EULER-KRONECKER CONSTANTS FOR CYCLOTOMIC FIELDS
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ABSTRACT. The Euler-Mascheroni constant v = 0.5772...1is the K = Q example of an Euler-Kronecker
constant yx of a number field K. In this note we consider the size of the v, = vk, for cyclotomic fields
K4 := Q(¢q)- Assuming the Elliott-Halberstam Conjecture (EH), we prove uniformly in @ that

% > g —logg| = o(log Q).

Q<q<2Q

In other words, under EH the 74/ log ¢ in these ranges converge to the one point distribution at 1. This
theorem refines and extends a previous result of Ford, Luca, and Moree for prime q. The proof of this
result is a straightforward modification of earlier work of Fouvry under the assumption of EH.

1. INTRODUCTION

For a number field K, the Fuler-Kronecker constant vg is given by
oo (Sk(s) 1
= L, <<K(s) e 1) ’

where (x(s) is the Dedekind zeta-function for K. The Euler-Mascheroni constant v = 0.5772...is the
K = Q case, where (g(s) = ((s) is the Riemann zeta-function. We consider the constants v, = vk, for
cyclotomic fields K, := Q((,), where ¢ € Z* and (, is a primitive gth root of unity.

The recent interest in the distribution of the 7, is inspired by work of Thara [4, [5]. He proposed, for
every ¢ > 0, that there is a Q(e) for which

(c1 —¢)logg <74 < (c2+¢)logg
for every integer ¢ > Q(¢), where 0 < ¢; < ¢y < 2 are absolute constants. This conjecture was disproved
by Ford, Luca and Moree in [2] assuming a strong form of the Hardy-Littlewood k-tuple Conjecture.
However, assuming the Elliott-Halberstam Conjecture (see [I]), these same authors also proved that the
conjecture holds for almost all primes ¢, with ¢; = co = 1. We recall the Elliott-Halberstam Conjecture
as formulated in terms of the Von Mangoldt function A(n), the Chebyshev function ¢ (x), and Euler’s
totient function ¢(n).

Conjecture EH. If we let

Y(x
Bmiza)= Y Ap)- 20
_ p(m)
p=a (mod m)
p<zx prime
then for every € > 0 and A > 0, we have
2l Pl ol Sae ooy
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Assuming EH, Ford, Luca, and Moree proved (see Theorem 6 (i) of [2]), for every € > 0, that
Vq
log ¢
for almost all primes ¢ (that is, the number of exceptional ¢ < x is o(7(x)) as * — o0). Here we extend

and refine this result to all integers q.

l—e<——<1+c¢

Theorem 1.1. Under EH, for Q — 400 we have
Q D g —logg| = o(log Q).
Q<q<2Q
Remark. Theorem shows that EH implies that the distribution of 7,/log ¢ in [@Q, 2Q] converges to

the one point distribution supported on 1.

To prove Theorem we use of work of Fouvry [3] that allowed him to unconditionally prove that

Q > g =1logQ + O(loglog Q).

Q<g<2Q

Our conditional result is a point-wise refinement of Fouvry’s asymptotic formula under EH.
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3. PrROOF OF THEOREM [L.1]

For brevity, we shall assume that the reader is familiar with Fouvry’s paper [3]. The key formula is
(see (3) of [3]) the following expression for ~, in terms of logarithmic derivatives of Dirichlet L-functions:

L’ 1 X
1) W=k Y D
1<g*|q x* mod g*
Here the inner sum runs over the primitive Dirichlet characters x* modulo ¢*.
We follow the strategy and notation in [3]. However, we replace the sums I';(Q) and I'y ;(Q) defined
in [3] with the pointwise terms v;(¢) and 71,;(¢). Following the approach in [3], which is based on (),
we have

Yo =7+ A(q) + B(q) — 12(q) — 13(q) — (v1,1(0) + 71,.2(¢) + 71,3(0)),

:Z Z [l{(l,x*)—i—@X*(x),

q*|lg x* mod g¢*

B(q) = Z Py (z) - Z Z D+ (),

X mod ¢q q*lg x* mod g*
XF#X0

1 /”” p@y(tiel) —v(t)

r—1 t

where

Yo(q) = t,



1 xT
q>=x_1/1 3
n<t

(n E)#l

min(gq, . _
i — / / “ ( (u,i,Ql) ¢(u)du> dt.
Y1,2( / /rj:n ol < QP (u; 321) —(u) du> dt,
Y(u;g,1) — P(u)
r—1 / /mln 901 t < u2 du) dt.

100 1+

713

To complete the proof, for € > 0 we let z := ¢'*° and z; := ¢' . Apart from 7 1(g), which gives the
—log g terms in Theorem we shall show that these summands are all small.

Estimation of A(q): By Proposition 1 and Remark (i) of [3], we have

2Q
> Al =0@Q).
9=qQ
Estimation of B(q): For B(q), by equation (26) and Lemma 3 of 3 [ ] we simplify

e DD Ve

q*lg x* mod ¢g* n<t
(n,g)>1

_ x_l/z Z Zlogpx

q*|lg x* mod ¢* p’<t
plg

R X xS e (a)

quP”<td| v —1,4") P’

p’rq
logp q
o)1 (d at
pU<t dlp’—1 a*lq
plg d|g*
plg*
We note that the innermost sum
q*
> (%)
T*lq
d|g*
plg*
is always 0 or 1, so we conclude that B(q) < 0 for any ¢. Proposition 2 of [3] gives
2Q
> B(g) =
7=Q
and so we have
2Q
> IB(g)] = 0(Q)



4 LETONG HONG, KEN ONO, AND SHENGTONG ZHANG

Estimation of 72(¢): By Lemma 8 of [3], uniformly in @ we have

> w(uig 1) <.

Therefore, we have that

and so we conclude that

2Q
> (gl = 0(Q).
=Q

Estimation of v3(q): By definition, 73 is positive, so by equation (36) of [3], we have
2Q

> (@] =0(Q).

q=Q
Estimation of 7 1(q): Since ¢(u;q,1) =0 for u < ¢, we have

B 1 T min(g,t) Q/J(U)
’Yl,l(Q) - _:1: 1 /1 (/1 7du dt.

Dividing both sides of Equation (41) of [3] by @, we have

M.1(q) = —logg +O(1).
Estimation of 7 2(¢): By the same proof as equation (42) of [3], we have

Z I71,2(q)| < eQlog Q.

Summing the above estimates, we conclude unconditionally that

2Q
1

=¥ |vg—logq| = |’Y13 )|+ O(elog Q).
Q =Q

Estimation of v; 3(q): If we assume Conjecture EH holds, then we have (as in Lemma 7 of [3]) that

Z ©(q) ’@D(ZC; q,a) — % =0y (Qw(log :U)—A+2)‘
q<2Q

(q,a)=1
Therefore, we find that

1 &
0 > 1.s(@)] = Ocalog™ Q).
=Q

By combining these estimates, we obtain the main result
2Q
Q: Z g —log g = o(log Q),
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