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re-evaluated.
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1 | INTRODUCTION

Smallholder agriculture constitutes the livelihood of over two billion
people and contributes a third of the global food supply (Ricciardi et al.,
2018; Steward et al., 2014). Simultaneously, smallholder farms are
within the world's most biodiverse landscapes (Newbold et al., 2015),
but (semi-)natural habitats, defined as habitats with most biodiver-
sity and ecosystem processes intact, are being lost rapidly to make
room for agricultural production in these landscapes (IPBES, 2019).
To alleviate poverty and food insecurity in rural communities, there
has been a push to intensify and specialize agriculture with synthetic
input use (Snapp, 2020)—even though the evidence base for benefits
is ambiguous (Rasmussen et al., 2018). Both the loss of semi-natural
habitats as well as intensification are main drivers of biodiversity de-
cline and loss of ecosystem services (ES) supporting agricultural pro-
duction (IPBES, 2019). Smallholders, defined by farming an area <2 ha
by the FAO, are underrepresented in studies investigating the effects
of changing land-use and agricultural practices on biodiversity and ES
(Steward et al., 2014). The few studies available from tropical small-
holder agricultural systems usually focus on commercially important
crops such as coffee and cacao and not on crops directly consumed by
smallholders (Sasson, 2012; Vanlauwe et al., 2014).

Biodiversity and associated ES in crop fields are influenced by
the composition of the surrounding landscape (Martin et al., 2019).
Generally, beneficial biodiversity, such as pollinators and natural
enemies react positively to increased landscape level semi-natural
habitat cover (Dainese et al., 2019), while crop pests respond in-
consistently (Tamburini et al., 2020). Different semi-natural hab-
itat types, such as shrubland or grassland, may differ in their
potential as source habitats for beneficial biodiversity (Michalko &
Birkhofer, 2021), and may mediate the delivery of ecosystem ser-
vices, but this is rarely investigated. In addition, the importance of

were positively related to damage. Carabid abundance was higher fields with high
bean damage, and increased carabid richness in fields with high maize damage.
Parasitoid abundance was negatively associated with bean damage.

4. Synthesis and application. Our results suggest that maintaining biodiversity and
ecosystem services on smallholder farms is not achievable with a ‘one size fits all’
approach but should instead be adapted to the landscape context and the priori-
ties of smallholders. Shrubland is important to maintain carabid and soil bacterial
diversity, but legume cultivation beneficial to natural enemies could complement
pest management in landscapes with a low shrubland cover. An increased number
of agroecological soil management practices can lead to improved pest control

while the effectiveness of agroecological pest management practices needs to be

agroecology, biodiversity, crop diversity, intercropping, landscape change, pest control,

these landscape elements for different taxa may differ across spatial
scales (Martin et al., 2019).

At the field level, biodiversity and related ES are directly impacted
by the management choices of farmers. For example, intercropping
has the potential to counteract landscape simplification, by increas-
ing habitat heterogeneity for beneficial biodiversity at the field level
while maintaining productivity (Brandmeier et al., 2021). Increasing
plant diversity in managed landscapes decreases pest abundance and
crop damage and increases natural pest control (Wan et al., 2020).
Not all crops, however, provide the same services; whether intercrop-
ping benefits are affected by crop type or can be optimized by a com-
bination of management at the field and the landscape level is largely
unknown. In tropical agriculture, agroecology represents a more
holistic and sustainable alternative to conventional agriculture and
addresses both ecological and social aspects of food systems (Wezel
et al., 2020). Agroecology benefits smallholders through, improved
food security and nutrition (Bezner Kerr et al., 2021) and climate
change adaptation (Snapp et al., 2021). Agroecology aims to reduce
synthetic input dependency by including a wide range of agroecolog-
ical pest management practices, and agroecological soil management
practices (Table 1). Cobenefits agroecological practices and ES are
assumed, but not often empirically studied.

We aimed to investigate the combined effects of crop type
(bean monoculture, maize-bean intercrop and maize monoculture)
and landscape shrubland and grassland cover, as well as an increased
number of pest and soil management practices across a range of in-
dicators related to biodiversity and ES relevant to crop production in
African smallholder agriculture. Our study area in Malawi illustrates
many of the challenges faced by smallholder communities in sub-
Saharan Africa. Northern Malawi is located in the Miombo woodland
ecoregion, a global biodiversity hotspot, which is highly threatened
by habitat conversion and overexploitation despite its importance
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TABLE 1 All possible agroecological pest management practices
and agroecological soil management practices applied in the
sampled fields.

Practice group Practice type

Agroecological pest
management

Manual removal/killing of insects
Spreading ash on affected crops
Adjusting planting dates

Using non-synthetic repellent of any kind

Applying a soup made of small fish (with
the aim of attracting ants)

Alternative soil landscaping: box ridges,
pit planting, contouring, terracing or
low-till practices

Agroecological soil
management

Planting of vetiver grass hedges
Use of mulching

Legume intercropping
Incorporation of legume residues
Crop rotation with legumes

Use of compost

Use of animal manure

Agroforestry

for ES provision (Ribeiro et al., 2020). Participatory research with
farmers identified research questions about pest management and
how to foster natural enemies to pest control (Enloe et al., 2021),
providing the opportunity to study the effects of these practices on

biodiversity and ES. We aimed to test the following hypotheses:

1. We expect that intercropping, more pest and soil management
practices, and increased shrubland and grassland cover increase
the abundance and diversity of beneficial taxa and affect spe-
cies assemblages. For mobile taxa, such as birds or bees, we
expect the scale of landscape effects to be larger, whereas
for less mobile taxa, such as ants, we expect a smaller scale.

2. Crop type and shrubland and grassland cover interactively affect
pest control and pollination, with beneficial effects of intercropping
and increased shrubland and grassland cover on pest control and pol-
lination. Additionally, a higher number of pest and soil management
practices is expected to have positive outcomes for ES on fields.

3. We predict that: (A) fields with a higher abundance and diversity
of natural enemies have reduced pest damage on crops, and (B)
a higher bee abundance and diversity and soil bacterial diversity

improve seed set on beans.

2 | MATERIALS AND METHODS

2.1 | Study area and site selection

We conducted our field experiments from February to May 2019 in
24 villages in Mzimba District, northern Malawi. We were granted
a research and arthropod sample export permit by the National

Commission of Science and Technology in Malawi. The villages were
distributed across independent gradients of shrub- and grassland
cover in the surrounding landscape at different scales (Figure 1;
Table S1), as well as varying numbers of agroecological pest manage-
ment and agroecological soil management practiced at the house-
hold scale. We use the terms ‘pest management practices’ and ‘soil
management practices’ to refer to a range of traditional and intro-
duced agroecological practices aimed at reducing pest damage and
improving soil health respectively (Table 1). Villages were separated
from each other by at least 2 km. There is limited conservation en-
forcement in shrublands or grasslands in the study region and they
are therefore impacted by activities of local communities, such as
livestock grazing or extraction of firewood (Gumbo et al., 2018).

In each village we selected a maize monoculture and a maize-
bean intercropped field (Figure 1; Figure S2; Table S2). In 14 villages,
we additionally selected a bean monoculture field, resulting in a total
of 62 fields (mean field size: 0.30ha; range: 0.08-0.80ha). Malawi
is located in the seasonal tropics and experiences a marked peak in
rainfall from December to late March (Mungai et al., 2016). All se-
lected fields were sown between December 2018 and January 2019,
at the onset of the first rains. Fields were solely rain-fed throughout
the growing season. Field management, including soil preparation
and sowing, were done by hand-hoe, as per usual practice. We aimed
for consistency between the fields across villages, but since we used
smallholder farmers' existing fields, we could not fully control for

planting densities and crop varieties (Table S2).

2.2 | Datacollection

Biodiversity was assessed through two rounds of data collection be-
tween 22 February and 26 April 2019 (Table S2). The first round of
observations was performed when crops were still growing vegeta-
tively. During the second round of observations crops were starting
to produce cobs (maize) and pods (beans). Because birds are highly
mobile, we recorded (i) the abundance and richness of birds at the
village level (n = 24) using point counts (Supporting Information 1i).
For assessing ecosystem service potentials, birds were split into
feeding guilds (carnivorous, nectivorous, insectivorous, granivorous,
omnivorous, frugivorous; Table S3). In parallel, on all 62 fields (ii) we
collected arthropod taxa using pitfall traps for ground-dwelling ar-
thropods (carabids, spiders and ants) and pan traps for flower vis-
iting taxa (parasitoids, other wasps and bees; Figure S3) for which
we analysed richness (carabids, ants and bees) and abundances
(carabids, spiders, parasitoids, other wasps and bees). Trap catches
resemble activity densities but we refer to them as ‘abundances’
for the sake of simplicity throughout (Supporting Information 1ii).
During the second sampling round, we collected soil samples from
the fields and (iii) extracted bacterial DNA from these samples
(Supporting Information 1iii). To quantify pest control services, we
assessed (iv) pest damage on the leaves of 20 bean and/or maize
plants per fields. These assessments were done in parallel to the
biodiversity assessment (Supporting Information 1iv). At harvest,
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in this case.

we additionally assessed (v) damage on the cobs of 10 plants on 40
fields, and (vi) bean seed set on 10 plants on 14 fields (Supporting
Information 1vi). Detailed information on the methodology and
recording of individual taxa and ecosystem services is provided in
Supporting Information 1. Although our study included animals, we
did not require approval by an ethics committee, as only arthropods
were collected.

Additionally, we (vii) quantified shrubland and grassland cover
in a 250, 500 and 1000m radius surrounding all fields using sat-
ellite imagery and GIS (Supporting Information 1vii). To quantify
the implementation of pest and soil management practices on and
around the fields, we surveyed households managing these fields.
Surveys were performed from 8 to 25 March 2020. One household
declined to participate in the survey. Each household that partici-
pated in the survey answered questions, translated into the native
language (chiTumbuka) concerning the implementation of various
pest and soil management practices on the surveyed fields. Farmers
were asked about specific practices (i.e. ‘Do you perform X practice
on this field?’), but were also asked about any additional practices
performed on the fields. Farmers reported five agroecological pest
management practices and nine agroecological soil management
practices (Table 1). Agroecological practices explicitly excluded syn-
thetic inputs, such as synthetic pesticides and fertilizers. Pest and
soil management practices were summed per field for the analyses.

For the pest and soil management survey, the Institutional Review
Board of Cornell University for Human Subjects Research reviewed

and approved the research study design (protocol 1811008425).

2.3 | Statistical analysis

We tested the effects of crop type, pest and soil management prac-
tices, shrubland and grassland cover, as well as the interaction be-
tween the latter two and crop type on (i) biodiversity (cumulative
across sampling rounds, see above). For the abundance and rich-
ness of birds at the village level, we used negative binomial general-
ized linear models, for the abundance and/or richness of arthropod
taxa and the Shannon diversity of soil bacteria we used generalized
linear mixed models with Gaussian (soil bacteria), Poisson or nega-
tive binomial (arthropods) residual distributions and ‘village’ as a
random intercept (Supporting Information 2iii, Table 2; Figure S4).
Additionally, we assessed the effects of crop type, shrubland cover,
grassland cover, pest and soil management practices on species
assemblages of birds, carabids, ants, bees and soil bacteria using
nonmetric multidimensional scaling (NMDS, Table 3). We also
tested the effects of crop type, shrubland cover, grassland cover,
pest and soil management practices on (ii) ecosystem services (%
maize leaf damage, % cob damage, % bean leaf damage and bean
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TABLE 3 Results of the PERMANOVAs assessing responses of species assemblages to shrubland cover, grassland cover and the number
of agroecological pest- and soil management practices. Df indicate residual degrees of freedom. (*) indicates p <0.100, * indicates p <0.05,

*okok

indicates p <0.001. For model specifications, see Supporting Information 2.

Response Distance Scale Predictors F-value p-value df R?
Birds Bray-Curtis 1000m Shrubland cover 1.13 0.341 18 0.45
Grassland cover 0.67 0.761
Pest management practices 0.69 0.731
Soil management practices 0.76 0.677
Carabids Bray-Curtis 1000m Crop type 0.80 0.773 41 0.85
Shrubland cover 3.17 <0.001***
Grassland cover 1.19 0.245
Pest management practices 1.00 0.435
Soil management practices 0.01 0.965
Ants Jaccard 1000m Crop type 0.83 0.302 52 0.88
Shrubland cover 1.54 0.969
Grassland cover 2.45 0.690
Pest management practices 0.69 0.809
Soil management practices 0.95 0.545
Bees Bray-Curtis 1000m Crop type 0.94 0.392 44 0.86
Shrubland cover 1.74 0.991
Grassland cover 1.61 0.547
Pest management practices 1.11 0.928
Soil management practices 0.96 0.784
Soil bacteria Bray-Curtis 500m Crop type 0.86 0.341 45 0.99
Shrubland cover 1.54 0.011*
Grassland cover 1.08 0.317
Soil management practices 1.94 0.130

seed set) using linear models for bean seed set, generalized linear
models and generalized linear mixed models with beta distributions
for bean and maize damage respectively. All models stated above
were calculated separately for shrubland and grassland covers at
250, 500 and 1000m scales. Out of these, we selected the model
with the lowest AlCc as the most suitable landscape scale of effect
for each response (Table S4). Finally, we tested (iii) the effect of bio-
diversity (abundance or richness) on all ecosystem services, using
linear models for bean seed set, and generalized linear models and
generalized linear mixed models with a beta distribution bean and
maize damage respectively (Table 4). All models were checked care-
fully for under- and overdispersion, collinearity and suitability of the
chosen residual distributions using the ‘performance’ package and
fulfilled model assumptions (Liidecke et al., 2021). Detailed informa-
tion on the statistical analyses and the packages used is provided in
Supporting Information 2. All analyses were performed in R version
4.0.5 (R Core Team, 2020).

3 | RESULTS

We observed 897 birds of 37 species (Table S3) and collected 256
carabids of 71 (morpho-)species (Table S5), 2460 spiders, 58 ant

(morpho-)species (Table S6), 928 parasitoids, 560 other wasps and
296 bees of 54 (morpho-)species (Table S7). DNA metabarcoding
of the soil bacterial microbiome resulted in over 15,500 OTUs, al-
though after data cleaning and low-abundance filtering, 515 taxa
remained (Table S8). Based on AlCc, we selected models with the
largest scale of 1000m for the abundance and richness of birds, all
arthropod taxa and bean seed set, whereas the 500m scale was
selected for soil bacteria Shannon diversity and maize leaf damage.
The smallest scale of 250 m was selected for bean leaf and maize cob
damage (Table S4).

3.1 | Effects on biodiversity

Increasing shrubland cover altered carabid (Figure S4B) and soil
bacteria assemblages (Figure S4E, Table 3). Shrubland cover was
positively related to carabid abundance in maize but negatively in
bean or intercrop (Figure 2a). Additionally, crop type and shrubland
interactively affected parasitoid abundance, with parasitoids in
bean fields negatively related to shrubland cover. In maize and inter-
cropped fields, the abundance of parasitoids was significantly lower
than in beans and remained relatively constant across the shrubland
gradient (Figure 2g). Across the gradient of shrubland cover, spider
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TABLE 4 Results of the linear models (LMs), generalized linear models (GLMs) and generalized linear mixed models (GLMMs) for the

effects of the biodiversity measured on different ecosystem service responses. Df

num*

numerator degrees of freedom; Df

den*

: denominator

degrees of freedom; R? = R? (LMs), pseudo R? (GLMs with beta distribution) or marginal R?/conditional R? (GLMMs). (*) indicates p<0.1,*
indicates p <0.05. For model specifications, see Supporting Information 2.

Residual —
Response Model distribution  Predictors ChiZ-value p-value den R?
Bean leaf damage (%) GLM Beta Carabid abundance 4.80 0.029* 1,31 0.02
Spider abundance 1.48 0.224 1,31
Parasitoid abundance 3.87 0.049* 1,31
Wasp abundance 1.41 0.234 1,31
Insectivorous bird abundance 0.08 0.783 1,31
Bean leaf damage (%) GLM Beta Carabid richness 0.49 0.483 1,33 0.01
Ant richness 0.03 0.870 1,33
Insectivorous bird richness 0.23 0.633 1,33
Bean seed set LM Gaussian Bee activity density 0.34 0.572 1,14 0.03
Bee richness 0.05 0.839 1,13
Soil bacterial richness 0.01 0.927 1,12
Maize leaf damage (%) GLMM Beta Carabid abundance 2.01 0.157 1,43 0.09/0.28
Spider abundance <0.01 0.946 1,43
Parasitoid abundance 0.60 0.437 1,43
Wasp abundance 2.93 0.087 (%) 1,43
Insectivorous bird abundance 0.02 0.900 1,43
Maize leaf damage (%) GLMM Beta Carabid richness 4.17 0.041* 1,44 0.11/0.28
Ant richness 0.10 0.755 1,44
Insectivorous bird richness 0.43 0.511 1,44
Maize cob damage (%) GLMM Beta Carabid abundance 0.85 0.357 1,32 0.07/0.09
Spider abundance 1.54 0.215 1,32
Parasitoid abundance 0.07 0.790 1,32
Wasp abundance <0.01 0.951 1,32
Insectivorous bird abundance 0.51 0.475 1,32
Maize cob damage (%) GLMM Beta Carabid richness <0.01 0.958 1,33 0.01/0.09
Ant richness 0.08 0.772 1,33
Insectivorous bird richness <0.01 0.965 1,33

abundance was highest in beans, lowest in maize and intermediate in
intercropped fields (Figure 2e). Shrubland cover did not affect other
taxa significantly (Figure 2, Figures S4 and S5). Neither grassland
cover nor the number of pest management practices affected any
of the investigated taxa significantly (Tables 2 and 3). Carabid abun-
dance and richness (Figure 2b,d) and wasp abundance (Figure 2j;
Table 2) were positively related to the number of soil management

practices.

3.2 | Effects on ecosystem services

Crop type affected the leaf damage by herbivores in both maize
and beans (Table 2). For beans, leaf damage was significantly
higher in intercropped beans compared to beans in monoculture
(Figure 3a), whereas in maize, intercropped maize experienced less
damage than maize in monoculture (Figure 3d). Grassland cover

did not affect bean leaf damage significantly (Figure 3c), but in-
creased maize leaf damage both in monoculture and intercrop
(Figure 3e). The number of pest management practices was posi-
tively related to leaf damage in maize (Figure 3f), but not beans
(Figure 3c). Shrubland cover and the number of soil management
practices did not affect ecosystem services significantly (Table 2).
Bean seed set or maize cob damage were not significantly affected
by crop type, shrubland cover, grassland cover or pest or soil man-

agement practices (Figure S6; Table 2).

3.3 | Effects of biodiversity on ecosystem services

Carabid abundance was positively related to bean leaf damage
(Figure S7A) whereas higher parasitoid abundance was negatively
related to bean leaf damage (Figure S7C). Carabid richness was posi-
tively related to maize leaf damage (Figure S7E). Abundances and
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FIGURE 2 Abundance or richness responses (b & c) to shrubland cover by crop type and the number of agroecological soil management
practices. The scale of effect of shrubland cover was chosen based on AICc comparison (Table S4). Plotted taxa responded significantly

to any one of these effects. Letters on the left-hand side of the panels indicate significant differences between crop types (p <0.05), lines
represent model predictions (for statistics, see Table 2). Solid coloured lines represent a significant crop type x shrubland cover interaction
(p<0.05); dashed lines show nonsignificant interactions. Confidence intervals were omitted to increase visibility. A solid black line
represents a significant (p <0.05) soil management practices effect (with the 95% confidence interval). Dots are true datapoints. Since no
taxon responded significantly to grassland cover or the number of agroecological pest management practices, these results are not shown
(for statistics, see Table 2). Remaining taxa (that showed no significant responses) are shown in Figure S5.
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richness of other taxa did not significantly affect the damage on
maize leaves, maize cobs and bean leaves (Figure S7). We also found
no significant effects of bees or soil bacteria Shannon diversity on
bean seed set (Table 4).

4 | DISCUSSION

We show that the responses to crop type, landscape composition
and agroecological management practices are not consistent across
different taxa and ecosystem services (ES). Consequently, maintain-
ing biodiversity and ES on smallholder farms does not have a ‘one-
size fits all’ solution but depends on landscape and crop context.
Although more challenging for making broad recommendations,
adapting practices to suit a particular agroecosystem and socio-
cultural context is central to agroecological approaches, which are
guided by adaptive principles rather than recipes for management
(Rosset & Altieri, 2017).

4.1 | Effectson biodiversity

Despite a generally positive relation between vegetation diversity
and insect predator abundance and richness (Wan et al., 2020) we
find that parasitoid, spider and carabid abundances were higher in
bean monoculture fields than in maize or intercropped fields. Our

results indicate that not monoculture per se, but rather maize cul-
tivation affects natural enemy abundance negatively in our system.
Beans may also provide relatively palatable leaves, floral resources
and denser ground cover compared to maize. Additionally, maize is
an input-intensive crop (Norris et al., 2016), even in our relatively
low intensity system (Burke et al., 2022). We also found that the
relative benefits for biodiversity of bean cultivation compared to
maize were much higher in areas with little surrounding shrublands
or grasslands. Since farmers have little individual influence on the
habitats surrounding their fields, our results suggest that farmers
in landscapes with little shrublands or grasslands could maintain or
even increase biodiversity on their fields by growing grain legumes.
As cobenefits, legumes are an important addition to the nutrient-
poor Malawian diet (Kamanga et al., 2014), and their cultivation
improves soil quality (Mhango et al., 2013). Therefore, increased leg-
ume cultivation in such landscapes should be encouraged in farmer
outreach projects.

In contrast with our expectations, parasitoid abundance in
beans was negatively related to increasing shrubland cover. There
are several possible reasons for this: first, the presence of flowering
beans in a maize-dominated landscape, low in shrublands that con-
tain flowering vegetation, could provide nectar as a food source as
well as host pests for reproduction, concentrating parasitoids there.
Second, shrublands may provide suitable and attractive alternative
habitat for parasitoids, resulting in a parasitoid dilution in shrubland-
dominated landscapes. For carabids and spiders, certain species
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could benefit from specific microhabitats or pest species provided
by beans. In addition, increasing shrubland cover altered carabid
assemblages, suggesting that as shrublands are converted, species
are being filtered out and replaced by others. Assuming this change
is unidirectional (i.e. shrublands are converted to agricultural fields,
but not the other way around), this means that for maintaining the
regional species pool, shrublands should be conserved. Similarly, in-
creasing shrubland cover altered the assemblages of soil bacteria,
with potential consequences for crop performance and protection
against pests (Badri et al., 2013). With the exception of soil bacteria,
which responded on a smaller scale, we find that the 1000 m scale
was the scale of effect for the abundance and richness of birds and
arthropods, indicating that landscape management on a larger spa-
tial scale is important to maintain the diversity of mobile taxa. We
found no evidence that surrounding grasslands affected biodiversity
on smallholder fields in our study. In our context, the cover of grass-
lands was, however, low compared to shrubland cover, potentially
limiting the importance of surrounding grassland cover for biodiver-
sity and ES.

Overall, we found little effect of agroecological pest or soil man-
agement practices on arthropods, except for carabid abundance
and richness and wasp abundance which were positively related to
the number of soil management practices used. The number and in-
tensity of soil disturbances can be an important factor modifying
carabid assemblages (Pisani Gareau et al., 2020). Increasing carabid
richness through agroecological soil management may have the ad-
ditional benefit of improved pest control, as it is richness, and not
only abundance, that is important for the delivery of ecosystems
services to crops (Dainese et al., 2019). In addition, increased habitat
heterogeneity in fields with a higher number of agroecological soil
management practices may promote wasp activity, further indicat-
ing that agroecology can have important cobenefits for biodiversity
and natural pest control on smallholder farms. The effects of differ-
ent agroecological pest and soil management practices potentially
differ between crop types, but it was not possible to investigate such
interactions with our study design. Investigating the efficacy of var-
ious agroecological practices in different crops should be prioritized

in future studies.

4.2 | Effects on ecosystem services

Maize benefitted from reduced leaf damage in intercropped fields,
whereas beans were disadvantaged when they were intercropped
with maize. This highlights that trade-offs may occur between part-
ner crops in mixtures—and that not all crops have less herbivory
when intercropped compared with cultivation in monocultures
(Wan et al., 2020). In some cases, increasing semi-natural or non-
crop habitat cover could mitigate pest pressures in crops (Tamburini
et al., 2020). However, we found that maize experienced increased
pest damage with increasing grassland cover. As maize itself is a
grass (family Poaceae), grasslands may harbour herbivores that may
also feed on maize. The inconsistent responses of pest damage on

the two crops highlight the need to better understand the specific
interactions between pests and their natural enemies in different
crops to design appropriate pest management strategies and adapt
these to the priorities of smallholder farmers (Wezel et al., 2014).
Soil properties might mediate relationships between landscape level
drivers and ES as land-use is not random and more fertile areas
tend to be converted to agriculture first (Serneels & Lambin, 2001).
Therefore, understanding the underlying soil properties of agricul-
tural areas may further elucidate the relationships between land-
scapes and ES.

Agroecological pest management is proposed as a low-cost, cul-
turally appropriate method of managing pests in smallholder farms
(Harrison et al., 2019). Surprisingly, the number of pest management
practices was positively associated with maize leaf damage, suggest-
ing that agroecological pest management failed in decreasing pest
damage. However, it is likely that farmers who observed a lot of
pests or pest damage also performed a higher number of pest man-
agement practices in reaction on their fields, and we were not able

to determine the causal directionality in this study.

4.3 | Effects of biodiversity on ecosystem services

Carabid abundance and richness were positively related to bean and
maize leaf damage respectively. We suspect this is because carabids
were attracted to fields with high prey availability, as suggested by
(Boetzl et al., 2020). In contrast, increasing parasitoid abundance
was related to reduced pest damage in beans, emphasizing the im-
portance of this group for biological pest control (Wan et al., 2020).
Although it is challenging to clearly disentangle the biodiversity
contributions to ES in our study, the indirect relationships shown
here (e.g. higher natural enemy abundances in bean monocultures)
suggest that maintaining biodiversity is important for ES delivery to

smallholder fields.

5 | CONCLUSIONS

5.1 | Synthesis and applications

We found that responses by different taxa and ecosystem services
to crop type, landscape composition and agroecological practices
vary by context. Adapting and improving practices to suit the land-
scape setting and the priorities of the smallholder farmer will be im-
portant when putting the findings into practice. Our findings also
call for a better ecological understanding of pest and natural enemy
dynamics in these systems to improve the efficiency of agroecologi-
cal practices.

First, our study highlights the benefits of legume cultivation, es-
pecially in landscapes with low shrubland cover (< ~50%) as a method
of increasing natural enemy abundances on crops. We find evidence
that increased natural enemy abundance, particularly of parasitoids,
decreased bean damage. In practice, this means that bean cultivation
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in landscapes with low shrubland cover may benefit pest control and
foster parasitoid populations. Second, our study highlights the im-
portance of maintaining semi-natural shrublands for the diversity of
carabids and soil bacteria. We encourage stakeholders to increase
efforts to maintain the quantity and quality of remaining shrublands
to conserve biodiversity and the ecosystem services they provide.
Sustainable use of the remaining Miombo woodlands should maintain
biodiversity as well as resources and ecosystem services essential for
the livelihoods of smallholders (Gumbo et al., 2018). Third, we show
that agroecological soil management is positively related to important
natural enemies of crop pests. As diversification of agroecological soil
management practices also provides important benefits to soil health
and social outcomes (Bezner Kerr et al., 2021), farmers should be en-
couraged to implement, diversify and experiment with agroecological
soil management on their farms as a low-cost alternative to synthetic
fertilizers. Finally, we found that intercropping benefitted maize, but
disadvantaged beans and that agroecological pest management had
limited damage-reducing success. Farmers thus need to consider
trade-offs and to adapt the implementation of intercropping to the
crop they prioritize. Informed decisions, based on a better ecologi-
cal understanding of the complex nature of pest and natural enemy
dynamics, and of which (group of) practices should be used in which
contexts, can help farmers focus their pest management where it is
most important. Teaching farmers how to monitor pests early on be-
fore major crop damage is caused may lead to a better timing of agro-
ecological pest management practices and increase its effectivity.

In conclusion, encouraging legume cultivation, increasing agro-
ecological soil management and the conservation of remaining shru-
bland habitats, are all important factors for maintaining biodiversity
and ecosystem services on smallholder farms, and therefore import-
ant components for fostering the sustainable development of small-
holder agriculture in the tropical agroecosystems of sub-Saharan
Africa.
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