23 Routledge

Taylor & Francis Group

The Professional Geographer

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/rtpg20

A Geospatial Approach to Assessing the Impact of
Agroecological Knowledge and Practice on Crop
Health in a Smallholder Agricultural Context

Daniel Kpienbaareh, Jinfei Wang, Isaac Luginaah, Rachel Bezner Kerr, Esther
Lupafya & Laifolo Dakishoni

To cite this article: Daniel Kpienbaareh, Jinfei Wang, Isaac Luginaah, Rachel Bezner Kerr,
Esther Lupafya & Laifolo Dakishoni (2023): A Geospatial Approach to Assessing the Impact of
Agroecological Knowledge and Practice on Crop Health in a Smallholder Agricultural Context, The
Professional Geographer, DOI: 10.1080/00330124.2022.2146908

To link to this article: https://doi.org/10.1080/00330124.2022.2146908

@ Published online: 02 Feb 2023.

"
@ Submit your article to this journal &'

4
h View related articles &

@ View Crossmark data ('

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journallnformation?journalCode=rtpg20



W) Check for updates

A Geospatial Approach to Assessing the Impact of Agroecological
Knowledge and Practice on Crop Health in a Smallholder
Agricultural Context

Daniel Kpienbaareh
Hlinois State University, USA

Jinfei Wang and Isaac Luginaah
Western University, Canada

Rachel Bezner Kerr
Cornell University, USA

Esther Lupafya and Laifolo Dakishoni
Soils, Food, and Healthy Communities, Malawi

In the context of food insecurity in resource-poor settings, agroecology (AE) has emerged as an important approach pro-
moted for improving crop productivity, yet few studies have demonstrated how a combination of agroecological methods
can improve crop health and thereby crop productivity. Using a geospatial approach, this study investigated whether agro-
ecological practices can improve crop health in smallholder contexts. We compared leaf area indexes (LAISs) of crops on
AE and non-AE farms and prospectively predicted the impact of AE using vegetation indexes (VIs). We found that crops
on AE farms produced higher average %rowing season LAIs for maize and pigeon peas (1.28 m*/m”) and maize and beans
(1.29m?/m?) farms compared to 0.97m*/m? and 0.80 m*/m?, respectively, for the same crops on the non-AE farms. The
higher LAIs suggest that the combination of farming strategies practiced on the AE farms produced healthier crops on AE
farms. Random forest regression prospective predictions generated statistically significant higher LAIs for maize and beans
(R* = 0.90, root mean square error [RMSE]=0.32m?/m?) and maize and pigeon peas (R? = 0.88m?*/m’, RMSE =
0.42m?/m?) on the AE farms, but predictions for the non-AE farms were not statistically significant. The findings demon-
strate that combining AE strategies can potentially improve crop productivity to enhance household food security and
income in smallholder contexts. Key Words: agroecology, agroecosystems, crop health, Malawi, random for-

est regression.

limate change, biodiversity loss, and food inse-

curity are three interrelated environmental
challenges confronting humanity in the twenty-first
century (Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services 2019). The
interacting impacts of these threats have contributed
to current challenges with the agri-food system and
the deteriorating global food insecurity situation
(Food and Agriculture Organization [FAO] et al.
2019). Recent figures show that the global food-
insecure population increased from 785.4 million in
2015 to 821.6 million in 2018, with locations
plagued by drought, conflicts, civil wars, and natural
hazards the most severely affected. In the Global
South, these threats are further exacerbated by exist-
ing economic and structural vulnerabilities including
poverty and social inequalities (FAO et al. 2018). The
majority of the population most affected by food inse-
curity in the Global South are small- and medium-
scale farmers who, paradoxically, also produce

between 51 and 77 percent of the global food supply
(Herrero et al. 2017) and sustain the food needs of
about two-thirds of the more than 3 billion rural
inhabitants worldwide (Rapsomanikis 2015).
Sub-Saharan Africa (SSA) is the region most dis-
proportionately affected by food insecurity (FAO
et al. 2019). Food insecurity is a major hindrance to
the attainment of the Zero Hunger (Sustainable
Development Goal 2) target (World Health
Organization 2018). As such, the discourse on food
insecurity has attracted significant attention in the
public policy sphere. Many of the policies designed
to address food insecurity aim to increase yield for
food crops through technical and agrochemical fixes
(Godfray and Garnett 2014), notably agricultural
mechanization, heavy reliance on agrochemicals, and
unrestrained expansion of agricultural lands. These
techno-centric approaches to increasing crop yield
are mostly favored by governments and neoliberal
international organizations in the Global North and
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have been implemented through programs such as
the new green revolution (Ingram 2011; Cabral
2019; Higgins 2020). These technological fixes have
increased yields of some crop varieties in the Global
North, notably maize and wheat. In some contexts,
however, claims of increased production have been
overstated (Messina, Peter, and Snapp 2017). Yet
these technological approaches come with high envi-
ronmental costs, including degraded agroecosystems
and biodiversity loss (Aguilera Nunez 2020;
Morrison, Brosi, and Dirzo 2020), human health
complications (Gordon et al. 2017), the erosion of
traditional knowledge systems, and the disappear-
ance of climate-resilient traditional seed varieties
(Bezner Kerr 2014). These productivist approaches
also require heavy investment in infrastructure and
production systems (Gengenbach et al. 2018), which
are mostly lacking in smallholder agricul-
ture systems.

The challenge confronting policymakers and ana-
lysts is, thus, to identify ways to increase agricultural
productivity more sustainably and equitably while
ensuring the ecological integrity of the environment
(Hodbod et al. 2016; Garbach et al. 2017).
Agroecology (AE) has emerged as a pro-poor cost-
effective alternative for increasing yields of diverse
crops, enhancing the ecological functions of ecosys-
tems, increasing the resilience of farms to external
shocks (e.g., erratic rainfall and droughts), and
ensuring autonomy without the need for external
resources (Altieri 2009; Tamburini et al. 2020). AE
is broadly defined as “the integrative study of the
ecology of the entire food system, encompassing
ecological, economic and social dimensions”
(Francis et al. 2003). As a set of practices, AE works
to ensure more resilient landscapes that preserve
ecological processes and delivery of ecosystem serv-
ices that are critical for crop production (Holt et al.
2016; Kpienbaareh et al. 2020), have short- and
long-term benefits for farmers and the environment,
and have climate change mitigation cobenefits
(Kansanga et al. 2021).

Applying a blend of AE farming strategies includ-
ing integrating natural and seminatural landscape
elements, planting cover crops, using green manure,
intercropping, and agroforestry, enriches the soil
and facilitates pest management (Shennan, Gareau,
and Sirrine 2012; Muchane et al. 2020). AE stresses
the interrelatedness of all agroecosystem compo-
nents and the complexity of ecological processes
(Bover-Felices and  Suarez-Hernandez  2020;
Douglas et al. 2020). The emphasis on this interre-
latedness implies that the success of agroecological
methods in producing the desired result depends on
their interaction with other farm management prac-
tices such as weed management and the timing of
farm-level interventions such as weeding and appli-
cation of pesticides. There are diverse frames of pre-
senting AE—as a critical theory in agricultural

science, as a practice of farmers and agriculturists,
and as a social movement comprising many social
actors interested in promoting it (Wezel et al. 2020).

In Malawi, where smallholder agriculture is pre-
dominant, there are questions about the feasibility
of AE to replace conventional agriculture in the
context of food insecurity and rapidly changing cli-
mate. Over the years, governments in Malawi have
implemented the Farm Input Subsidy Program with
policies that promote the use of synthetic fertilizers
(Lunduka, Ricker-Gilbert, and Fisher 2013). The
increased reliance on synthetic fertilizers in the
country has not led to a commensurate increase in
yield because synthetic fertilizers have not been suc-
cessful in addressing underlying issues with soil ero-
sion, deteriorating soil organic matter content, and
declining soil microorganisms, which all affect soil
health and ultimately crop health (Bi, Yao, and
Zhang 2015; Campbell et al. 2017). There is also
the additional challenge of farmers receiving fertil-
izers from government agencies at the wrong time
of the growing season, which often works against
crop yield (Momesso et al. 2022). About 39.7 per-
cent of agricultural land in Malawi is degraded
(Mbow et al. 2019), and more than 80 percent of
the population reside in rural areas and also rely on
agriculture and forest resources for their food,
energy, and other livelihood needs. Poverty is dis-
proportionately higher in these rural areas, however
(World Bank 2019). Further, the majority of the
population in Malawi is food insecure, with 40 per-
cent of children under fiveyears old facing chronic
undernutrition (National Statistical Office 2017).
These challenges call for farming strategies that
address existing social inequalities and ecological
challenges. Evidence suggests that integrating AE in
farm management can yield important benefits for
farms and the environment (Kpienbaareh et al.
2022). It is crucial, though, to monitor and assess
the impact of combinations of various agroecological
practices implemented on small farms on the growth
and health of crops in resource-poor locations such
as Malawi to identify context-specific agronomic
practices for improving health sustainably.

Typically, monitoring and assessing the impact
of agronomic practices on crop growth and health is
conducted using field experiments. Although field
experiments often produce accurate and generally
applicable results (Adimassu et al. 2017; Romaneckas
et al. 2019), such experiments are often limited in
scope (the number of different farming practices
that can be assessed simultaneously) and scale (the
spatial extent of the area that can be monitored con-
currently). Increasingly, the use of remote sensing
techniques, including satellite and unmanned aerial
vehicles (UAVs) to monitor, assess, and predict crop
health, both retrospectively and prospectively
(Danner et al. 2015; Harders et al. 2018; Cohrs
et al. 2020), has gained significance with
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improvements in the spatial and temporal resolution
of remote sensors. Most studies on monitoring and
assessing crop health have been on monocropped,
large-scale commercial farms, mainly in the Global
North, where precision agriculture has become
commonplace. Yet, it is important to monitor and
assess crop health in smallholder agriculture systems
in the Global South, where subsistence farming
practiced on relatively smaller farmlands with mixed
cropping systems is prevalent, to better understand
the impacts of the combinations of different agro-
nomic practices on crop growth and health to guide
production decisions. The objective of this study is,
therefore, to apply a remote sensing method to
assess the impact of a combination of agroecological
practices applied by smallholder farmers on crop
growth and health. We compare leaf area indexes
(LAIs) of farms managed with AE farming strategies
with farms managed using conventional agricultural
practices to assess the differential impacts of the dif-
ferent management practices on crop growth health.
In this study, we define conventional farming to
include the use of synthetic chemical fertilizers, pes-
ticides, and hybrid seeds (Sumberg and Giller 2022).
Because field experimental observations (Adimassu
et al. 2017; Romaneckas et al. 2019) reveal that the
type of farm management practices affects the bio-
physical properties of crops, we used LAls to pro-
spectively predict crop health to examine the
seasonal impacts of agronomic management practi-
ces on crop health.

Materials and Methods

Study Area Description

This study was conducted in two village areas' in
the Mzimba district in northern Malawi (Figure 1).
The Mzimba district has a total land area of
10,430km? (Government of Malawi 2018), with
moderately fertile soils of a medium to light texture,
mostly sandy-loam and loamy, with moderate to
good drainage (Gama et al. 2014). The semitropical
climatic type in the area is characterized by average
monthly maximum rainy season temperatures rang-
ing from 27°C to 33°C. In the dry season months,
temperatures usually range from 0°C to 10°C, with
June and July being the coldest months. The unimo-
dal rainfall pattern starts in November or December
and ends in April, with rainfall amounts ranging
from 800mm to 1,000mm (Li et al. 2017). The
rainfall pattern, duration of planting season, and soil
characteristics, observed in soil maps and previous
studies, in both village areas are similar (Snapp
1998; Gama et al. 2014), so crop growth patterns
would likely be similar. As in other parts of Malawi,
smallholder farming in the district is highly depen-
dent on the unimodal rainfall pattern, making it

persistently vulnerable to droughts resulting from
erratic rainfall.

Over the years, the government’s Farm Input
Subsidy Program to address low productivity and
food insecurity in the country has been largely
unsuccessful (Messina, Peter, and Snapp 2017)
because of inadequate access to these subsidized
inputs and climate variability. Amid these continuing
challenges with conventional farming and agricul-
ture in general, a growing number of nonprofit
organizations and some government agencies are
advocating for a transformation of the food system
to be less dependent on imported synthetic fertil-
izers and unsustainable land cultivation methods.
Within this context, AE is emerging as an alterna-
tive approach because it shares several similarities
with traditional farming methods and involves the
use of locally available resources. In the context of
these characteristics of the agricultural and social
conditions of the area, we seek to examine how the
application of agroecological practices contributes to
the growing effort to transform the food system in
smallholder farms.

Research Design

We compared AE farms (farms on which specific
agroecological management strategies were imple-
mented) and non-AE farms (farms on which conven-
tional methods were implemented). The AE farms
were based on an intervention called the Malawi
Farmer-to-Farmer Agroecology (MAFFA) project.
MAFFA intervention was implemented from 2012
to 2017 to use a participatory approach to AE to
improve smallholder agriculture in a context where
conventional agriculture has failed to achieve food
security and food sovereignty (Nyantakyi-Frimpong
et al. 2017). Participatory AE is an approach to prac-
ticing AE that involves the active participation of
farmers in designing, implementing, and assessing
agroecological farming strategies to improve yield
through knowledge coproduction and sharing.

Conventional agriculture practiced in the study
area involved the use of synthetic fertlizers to
improve soil conditions and agrochemicals for con-
trolling pesticides with the ultimate goal of increas-
ing yield. To improve yield, the farmers relied on
calcium ammonium nitrate 46:0:0 fertilizer and syn-
thetic agrochemicals (mainly Confidor), acquired
through the government’s Farm Input Subsidies
Program. These practices had been implemented on
the farms for the last five years. As part of the prac-
tices of these conventional farmers, residue from the
previous year was burned as a way of preparing the
land for the impending season. The structure of
soils on these farms was, therefore, likely broken
down and microbial activities were inhibited (Doerr
and Cerda 2005).
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Figure 1 Location of study areas. Four intercropped fields comprising two maize and pigeon pea and two maize and
bean fields were selected from each study location. Fields 1 and 2 implemented agroecological management practices,
whereas Fields 3 and 4 implemented conventional farming methods. Source of base map: ESRI.

On the other hand, as part of the participatory AE intercropping, bokashi fertilizer application, agrofor-
practice, the farmers were trained on various sustain- estry, and application of botanical pesticides
able soil management strategies including compost- (Kansanga et al. 2021). Composting during the study
ing, crop residue burial, legume integration and  involved the use of converting farm residue, rotten
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fruits, and other household decomposable materials
into organic fertilizers. These practices have been
used by the farmers since the AE intervention was
introduced. As such, there were long-term effects of
the methods on the soils. Residue burial involved
turning over residue from the previous season’s har-
vest into the soil using hoes and covering it with soil
before the first rains. The buried material decom-
poses and fertilizes the soil. Farmers planted legumi-
nous and cereal crops on the same farm (legume
integration or intercropping) to facilitate nutrient
recycling and nitrogen fixation in the soil. For the
maize bean intercrop, both crops were planted in the
same stand whereas, for the pigeon peas, each crop
was alternated with the other within the same row at
50 cm. Bokashi fertilizer was produced as an alterna-
tive fertilizer to synthetic fertilizer. Bokashi fertilizer
is an organic fertilizer produced from manure, soil,
maize bran, and either rotten fruits or commercial
yeast for fermentation. Agroforestry practices among
the farmers involved planting trees on farmlands,
using trees they call fertilizer trees. These fertilizer
trees, including Gliricidia sepium, are planted on cur-
rent farmlands and their roots and fallen leaves. The
botanical pesticides used in the study were prepared
from Tephrosia vogelii, Tithonia diversifiolia, and
Vernonia amygdalina for use in treating pest infesta-
tion. A recent study (Kpienbaareh et al. 2022) in the
same location revealed that farmers had higher yields
from small farmlands compared to non-AE farmers
when implementing these agroecological farming
methods. These AE intervention villages were
selected based on several considerations, including
the level of interest from the community members,
limited involvement of other organizations in the
area, and the level of food insecurity based on a base-
line survey conducted at the start of the AE interven-
tion by the research team (Bezner Kerr et al. 2016).

Selection of Farms

The two AE farms involved in this study provided a
“typical” case of agroecological management,
acknowledging that there would be some variation
in practices across a wider set of cases. The criteria
used to select the AE intervention villages were
adopted to select the non-AE village for this com-
parative study to ensure similar baseline conditions
for the two villages. A baseline survey was used to
explore the socioeconomic conditions and food
security status of the farmers. To avoid cross-con-
tamination of the agroecological management strate-
gies between the two villages, a buffer analysis was
used to construct buffers at various intervals: 5 km,
10km, 15km, and >15km around the AE interven-
tion villages. The village area with the most similari-
ties to the AE village area was approximately 18 km
away and was chosen as the non-AE village area.
Farmers from the village area were randomly

selected from the community and farmers who con-
sented had their farms included in the study.
Because the study was focused on smallholder agri-
culture, only farms that were 2.0ha or less in area
(Lowder, Skoet, and Raney 2016) were included.

To ensure uniformity, the same crop cultivars
were given freely to the participating farmers for
planting. Sampling locations on the fields (shown in
Figure 1) were identified on each farm, geolocated
using Global Positioning System devices and labeled
with letters. The geolocated coordinates in a .gpx
file format were converted to point feature classes
and stored in a file geodatabase, later exported to a
.csv file format and used to extract vegetation
indexes (VIs) computed from PlanetScope images.
The extracted values were then used for machine
learning regression analysis. To determine the num-
ber of sampling points on the farms, a grid of 5-m
squares created in ArcGIS Pro was overlaid on the
polygons of the farms and the squares were ran-
domly selected such that the center point of each
square is 10 m from the other. A sampling location
was placed in each selected square and the canopies
of crops were measured for use in computing the
LAIs. The number of sampling points on each farm
was determined by the area of the farm (in ha) to
ensure proportionality and avoid duplication of the
data collected. As such, although the number of
samples might seem small, they represent the farm
management practices that this study seeks to assess,
making the result generalizable.

Data Collection

In Situ Field Measurements

Digital hemispherical photographs (DHPs) of crop
canopies were captured using a Nikon D500 and an
AF DX Fisheye-Nikkor lens for use in computing
reliable estimates of in-situ LAls. Measurements
were conducted at weekly intervals from 24
December 2019 until the end of the season in April
2020 when LAIs natural tailed off. The timing of
LAI collection dates was to ensure that phenological
stages of crop growth are closely monitored.
Sisheber et al. (2022) noted that the optimal time
interval to collect LAI information for crops is
eightdays and concluded that this time interval is
ideal for monitoring crop growth and development,
hence their health. We also considered the amount
of cloud cover in the atmosphere for field data col-
lection because of the use of optical satellite remote
sensing images, which are highly susceptible to
cloud cover. Nine field sampling events took place
at twenty-six selected sampling locations over the
growing season. At each sampling location, fourteen
DHPs were captured viewing vertically downward
above the crop canopies within the 5-m square areas
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Figure 2 Binarized output of image processor for (A) upward-viewing, and (B) downward-viewing digital hemispherical

photographs.

around the sampling locations. Upward-viewing
photographs were captured when the maize crops
were about 1 m tall. The upward-viewing pictures
were captured in such a way that the leaves of both
crops on the intercropped fields were included in
each view. Figure 2 is the output of CAN-EYE
computation of LAI in both upward- and down-
ward-viewing cameras.

Satellite Data

The PlanetScope constellation of satellites currently
has about 180+ CubeSats (4-kg satellites), with

images  having  four  spectral  bands—blue
(455-515 nm), green (500-590 nm), red (590670 nm),
and near-infrared (NIR; 780-860 nm)—with 3-m spa-
tial resolution. Level-3B surface reflectance products
that have been atmospherically corrected by Planet
Labs using the 6S radiative transfer model and ancil-
lary data from MODIS (Planet Labs Inc. 2020) were
used. A total of four images (Table 1)—two images
for each study site—were used to match the period of
field data collection. Image acquisition was inhibited
by the dense cloud cover that is usually present over
the area during the rainy season (Kpienbaareh et al.
2021). These images were stacked together to create
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Table 1 Crops, dates of satellite images capture, planting, and harvest dates of crops

Field no./Crop type

Image capture date

Planting date Harvest date

1. Maize and pigeon pea
2. Maize and beans
3. Maize and pigeon pea
4. Maize and beans

26 December 2019 and 21 February 2020
26 December 2019 and 21 February 2020
4 January 2020 and 4 February 2020
4 January 2020 and 4 February 2020

9 December 2019 14 April 2020
9 December 2019 14 April 2020
3 December 2019 16 April 2020
3 December 2019 16 April 2020

Table 2 Description of vegetation indexes

Vegetation index Equation Reference Remarks

Normalized Difference OB — e Rouse et al. (1974) Enhances the contrast between soil
Vegetation Index (NDVI) and vegetation

Difference Vegetation NIR — red Tucker (1979) Sensitive to the amount of
Index (DVI) vegetation; distinguishes between

! soil and vegetation

Enhanced Vegetation 26 g Huete et al. (1997) Uses the blue reflectance region to

Index (EVI) correct for soil background signals

(1+L) (NIR—7ed)

Soil Adjusted Vegetation (NIR+rediD)

Index (SAVI)

( NIR—green )

Green Normalized Vegetation (IR green)

Index (GNDVI) ) m— )
Modified Soil Adjusted 2xnir+1 — (2mr2+1) — 8x(nir—red)
Vegetation Index
2 (MSAVI2)
Transformed Normalized szj = ;jﬁﬂ +0.5
Difference Vegetation
Index (TNDVI)
Weighted Difference
Vegetation Index (WNDVI)

nir — X red

Ratio Vegetation Index (RVI) i

Huete (1988)

Gitelson, Kaufman, and

Qi et al. (1994)

Senseman, Bagley, and

Gitelson (2004)

Pearson and Miller (1972)

and to reduce atmospheric
influences, including
aerosol scattering

Corrects for the influence of soil
brightness when the vegetative
cover is low

More sensitive to chlorophyll
concentration than NDVI

Mainly applied in plant growth
analysis; unlike the SAVI, it does
not rely on a soil correction line

Presents a better correlation
between the amount of green
biomass that is found in a pixel

Very sensitive to variations in the
atmosphere; has a correction
factor on the slope of the soil line

Very correlated with leaf area index
and leaf biomass; sensitive to
green vegetation

Merzlyak (1996)

Tweddale (1996)

Note: L = canopy background adjustment factor that addresses nonlinear, differential noninfrared and red radiant transfer through a
canopy. L=0.5 in this case because the canopy cover of maize averaged over the growing season is dense.

multiband images for each location using the colloca-
tion tool in the Sentinel Application Platform (SNAP)
version 7.0 (ESA 2018). The final multiband images
were used for computing Vls.

Data Analysis

The DHPs were processed using the CAN-EYE soft-
ware (Weiss and Baret 2017) to derive in situ LAIs.
Processing of the images was limited to view zenith
angles smaller than 57.5° to minimize the number of
mixed pixels (Mougin et al. 2014). The default values
proposed by CAN-EYE for the zenith (2.5°) and azi-
muthal (5°) angle resolutions were maintained for the
analysis. Precedence has shown the gap fraction at
57.5° zenith angle Py(57.5°) to be independent of the
leaf inclination distribution function (Welles and
Norman 1991) and to be capable of providing a good
indirect estimate for LAL. CAN-EYE estimates LAI
based on the measures of the gap fracdon—the trans-
mission of light through the canopy considering the
vegetation elements as opaque (Jonckheere et al. 2005).
The software uses a lookup table to provide an estima-
tion of LAI from the gap fraction, assuming a random
distribution of phyto-elements within the canopy that

is without clumping (Weiss et al. 2004). The software
allows for the computation of an effective (LALy) from
the gap fraction estimated from hemispherical photo-
graphs by averaging the gap fraction across azimuth
and photographs for each zenithal ring. The true LAI
is derived from the LAIy using the following expres-

sion:
LAlg = MLAI (1)

where A is the aggregation or dispersion parameter
(Nilson 1971) or clumping index (Chen and
Black 1992).

Extraction of Vegetation Indexes and Prediction
of LAl

We selected nine VIs that are often used as proxies
for vegetation dynamics or green LAI (Vina et al.
2011; Gitelson et al. 2015; Kimm et al. 2020) to
establish the relationship between LAIs and VIs
(Table 2). We also used a correlation analysis to
remove variables that are highly correlated to reduce
the potential for compounding variables. VI values
in the 5-m square areas within which the DHPs
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Figure 3 Temporal trends of in-situ leaf area index (LAl) during the growing season for (A) maize and pigeon pea intercrop on
Fields 1 and 3, and (B) maize and beans on Fields 2 and 4 for agroecology (green features) and non-agroecology (orange fea-
tures) farms. Annotations represent data collected on farm management practices and cultural practices during field visits.

were captured were summarized for each sam-
pling location.

A random forest (RF) regression (Breiman 2001)
was used for analyzing the relationships. RF is a
machine learning method that ensures good perfor-
mance with several or even a single variable if the
input variable is highly important and representative
and the sample size is small (Tillack et al. 2014
Liang et al. 2016) and is very useful for modeling
nonlinear relationships, making it appropriate for
our data. RF assumes that different individual pre-
dictors predict incorrectly in different areas, result-
ing in an overall incorrect prediction. This
incorrectness is improved when the prediction
results of individual predictors are combined. To
identify the most important VIs for predicting LAIs,
two RF models were fitted—one with all nine VIs
(RF All model) and the other with the five most
influential predictors of LAIs (RF Inf model) using
the varImpPlot() function in the R statistical pack-
age, as has been done in previous studies (Lee,
Wang, and Leblon 2020).

The models were compared using the coefficient
of determination (R”) and the predicted values of the
models were compared using the root mean square
error (RMSE) metric. The R” is the proportion of the
variance in the dependent variable that is predictable
from the predictor variable. RMSE characterizes the
mean differences between measured and estimated
variables (Willmott 1982). Mathematically, higher R
and smaller RMSE represent better model accuracy
(Peduzzi et al. 2012; Yue et al. 2018).

The best fit model of the two RF models was
used to create a LAI prediction map for each of the
individual images that were combined into the mul-
tiband images for the analysis. Using the individual
images enabled us to identify the most suitable time
of growth for predicting the impact of farm manage-
ment practices on crop health. The writeRaster()
function was used to generate the prediction maps
in .tif format. The final maps were visualized, and
cartographic elements were added. The predicted
LAI values were extracted from the sampling points
using the Zonal Statistics tool. The results were
compared with the in-situ LAI and the RMSE values
computed.

Results

Temporal Trends of LAl for Agroecology and Non-
Agroecology Farms

Figure 3 shows the temporal trends of in-situ LAI
for all the sampling locations. The results reveal a
steady increase, a peak, and a decline in the LAI val-
ues in all fields. The LAIs in the AE farms, however,
increased more rapidly and higher than those on the
non-AE farms, even though crops on the AE farms
were planted six days later than those on the non-AE
farms. The trends of LAI growth appear similar dur-
ing the early stages of crop growth for the maize and
pigeon pea intercrop, but the disparity increases
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Figure 4 Variance importance plots showing the most influential variables. (A and B) Plots for the agroecology fields;
(C and D) plots for the non-agroecology fields. SAVI = Soil-Adjusted Vegetation Index; GNVDI = Green Normalized
Difference Vegetation Index; EVI = Enhanced Vegetation Index; MSAVI2 = Modified Soil Adjusted Vegetation Index 2,
WNDVI = Weighted Difference Vegetation Index; NDVI = Normalized Difference Vegetation Index; RVI= Ratio
Vegetation Index; TNDVI = Transformed Normalized Difference Vegetation Index.

sharply in the latter stages of growth, with the mea-
surement showing continuous growth in AE farms
(peaking at 1.28 m?/m?) and tailing off in non-AE
farms after 0.80 m*/m”_earlier than on the AFE farms.
Similarly, LAIs in the maize and bean farms showed
higher values for the AE farms (peaking at 1.29 m?/
m”) than the non-AE farms (peaking at 0.97 m?/m?)
in the same number of days after planting.

Farm-Level Management Practices and LAl Trends

The annotations in Figure 3 show the farm manage-
ment practices applied on the farms. Comparing the
trends of the in-situ LAI growth with the docu-
mented management practices shows a relationship
between the patterns of LAI change and farm man-
agement practices. The AE farmers timely applied
compost and managed weeds on their farms more

frequently than their non-AE farm counterparts.
Further, the compost and other soil-enhancing inter-
ventions that were applied on the AE farms were
turned into the soil during weeding to ensure maxi-
mum absorption, whereas non-AE farmers applied a
single dose of synthetic fertilizer in the latter stages
of the crop’s growth because of delays in releasing
subsidized fertilizers and inaccessibility due to high
cost, despite the subsidies. On the AE farms, insect,
pest, and disease infestations were treated using
extracts of Tephrosia vogelii, Tithonia diversifiolia, and
Vernonia amygdalina at different stages of the grow-
ing season. We observed that these botanical pesti-
cides were effective for treating blister beetle
infestations. The non-AE farmers, however, relied
on agrochemicals to treat insect infestation. The first
author realized on one of the visits that the farmers
at Field 3 (non-AE) used Confidor 200 SL pesticide
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Figure 5 Root mean square error (RMSE) of random forest (RF) model with the five most influential variables (RF Inf)
and RF model with all the variables (RF All). F1, F2, F3, and F4 are Fields 1 through 4, respectively.

thatt was expired to attempt to destroy blister beetle
infestation on the maize and beans farm.

Relationships Between in-Situ LAl and
Vegetation Indexes

Figure 4 shows the variance importance plots that
identify the most influential variables for predicting
LAIL  Soil-Adjusted Vegetation Index (SAVI)
emerged as an influential predictor in all four fields.
Except for Field 4, Green Normalized Difference
Vegetation Index (GNDVI) was also influential in
predicting LAI in all the other fields. Figure 5 com-
pares the RMSE metrics and Table 4 shows the R
values of the RF Inf and RF All analysis. The
RMSE for the RF Inf was lower for Field 1 (AE)
than Field 3 (non-AE) but the results were similar
for the RF All models for all farms. For the maize
and pigeon peas farms, Field 2 (AE) produced the
lowest RMSE values for both RF Inf and RF All
compared with Field 4 (non-AE) but overall, the RF
Inf outperformed the RF All. The results also show
that the results for both Fields 3 and 4 were not sta-
tistically significant (¢ <0.05) in both models
(Table 3). Further, we found that the R® statistics
for Fields 1 and 2 were higher and statistically sig-
nificant compared with the non-AE farms (Table 3).
These revelations suggest that data for the non-AE
farms cannot be used for monitoring farm manage-
ment practices applied on a farm and cannot be
applied for crop health monitoring because the usual
management practices likely negatively affected the

biophysical characteristics of the crops. As a result,
only data from the AE farms were used for the vali-
dation analysis.

Table 4 shows the validation results for the mod-
els. Contrary to the expectation that a model with
more variables might be more robust, the RF All
model attenuated, implying the less influential pre-
dictors among the nine variables exerted a negative
influence. The RF Inf models, however, remained
robust at the 95 percent confidence level. The RMSE
values for the RF Inf model also were reduced com-
pared with the values in Figure 5, suggesting that the
LAI for maize and beans and maize and pigeon peas
can be more accurately predicted using selected VIs.

Prospective Monitoring of Crop Health to Assess
the Impacts of Agroecology

The RF Inf models for Fields 1 and 2 were used to
generate prediction maps for different dates after
planting. The predicted values were extracted for
each of the sampling locations. When compared
with the in-situ LAIs, Table 5 shows that the RF Inf
models accurately predicted the LAIs in the latter
stages of the growing season (21 February 2020)
than during the earlier stages of the season (26
December 2019). The correlation coefficients were
strong and statistically significant at the 95 percent
confidence level (r=0.92 and »=0.84 for Fields 1
and 2, respectively) on 21 February 2020 (seventy-
five days after planting). The correlation coefficients
were, however, weak (r=0.23 and r=0.21 for
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Table 3 Statistics for the calibration of the leaf area index model using random forest regressions

Model R?

Management regimes Variables p value
Agroecology Maize and beans (Field 1)
EVI, GNDVI, MSAVI2, WNDVI, SAVI RF Inf 0.74 0.02*
All indexes RF All 0.62 0.18
Maize and pigeon peas (Field 2)
WNDVI, GNDVI, NDVI, SAVI, RVI RF Inf 0.82 < 0.001*
All indexes RF All 0.72 0.04*
Non-agroecology Maize and beans (Field 3)
EVI, GNDVI, SAVI, MSAVI2, NDVI RF Inf 0.27 0.32
All indexes RF All 0.19 0.08
Maize and pigeon peas (Field 4)
MSAVI2, SAVI, RVI, WNDVI, TNDVI RF Inf 0.21 0.89
All indexes RF All 0.65 0.07

Note: EVI=Enhanced Vegetation Index; GNDVI = Green Normalized Vegetation Index; MSAVI2 = Modified Soil Adjusted Vegetation
Index 2 (MSAVI2); WNDVI=Weighted Difference Vegetation Index; SAVI=Soil Adjusted Vegetation Index; NDVI=Normalized

Difference Vegetation Index; RVI=Ratio Vegetation Index;
RF =random forest.
*Significant at « < 0.05.

TNDVI=Transformed Normalized Difference Vegetation Index;

Table 4 Statistics for modeling the validation data set using different approaches

RMSE R

Variables Model p value
Maize and beans (Field 1)

EVI, GNDVI, MSAVI2, WNDVI, SAVI RF Inf 0.32 0.90 < 0.003*
Maize and pigeon pea (Field 2)

WNDVI, GNDVI, NDVI, SAVI, RVI RF Inf 0.42 0.88 0.041*

Note: RMSE =root mean square error; EVI=Enhanced Vegetation Index; GNDVI= Green Normalized Vegetation Index; MSAVI2 =
Modified Soil Adjusted Vegetation Index 2 (MSAVI2); WNDVI=Weighted Difference Vegetation Index; SAVI=Soil Adjusted
Vegetation Index; NDVI = Normalized Difference Vegetation Index; RVl =Ratio Vegetation Index; RF =random forest.

*Significant at o < 0.05.

Table 5 Correlation coefficients and root mean square error (RMSE) of the random forest—
based prediction model when applied to the individual PlanetScope images used for the analysis

26 December 2019

21 February 2020

Field no. Correlation coefficient RMSE Correlation coefficient RMSE
Field 1 0.23 0.77 0.92 0.14
Field 2 0.21 0.80 0.84 0.23

Fields 1 and 2, respectively) and insignificant at the
95 percent confidence level for the 26 December
2019 date (eighteen days after planting). The RMSE
values from comparing the in-situ and predicted
LAI further confirmed that the model predictions of
LAI for the latter stage of the growing image are
more accurate (RMSE = 0.14m°/m?) than the ear-
lier growing season image (RMSE = 0.23 m*/m?).

Figure 6 shows the distribution of predicted LAI
based on the RF Inf models for the two AE farms.
The green color represents high LAI values (or
healthier crops) and red represents low values. The
low LAI patch within Figure 6B coincides with a
drainage way on the field where crops were damaged
by a flood resulting from a rainstorm two days
before the image was captured. The deep red in
Figure 6C coincides with a termite mound where
crops were not yet planted when the images were
captured. Overall, the estimated values for the 21
February image showed more agreement with in-
situ data than that of the 26 December image.

In summary, the study results reveal that apply-
ing agroecological methods on a farm could poten-
tally improve crop growth in smallholder farming
systems in Malawi. We also observed that farms on
which AE is practiced produce statistically signifi-
cant results (Tables 3, 4, and 5) when LAIs were
predicted for future crop monitoring, suggesting
that healthier AE crops tend to produce better bio-
physical parameters that can be captured by satellite
sensors and that remote sensing can be used to
assess management practices on the agricul-
tural landscape.

Discussion

Opverall, the results from this study show that agro-
ecological management can contribute to crop
growth and health if management practices are
applied during critical crop growth stages. These
findings are consistent with previous studies (Vina
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Figure 6 Leaf area index prediction map for maize and beans intercrop derived from the random forest regression with
the five most influential variables. Images used were from (A and B) 26 December 2019, and (C and D) 21 February

2020, for Fields 1 and 2.

et al. 2011; Kross et al. 2015) that examined the
impacts of agronomic practices on crop health and
productivity in other contexts. For instance, Ayyobi,
Olfati, and Peyvast (2014) found that composting
positively affects soil structure and nutrient availabil-
ity, which can help increase fertility without negative
effects on human health and the environment.
According to Wezel et al. (2014), implementing
effective farm management practices such as strin-
gent weed control and timely application of
soil-enhancing materials such as manure and biofer-
tilizers are key to successful crop growth in agroeco-
logical farming systems. These reasons likely explain
why the farms managed with AE produced healthier
crops compared to the non-AE farms. The princi-
ples of AE emphasize the efficient use of resources
such as nitrogen, atmospheric carbon, and solar
radiation to improve crop yield (Wezel et al. 2020),

which explains the improved health of crops on the
AE farms. These findings prove that participatory
AE plays a significant role in the sharing of informa-
tion for improving farming practices that are in line
with the social movement dimension of AE. For
instance, timeliness in the application of interven-
tions on the AE farms was mainly due to the lessons
learned from interactions with other farmers in the
networks of the farmers over the years and during
the season (Kansanga et al. 2020). The non-AE
farmers did not have any of this social capital to rely
on for critical farming information. Therefore, food
system transformation in these smallholder farming
systems can be achieved through participatory AE.
The RF Inf regression with the most influential
variables more accurately predicted LAIs with rela-
tively higher R* and lower RMSE values compared
to RF All (see Table 4). Consistently, previous
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studies by Kross et al. (2015) predicted LAI in mixed
corn and soybean farms in eastern Ontario, Canada
and achieved an R* of 0.85, and Zhao et al. (2019)
found that RF regression models are more accurate
than linear regression models because they can
model complex, nonlinear, small-sample data sets
(Cooner, Shao, and Campbell 2016). Together, the
Enhanced Vegetation Index, GNDVI, Modified Soil
Adjusted Vegetation Index 2, Weighted Difference
Vegetation Index, and SAVI emerged as the most
important predictors of LAI for the maize and bean
crop whereas the WNDVI, GNDVI, Normalized
Difference Vegetation Index, SAVI, and Ratio
Vegetation Index were the total sum of the most
important predictors of LAI for maize and pigeon
pea farms. The observation is consistent with previ-
ous studies (Srinet, Nandy, and Patel 2019; Peter
et al. 2020) that identified these indexes as important
predictors of LAIs of maize, beans, and pigeon peas.
Peter et al. (2020), in a similar study in Malawi, also
found that multivariable regression equations were
more useful for predicting crop health even though
they used UAV images with relatively higher spatial
resolution (14-27 cm). Further, evidence (de Sousa
et al. 2020; Martin-Ortega, Garcia-Montero, and
Sibelet 2020) suggests that vegetation indexes are
influenced by several factors, including climate, soil
type, soil nutrient content, and reflectance of the
crops (de Sousa et al. 2020; Martin-Ortega, Garcia-
Montero, and Sibelet 2020). The evidence from
these previous studies likely explains why some of
the VIs emerged as more important predictors than
others. Future studies should incorporate climate
and soil variables in the analysis to ascertain their
effects on predicting LAI in such small-
holder contexts.

Consistent with several other studies (Baez-
Gonzalez et al. 2005; Ban et al. 2016) that examined
LAI prediction for crop health monitoring, we
found that on both AE farms, the predicted LAI val-
ues were statistically significantly correlated with the
in-situ LAI values and had lower RMSE values (see
Table 5) during the latter stages of the growing sea-
son (sixtydays after planting) compared with the
earlier stages of crop growth. This observation is
likely because of the use of seasonal averages of in-
situ LAI for the analysis. During the earlier stages of
the season, not much was accomplished in terms of
the agroecological practices applied on the farms. At
the latter stages of the season, however, the farms
had been treated with several agroecological meth-
ods, hence the crop biophysical parameters reflected
the impact of these treatments. This finding implies
that to derive the full benefits of agroecological
practices, there has to be consistency and persistence
in the application of farm interventions such as com-
post application, weed control, and manure applica-
tion. The finding also suggests that to accurately
predict the seasonal health of crops in such small

farms using satellite data, it is important to target
stages of the growing season when crop biophysical
parameters are reflective of the management practi-
ces applied on the farm. Prospectively predicting the
LAI using unitemporal satellite data has policy rele-
vance for local agricultural extension officers and
smallholder farmers.

Although the study provides useful information
on the significance of agroecological management
and the combination of these practices for improv-
ing crop health, a limitation of the approach used is
that a unitemporal perspective on the impact of AE
is presented from the geospatial approach. Although
this approach provides useful information on the
significance of agroecological management practices
in smallholder contexts, there is a need for more
information on how other farm conditions (e.g., soil
structure) and environmental factors (e.g., weather,
including rainfall amount, dry spells, etc.) might
have contributed to determining crop health in the
two instances. Future studies should conduct soil
analysis to establish the actual differences in soil fer-
tility resulting from the different agronomic practi-
ces. Additionally, a longitudinal analysis would be
useful for isolating any possible external factors,
other than agronomic practices that might affect
crop health. Finally, using drones equipped with
high-resolution multispectral bands with many
channels will improve the selection of indexes for
understanding crop health in the area.

Conclusions

In the context of climate change, increasing global
food insecurity, and rapid land degradation, AE is an
important approach through which yields can be
improved while ensuring the ecological integrity of
the environment. In this study, we used a geospatial
approach to assess the impact of a combination of
agroecological practices on crop health and to pro-
spectively determine the seasonal impacts of AE on
crop health using satellite-derived VIs and an RF
machine learning regression analysis. The results
suggest that adopting a comprehensive farming
approach that involves a blend of agroecological
practices and integrates sustainable soil management
practices can produce healthy crops that could
potentially increase yield. The geospatial method
applied in this study demonstrates that similar to
field experiments, geospatial techniques present a
cost-effective approach to large-scale assessment of
the impact of AE on crop health. Future studies
should apply multiseason data and more sample
farms for a longitudinal study to understand the spa-
tial and temporal dynamics in the distribution of
LAIs to better understand the dynamics of agroeco-
logical farm management practices.
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This study makes valuable contributions toward
the conceptualization of crop health in the field of
pest, disease, or weed management, by promoting a
transdisciplinary understanding of crop health holis-
tically in agroecology (Vega et al. 2020; Wezel et al.
2020) through a geospatial perspective. By using a
geospatial approach, we also make an empirical con-
tribution to the evolutionary trends in understand-
ing AE as a way of transforming smallholder
agricultural production through a combination of
practices that are integrated with indigenous farm-
ing knowledge. Kpienbaareh et al. (2020) demon-
strated how participatory AE can lead to the
amplification of agroecological knowledge to
enhance ecosystem services and biodiversity conser-
vation, an observation that falls within the growing
trend of geospatial applications for exploring the
impacts of AE. As climate change and food insecu-
rity continue to dominate the public policy sphere,
AE is gaining increasing importance as a sustainable
alternative to adaptation. Geospatial analysis can
play an important role in improving our understand-
ing of agroecological management processes, there-
fore aiding in the increasing push to transition to
sustainable food systems. l
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