1) implies that
p2(0,3;3n+2) = pa(1,3;3n+ 1) = p(2,3;3n) = 0.

More generally, for every odd prime ¢ and each 0 < a; < ¢, there are %(é’ — 1) choices of 0 < ap < ¢
satisfying the given hypotheses. In particular, there are %(52 — ¢) many pairs of a; and a, giving rise to
vanishing arithmetic progressions for 2-hooks.

Example. For £ = 2, Theorem 1.3 (2) gives
p3(0,4;4n+3) = p3(1,4;4n+2) = p3(2,4;4n + 1) = p3(3,4;4n) = 0.

Moreover, for each ¢ and each 0 < a; < €2, there are ¢ — 1 choices for a».

Remark. Theorem 1.3 depends on the paucity of 2-core and 3-core partitions. Recall that a partition
A is a t-core if H;(2) = 0. There are no such vanishing results for ¢+ > 4. This follows from the proof
of the #-core conjecture by Granville and the fourth author [12]. McSpirit and Scheckelhoff [18] have
found a beautiful combinatorial proof of Theorem 1.3 that makes use of the theory of abaci, #-cores and
t-quotients.

‘We now turn to applications of partitions in algebraic geometry and topology. The fundamental goal
of topology is to determine whether two spaces have the same topological, differentiable or complex
analytic structure. One seeks invariants that distinguish dissimilar spaces. For complex manifolds,
the Hodge numbers are one class of invariants. For any n-dimensional complex manifold M and any
0 < s,t, < n, the Hodge number /%' (M) gives the dimension of a certain vector space of differential
forms on M. For the manifolds we consider, the Betti numbers arise as linear combinations of the
Hodge numbers (for example, see [29]). We shall determine the asymptotics and modular distribution
properties of certain Betti numbers.
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We consider examples occurring in the algebraic geometry of Hilbert schemes (for example, see [20]).
The nth Hilbert scheme of a projective variety S is a projective variety Hilb"(S) that is a ‘smoothed’
version of the nth symmetric product of S (for example, see [11, 20]). The nth symmetric product of a
manifold M admits a simple combinatorial interpretation: outside of a negligible subset, the symmetric
product is the collection of subsets of M of size n assembled as a manifold on its own. Rather nicely,
the Hodge numbers of a complex projective surface S determine the Hodge numbers of Hilb" (S) in a
beautiful combinatorial way. This is captured by the pleasing formula of Gottsche [10, 11]

00 1= s=1.t-1 _n K>t (S)
Z (_])s+ths,t(Hilbn(s))xsfnytfnqn — l_[ [Ts+e Odd( XY 4 )

n,s,t n=1 Hs+z even(l - xs—lyt—lqn)

hs»t (S) °

These g-infinite products often essentially specialise to modular forms, which then leads to asymptotics
and distribution results via a standard application of the Circle Method. Indeed, the fourth author and his
collaborators carried this out in [9]. Here we consider a prominent situation involving partitions, where
modular forms do not arise, a fact that complicates the computation of asymptotics and distributions.
Namely, we investigate the Hilbert schemes that arise from n points on C? that have been considered
recently by Gottsche [10, 11] and Buryak, Feigin and Nakajima [3, 4].

We denote the Hilbert scheme of 7 points of C2 by (C2)"]. For 0 < a < b, we consider the modular
sums of Betti numbers

B(a,b;((Cz)[n]):z D b.,-((C2)[n])= > dim(H,-((Cz)[n],Q)).

j=a (mod b) j=a (mod b)

We also consider their quasihomogeneous versions. To define them, we use the torus (C*)2-action on
C? defined by scalar multiplication (i.e., (f1,2) - (x,y) := (f1x,>y)). This action lifts to (C2)!"]. For
relatively prime o, € N, we let T, g = {(t*,t%) : t e C*}, a one-dimensional subtorus. The
quasihomogeneous Hilbert scheme ((C2)!"1)Tes is the fixed point set of (C2)!"]. We consider their
modular sums of Betti numbers

B(a, b; ((Cz) [n])Ta,ﬁ) _ . (Zm)d . bj(((cz)[n])n,,ﬁ)
- jza(zm;)d ., dim(Hj ((Cz)[n])TmB’Q)).

Remark. The odd index Betti numbers for these Hilbert schemes are always zero. In fact, for a odd and b
even, simple calculations using Corollary 4.3 reveal that both B(a, b; (C%)["1) and B(a, b; ((C?)1"1)Tes)
identically vanish. Moreover, in accord with (1.2), we have the homology decompositions for p(n)

b-1 1

) % [n]) Ters
p(n) :ZB(a,b; (CZ) ):ZB a,b;((C2) ) ) (1.5)
a=0 a=0
These results require the rational numbers
3 ifbisodd,
d(a,b):={%  ifaand b are even, (1.6)
0 if a is odd and b is even.
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Theorem 1.4. Assuming the notation above, the following are true.

(1) As n — oo, we have

B(a, b; (C2)[n]) ~ % - e”‘/?.

(2) If a, B € N are relatively prime, then as n — oo, we have

[n]\Ters .
Bla.b: ((Cz) ) _dab) e
43n
As a consequence of Theorem 1.4, we obtain distributions (i.e., see (1.5)) for the proportions

B(a, b; ((cz) [n])Tmﬁ)

p(n)

B(a.b; ()™

p(n)

6(a,b;n) = and 0qp(a,b;n) =

Corollary 1.5. If0 < a < b, then the following are true.

(1) We have that
lim §(a, b;n) = d(a,b).
n—0o0

(2) If a, B € N are relatively prime, then we have
lim 64 g(a,b;n) =d(a,b).
n—oo

This paper is organised as follows. In Section 2, we state and prove a general theorem (see Theorem
2.1) on the asymptotic properties (near roots of unity) of the three infinite products given in the abstract,
a result that is of independent interest. The proof is obtained by suitably adapting the method of Euler—
Maclaurin summation in two cases and via modularity in the other. In Section 3, we recall recent work
of Han extending the Nekrasov—Okounkov partition formula, and we prove Theorems 1.1 and 1.3. To
show Theorem 1.1 and Corollary 1.2, we employ Theorem 2.1 (2) and results of Zuckerman pertaining
to exact formulas for Fourier coefficients of modular forms. In Section 4, we recall the work of Gottsche
and Buryak, Feigin and Nakajima on homogeneous and quasihomogeneous Hilbert schemes for n points,
which we then employ to prove Theorem 1.4 and Corollary 1.5 using Theorem 2.1 (1) and (3) and results
of Ngo—Rhoades using Wright’s Circle Method. Finally, in Section 5, we offer numerical examples of
these results.

2. Asymptotics for special g-infinite products

The Hardy—Ramanujan asymptotic formula given in equation (1.1) marked the birth of the Circle
Method. Its proof relied on the modular transformation properties of Dedekind’s eta-function n(t) :=
q u [T, ,(1-¢"), where g := €27 (for example, see Chapter 1 of [23]). Their work has been thoroughly
developed in the theory of modular forms and harmonic Maass forms (for example, see Chapter 15 of
[1]) and has been generalised beyond this setting in papers by Grosswald, Meinardus, Richmond, Roth
and Szekeres [13, 19, 27, 28], to name a few.

2.1. Statement of the results

Generalising the infinite product that defines 7, we consider the ubiquitous g-infinite products

00

Fi(§:q) = ﬁ(l -&q"), Fa(&q) = ﬁ(l - (£9)"), and F3(&:q) := ﬂ(l —f‘l(fq)").
n=1 n=1

n=1
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These infinite products are common as factors of generating functions in combinatorics, number theory
and representation theory. We obtain the asymptotic properties for Fi(&;q), Fo(€;q) and F3(¢;q),
where ¢ is a root of unity, which are generally required for implementing the Circle Method to such
generating functions. This result is of independent interest.

To make this precise, we recall Lerch’s transcendent

[ee) Zn
d(z,5,a) = Z .
“ (n+a)s
Moreover, for coprime &, k € N, we define
wh i = exp(ni - s(h, k)), 2.1

using the Dedekind sum

o= 5 ((E)(%)

Here we use the standard notation

_)x=1x] —% ifx e R\ Z,
((0) = {o ifx eZ.

For arbitrary positive integers m and n, we define w,, , =
depends on /& (mod k) and that s(0, 1) = 0. Moreover, we let

. Note that s(h, k) only

w__m__
ged(m,n) ? gcd(

- k
1 1fk_10r(k>1andbj’m)
Atk = ged(k b if bl gfey and gcd(k 5 +abgcd(k 5 # 0 (mod b), 22
2 k
b~ if blgcd(k’t) and gcd(k 3 +abgcd(k 5= =0 (mod b).
For0 <0 < %, we define the domain
Dy :={z=re':r>0and|a| < 6}. (2.3)

Theorem 2.1. Assume the notation above. For b > 0, let & be a primitive bth root of unity; then the
following are true.

(1) Asz — 0in Dy, we have

Fi&e) = —— ™22 (11 0(12))).

3

2ni

(2) Suppose that b is an odd prime, and let & = ezb teN, g=e% " for0 < h < k with
gcd(h, k) =1 and z € Cwith Re(z) > 0. Then as z — 0, we have

1 2

1 2 ™abnk

Lt -1 t,a,bhk | -Lab

FZ(f,q ) ~ W pbrrak kb (—b e bTkiz
ab.hk’ Aa.b.k bz
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3) Asz —> 0in Dg, we have

1

\/ﬂ(bZZ)%_E =

F3(§e7) = r(3) -t

T (1+0(z])).

Remark. If £ = 1 and ¢ = €7, then we have

Fi(1;q) = Fa(1;9) = F3(1:.q) = g~ %n(7).

Asymptotic properties in this case are well-known consequences of the modularity of r(7).

2.2. The Euler-Maclaurin summation formula

We require the following generalisation of the Euler—Maclaurin summation formula. To state it, we need

some notation. For s,z € C with Re(s) > 1,Re(z) > 0, we recall the Hurwitz zeta function (s, z) :=
F (x)

2 (n+_lz)s’ the digamma function  (x) := T3 ) and the Euler-Mascheroni constant y Furthermore, we
let B,,(x) denote the nth Bernoulli polynomial defined via its generating function £ m =Yoo Bn(x)L m.

The consequence of the Euler—Maclaurin summation formula required is described by the following
lemma. A function f on a domain in C is of sufficient decay if there exists &€ > 0 such that f(w) < w™17¢
as |w| — oo in the domain. Throughout, we say that

00

F@)~ D and"

n=0
if for any N € Ny, f(z) = Z,’:/:O apz" +0(|z]Nt).

Lemma 2.2. Let 0 < a < 1 and A € R*, and let Dg be defined by equation (2.3). Assume that
f(2) ~ Xoin, €n?" (no € Z) as z — 0 in Dg. Furthermore, assume that f and all of its derivatives are
of sufficient decay in D g in the above sense. Then we have that

00 -2 I 00
(@) ~ 3 ené-m )+ L2 = ElLog(ad +ut@) 47 - D Buetl0) .,

as 7 — 0 uniformly in D¢, where

e} -2 c 1€_Au
I},A :=/0 (f(u)— Z cnu"—T du.

n=ng
Remark. Note that for a = 1, we have that ¢ (a) +7y = 0.

Proof of Lemma 2.2. A generalisation of an observation of Zagier [32, Proposition 3] is that of [2,
Theorem 1.2], which states the following. Let /# be a holomorphic function on a domain containing D¢
so that in particular % is holomorphic at the origin, such that /4 and all of its derivatives have sufficient
decay and h(z) ~ X caz" as z — 0 in Dg. Furthermore, let [, = fooo h(x)dx. Then we have for
aeR

X In <> Buula
D h((n+a)z) ~ 2 —chﬂz", 2.4)
n=0 < n=0 n+l
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as z — 0in Dg. For the given A, write

Az 2
c_
fz)=g(2)+ ! + Z cnz", (2.5)
n=ny
which means that
g(2) = cnz”.
n=ny

The final term in equation (2.5) yields the first term in the right-hand side of the lemma. Since g has no
pole, equation (2.4) gives that

Zg((n+a)z>~——z enl) 2@

where ¢, (g) are the coefficients of g. Note that /, = 1;2’ 4+ We compute that

_Z (2) n+1(a) i o (—A)"+1C—1)Bn+1(a)zn
n " (n+1)! n+1 °°

n=0

Combining the contribution from the second term with the contribution from the second term from
equation (2.5), we obtain

S S

n=0 n=1

Using [2, equation (5.10)], the term in the parentheses is equal to —(Log(Az) + ¢ (a) + y). Combining
the contributions yields the statement of the lemma. O

2.3. An integral evaluation
We require the following integral evaluation.

Lemma 2.3. We have for N € R*
/°° e 1 N I 1\e™ d
- =)\
o \x(l-eNx) Nx2 \N 2/ x
1 1 1 1 1
=log(I'| = — — —|log|—=] - = log(2n).
o))+ (3 el -2
Proof. Making the change of variables x +— %, the left-hand side equals

/°° N L, (1 1e—%d
o \x(1—e™) x2 \N 2/ x o

1 _1+ 1
x(l—eX) x x(e¥x-1)

Now write

https://doi.org/10.1017/fms.2022.45 Published online by Cambridge University Press
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Thus the integral becomes

/°° 1 +1 1e—z’6d+/°°e—fv 1+1 1\e ™ e—%+e—%d
Oex—l2xxx0 X x2 \N 2] x 2x 2 )

We evaluate the second integral as —%. The claim now follows, using Binet’s first integral formula (see
12.31 of [31]). ]

2.4. Proof of Theorem 2.1

We employ the generalised Euler—-Maclaurin summation formula to prove Theorem 2.1 (1) and (3); for
part (2), we use modularity.

2.4.1. Proof of Theorem 2.1 (1)
Let |z| < 1. Taking logarithms, we have

Gele™) :=Log(Fi(£;e7) = ‘ZZ‘fJ Z f((m ’ b)bz)

where

—Z

. e B o
@)= 2(1—e7) Z n+2)

By Lemma 2.2, it follows that
Zf m+2L bz =§(2’b)+£ LLog(bz)+wi +y]|+0(1)
— b b2z2 bz  2bz b '
Therefore, we find that

. b b
Goley = st 22)- 525 - o > e (toatvr vu () +3) + 002

Now note that Zf‘:l &/ = 0. Moreover, we require the identity [5, p. 39] (correcting a minus sign and
erroneous k on the right-hand side)

b .
> w( ¢ = bLog(1-#). 2.6)

J=1

\/

Combining these observations, we obtain

b .
- 1 ; J 1
G D= 1712,= - =Log(1-¢&)+0 .
e(e7) =~ ;f .z( b) 5 Log(1 =) +0(lz])
After noting that
Zf’ ( ) PHED(£,2,1),
the claim follows by exponentiation. O
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2.4.2. Proof of Theorem 2.1 (2)
Note that

F(&4") = (£4":64") .,

where (¢; q)eo := ]‘[;‘;1 (1 — g/). The classical modular transformation law for the Dedekind n-function

(see 5.8.1 of [6]) along with the identity n(7) = qﬁ (¢; @) implies that

1

_ 1l 7,1
(4; @0 = Wy, 1 2 267 (72) (g1 1 )os 2.7)

where g := e%(’”%), where 0 < i’ < k is defined by hh’ = —1 (mod k) and wy, ¢ is defined as in
equation (2.1). In particular, this implies that

(4: Q)0 ~ Wy 2 2 e T 2.8)

as z — 0 with Re(z) > 0. Now, by using the definitions of &, ¢ given in the statement of Theorem 2.1
(2), we have

27
fq =% b(hbt+ak+ltbz)

We claim that A; , p n.x as defined in equation (2.2) satisfies A; 4 p.n.x = ged(kb, hbt + ak). If k = 1,
then the claim is clear, so we assume that k > 1. Write k = gcd(k, t)k; andt = ged(k, t)t1. Then we have

gcd(kb, hbt + ak) = ged(k, t) ged(k b, hbt| + aky).
Noting that gcd(ky, b) divides each of kb, hbt| and ak, it follows that

kb hbt, ta ki
ged(ky, b)’ ged(ky,b) ged(ky, b))

ged(kb, hbt + ak) = ged(k, 1) ged(ky, b) ged

Note that since b is prime, ged(ky, b) € {1, b}. If ged(ky, b) = 1, then
gcd(kyb, hbty + aky) = ged(ky, hbty) ged(b, aky) = 1.
If, on the other hand ged(k, b) = b, then write ky = bk, with ged(k,, b) = 1. Then
gcd(kl, hty + a%) - gcd(b“kz, hty + akgb"‘l) - gcd(b“, hty + akgb"‘l) gcd(ka, hi1)
- gcd(b“, hty + akzb’(_l).

If « > 1, then ged(b, ht; + akzbk‘l) = 1 since ged(b, ht;) = 1. If k = 1, then we are left with
gcd(b, ht) + ak,). Therefore, we obtain

1 ifb/) gcdfk 5
ged(kb, hbt + ak) = ged(k,1)1b  if b| 55 and gcd(k 5+ abgcd(k 5 0 (mod b),
b* if bl gty and ey + dpgeage =0 (mod b),
which is equal to A; 4.5 p, k
It follows that ged( T %) = 1. Therefore, by making the replacements 7 + %,
k— T kf " and 7z — T ;iz in equation (2.8), the result follows. m|
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2.4.3. Proof of Theorem 2.1 (3)
Again assume that |z| < 1. Writing

Fy(&q) = ﬁﬁ( £71q").

Jj=1 n=0
we compute
Log(Fa(&e™) ==z p. €07 Zf ((m+7)e).
1<j,r<b
where f;(z) = z(lT By Lemma 2.2, we obtain

- r * <
5ol o) - 2L B g 7))o

2
62_21' By Lemma 2.3, the second term contributes

1h*b<11>’—*—1r1 N AOYE AT SN
2l 2 =l = oe(U | = (5 - flogl |+ 5 e

The first term contributes —

Next we evaluate

—oeba+n 3 Bi(1) 3 € =) tostwn) ).

1<j<b 1<r<b

Finally we are left to compute

1 : 1 r 1 1 1 r
- G-or(L _ 21 _)z__ ) (_)
p 2 € (b 2)‘”(17 b 24 ¢ (b b 2)‘” b)
1<j,r<b 0<j<b-1
1<r<b
The (— - —) term yields y(— - —) Thanks to equation (2.6), the £ 5  term contributes
= Y ()= jLog(1-¢/).
0<]<b 1 1<r<b 1 <j<b-1

Combining these observations yields that

1 1 1
_ bi % (27)2 2
Log(F3(&;e7°)) = log (( ) LI 6b2z

Bl(%) Log(bz)

1
b

Log(1-¢&7) +O(lz]).

S~

1<j<b-1

Exponentiating gives the desired claim.
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3. Proof of Theorem 1.1, Corollary 1.2 and Theorem 1.3

Here we recall a beautiful g-series identity of Han, who offered the generating functions we require
for Theorems 1.1 and 1.3 and Corollary 1.2. Apart from factors that naturally correspond to quotients
of Dedekind’s eta-function, these generating functions have factors of the form F,(&; ¢*)~". The proof
of Theorem 1.3 follows directly from this fact along with known identities for the 2-core and 3-core
generating functions. To prove Theorem 1.1, we apply Zuckerman’s exact formulas to these functions,
making strong use of Theorem 2.1 (2).

3.1. Work of Han

Here we derive the generating functions for the modular #-hook functions p;(a, b;n). To this end, we
recall the following beautiful formula of Han that he derived in his work on extensions of the celebrated
Nekrasov—Okounkov formula? (see (6.12) of [22]) with w € C:

quxll l_] (1 _ _) l_[(l n)wfl.
AeP heH ()

Here P denotes the set of all integer partitions, including the empty partition, and (1) denotes the
multiset of hook lengths for A. Han [14] proved the following beautiful identity for the generating
function for #-hooks in partitions

H/(¢:9) = Z £ g1l

A€P

Theorem 3.1 (Corollary 5.1 of [14]). As formal power series, we have
I =g
Hi(£9) = gt 1_[ n -
n=1

Fa(é59 l-gqg

As a corollary, we obtain the following generating function for p; (a, b; n).
Corollary 3.2. Ift > 1 and 0 < a < b, then as formal power series we have
) b—
H(a,b;q) := ;)pz(a,b;n)q” ZZ:;) &, Hi(¢p3a)s

2ri

where {p, :=eb .

Proof. We have that
b-1

1 a)r
ZZK H ({5 q) = beIWZ{(#HM)) =H,(a,b;q). o

r=0 AeP r=0

The dependence of H,(&;¢q) on F>(&;q") enables us to compute asymptotic behavior of H;(&; q)
using Theorem 2.1 (2) and, by Corollary 3.2, the asymptotic behavior of H,(a, b; q).

3.2. Proof of Theorem 1.3

Here we prove Theorem 1.3. We first consider the case (1), where ¢ is an odd prime. We consider the
generating function, using Corollary 3.2

Halarig) = Y palar. " = Z & Ha(¢]'3a).

n=0 rl =0
2This formula was also obtained by Westbury (see Proposition 6.1 and 6.2 of [30]).
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Applying again orthogonality of roots of unity, keeping only those terms a, (mod ¢), where a; €
{0,1,...,¢— 1}, we find that

oo 1 i )
ZPZ(al,f; {n +a2)qt’n+a2 = 7 Z s ary a2r2H2(§;1;é’;2q).
n=0 ri,r2 (mod £)

Making use of the definition of H,(&; q), if we define B,(g) and C(q) by

) ) 1 © (1= 2n)\2
Ba(g) = ) ba(mq" =] | ooy W O@= 1 (1_—qq) 3.1)
n=0 - n=1

n=1

then we have

2, pZ(al’&")qn:fiz DGRy ) 4pa).

n>0 r1,rp (mod €)
n=a, (mod ¢)

Thanks to the classical identity of Jacobi

> k(k+1)
G@=)q 7,

k=0
for N = ap (mod ¢), we find that
1 o I S 30 25
p2(ai, €;N) = 7 Z gymmen Z bz(m)g’g I2n)mn
ri,r2 (mod £) k,m>0
2m+EEH
= Z ba(m), (3.2)

m=a; (mod ¢)
2Rl

by making the linear change of variables | — r; — 2r, and again using orthogonality of roots of unity.
This then requires the solvability of the congruence a, —2a; = @ (mod ¢). Completing the square
produces the quadratic residue condition that prohibits this solvability and hence completes the proof
of (1).

The proof of (2) follows similarly, with £ replaced by £ for primes £ = 2 (mod 3). The functions in
(3.1) are replaced with

00 00 1 ® (1= 3n)3
Bs(q) = Z::‘)ng(n)q" = Ul g and  C3(q) = ]:! %.

It is well-known that (for example, see Section 3 of [12] or [15, Lemma 2.5]),
gy = Y esmg’ = 3 L.
3
n=0 n=0 d|(3n+1)

For primes £ = 2 (mod 3), this implies that c3(£%n + a) = 0 for every positive integer n, whenever
orde(3a + 1) = 1. For example, this means that c3(4n +3) = 0if £ = 2.
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Let 0 < aj,ar < £%. In direct analogue with (3.2), a calculation reveals that nonvanishing for
N = a, (mod €?) relies on sums of the form

D, bames(h).

m=a, (mod £2)
3m+k=N

If ords(3a + 1) = 1 and a — 3a; = a (mod £?), then p3(ay, £%; €% + a) = 0. This is claim (2).

3.3. Evaluating certain Kloosterman sums

The proof of Theorem 1.1 relies on the arithmetic of the Kloosterman sums

b-1
wh,b _
K(a,b,t;n) := E - {lgm mhk,
h=1 th,b

where b is an odd prime and s > 1, # > 1 are integers. We evaluate this sum if ¢ is coprime to b. We

start by computing wh,bwt‘ﬁ, b

Proposition 3.3. Let b be an odd prime, h, t integers coprime to b, and let wy, i be defined by equation
(2.1). Then we have

o' b\ b

t
Db _ (ﬁ)(%) Qi UL 2k (1) (1-52)
th,b

Proof. The proof of this proposition uses the n-multiplier, which we label . Theorem 5.8.1 of [0]
yields that for ( ;’ g ) € SL,(Z) with y > 0 odd, we have

a B\ _ (9 a((a+6)y-B5(y*-1)-3y)
oy §)= [5)erCmomneen,

We also have from formula (57b) of [25] that for ( ﬁ; g ) € SL,(Z)

a f _ ni‘l’;ffj—‘ _
l//(yé)_e( ) L.

By letting 6 = h, y = b, we obtain
Wnp = (g)eﬂi(lgb(aﬂzﬁhb)(]b2)+b4‘)’

where «a, § satisfy ah — b = 1. We therefore may conclude that

VAV

t
Wnp _ (h)(th i L B ((a-tA) (1-67)+h (1-Bb-1>(1-Bb)) (1-b?) )
Dinp ’

where ah — 8b = Ath — Bb = 1. A straightforward calculation then gives the claim. O

We now turn to evaluating the Kloosterman sum K (a, b, t; n).
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Proposition 3.4. Suppose that b is an odd prime, a,n are integers, and t > 1 is an integer coprime to
b. Then we have

I(a, b, t,n)(- 1)(l . (£) ift is odd,

K(a,b,t;n) = (b 112V (12 n
(_1)(1 )ib I)Sb(24(1 z)(;}h)wt )\/E it is even,

where l(a, b, t,n) is defined by equation (1.3).

Proof. By Proposition 3.3, we have
K(a,b,t;n) — o F(1-n)(b- I)Z( )( ) (at=n)h+ 37 (1-%) (1= bz)h

The multiplicativity of the Legendre symbol implies

M\ (e [(5) ifrisodd,
(b)(b) _(b) (b) - (%) if ¢ is even.
We proceed to distinguish the parity of ¢. Suppose first that ¢ is odd. Then since b is odd, %( 1-1)(b-1)

is an integer, and the claim directly follows.
Suppose next that ¢ is even. Then we have

b-1

K(a,b.t:n) = e™ UESICRY Z( ){h(u(l 12) (1-b2) vai - n)
1

Using the classical evaluation of the Gauss sum (see for example pages 12-13 of [8]), we obtain

b-1

Z( )4(24(1 1?) (1-b*)+ar-n)h _ (i(l_ﬂ)(llzbz)+at—n epVb. O
h=1

3.4. An exact formula of Zuckerman

Here we recall a result of Zuckerman [33], building on work of Rademacher [24]. Using the Circle
Method, Zuckerman computed exact formulae for Fourier coefficients for weakly holomorphic modular
forms of arbitrary nonpositive weight on finite index subgroups of SL;(Z) in terms of the cusps of the
underlying subgroup and the principal parts of the form at each cusp. Let F' be a weakly holomorphic
modular form of weight xk < 0 with transformation law

F(yt) = x(y)(ct +d)"F(7),

for all y = (“ Z) in some finite index subgroup of SL;(Z). The transformation law can be viewed

alternatively in terms of the cusp % € Q. Let 1’ be defined through the congruence 7k’ = —1 (mod k).
Taking T = % + kl_Z and choosingy = yp i = ( Z _ﬁh, ) € SL,(Z), we obtain the equivalent transformation
law

h i h’ ]
F(E+%) X (Yni) (=iz)” KF(? kiz)
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Let F have the Fourier expansion at ico given by

F(r)= ) a(ng™

n>=—oo

and Fourier expansions at each rational number 0 < % < 1 given by

n+ap i

Floyni() = Y ani(n)g

n>=>>—oo

Furthermore, let I/, denote the usual /-Bessel function. In this framework, the relevant theorem of
Zuckerman [33, Theorem 1] may be stated as follows.

Theorem 3.5. Assume the notation and hypotheses above. If n + « > 0, then we have

(o)

k=1 1 _2rmi(nta)h
a(m)=2x(n+a)T Y = > xOmae T E

k=1 0<h<k
ged(h,k)=1

1-«
m+a 2 A [(n+a)|m+a
y Z ahk(m)ek(k(m+ahk)h(| h,k|) L _\/( ) nil |

Ck k Ck

m+ay, . <0

3.5. Proof of Theorem 1.1 and Corollary 1.2

We next provide proofs of both Theorem 1.1 and Corollary 1.2. Our main tool is the powerful theorem
of Zuckerman described in Section 3.4.

Proof of Theorem 1.1. Using Corollary 3.2, we have

Hi(a, by q) = (q a0 +Z§b‘”Ht & a)- (3.3)

From Theorem 3.1, we conclude
(4":9")%
t
(4261’; g’gq’)m(q; 9 oo

Hi ({3 q) =

To obtain the transformation formula for H,({}; ¢) at the cusp % we write

2ni

qt = 827;;7”(],”_1'2) =e ng(kkJ)

(h gcd(tk,t) + gcd(tk,t) Z)

>

t k _ ; i _k
where we note that ged(h 57775+ arn) = 1- Thus we may use equation (2.7) with k = =, h =
t t 3
hgcd(k,t) 2P e to obtain
1
t T2 mged(k,1) ( t _ ged(k,)
t. .t _ -1 2k scd(k.n) 2 1z
939 ) =W <\ Sqr n°% ¢ '
( )m h e ’gcd(kk,r) (gcd(k, 1) )
27i ged(k,1) ged(k,1) 27i ged(k,t) ged(k,t)
x(e 2 (h (i B );e % (h i 0L ) . G4

o)

where 0 < hy s gcd(k ) is defined by hgcd(k 3 hi: = -1 (mod gcd(k [))
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Similarly, for (g“ 2d'5ha )oo the proof of Theorem 2.1 (2) implies that we may use equation (2.7)

with h s fbtirk g, kb .\, thz  a4d obtain
At bk’ At b.hk At 7 b.hk
thz *% "f‘z,r,b,h,k( thz /‘z,r,h,h.k)
r o t. gr t — -1 12kb a - bz
(gbq ’é’bq )oo =W jprark Kb (—/l ) e t.r,b,h,k tbz
At r.bhk Ar.bohk t,r,b,h,k
27ids r bbbk Atr.b.hk 2m/‘r \b.l ,b.h.k
; (( ), S )
(o]
hbt+rk _
< = - ——
where 0 < hy;p., < /lr - is defined by 25E hy 1 (mod /l”bhk)
Combining equation (2 7) equation (3. 4) and equation (3.5) yields
t a2 b.h.k |1
LR [ R Ty L AR B
ged(k,1)b\2 1 k( ( 2 z
Hz({Z;q) =Qp (1 b, k)(— z%e
tr.b,hk
27i ged(k,1) cged(k.)\ 27 ged(k.r) cged(k.) |\
e P )
o0

)

270t bohk | A bk 2R bk A bohk\\

b, Lk () +i ,,,,) rabohok (g +i vvs’) i i 2,” ek

(e kb \tk.2.b.r hz ). g kb \te.t.b,r 1bz er (+5). e (+%)
(o)

(3.6)
where
t
W pprark kb Whk
. A r.b,h,k " A r,bh,k
Qb»t(r; h, k) = wt

t k
h ged(k,t) ° ged(k,t)

As usual, we define P;(q) := (q;q)%, =t X o q:(n)g" and P(q)" =: 3>, p:(n)g". Then we see that
the principal part of equation (3.6) is governed by the sum

Z q:(m)p; (l’lz)p(n3)§ng(k ) bhi i+ A v b 1k hk b M2+ DR "3 o Tz T b (1112, n3)

ny,ny,n3 >0
Tk, he b (M1,12,13) 20

where

2 2
A r bk _o4 ng(k,f)zn A r bk

+
b2 ‘ ! 1h?

. 2
rk,h,,,b(m,nz,m) =1 —ng(k,l) + ny +ns|.

We denote the Fourier coeflicients of H;({}; q) by ¢;.p,r(n). Using Theorem 3.5, we conclude that

Ct,b,r (I’l) =
(e8] t
Tt ng(k, t)i 2mnh L
Tpy BT Y @i e A, Y apim)p(n)
k=1 0<h<k ny,nz,n3 >0
ged(h,k)=1 Tk, h,t.b (11,12,n3) 20

X

é,gcd(k 31 TN, T PP VRS Y o (Vk b (A1, N2, n3)) / z\/znrk,h,t,b(”l, ny, n3) 37)

24 s\ 3

Since x%1,(x) is monotonically increasing as x — oo for any fixed «, the terms that dominate
asymptotically are those which have the largest possible value of %\/rk,h,t,b (n1,n2,n3). In particular
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for this we require n; = n, = n3 = 0. Note that we have ¢,(0) = p;(0) = p(0) = 1. Since the expression
in question is positive, we can maximise its square: that is, we maximise

2
Ti,he,(0,0,0) 1 AN
T:ﬁ l—ng(k,t) +T .

We consider the three possible values of A; , p.n.k- If s r.p 0.k = gecd(k,1); then

T ,b(0,0,0) 1 1 5 1
T:p 1+ ﬁ_l ged(k, )7 < [1+ §—1 < 1.

If A4y b0k = b ged(k, 1), then (noting that in this case k > 1)

kheb(0,0,0) 1
—_ = — < 1.
k2 k2

Finally, if A, » p n.x = b* ged(k, ), then we have

W = (1 (22~ 1) gcachry?)

k
Since b || m in this case, we may write gcd(k,t) = b€d, where gcd(b,d) = 1, b || ¢ and

k = be*dkg for ged(ko, m) = ged(kg, b) = 1. Therefore,

Penp(0,0,0) 1+ (b* —1)b*0d?
k2 - bzg+2d2k(2)

s

which is maximised if k¢ = 1. In this case, we have k = b gcd(k, t), and therefore we may write

Penb(0,0,0) 1+ (b? = 1) ged(k,0)>  p2 -1 . 1
k2 - b? ged(k,1)? T2 b2 ged(k,1)?

To maximise this, we need to minimise ged(k, ¢), which is gcd(k, t) = 1. Note that in this case

rk,ht,0(0,0,0)

2 1.
Since At +r =0 (mod b), we have
t
wht+r Wh,b -
R w_
b ri,b
Qb,t(r;h’b)z t = t )
ht,b W_,p

where 7 denotes the inverse of # (mod b). Then by equation (3.7), we have

t 2ninrt g g 2n
2nblw_,;pe b 2n e N3 w_pip 2xinri
Ct,b,r(n) ~ 1 e b

N\ S|~ /7
(24n)%wt_r bbt+1 2 3 4‘/§nb5+1 wt—r,b
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as n — oo, where we use that 7, (x) ~ \/ZL as x — oo. Using equation (1.1), we obtain
X

1 w_rf,b 2nminrt
2

Cz,b,r(”) N _b%‘f'l wi e ¢t lfb ,}/[,
p() 0 otherwise.
By equation (3.3), we have
1 =
pi(a,b;n) = BP(”) +y Z 5 e pr(n),
r=1

and so dividing through by p(n) yields

1 bl Wri,b ,(ni-a)r .
+ i ra L if b J1t,

C n
—ar t,b,r( ) - —rb

b2 o)

S| = S =

otherwise

as n — oo. This completes the proof in the case where b|z. Otherwise, setting 7 = —rf shows

1

b_
pi(a,bin) 1.1 Whab pat-mh _ T, K(a,b,t;n)
p(n) bopi e, b b3+!
as n — oo. The evaluation of K (a, b, t; n) in Proposition 3.4 then completes the proof. O

Proof of Corollary 1.2. To derive Corollary 1.2, it is enough to consider the leading constants in
Theorem 1.1. Namely, it suffices to show that for a, b fixed, c¢;(a, b;n) depends only on n (mod b),
which is clear from the definition of equation (1.4). |

4. Proof of Theorem 1.4 and Corollary 1.5

Here we recall the relevant generating functions for the Poincaré polynomials of the Hilbert schemes
that pertain to Theorem 1.4.

4.1. Work of Gottsche and Buryak, Feigin and Nakajima

For convenience, we let P(X;T) be the usual Poincaré polynomial
P(X;T) := Z by (X)T/ = Z dim(H,(X,Q))T,
J J

which is the generating function for the Betti numbers of X. For the various Hilbert schemes on n points
we consider, the work of Goéttsche and Buryak, Feigin and Nakajima [3, 4, 10, 11] offers the generating
function of these Poincaré polynomials as a formal power series in g. Namely, we have the following.

Theorem 4.1 (Gottsche). We have that

0o (o)

[n] ! !
G(T;q) = ZP((CZ) ;T)qn =11 I=T2m2gm ~ F5(T%q)’

n=0 m=1
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Theorem 4.2 (Buryak and Feigin). If @, 8 € N are relatively prime, then we have that

oo a1\ Ta.
Gap(T;q) ::ZP(((C2)[ ]) B;T)qn X ar+,6’)l_[

n=0

1= q(a+ﬁ)m

Remark. The Poincaré polynomials in these cases only have even degree terms. The odd index Betti
numbers are always zero. Moreover, letting 7 = 1 in these generating functions give Euler’s generating
function for p(n). Therefore, we directly see that

p(n) = P((CZ)["]; 1) - P(((CZ)["])TM[;; 1),

confirming (1.5). Of course, the proofs of these theorems begin with partitions of size n.

Arguing as in the proof of Corollary 3.2, we obtain the following generating functions for the modular
sums of Betti numbers.

Corollary 4.3. For 0 < a < b, the following are true.
(1) We have that

00

n b-1
ZB(a,b; (Cz)[ ])q" = %Z £, "G5 q).
r=0

n=0

(2) If @, B € N are relatively prime, then we have

iB a, b; ((62)["])TM q" = 1?(‘“@ (&h:a)
e > b Sb a,p\5p>4)-

r=0

4.2. Wright’s variant of the Circle Method

The classical Circle Method, as utilised by Hardy—Ramanujan and many others, derives asymptotic or
exact formulas for the Fourier coefficients of g-series by leveraging modular properties of the generating
functions. More recently, a variation of the Circle Method due to Wright has grown increasingly
important in number theory. For the proof of Theorem 1.4 and Corollary 1.5, we use Wright’s variation,
which obtains asymptotic formulas for generating functions carrying suitable analytic properties.

Remark. Ngo and Rhoades [21] proved a more restricted version® of the following proposition where
the generating function F split as two functions. Our purposes do not require such a splitting, so we
state the proposition in terms of a single function F.

Proposition 4.4. Suppose that F(q) is analytic for g = e %, where z = x + iy € C satisfies x > 0 and
ly| < &, and suppose that F(q) has an expansion F(q) = ¥,;>, c(n)q" near 1. Let c, N, M > 0 be fixed
constants. Consider the following hypotheses:

(1) As z — 0 in the bounded cone |y| < Mx (major arc), we have
L[N 4
F(e™?) =zBe= Z a;7) + 05(|Z|N) ,

J=0

where ay € C, A € RY and B € R.

3We note that hypothesis 4 in Proposition 1.8 of [21] is stated differently than our hypothesis 2 in Proposition 4.4 below.
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(2) As z — 0 in the bounded cone Mx < |y| < m (minor arc), we have
|F(e7)| <4 efe@ A0

for some k € R*.

If (1) and (2) hold, then as n — oo, we have for any N € R*

N-1
c(n) = n;<—23_3>ezm(z P+ 0(,1—1!)),
r=0

IR yvALas: ,
(‘m)‘/z T(j+B+3+r)
2\m r!F(j+B+%—r)'

r
where p, == 3, ajcj —;andcj, =
j=0

Proof. By Cauchy’s Theorem, we have
1 F
C(n):_/ (q)dq
c

27 qn+1 ’

where C is a circle centred at the origin inside the unit circle surrounding zero exactly once counter-
clockwise. We choose |g| = e~ with A := ,/%. Set

. A
l ZB+jez
AJ(I’Z) = 2—71_1‘/(;1 qu,

where C; is the major arc. We claim that

N-1
c(n) = Z @;A;(n)+ O(n%(_B_N_l)ezm). 4.1
=0

For this, write
N-1
c(n) = > a;A;(n) = Ei(n) + Ex(n),
i=0

where

N-1

1 F(q) 1 / -B -4 B4 -
& = — dg, €& = — F z — iz’ =g " dg,
1(n) 2mi /62 gt q 2(n) 2w Je, (@) e Z et q

7=0

where C, is the minor arc.
We next bound & (n) and & (n). For £ (n), we have, by condition (1)

N-1
o\ B _A ;
F(e?)zBe = - Z ;7| <5 |z|N.

7=0

Note that on C, x = A and that

< exp(Z\/A_n).

(£
exp| — +nz
Z
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Since the length of C; is ~ A, we obtain
& (n) < Az|N+B exp(ZVAn).

OnC;,wehave y < A, implying |z| ~ \/lﬁ This gives & (n) satisfies the bound required in equation (4.1).
On C,, we estimate

|F(q)| < e%(A_K).
Therefore,
E1(n) < |F(q)|lg)™ < ex A=  (Q=)VAn,

The required bound equation (4.1) follows. Using Lemma 3.7 of [21] to estimate the integrals A ;(n)
now gives the claim. O

4.3. Proof of Theorem 1.4 and Corollary 1.5
We now apply the Circle Method to the generating functions in Theorems 4.1 and 4.2.
Proof of Theorem 1.4. Using first Corollary 4.3 (1) and then Theorem 4.1, we obtain

.:oo ‘ 2[n])n:_ ar
Hap(q) : ;B(a,b,((ﬁ) q b(1+62|b) MZ;) 1§b (g ’ )

r#z

We want to apply Proposition 4.4. For this, we first show (M > 0 arbitrary) that we have as z — 0 on
the major arc |y| < Mx

1 22
Hap(e™?) = E(l+62|b),/%e§(1+0(|z|)). (4.2)

Recall that we have P(q) := 37" p(n)q" = (g; ¢)='. First we note the well-known bound (for |y| < Mx,

asz — 0)
P(e) = \[5=e® (1+0(12l).

Next we consider for { # 1 on the major arc. By Theorem 2.1 (3)

F; (42’ q)

52 .
. (gZi Z) _ (bZZ)b F(%) ﬁ( _ 2"])%66222(1 +0(|z]) < IZI_Ne%
3\¢, se j=

for any N € N. This gives equation (4.2).
Next we show that we have as z — 0 on the minor arc |y| > Mx

oy

H,p(e™?) < o5 ) (4.3)

It is well-known (and follows by logarithmic differentiation) that for some C > 0
C

1
|P(e7%)| < xZet ¥,
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We are left to bound on the minor arc. For this, we write

1
F3(42q)

Lo = .
g Z ( é«Zrm )
Noting that |1 — £2"™g™| > 1 — |q|™, we obtain

1
Fs(fir;Q)

so we are done once we show that

__lal
1-1q]

q

Log <
1-47rq

+log(Plql)

q

o c
_ 2
1 gbq

1-|ql x

for some C > 0. Note that

1
——— =0y, (1)
1-42rg

and thus

lq|
1 -1ql

q p—
1-¢7q

1
= -+ Ob’r(l),
X

giving equation (4.3). The claim of (1) now follows by Proposition 4.4.
(2) By Corollary 4.3 (2) and Theorem 4.2, we have

N [n]\Tes
Hab.ap(q) = ZB(a,b;((cz) ) )qn

n=0
(qa/+ﬁ’ qa/+ﬁ)w

=—(1+62|b)P(q)+— P

1<r<b-1 1(§§r;q“+ﬁ)(q;Q)m
ri*

We show the same bounds as in (1) with the only additional condition that

22 b-2
M<Z i 220 44)
b 15r<% 22021 sin(n‘;gr)

We only need to prove the bounds for
( qa+ﬁ g a+f )
Fi (4&’; q‘”ﬁ) (45 @)oo

Ha,ﬁ(q) =
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for {ir # 1. We may assume without loss of generality that 1 < 2r < b. We start by showing the major
arc bound. By Theorem 2.1 (1) and equation (2.8), we have, for z on the major arc

2 g2 +¢§’¢(<§’,2,1)
e 6z 6(atp)z (a+B)z

Ha,ﬁ(q) <

So to prove the major arc bound, we need to show that for some & > 0

2 2r 2r
(2ol FE20)
6 z V4

We first rewrite

, ) cos(“”%) +i s1n(4’"”)
-
ro(ar2)=) —
n=1

Now note the evaluation for 0 < 8 < 27 (see, for example, [32])

i cos(nf) m*  60(2m —6)

g 6 4 '
Thus we are left to show

27%r > Sin(‘%)
2 W~ = Z 2
b n
n=1

This follows by the definition of M given in equation (4.4). O

Proof of Corollary 1.5. This follows immediately from Theorem 1.4 and the definition of d(a, b) in
equation (1.6). O

5. Examples

This section includes examples of the main results in this paper.

5.1. Examples of Theorem 1.1 and Corollary 1.2

This subsection pertains to Han’s #-hook generating functions. For convenience, we define the proportion
functions

pl(a’b;n)

Y. (a,b;n) = ()

Example. In the case of r = 3, we find that

H3(&q) =1+ q+2¢*> +36¢° + 2+38)q* + (1 +68)g° + (2 + 9§Z)q6 + (6§ + 9§Z)q7

+(1 +3&+ 18§-‘z)q8 +

https://doi.org/10.1017/fms.2022.45 Published online by Cambridge University Press



26 Kathrin Bringmann et al.

and the three generating functions H3(a, 3; ¢) begin with the terms

H3(0,3;q) =1+q+2q2+2q4+q5+2q6+q8+...,
H3(1,3;9) =3¢° +3¢* +64° +6¢" +34% + ...,
H3(2,3:9) =9¢°+9¢” +18¢% + .. ..

Theorem 1.1 implies (independently of @) that

1 ,,\/Z 1
p3(a,3;n) ~ ™I L2 pn).
12V3n 3

The next table illustrates the conclusion of Corollary 1.2, that the proportions W3 (a, b;n) — %

n ¥3(0,3;n) W;(1,3:n) W3(2,3:n)
100 ~ 0.4356 ~ 0.1639 ~ 0.4003
500 ~ 0.3234 ~ 0.3670 ~ 0.3096
600 ~ 0.3318 ~0.3114 ~ 0.3567
2100 ~ 0.3320 ~ 0.3348 ~ 0.3332
2300 ~ (0.3330 ~ 0.3345 ~ 0.3325
2500 ~ 0.3324 ~ 0.3337 ~ 0.3339

Example. We consider a typical case where the modular sums of #-hook functions are not equidis-
tributed. We consider ¢ = 2, where we have

Ha(£,) =1+ q+26¢% + (1+28)¢% + 5624 + (25 + 552)q5 + (1 + 1053)q6 + (552 + 1053)417
+(2§ + 20§4)q8 —
The three generating functions H(a, 3; ¢) begin with the terms

H»(0,3;q) =1+qg+¢°+11¢°+ 104" + .. .,
Hy(1,3;q) =2¢% +2¢° +2¢° +22¢% + . . .,
H>(2,3;9) =5¢* +5¢° +5¢" +.. ..

Theorem 1.1 implies that

Ala.n)  xfz  Alan)
12V3n 3

where A(a,n) € {0,1,2} satisfies the congruence A(a,n) = 2 —a — n (mod 3). This explains the
uneven distribution established by Corollary 1.2 in this case. In particular, we have that

p2(a,3;n) ~ p(n),

0.

lim p:(a,3;3n+2-a) _

Of course, this zero distribution is weaker than the vanishing obtained in Theorem 1.3.
The next table illustrates the uneven asymptotics for n = 0 (mod 3).
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n ¥, (0,3:n) ¥, (1,3:n) ¥ (2,3;n)
300 ~0.7347 ~ 0.2653 0
600 ~ 0.6977 ~0.3022 0
900 ~ 0.6837 ~0.3163 0
4500 ~ 0.6669 ~ 0.3330 0
4800 ~ 0.6669 ~ 0.3330 0
5100 ~ 0.6668 ~0.3331 0

Example. We consider another typical case where the modular sums of 7-hook functions are not
equidistributed. We consider ¢ = 4, where we have

Hy(&9) = 1+q+2¢° +3¢° + (1 +48)g" + (3 +46)g° + (3+88)q° + 3+ 128)q”
+ (4+4§+ 14§2)q8+....

The three generating functions Hy(a, 3; ¢) begin with the terms

H4(0,3;9) :1+q+2q2+3q3+q4+3q5+3q6+3q7+4q8+...,
Hi(1,3;q) =4¢* +4¢° +8¢° + 124" +44% + . ..,
Hi(2,3;q) = 14¢5 + . . ..

Theorem 1.1, restricted to partitions of integers that are multiples of 12, gives

$.-p(12n)  ifa=0,

pa(a,3:12n) ~ 33 p(12n)  ifa=1,

% - p(12n) ifa=2.

The next table illustrates these asymptotics.
n ¥, (0, 3;12n) Yy (1,3;12n) ¥, (2,3;12n)

10 ~ 0.4804 ~ 0.3373 ~0.1823
50 ~ 0.4500 ~ 0.3381 ~0.2119
60 ~ (0.4485 ~ (0.3373 ~ 0.2142
180 ~0.4447 ~0.3340 ~0.2212
190 ~ 0.4447 ~ 0.3339 ~0.2214
200 ~ 0.4446 ~0.3338 % 0.2215

5.2. Examples of Theorem 1.4 and Corollary 1.5

Finally, we consider examples of the asymptotics and distributions in the setting of Hilbert schemes on
n points.
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Example. By Gottsche’s Theorem (i.e., Theorem 4.1), we have

& [n] S 1 I
G(T;q) =y P((c?) "s7)q" = -
T ,,Z::‘) ( )q ,1;[1 L=T2m=2g™  F3(T7*:T?q)

=1+q+(1+T2)q2+(1+T2+T4)q3+(1+T2+2T4+T6)q4+....

Theorem 1.4 (1) implies that

[n] 1 2n
Bla,3;(C? ) ~ o™
( ( ) 12/3n

and so Corollary 1.5 implies that §(a, 3;n) — % The next table illustrates this phenomenon.

n 5(0,3;n) 5(1,3;n) 6(2,3;n)
1 1 0 0

2 0.5000 0 0.500
18 ~ 0.3377 ~ 0.3325 ~ 0.3299
19 ~ 0.3367 ~ 0.3306 ~ 0.3327
20 ~ 0.3333 ~ 0.3317 ~ (0.3349

Example. By Theorem 4.2, for @ =2 and 8 = 3, we have

0o [n]\ 23 1 o (1 _ q5m)
G23(T5q) == ) P (C2 ) :Tlq" =
2 ; ( ) Fi((T% %) ,Dl 1—g™

=1+q+2q2+--~+(6+T2)q5+(10+T2)q6+(13+2T2)q7+....

Theorem 1.4 (2) implies that

(n]\Te-p 1 o
B a,3;((cz)n) - T,
12V3n

so Corollary 1.5 yields that 6 3(a, 3;n) — % The next table illustrates this phenomenon.

n 62,3(0,3:n) 62,3(1,3:n) 623(2,3:n)

1 1 0 0

2 1 0 0
100 ~ 0.3693 ~ 0.2658 ~ 0.3649
200 ~ 0.3343 ~ 0.3176 ~ 0.3481
300 ~ 0.3313 ~ 0.3293 ~ 0.3393
400 ~0.3318 ~ (0.3324 ~ (0.3358
500 ~ 0.3324 ~ 0.3332 ~ 0.3343
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