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Abstract. The Euler-Mascheroni constant γ = 0.5772 . . . is the K = Q example of an Euler-Kronecker

constant γK of a number field K. In this note we consider the size of the γq = γKq for cyclotomic fields

Kq := Q(ζq). Assuming the Elliott-Halberstam Conjecture (EH), we prove uniformly in Q that

1

Q

∑
Q<q≤2Q

|γq − log q| = o(logQ).

In other words, under EH the γq/ log q in these ranges converge to the one point distribution at 1. This

theorem refines and extends a previous result of Ford, Luca, and Moree for prime q. The proof of this

result is a straightforward modification of earlier work of Fouvry under the assumption of EH.

1. Introduction

For a number field K, the Euler-Kronecker constant γK is given by

γK := lim
s→1+

(
ζ ′K(s)

ζK(s)
+

1

s− 1

)
,

where ζK(s) is the Dedekind zeta-function for K. The Euler-Mascheroni constant γ = 0.5772 . . . is the

K = Q case, where ζQ(s) = ζ(s) is the Riemann zeta-function. We consider the constants γq = γKq for

cyclotomic fields Kq := Q(ζq), where q ∈ Z+ and ζq is a primitive qth root of unity.

The recent interest in the distribution of the γq is inspired by work of Ihara [4, 5]. He proposed, for

every ε > 0, that there is a Q(ε) for which

(c1 − ε) log q ≤ γq ≤ (c2 + ε) log q

for every integer q ≥ Q(ϵ), where 0 < c1 ≤ c2 < 2 are absolute constants. This conjecture was disproved

by Ford, Luca and Moree in [2] assuming a strong form of the Hardy–Littlewood k-tuple Conjecture.

However, assuming the Elliott-Halberstam Conjecture (see [1]), these same authors also proved that the

conjecture holds for almost all primes q, with c1 = c2 = 1. We recall the Elliott-Halberstam Conjecture

as formulated in terms of the Von Mangoldt function Λ(n), the Chebyshev function ψ(x), and Euler’s

totient function ϕ(n).

Conjecture EH. If we let

E(m;x, a) :=
∑

p≡a (mod m)
p≤x prime

Λ(p)− ψ(x)

φ(m)
,

then for every ε > 0 and A > 0, we have∑
m≤x1−ε

max
(a,m)=1

|E(m;x, a)| ≪A,ε
x

(log x)A
.

Date: April 19, 2022.

Key words and phrases. Cyclotomic fields; Elliott-Halberstam Conjecture; Euler-Kronecker constants.

2010 Mathematics Subject Classification. 11M06, 11N37, 11R18, 11R42, 11Y60.

1



2 LETONG HONG, KEN ONO, AND SHENGTONG ZHANG

Assuming EH, Ford, Luca, and Moree proved (see Theorem 6 (i) of [2]), for every ε > 0, that

1− ε <
γq

log q
< 1 + ε

for almost all primes q (that is, the number of exceptional q ≤ x is o(π(x)) as x→ ∞). Here we extend

and refine this result to all integers q.

Theorem 1.1. Under EH, for Q→ +∞ we have

1

Q

∑
Q<q≤2Q

|γq − log q| = o(logQ).

Remark. Theorem 1.1 shows that EH implies that the distribution of γq/ log q in [Q, 2Q] converges to

the one point distribution supported on 1.

To prove Theorem 1.1, we use of work of Fouvry [3] that allowed him to unconditionally prove that

1

Q

∑
Q<q≤2Q

γq = logQ+O(log logQ).

Our conditional result is a point-wise refinement of Fouvry’s asymptotic formula under EH.
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3. Proof of Theorem 1.1

For brevity, we shall assume that the reader is familiar with Fouvry’s paper [3]. The key formula is

(see (3) of [3]) the following expression for γq in terms of logarithmic derivatives of Dirichlet L-functions:

(1) γq = γ +
∑

1<q∗|q

∑
χ∗ mod q∗

L′(1, χ∗)

L(1, χ∗)
.

Here the inner sum runs over the primitive Dirichlet characters χ∗ modulo q∗.

We follow the strategy and notation in [3]. However, we replace the sums Γi(Q) and Γ1,j(Q) defined

in [3] with the pointwise terms γi(q) and γ1,j(q). Following the approach in [3], which is based on (1),

we have

γq = γ +A(q) +B(q)− γ2(q)− γ3(q)− (γ1,1(q) + γ1,2(q) + γ1,3(q)),

where

A(q) =
∑
q∗|q

∑
χ∗ mod q∗

L′

L
(1, χ∗) + Φχ∗(x),

B(q) =
∑

χ mod q
χ ̸=χ0

Φχ(x)−
∑
q∗|q

∑
χ∗ mod q∗

Φχ∗(x),

γ2(q) =
1

x− 1

∫ x

1

φ(q)ψ(t; q, 1)− ψ(t)

t
dt,
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γ3(q) =
1

x− 1

∫ x

1

∑
n≤t

(n,q) ̸=1

Λ(n)

n
dt,

γ1,1(q) =
1

x− 1

∫ x

1

∫ min(q,t)

1

(
φ(q)ψ(u; q, 1)− ψ(u)

u2
du

)
dt,

γ1,2(q) =
1

x− 1

∫ x

1

∫ min(x1,t)

min(q,t)

(
φ(q)ψ(u; q, 1)− ψ(u)

u2
du

)
dt,

γ1,3(q) =
1

x− 1

∫ x

1

∫ t

min(x1,t)

(
φ(q)ψ(u; q, 1)− ψ(u)

u2
du

)
dt.

To complete the proof, for ε > 0 we let x := q100 and x1 := q1+ε. Apart from γ1,1(q), which gives the

− log q terms in Theorem 1.1, we shall show that these summands are all small.

Estimation of A(q): By Proposition 1 and Remark (i) of [3], we have

2Q∑
q=Q

|A(q)| = O(Q).

Estimation of B(q): For B(q), by equation (26) and Lemma 3 of [3], we simplify

B(q) = − 1

x− 1

∫ x

1

∑
q∗|q

∑
χ∗ mod q∗

∑
n≤t

(n,q)>1

Λ(n)χ∗(n)

n
dt

= − 1

x− 1

∫ x

1

∑
q∗|q

∑
χ∗ mod q∗

∑
pv≤t
p|q

log p · χ∗(pv)

pv
dt

= − 1

x− 1

∫ x

1

∑
q∗|q

∑
pv≤t
p|q
p∤q∗

∑
d|(pv−1,q∗)

log p

pv
· φ(d)µ

(
q∗

d

)
dt

= − 1

x− 1

∫ x

1

∑
pv≤t
p|q

∑
d|pv−1

log p

pv
· φ(d)

∑
q∗|q
d|q∗
p∤q∗

µ

(
q∗

d

)
dt.

We note that the innermost sum ∑
q∗|q
d|q∗
p∤q∗

µ

(
q∗

d

)

is always 0 or 1, so we conclude that B(q) ≤ 0 for any q. Proposition 2 of [3] gives

2Q∑
q=Q

B(q) = O(Q),

and so we have
2Q∑
q=Q

|B(q)| = O(Q).
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Estimation of γ2(q): By Lemma 8 of [3], uniformly in Q we have

2Q∑
q=Q

ψ(u; q, 1) ≪ u.

Therefore, we have that
2Q∑
q=Q

|φ(q)ψ(t; q, 1)− ψ(t)| = O(Qt),

and so we conclude that
2Q∑
q=Q

|γ2(q)| = O(Q).

Estimation of γ3(q): By definition, γ3 is positive, so by equation (36) of [3], we have

2Q∑
q=Q

|γ3(q)| = O(Q).

Estimation of γ1,1(q): Since φ(u; q, 1) = 0 for u < q, we have

γ1,1(q) = − 1

x− 1

∫ x

1

(∫ min(q,t)

1

ψ(u)

u2
du

)
dt.

Dividing both sides of Equation (41) of [3] by Q, we have

γ1,1(q) = − log q +O(1).

Estimation of γ1,2(q): By the same proof as equation (42) of [3], we have

2Q∑
q=Q

|γ1,2(q)| ≪ εQ logQ.

Summing the above estimates, we conclude unconditionally that

1

Q

2Q∑
q=Q

|γq − log q| = 1

Q

2Q∑
q=Q

|γ1,3(q)|+O(ε logQ).

Estimation of γ1,3(q): If we assume Conjecture EH holds, then we have (as in Lemma 7 of [3]) that∑
q≤2Q
(q,a)=1

φ(q)

∣∣∣∣ψ(x; q, a)− ψ(x)

φ(q)

∣∣∣∣ = OA

(
Qx(log x)−A+2

)
.

Therefore, we find that

1

Q

2Q∑
q=Q

|γ1,3(q)| = Oϵ,A(log
−AQ).

By combining these estimates, we obtain the main result

1

Q

2Q∑
q=Q

|γq − log q| = o(logQ),
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Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Email address: clhong@mit.edu

Dept. of Mathematics, University of Virginia, Charlottesville, VA 22904

Email address: ko5wk@virginia.edu

Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

Email address: stzh1555@mit.edu


	1. Introduction
	2. Acknowledgements
	3. Proof of main
	References

