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Abstract. The Eichler-Selberg trace formulas express the traces of Hecke operators on a
spaces of cusp forms in terms of weighted sums of Hurwitz-Kronecker class numbers. For
cusp forms on SL2(Z), Zagier proved these formulas by cleverly making use of the weight 3/2
nonholomorphic Eisenstein series he discovered in the 1970s. The holomorphic part of this
form, its so-called mock modular form, is the generating function for these class numbers. In
this expository note we revisit Zagier’s method, and we show how to obtain such formulas
for congruence subgroups, working out the details for Γ0(2) and Γ0(4). The trace formulas
fall out naturally from the computation of the Rankin-Cohen brackets of Zagier’s mock
modular form with specific theta functions.

1. Introduction and Statement of Results

The celebrated Eichler-Selberg trace formula [7, 15] expresses the trace of the action of a
Hecke operator on a fixed space of cusp forms in terms of weighted sums of Hurwitz-Kronecker
class numbers. These formulas play many important roles in the theory of modular forms.
These formulas play a central role in the study of the Shimura correspondence between
spaces of half-integral weight and even integer weight cusp forms (for example, see [16]).
Notably, Niwa employed these formulas in work [13] that established the first instances of
isomorphisms between such spaces as Hecke modules. These formulas also have important
implications for the arithmetic statistics of elliptic curves over finite fields. Indeed, Birch [3]
and Kaplan and Petrow [10] used these formulas to determine the asymptotic properties of
moments of “traces of Frobenius” for various families of elliptic curves.

In unpublished notes, Zagier (see Chapter 6 of [18]) gave a new proof of the Eichler-Selberg
trace formula for cusp forms on SL2(Z). His ingenious method made use of the weight
3/2 nonholomorphic Eisenstein series he discovered in the 1970s [19]. The key feature of
this Eisenstein series is that its holomorphic part, its so-called mock modular form, is the
generating function for Hurwitz-Kronecker class numbers. This proof does not seem to be
well-known. Therefore, in view of the recent interest in the theory of mock modular forms
and harmonic Maass forms (for example, see [4, 20, 21]), here we revisit Zagier’s work and we
illustrate how to modify the proof to obtain the Eichler-Selberg trace formula for congruence
subgroups.

To make this precise, we first fix some notation. If −D < 0 such that −D ≡ 0, 1 (mod 4),
then denote by O(−D) the unique imaginary quadratic order with discriminant −D. Let
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h(D) denote the order of the class group of O(−D), and let ω(D) denote half the number of
roots of unity in O(−D). In this notation, define1 the discriminant −D Hurwitz-Kronecker
class number by

(1.1) H∗(D) :=
∑
f2|D

h(D/f 2)

ω(D/f 2)
.

To conveniently state the Eichler-Selberg trace formulas, we require the Chebyshev polyno-
mials, that are defined by the recurrence relation

U0(x) := 1, U1(x) := 2x

Um(x) := 2xUm−1(x)− Um−2(x) for m ≥ 2.

Finally, we define

(1.2) δ(q) :=

{
1 if q is a perfect square,

0 otherwise,

and for positive integers k and N we define

(1.3) λk(N) :=
1

2

∑
d|N

min(d,N/d)k.

We reprove these trace formulas (see [7, 8, 10, 11, 15]) for cusp forms on Γ0(2) and Γ0(4)
for the Hecke operators T (q), where q = pr is a power of an odd prime. The purpose of this
expository note is to illustrate how these formulas arise naturally from the Rankin-Cohen
brackets of Zagier’s mock modular form with specific theta functions that are chosen to
capture the corresponding level structures.

Theorem 1.1. If r is a positive integer, p is an odd prime, q = pr, and k ≥ 4 is a positive
even integer, then the following are true.

(1) For cusp forms on SL2(Z), we have

Trk(SL2(Z), q) =
k − 1

12
· δ(q)q

k
2
−1 − 1

2
q

k
2
−1
∑
s2<4q

Uk−2

(
s

2
√
q

)
H⋆(4q − s2)− λk−1(q).

(2) For cusp forms on Γ0(2), we have

Trk(Γ0(2), q) =
k − 1

4
· δ(q)q

k
2
−1 − 1

2
q

k
2
−1
∑
s2<q

Uk−2

(
s
√
q

)
H⋆(4q − 4s2)

− q
k
2
−1
∑
s2<q

Uk−2

(
s
√
q

)
H⋆(q − s2)− 2λk−1(q).

1We define H∗(0) := − 1
12 and h(D) = H∗(D) = 0 whenever −D is neither zero nor a negative

discriminant.
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(3) For cusp forms on Γ0(4), we have

Trk(Γ0(4), q) =
k − 1

2
· δ(q)q

k
2
−1 − 3q

k
2
−1
∑
s2<q

Uk−2

(
s
√
q

)
H⋆(q − s2)− 3λk−1(q).

Although Theorem 1.1 (1) is proved by Zagier [18], we include it in the theorem to jux-
tapose the formulas, which highlights the modifications that arise when introducing level
structure.

This note is organized as follows. In Section 2, we recall standard facts about holomorphic
modular forms, harmonic Maass forms, and mock modular forms. We require Zagier’s weight
3/2 Eisenstein series, the Rankin-Cohen bracket operators, and the method of holomorphic
projection. In Section 3, we recall some results from Petersson theory and the theory of
newforms as adapted to this setting. Finally, in Section 4, we apply these tools to prove
Theorem 1.1.

2. Nuts and Bolts

2.1. Holomorphic Modular Forms. If k and N are positive integers, then denote by
Mk(Γ0(N)) the vector space of holomorphic modular forms of weight k and level N. The
cuspidal subspace of Mk(Γ0(N)) is denoted by Sk(Γ0(N)). We write Snew

k (Γ0(N)) for the
new subspace of weight k and level N. We assume that the reader is familiar with the theory
of newforms of Atkin and Lehner [1].

The group GL+
2 (Q) acts on {f : H → C} through the slash operator. Namely, if f : H → C

and γ = ( a b
c d ) ∈ GL+

2 (Q), then the (weight k) slash operator is defined by

(2.1) (f |kγ)(τ) = (ad− bc)k/2(cτ + d)−kf

(
aτ + b

cτ + d

)
.

In our setting, two matrices in GL+
2 (Q) play a significant role, namely, the matrix V (d) :=

( d 0
0 1 ) and the Fricke involution WN := ( 0 −1

N 0 ) . The action of these matrices send cusp
forms to cusp forms of possibly higher level. More precisely, if d is a positive integer and
f ∈ Sk(Γ0(N)), then f |V (d) ∈ Sk(Γ0(dN)) and f |WN ∈ Sk(Γ0(N)). Furthermore, if f is a
cusp form with Fourier series f(τ) =

∑
n≥1

af (n)q
n
τ , where qτ = e2πiτ , then we write

(2.2) (f |U(d))(τ) :=
∑
n≥1

af (nd)q
n
τ .

The vector space of cusp forms admits the structure of a finite-dimensional Hilbert space
thanks to the Petersson inner product. To make this precise, if f, g ∈ Sk(Γ) for some
subgroup Γ of SL2(Z) of finite index, then define2 the Petersson inner product3 of f and g
by

(2.3) ⟨f, g⟩Γ :=
1

[SL2(Z) : Γ]

∫∫
H/Γ

f(x+ iy)g(x+ iy)yk
dxdy

y2
.

2We drop the Γ when it is understood from context.
3There are different normalizations of the Petersson inner product.
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2.2. Zagier’s Weight 3
2
Eisenstein Series. We require the generating function

(2.4) H+(τ) =
∞∑

D=0

H∗(D)qDτ = − 1

12
+

1

3
q3τ +

1

2
q4τ + q7τ + q8τ + . . . ,

(note: qτ := eπiτ ) for the Hurwitz class numbers, the holomorphic part of the harmonic
Maass form [4] H(τ) of weight 3/2 constructed [19] by Zagier in the 1970s by the method of
Eisenstein series. This holomorphic part is the so-called mock modular form for H(τ).

We recall Zagier’s construction. To this end, we first recall notation from the the-
ory of modular forms of half-integral weight. If γ = ( a b

c d ) ∈ Γ0(4) and τ ∈ H :=
{x+ iy ∈ C, y > 0} , then the automorphy factor is defined by j(γ, τ) := θ(γτ)/θ(τ), where
γτ := aτ+b

cτ+d
and

(2.5) θ(τ) :=
∑
n∈Z

qn
2

τ .

We recall the metaplectic extension of GL+
2 (Q) defined as

Mp2(Q) :=

{
(γ, ϕ) : γ =

(
a b
c d

)
∈ GL+

2 (Q), ϕ : H → C holomorphic, ϕ(τ)2 =
cτ + d√
ad− bc

}
.

The group Mp2(Q) acts on {f : H → C} through the slash operator. Namely, if f : H → C, k
is an integer, and γ̃ = (( a b

c d ) , ϕ) ∈ Mp2(Q), then the (weight k
2
) slash operator is defined4 by(

f | k
2
γ̃
)
(τ) = ϕ(τ)−kf

(
aτ + b

cτ + d

)
.

Finally, if N is a positive integer with 4|N , we define the Fricke involution

WN :=

((
0 −1
N 0

)
,
√

N
1
2 τ

)
,

where
√
· is the principal branch of the square root, and if f is an eigenform of |WN , we

denote the eigenvalue by λN(f).
In this notation, if s ∈ C with ℜ(s) > 1

4
and τ ∈ H, then define the Eisenstein series

E 3
2
,s(τ) by

(2.6) E 3
2
,s(τ) :=

∑
γ∈Γ∞\Γ0(4)

1

j(γ, τ)3
· ℑ(γτ)s,

where Γ∞ ≤ SL2(Z) is the stabilizer group of i∞. Finally, we define the Eisenstein series
F 3

2
,s(τ) by

(2.7) F 3
2
,s(τ) := (E 3

2
,s| 3

2
W4)(τ).

Both E 3
2
,s(τ) and F 3

2
,s(τ) are analytic in s, and they have analytic continuations to s = 0,

which we denote by E 3
2
(τ) and F 3

2
(τ) respectively. In this notation, Zagier proves the

following theorem.

4The dependence on k is usually dropped from the notation if understood from context.
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Theorem 2.1. [19] The function

H(τ) :=
∞∑
n=0

H∗(n)qnτ +
1

8π
√
y
+

1

4
√
π

∞∑
n=1

nΓ(−1

2
; 4πn2y)q−n2

τ ,

where τ = x+ iy ∈ H, is a weight 3/2 harmonic Maass form with manageable growth at the
cusps of Γ0(4). In fact, we have5

H(τ) = − 1

12

(
E 3

2
(τ) + (1− i)2−3/2F 3

2
(τ)
)
.

2.3. Rankin-Cohen Brackets. The expressions in Theorem 1.1 arise from the Rankin-
Cohen brackets operators of H(τ) with appropriate theta functions. To make this precise,
let f and g be smooth functions defined on H and let k, l ∈ 1

2
N and m ∈ N0. The mth

Rankin-Cohen bracket (of weight (k, l)) of f and g is

(2.8) [f, g]m :=
1

(2πi)m

∑
r+s=m

(−1)r
(
k +m− 1

s

)(
l +m− 1

r

)
dr

dτ r
f · ds

dτ s
g.

These operators preserve modularity.

Proposition 2.2 (Th. 7.1 of [5]). Let f and g be (not necessarily holomorphic) modular
forms of weights k and l, respectively on a subgroup Γ of Mp2(Q). Then the following are
true.
(1) We have that [f, g]m is modular of weight k + l + 2m on Γ.
(2) If γ̃ ∈ Mp2(Q), then under the usual modular slash operator we have

[f |kγ̃, g|lγ̃]m = ([f, g]m)|k+l+2mγ̃.

In this notation, the weighted class number sums in Theorem 1.1 appear as the coefficients
of [H(τ), θ(τ)] k−2

2
and [H(τ), θ(4τ)] k−2

2
after a straightforward calculation.

Lemma 2.3. If m and t are positive integers, then

[H+(τ), θ(tτ)]m :=
∑
n≥1

cm(n)q
n
τ ,

where

cm(n) =

(
2m
m

)
4m

· nm
∑
s∈Z

U2m

(√
t

n
s

)
·H⋆(n− ts2).

Sketch of the proof. By definition, the Fourier coefficient cm(n) is given by

cm(n) = (−n)m
m∑
l=0

[
l∑

r=0

(−1)l
(
m+ 1

2

r

)(
m− 1

2

m− r

)(
m− r

l − r

)]∑
s∈Z

H⋆(n− ts2)

(√
t

n
s

)2l

.

Reorganizing the sum, the claim clearly reduces to showing that

(−1)m · 4m(
2m
m

) l∑
r=0

(−1)l
(
m+ 1

2

r

)(
m− 1

2

m− r

)(
m− r

l − r

)
5This explicit form is computed in [9]. A different normalization of E 3

2
(τ) and F 3

2
(τ) is used.
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is the coefficient of x2l in U2m(x). The sum on the right-hand side can be rewritten in terms
of

2F1

(
−1

2
−m, −l

1
2

| 1
)
.

A famous identity of Gauss (see (1.3) of [2]), combined with induction in m, completes the
proof. □

2.4. Holomorphic projection. To relate the sums in Lemma 2.3 to traces of Hecke oper-
ators, we must first relate them to coefficients of a cusp form. To this end, we make use of
the method of holomorphic projection, which maps harmonic Maass forms to holomorphic
modular forms.

To make this precise, suppose f : H → C is a (not necessarily holomorphic) modular form
of weight k > 2 on Γ0(N) with Fourier expansion

f(τ) =
∑
n∈Z

cf (n, y)q
n
τ .

Furthermore, suppose that f(τ) has moderate growth at cusps, with cf (0, y) = c0 + O(y−ε)
for some ε > 0. Then, the holomorphic projection of f(τ) is defined by

(πholf)(τ) := c0 +
∑
n≥1

c(n)qnτ ,

where

(2.9) c(n) :=
(4πn)k−1

(k − 2)!

∫ ∞

0

cf (n, y)e
−4πnyyk−2dy,

for n ≥ 1. The following proposition explains the importance of the holomorphic projection
operator.

Proposition 2.4. [Section 10.1 of [4]] Assuming the hypothesis above, the following are true.
(1) We have that πhol(f) ∈ Mk(Γ0(N)).
(2) If g ∈ Sk(Γ0(N)), then we have ⟨f, g⟩ = ⟨πhol(f), g⟩, whenever the left-hand side con-
verges.

The following theorem of Mertens [12] describes the holomorphic projection of the Rankin-
Cohen brackets of H(τ) with certain weight 1/2 univariate theta functions.

Theorem 2.5. [Th. V.2.1 of [12]] If m and t are positive integers, then we have

πhol ([H(τ), θ(tτ)]m) = [H+(τ), θ(tτ)]m +
1

2
·
(
2m
m

)
4m

Λt(τ ;m),

where

Λt(τ ;m) = 2
∑
n≥1

 ∑
tu2−v2=n

u,v≥1

(
√
tu− v)2m+1

 qnτ +
∑
n≥1

(
√
tn)2m+1qtn

2

τ .
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3. Petersson Inner Products and L-functions

To obtain Theorem 1.1, we partially decompose the holomorphic cusp forms πhol ([H(τ), θ(τ)]m)
and πhol ([H(τ), θ(4τ)]m) in terms of newforms. To this end, we take the Petersson inner prod-
uct of these cusp forms with newforms. To compute these inner products, we make use of the
Hecke relations between Fourier coefficients of a given newform. Namely, we use unfolding
theorems due to Rankin and Selberg (see Section 11.12 of [6]). The following theorem of
Rankin [14] relates the Petersson inner product of two cusp forms to their respective Fourier
coefficients.

Theorem 3.1. If f(τ) =
∑
n≥1

af (n)q
n
τ and g(τ) =

∑
n≥1

ag(n)q
n
τ are cusp forms of weight k on

a congruence subgroup Γ, then we have

⟨f, g⟩ = π

3

(k − 1)!

(4π)k
lim
x→∞

1

x

∑
n≤x

af (n)ag(n)

nk−1
.

We study the inner product of cusp forms with the forms [H(τ), θ(τ)]m and [H(τ), θ(4τ)]m.
Since H(τ) is defined in terms of Eisenstein series, we obtain the following proposition.

Proposition 3.2. If m is a positive integer and

f(τ) =
∑
n≥1

af (n)q
n
τ ∈ S2m+2(Γ0(4)),

g(τ) =
∑
n≥1

ag(n)q
n
τ ∈ S1/2(Γ0(4)),

then we have

⟨f, [E 3
2
, g]m⟩ =

1

6

(
m+ 1

2

m

)
(2m)!

(4π)2m+1

∑
n≥1

af (n)ag(n)

nm+1
.

Sketch of Proof. Formally, we have that

[E 3
2
,s(τ), g(τ)]m =

∑
γ∈Γ∞\Γ0(4)

[j(γ, τ)−3 · ℑ(γτ)s, g(τ)]m

=
∑

γ∈Γ∞\Γ0(4)

[ℑ(τ)s| 3
2
γ,
(
(g|1/2γ−1)|1/2γ

)
(τ)]m.

Since g is modular of weight 1
2
on Γ0(4), Proposition 2.2 gives us that

[E 3
2
,s(τ), g(τ)]m =

∑
γ∈Γ∞\Γ0(4)

[ℑ(τ)s, g(τ)]m|2m+2γ.

A simple computation gives

[E 3
2
,s(τ), g(τ)]m =

∑
γ∈Γ∞\Γ0(4)

m∑
l=0

(
m+ 1

2

m− l

)(
m− 1

2

l

)
s!

(s− l)!

ℑ(γτ)s−l

(cτ + d)2m+2

1

(2πi)m−l

∂m−lg

∂τm−l
(γτ).
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By the definition of the Petersson inner product and the modularity of f, we have

⟨[E 3
2
,s, g]m, f⟩ =

m∑
l=0

1

(2πi)m−l

(
m+ 1

2

m− l

)(
m− 1

2

l

)
s!

(s− l)!

∫∫
H/Γ∞

f(τ)·∂
m−lg

∂τm−l
(τ)·y2m+s−ldxdy,

where τ = x + iy. The rest of the proof follows by writing f(τ) and g(τ) as Fourier series,
computing the resulting elementary integrals, and taking analytic continuation with s →
0. □

To obtain the trace formulas for Γ0(2) and Γ0(4), we require Rankin-Cohen brackets of
H(τ) with θ(4τ). Since θ(4τ) is a modular form on Γ0(16), we require an analogue of Propo-
sition 3.2 when f and g are of level dividing 16. Since E 3

2
(τ) is the Eisenstein series of weight

3
2
for Γ0(4), the above proposition doesn’t hold. However, we have the following similar

result.

Proposition 3.3. If m is a positive integer and

f =
∞∑
n=1

af (n)q
n
τ ∈ S2m+2(Γ0(16)),

g =
∞∑
n=0

ag(n)q
n
τ ∈ M1/2(Γ0(16)),

then we have

⟨f, [E 3
2
, g]m⟩ =

1

24

(
m+ 1

2

m

)
(2m)!

(4π)2m+1

∑
A∈S

∑
n≥1

af,A(n)ag,A(n)

nm+1
,

where S :=

{(
1 0
0 1

)
,

(
1 0
4 1

)
,

(
3 −1
4 −1

)
,

(
1 0
8 1

)}
, (f |A)(τ) =

∑
n≥1

af,A(n)q
n
τ , and (g|A)(τ) =∑

n≥1

ag,A(n)q
n
τ .

Sketch of Proof. If s ∈ C with ℜ(s) > 1
4
and τ ∈ H, then define

(3.1) G 3
2
,s(τ) :=

∑
γ∈Γ∞\Γ0(16)

1

j(γ, τ)3
· ℑ(γτ)s,

where j(γ, τ) is as in Section 2.2. It is then clear that

E 3
2
,s(τ) =

∑
A∈S

(G 3
2
,s| 3

2
A−1)(τ).

The proof follows exactly as in Proposition 3.2. □

Remark. If G 3
2
(τ) denotes the analytic continuation of G 3

2
,s(τ) to s = 0, then Proposition 3.2

holds with G 3
2
and Γ0(16) in place of E 3

2
and Γ0(4).

To compute inner products of the form ⟨[F3/2, g]m, f⟩ using Propositions 3.2 and 3.3, we
consider the action of the Fricke involution on Eisenstein series of half-integral weight and
theta functions.
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Lemma 3.4. The following are true.
(1) We have

E 3
2
|(W 2

4 ) = iE 3
2
; θ|W4 = e−

iπ
4 θ; θ(4τ)|W16 =

1√
2
e−

iπ
4 θ(τ).

(2) If G 3
2
denotes the analytic continuation of G 3

2
,s at s = 0, then we have

F 3
2
= 23/2 ·G 3

2
|W16 and G 3

2
|(W 2

16) = iG 3
2
.

Proof. The proof of (1) is trivial. On the other hand, note that G 3
2
,s(τ) = E 3

2
,s(4τ), and

therefore, by analytic continuation, G 3
2
(τ) = E 3

2
(4τ). The proof of (2) reduces to an elemen-

tary computation. □

4. Proof of Theorem 1.1

The main tool for proving Theorem 1.1 is the next theorem that gives the Hecke traces in
terms of the coefficients of specific holomorphic projections of H(τ) with theta functions.

Theorem 4.1. If p ≥ 3 is a prime,m ∈ N and k = 2m+ 2, then the following are true.
(1) If πhol([H(τ), θ(τ)]m) =

∑
n≥1

am(n)q
n
τ , and q = pr, then

am(q) = −1

3
·
(
2m
m

)
4m

· Trk (Γ0(4), q) .

(2) πhol([H(τ), θ(τ)]m) =
∑
n≥1

am(n)q
n
τ , and q = pr, then

am(4q) = −2

(
2m

m

)
Trk (SL2(Z), q)) .

(3) If πhol([H(τ), θ(4τ)]m) =
∑
n≥1

bm(n)q
n
τ , then

bm(4q) = − 1

12
·
(
2m

m

)
· (−8Trk (Γ0(4), q) + 24Trk (Γ0(2), q)) .

4.1. The proof of Theorem 4.1. We require the following convenient expression for the
Petersson norm of newforms f .

Lemma 4.2. If f(τ) =
∑
n≥1

af (n)q
n
τ is a normalized newform of weight k and level N, then

we have

⟨f, f⟩ = π

3
· (k − 1)!

(4π)k
·
∏
p|N

(
1− 1

p

)
·
∑
n≥1

af (n
2)

nk
.

Sketch of Proof. It is well known (see Corollary 11.12.3 of [5]) that
∑
n≥1

|af (n)|2
ns converges for

ℜ(s) > k and has a simple pole at s = k, with residue 3
π
· (4π)k

(k−1)!
⟨f, f⟩. Since f is a newform
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on Γ0(N) with trivial nebentypus, a(n) is real for all n and we have (see p. 80 of [17]) that∑
n≥1

af (n)
2

ns
= ζN(s− k + 1)

∑
n≥1

af (n
2)

ns
,

where ζN(s) =
∑
n≥1

(n,N)=1

1
ns . The lemma follows by taking residues at s = k. □

To prove Theorem 4.1, we now compute πhol ([H(τ), θ(τ)]m) and πhol ([H(τ), θ(4τ)]m) with
newforms and their images under V (d) operator. This depends on the level of the newform.
The first lemma concerns the level 4.

Lemma 4.3. If f(τ) ∈ Snew
2m+2 (Γ0(4)) is a normalized newform, then the following are true.

(1) We have that

⟨πhol([H(τ), θ(τ)]m), f⟩ = −1

3
·
(
2m
m

)
4m

⟨f, f⟩.

(2) We have that

⟨πhol([H(τ), θ(4τ)]m), f⟩ = −1

6
·
(
2m
m

)
4m

⟨f, f⟩.

(3) We have that
⟨πhol([H(τ), θ(4τ)]m), f |V (2)⟩ = 0.

(4) We have that

⟨πhol([H(τ), θ(4τ)]m), f |V (4)⟩ = 1

6
·
(
2m
m

)
4m

⟨f, f⟩.

Proof. For brevity, we only prove (1). By Proposition 2.4, we have

⟨πhol([H, θ]m), f⟩ = ⟨[H, θ]m, f⟩.
We write H in terms of Eisenstein series to obtain

⟨[H, θ]m, f⟩ = − 1

12
⟨[E 3

2
, θ]m, f⟩ −

1

12
· 1− i

23/2
⟨[E 3

2
|W4, θ]m, f⟩.

Since W 2
4 acts trivially on Mk(Γ0(4)) when k is an even integer, Proposition 2.2 (2) shows

that
⟨[E 3

2
|W4, θ]m, f⟩ = ⟨[E 3

2
|(W4)

2, θ|W4]m, f |W4⟩.
Using Lemma 3.4, we have that

⟨[H, θ]m, f⟩ = − 1

12
⟨[E 3

2
, θ]m, f⟩ −

1

24
⟨[E 3

2
, θ]m, f |W4⟩.

Since f is a newform of level 4, f |W4 = −f (see Theorem 7 of [1]). Therefore, we have

⟨πhol([H, θ]m), f⟩ = − 1

24
⟨[E 3

2
, θ]m, f⟩.

Proposition 3.2 then gives

⟨πhol([H, θ]m), f⟩ = − 1

144
·
(
m+ 1

2

m

)
(2m)!

(4π)2m+1

∑
n≥1

2 · af (n2)

n2m+2
.
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We apply Lemma 4.2 to obtain

⟨πhol([H, θ]m), f⟩ = − 1

72
·
(
m+ 1

2

m

)
(2m)!

(4π)2m+1
· 2 · (4π)2m+2

(2m+ 1)!
· 3
π
⟨f, f⟩.

Since
(m+1

2
m )

2m+1
=

(2mm )
4m

, the claim follows.
The proofs of (2),(3), and (4) are similar, where Proposition 3.3 takes the place of Propo-

sition 3.2. Furthermore, the Fourier coefficients at the cusps given in Proposition 3.3 are the
same as the Fourier coefficients at i∞, since the matrices in S are in Γ0(4), and f is modular
on Γ0(4). □

If the level is 2, we have the following lemma.

Lemma 4.4. If f(τ) ∈ Snew
2m+2 (Γ0(2)) is a normalized newform, then the following are true.

(1) We have that

⟨πhol([H, θ]m), f⟩ = −1

2
·
(
2m
m

)
4m

⟨f, f⟩.

(2) We have that

⟨πhol([H, θ]m), f |V (2)⟩ = 0.

(3) We have that

⟨πhol([H(τ), θ(4τ)]m), f⟩ = −1

4
·
(
2m
m

)
4m

⟨f, f⟩.

(4) We have that

⟨πhol([H(τ), θ(4τ)]m), f |V (2)⟩ = ⟨πhol([H(τ), θ(4τ)]m), f |V (4)⟩ = 0.

(5) We have that

⟨πhol([H(τ), θ(4τ)]m), f |V (8)⟩ = −λ2(f)

4
·
(
2m
m

)
4m

⟨f, f⟩.

Proof. The proof is analogous to the proof of Lemma 4.3. Case (5) is more involved when
computing the Fourier coefficients of f |V (8) at cusps. We note that(

f |V (8)
∣∣∣ (1 8

0 1

))
(τ) =

(
f |W2 · V (4)

(
1 0
−8 1

)(
1 1

8
0 1

))
(τ)

= λ2(f)

(
f |V (4)

∣∣∣ (1 1
8

0 1

))
(τ)

= λ2(f) · 4m+1
∑
n≥1

af (n)(−1)nq4nτ .

Similarly, we have that(
f |V (8)

∣∣∣ (1 0
4 1

))
(τ) =

(
f
∣∣∣ (2 0

0 2

)
W2

(
1 0
−4 1

)(
1 1

4
0 1

))
(τ)

= λ2(f)
∑
n≥1

af (n) · inqnτ .
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and (
f |V (8)

∣∣∣ (3 −1
4 −1

))
(τ) = λ2(f)

∑
n≥1

af (n) · (−i)nqnτ .

□

For newforms on SL2(Z) (i.e. level 1), we have the following lemma.

Lemma 4.5. If f(τ) ∈ S2m+2(SL2(Z)) is a normalized newform, then the following are true.
(1) We have that

⟨πhol([H, θ]m), f⟩ = −1

2
·
(
2m
m

)
4m

⟨f, f⟩.

(2) We have that

⟨πhol([H, θ]m), f |V (2)⟩ = −1

6
· af (2)

2m
·
(
2m
m

)
4m

⟨f, f⟩.

(3) We have that

⟨πhol([H, θ]m), f |V (4)⟩ = −1

2
·
(
2m
m

)
4m

⟨f, f⟩.

(4) If l ∈ {0, 2, 4}, then

⟨πhol([H(τ), θ(4τ)]m), f |V (2l)⟩ = −1

4
·
(
2m
m

)
4m

⟨f, f⟩.

(5) If l ∈ {1, 3}, then

⟨πhol([H(τ), θ(4τ)]m), f |V (2l)⟩ = −1

6
· af (2)
2m+1

(
2m
m

)
4m

⟨f, f⟩.

Proof. The proof is similar to Lemmas 4.3 and 4.4 with the following modification.∑
n≥1

1

2m+1

af (2n
2)

n2m+2
=
∑
n≥1

1

2m+1

1

n2m+2
·
[
af (2)af (n

2)− 22m+1af

(
n2

2

)]
=

af (2)

2m+1

∑
n≥1

af (n
2)

n2m+2
− 1

2

∑
n≥1

1

2m+1

af (2n
2)

n2m+1

=
2

3
· af (2)
2m+1

∑
n≥1

af (n
2)

n2m+2
.

□

Since f and f |V (d) are not always orthogonal when d > 1, we compute ⟨f, f |V (d)⟩ in
terms of ⟨f, f⟩. This depends on the level of f. If f is of level 4, we have the following
lemma.

Lemma 4.6. If f(τ) ∈ Snew
k (Γ0(4)) is a normalized newform and l ≥ 1, then ⟨f, f |V (2l)⟩ =

0.
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Proof. Theorem 3.1 implies that

⟨f, f |V (2l)⟩ = π

3

(k − 1)!

(4π)k
lim
x→∞

1

x

∑
n≤x

af (n) · 2
lk
2 af (

n
2l
)

nk−1

=
π

3

(k − 1)!

(4π)k
lim
x→∞

2−
lk
2

x/2l

∑
n≤x/2l

af (2
ln)af (n)

nk−1
.

It is well-known (see Proposition 13.3.14 (a) of [6]) that the coefficients with even index of
a normalized newform of level 4 vanish, proving the claim. □

If f is of level 2, we have the following lemma whose proof is analogous to that of
Lemma 4.6.

Lemma 4.7. If f(τ) =
∑
n≥1

af (n)q
n
τ ∈ Snew

k (Γ0(2)) is a normalized newform and l ≥ 0, then

⟨f, f |V (2l)⟩ =
(
−λ2 (f)

2

)l

⟨f, f⟩.

For newforms on SL2(Z), we have the following lemma.

Lemma 4.8. If f(τ) ∈ Sk (SL2(Z)) is a normalized newform, then the following are true.
(1) We have that

⟨f, f |V (2)⟩ = 1

3
· af (2)

2k/2−1
⟨f, f⟩.

(2) We have that

⟨f, f |V (4)⟩ =
(
1

6
· af (2)

2

4k/2−1
− 1

2

)
⟨f, f⟩.

(3) We have that

⟨f, f |V (8)⟩ =
(

1

12
· af (2)

3

8k/2−1
− 5

12
· af (2)

2k/2−1

)
⟨f, f⟩.

(4) We have that

⟨f, f |V (16)⟩ =
(

1

24
· af (2)

4

16k/2−1
− 7

24
· af (2)

2

4k/2−1
+

1

4

)
⟨f, f⟩.

Proof. The same argument in the proofs of Lemmas 4.6 and 4.7 gives us that

⟨f, f |V (2l)⟩ = 2−
lk
2 ⟨f |U(2l), f⟩,

for all l ≥ 0. Since f is of level 1, the relation between a(2ln) and a(n) is more involved.
Therefore, we must determine the Hecke operator T (2l) in terms of U and V operators. We
make this precise for (1), and leave the remaining cases to the reader.

Hecke’s recurrence relations (see Corollary 10.4.4 of [6]) imply that T (2)f = f |U(2) +

2
k
2
−1f |V (2). On the other hand, since f is a normalized eigenform of T (2), we have that

T (2)f = af (2)f. Combining these two equations together, we have that

af (2)f = f |U(2) + 2
k
2
−1f |V (2).
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Taking the inner product with f on both sides, we find that

af (2)⟨f, f⟩ = ⟨f, f |U(2)⟩+ 2
k
2
−1⟨f, f |V (2)⟩

= 2
k
2 ⟨f, f |V (2)⟩+ 2

k
2
−1⟨f, f |V (2)⟩.

This completes the proof of (1). □

Lemmas 4.3-4.8 combine to prove Theorem 4.1.

Proof of Theorem 4.1. We prove (1) and (2). By Lemmas 4.3-4.8, some linear algebra gives

πhol([H(τ), θ(τ)]m) =

(
2m
m

)
4m

[
− 1

3

∑
f − 2

3

∑
g −

∑
h(4.1)

− 1

3

∑
λ2(g)g|V (2) +

1

2

∑
h

ah(2)

2m
h|V (2)−

∑
h|V (4)

]
,

where f, g and h run over newforms of levels 4, 2 and 1 respectively. Comparing the coeffi-
cients of qqτ on both sides of 4.1 gives (1).

To prove (2), we write f(τ) =
∑
n≥1

af (n)q
n
τ , g(τ) =

∑
n≥1

ag(n)q
n
τ and h(τ) =

∑
n≥1

ah(n)q
n
τ .

Using (4.1), we have that

am(4q) =

(
2m
m

)
4m

[
− 1

3

∑
f

af (4q)−
2

3

∑
g

(ag(4q) + λ2(g) · 2mag(2q))(4.2)

−
∑
h

(ah(4q)− ah(2)ah(2q) + 4m+1ah(q))
]
.

Since f denotes a newform of level 4, then af (4q) = 0. Furthermore, since g denotes a
newform of level 2 and weight 2m + 2, we have that λ2(g) = −2−mag(2). (for example, see
Proposition 13.3.14 (b) of [6]). Furthermore, ag(2n) = ag(2)ag(n). This implies that ag(4q)+
λ2(g)·2mag(2q) = 0. Finally, the Hecke relations give that ah(2)ah(2q) = ah(4q)+22m+1ah(q),
and so we have

ah(4q)− ah(2)ah(2q) + 4m+1ah(q) = 2 · 4m · ah(q).
Combining this with (4.2) gives (2). □

4.2. Proof of Theorem 1.1. For brevity, we prove (2), leaving the proofs of (1) and (3) to
the reader. Thanks to Theorem 4.1, we have

am(q) = −1

3
·
(
2m
m

)
4m

· Trk (Γ0(4), q)

and

bm(4q) = − 1

12
·
(
2m

m

)
· (−8Trk (Γ0(4), q) + 24Trk (Γ0(2), q)) .

Using Lemma 2.3 and Theorem 2.5, after some simplifcation we find that

qm
∑
s∈Z

U2m

(
s
√
q

)
H⋆(q − s2) + λ2m+1(q) = −1

3
· Trk (Γ0(4), q)
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and

qm
∑
s∈Z

U2m

(
s
√
q

)
H⋆(4q − 4s2) + 2λ2m+1(q) = − 1

12
(−8Trk (Γ0(4), q) + 24Trk (Γ0(2), q)) .

Taking an appropriate linear combination, we then have

−qm
∑
s∈Z

U2m

(
s
√
q

)
H⋆(q−s2)−1

2
qm
∑
s∈Z

U2m

(
s
√
q

)
H⋆(4q−4s2)−2λ2m+1(q) = Trk (Γ0(2), q) .

Since the summands are nonzero only if s2 < q or s2 = q and q is a square, (2) follows from
the fact that H⋆(0) = − 1

12
and U2m(1) = 2m+ 1. This proves (2).
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