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ABSTRACT. The Eichler-Selberg trace formulas express the traces of Hecke operators on a
spaces of cusp forms in terms of weighted sums of Hurwitz-Kronecker class numbers. For
cusp forms on SLa(Z), Zagier proved these formulas by cleverly making use of the weight 3/2
nonholomorphic Eisenstein series he discovered in the 1970s. The holomorphic part of this
form, its so-called mock modular form, is the generating function for these class numbers. In
this expository note we revisit Zagier’s method, and we show how to obtain such formulas
for congruence subgroups, working out the details for T'g(2) and T'g(4). The trace formulas
fall out naturally from the computation of the Rankin-Cohen brackets of Zagier’s mock
modular form with specific theta functions.

1. INTRODUCTION AND STATEMENT OF RESULTS

The celebrated Eichler-Selberg trace formula [7, [15] expresses the trace of the action of a
Hecke operator on a fixed space of cusp forms in terms of weighted sums of Hurwitz-Kronecker
class numbers. These formulas play many important roles in the theory of modular forms.
These formulas play a central role in the study of the Shimura correspondence between
spaces of half-integral weight and even integer weight cusp forms (for example, see [16]).
Notably, Niwa employed these formulas in work [I3] that established the first instances of
isomorphisms between such spaces as Hecke modules. These formulas also have important
implications for the arithmetic statistics of elliptic curves over finite fields. Indeed, Birch [3]
and Kaplan and Petrow [10] used these formulas to determine the asymptotic properties of
moments of “traces of Frobenius” for various families of elliptic curves.

In unpublished notes, Zagier (see Chapter 6 of [18]) gave a new proof of the Eichler-Selberg
trace formula for cusp forms on SLy(Z). His ingenious method made use of the weight
3/2 nonholomorphic Eisenstein series he discovered in the 1970s [19]. The key feature of
this Eisenstein series is that its holomorphic part, its so-called mock modular form, is the
generating function for Hurwitz-Kronecker class numbers. This proof does not seem to be
well-known. Therefore, in view of the recent interest in the theory of mock modular forms
and harmonic Maass forms (for example, see [4, 20} 21]), here we revisit Zagier’s work and we
illustrate how to modify the proof to obtain the Eichler-Selberg trace formula for congruence
subgroups.

To make this precise, we first fix some notation. If —D < 0 such that —D = 0,1 (mod 4),
then denote by O(—D) the unique imaginary quadratic order with discriminant —D. Let

2020 Mathematics Subject Classification. (Primary) 11F11; (Secondary) 11F37.

Key words and phrases. Eichler-Selberg trace formula, Harmonic Maass forms, mock modular forms.

K.O. thanks the Thomas Jefferson Fund and the NSF (DMS-2002265 and DMS-2055118) for their support.
1



2 KEN ONO AND HASAN SAAD

h(D) denote the order of the class group of O(—D), and let w(D) denote half the number of
roots of unity in O(—D). In this notation, deﬁneﬂ the discriminant —D Hurwitz-Kronecker
class number by

; hD/f*)
(1.1) H*(D) = ;
2. DI

To conveniently state the Eichler-Selberg trace formulas, we require the Chebyshev polyno-
mials, that are defined by the recurrence relation

Up(z) =1, Ui(z) =2z
Un(x) := 22U, 1(x) — Uy _o(x) for m > 2.

Finally, we define

(1.2) 5(q) = 1 if ¢ is é perfect square,
0 otherwise,
and for positive integers £ and N we define
1 . )
(1.3) Ae(N) = 3 dgj;mln(d, N/d)".

We reprove these trace formulas (see [7, [8 10, 1T} [I5]) for cusp forms on I'g(2) and I'y(4)
for the Hecke operators T'(q), where ¢ = p" is a power of an odd prime. The purpose of this
expository note is to illustrate how these formulas arise naturally from the Rankin-Cohen
brackets of Zagier’s mock modular form with specific theta functions that are chosen to
capture the corresponding level structures.

Theorem 1.1. If r is a positive integer, p is an odd prime, ¢ = p"

even integer, then the following are true.

, and k > 4 1s a positive

(1) For cusp forms on SLy(Z), we have

k—1 1
Tri(SL2(Z), q) = 19 -4(q)q il 5 %7 U2 < ) H*(4q — s ) = Ae—1(9)-
2V4
s2<4q
(2) For cusp forms on I'¢(2), we have
k—1 1
Try(To(2), q) = I 5(q)g> ' — 5 g ! Z< Uk_2 ( > H*(4q — 45?)
s2<q

Y U (%) H*(q — 5%) — 201(q)-

s$2<q

'We define H*(0) := —% and h(D) = H*(D) = 0 whenever —D is neither zero nor a negative
discriminant.
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(3) For cusp forms on I'y(4), we have

Tri(Lo(4), q) = iy 3(q)q=" ! Z Ug—2 ( ) H*(q — 5*) — 3X\e-1(q)-

2
s2<q

Although Theorem (1) is proved by Zagier [18], we include it in the theorem to jux-
tapose the formulas, which highlights the modifications that arise when introducing level
structure.

This note is organized as follows. In Section [2] we recall standard facts about holomorphic
modular forms, harmonic Maass forms, and mock modular forms. We require Zagier’s weight
3/2 Eisenstein series, the Rankin-Cohen bracket operators, and the method of holomorphic
projection. In Section 3] we recall some results from Petersson theory and the theory of

newforms as adapted to this setting. Finally, in Section {] we apply these tools to prove
Theorem [L11

2. NuTs AND BoLTs

2.1. Holomorphic Modular Forms. If £ and N are positive integers, then denote by
M (To(N)) the vector space of holomorphic modular forms of weight k& and level N. The
cuspidal subspace of My (I'g(N)) is denoted by Si(I'o(N)). We write Spe¥(Ig(N)) for the
new subspace of weight £ and level N. We assume that the reader is familiar with the theory
of newforms of Atkin and Lehner [I].

The group GL3 (Q) acts on {f : H — C} through the slash operator. Namely, if f : H — C
and v = (%) € GL3 (Q), then the (weight k) slash operator is defined by

21) (h)(r) = (ad = b er + )+ (250

In our setting, two matrices in GL3 (Q) play a significant role, namely, the matrix V(d) :=
(¢9) and the Fricke involution Wy := (5 ). The action of these matrices send cusp
forms to cusp forms of possibly higher level. More precisely, if d is a positive integer and
f € Sp(To(N)), then fIV(d) € Sp(To(dN)) and f|Wy € Sp(T'o(NV)). Furthermore, if f is a

cusp form with Fourier series f(7) = Y ay(n)q”, where ¢, = €™, then we write
n>1

(2.2) (FIU@)(r) =Y as(nd)q;.

The vector space of cusp forms admits the structure of a finite-dimensional Hilbert space
thanks to the Petersson inner product. To make this precise, if f,g € Sg(I') for some
subgroup I' of SLy(Z) of finite index, then deﬁneﬂ the Petersson inner productf{of f and g
by

(2.3) (fo)r: [SL—/H/Ff T +1y)g(r +1iy)y

pdxdy

2We drop the I" when it is understood from context.
3There are different normalizations of the Petersson inner product.
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2.2. Zagier’s Weight % Eisenstein Series. We require the generating function

= 1 1 1
2.4 H ()= H' D) =——+=C+-*+¢+S+ ...,
(2.4) (7) DZO (D)g- 5 T3t t ettt
(note: ¢, := ™) for the Hurwitz class numbers, the holomorphic part of the harmonic

Maass form [4] H(7) of weight 3/2 constructed [19] by Zagier in the 1970s by the method of
Eisenstein series. This holomorphic part is the so-called mock modular form for H(r).
We recall Zagier’s construction. To this end, we first recall notation from the the-

ory of modular forms of half-integral weight. If v = (2%) € I'y(4) and 7 € H :=
{z +iy € C,y > 0}, then the automorphy factor is defined by j(v,7) := 0(v7)/0(7), where

. ar+b
VT = o and

(2.5) 0(r) == qu.
nez
We recall the metaplectic extension of GLj (Q) defined as

. ~_fa b n ) : , cTH+d
Mp,(Q) := {(7, @)y = (c d) € GL; (Q), ¢ : H — C holomorphic, ¢(7)° = \/ad:—bc} :
The group Mp,(Q) acts on {f : H — C} through the slash operator. Namely, if f : H — C, k
is an integer, and 7 = ((25), ¢) € Mp,(Q), then the (weight £) slash operator is deﬁnedﬂ by

<f|g7> (1) = o(r)7*f (ar + b) |

ct +d

Finally, if NV is a positive integer with 4| N, we define the Fricke involution

- (% )47,

where /- is the principal branch of the square root, and if f is an eigenform of |Wy, we
denote the eigenvalue by Ay (f).

In this notation, if s € C with R(s) > ;11 and 7 € H, then define the Eisenstein series
Es (7) by

2.6) By )= Y ()

3
e ) (v,7)

where ', < SLy(Z) is the stabilizer group of ico. Finally, we define the Eisenstein series
Fy ((7) by

(2.7) Fy () == (E3 [s W) (7).

Both E3 (1) and F (1) are analytic in s, and they have analytic continuations to s = 0,
which we denote by E% (1) and F %(T) respectively. In this notation, Zagier proves the
following theorem.

4The dependence on k is usually dropped from the notation if understood from context.
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Theorem 2.1. [19] The function

- 1
Hr) = S H () + —— AT (5 Amny) ;"
nZ:O 87.\/Y 4\/_ Z
where T = x + iy € H, is a weight 3/2 harmonic Maass form with manageable growth at the
cusps of To(4). In fact, we havd]

Hr) = —— (B3 () + ()2 2Ry (m)

2.3. Rankin-Cohen Brackets. The expressions in Theorem arise from the Rankin-
Cohen brackets operators of H(7) with appropriate theta functions. To make this precise,
let f and g be smooth functions defined on H and let k,[ € %N and m € Ny. The mth
Rankin-Cohen bracket (of weight (k,1)) of f and g is

k -1\ /1 -1\ d d°
28 (i o & G (T (T

r4+s=m

These operators preserve modularity.

Proposition 2.2 (Th. 7.1 of [5]). Let f and g be (not necessarily holomorphic) modular
forms of weights k and 1, respectively on a subgroup I' of Mpy(Q). Then the following are
true.
(1) We have that [f, gl is modular of weight k + 1+ 2m on T.
(2) If ¥ € Mp,(Q), then under the usual modular slash operator we have

A1k 91 m = ([f, glm) lktis2m7-

In this notation, the weighted class number sums in Theorem appear as the coefficients
of [H(7), 9(7’)]% and [H(7), 6(47')]13;2 after a straightforward calculation.

Lemma 2.3. If m and t are positive mtegers then

[H* (1), =Y cm(n)dl,

n>1

em(n) :(Lm. mZUM(\/i) H*(n — ts?).

SEZL

where

Sketch of the proof. By definition, the Fourier coefficient ¢,,(n) is given by

er(n) = (—n)mzmz li(_l)z(m: %) (Z:T) ( " )] S H (0 — t5?) (\/zs>

=0 Lr=0 SEZL

2
Reorganizing the sum, the claim clearly reduces to showing that

e (")

This explicit form is computed in [9]. A different normalization of Es(7) and F(7) is used.
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is the coefficient of % in Us,,(z). The sum on the right-hand side can be rewritten in terms

of
—1_m, -l
2F1< 2 = 1 |1)
2

A famous identity of Gauss (see (1.3) of [2]), combined with induction in m, completes the
proof. O

2.4. Holomorphic projection. To relate the sums in Lemma to traces of Hecke oper-
ators, we must first relate them to coefficients of a cusp form. To this end, we make use of
the method of holomorphic projection, which maps harmonic Maass forms to holomorphic
modular forms.

To make this precise, suppose f : H — C is a (not necessarily holomorphic) modular form
of weight k& > 2 on I'g(/V) with Fourier expansion

Fir) =Y es(n,y)gr.

Furthermore, suppose that f(7) has moderate growth at cusps, with ¢¢(0,y) = ¢y + O(y~°)
for some € > 0. Then, the holomorphic projection of f(7) is defined by

(o) (7) = o+ 3 em)a?,
n>1
where

4rn)k=t roe dny e
ﬁ/ cr(n,y)e” ™y 2 dy,
: 0

for n > 1. The following proposition explains the importance of the holomorphic projection
operator.

(2.9) c(n) ==

Proposition 2.4. [Section 10.1 of [4]] Assuming the hypothesis above, the following are true.
(1) We have that T (f) € Mi(Lo(N)).
(2) If g € Sk(I'o(N)), then we have (f,g) = (ma(f),g), whenever the left-hand side con-

verges.

The following theorem of Mertens [12] describes the holomorphic projection of the Rankin-
Cohen brackets of H(7) with certain weight 1/2 univariate theta functions.

Theorem 2.5. [Th. V.2.1 of [12]] If m and t are positive integers, then we have

o (1), 0007} = [ (), 007 )+ & -2 A i),

where

A(rim) =23 | D (Viu— o)™ [ g+ (Vi)

n>1 \ tu?2—v2=n n>1
u,v>1
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3. PETERSSON INNER PRODUCTS AND L-FUNCTIONS

To obtain Theorem|L.1] we partially decompose the holomorphic cusp forms e ([H(7), 0(7)])
and o1 ([H(7), 0(47)],m) in terms of newforms. To this end, we take the Petersson inner prod-
uct of these cusp forms with newforms. To compute these inner products, we make use of the
Hecke relations between Fourier coefficients of a given newform. Namely, we use unfolding
theorems due to Rankin and Selberg (see Section 11.12 of [6]). The following theorem of
Rankin [I4] relates the Petersson inner product of two cusp forms to their respective Fourier
coefficients.

Theorem 3.1. If f(7) = > ay(n)q? and g(7) = ) a,(n)q? are cusp forms of weight k on

n>1 n>1
a congruence subgroup I', then we have

- m B

We study the inner product of cusp forms with the forms [H(7), 0(7)],, and [H(7), 0(47)]m-
Since H(7) is defined in terms of Eisenstein series, we obtain the following proposition.

Proposition 3.2. If m is a positive integer and

f(r) = Z ar(n)g; € Sami2(I'o(4)),

n>1

g(r) = a,(n)g} € Sip(To(4)),

n>1

then we have

{f, [E%’g]m> _ l(m + 5) (2m)! Z af(n)ag(n).

6 m (47T)2m+1 e nm+1
Sketch of Proof. Formally, we have that
[Bs (7). 9Dlm = > (7)) S(7)% 9(7)]m

Y€l \I'0(4)

— Z [%(T)ﬂg% ((g|1/2771)|1/27) (7)]m-

'VEFOO\FO(4)
Since g is modular of weight % on I'y(4), Proposition gives us that
[Bs (7),g(Dlm = > 11, 9(7)lmloms27-
€T \T'o(4)
A simple computation gives

= ~(mtg) (m=5) st SOt 1 ol
[E%,S(T)ag('r)]m - Z Z (m _ l> ( l ) (S _ l)' (CT n d>2m+2 (27m‘)mfl pm—t (’yT)

~ET\T'0(4) =0
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By the definition of the Petersson inner product and the modularity of f, we have

m

([Es o glm: [) = Z (2m1)m 7 <m i l) (m N _) —l //H/Foo_ gmml (1) 2l g dy,

=0

where 7 = = + iy. The rest of the proof follows by writing f(7) and g(7) as Fourier series,
computing the resulting elementary integrals, and taking analytic continuation with s —
0. O

To obtain the trace formulas for I'g(2) and I'g(4), we require Rankin-Cohen brackets of
H(7) with 6(47). Since 0(47) is a modular form on I'y(16), we require an analogue of Propo-
sition |3.2) when f and g are of level dividing 16. Since £ s (7) is the Eisenstein series of weight

% for T'y(4), the above proposition doesn’t hold. However, we have the following similar
result.

Proposition 3.3. If m is a positive integer and

= Z ar(n)q; € Somi2(I'0(16)),

Zag n)qr € M1/2(F0<16)>

n=0
then we have

Sr1Bpg ]m>_i(mm ) 4m) 2m+lzzafAnmiglA tpaln)

AeS n>1

aneres = { (5 0).(3 ). (3 1) (5 1) }-0100) = £ avatntar, and (sl -

Z ag,A (n) q:—L

n>1
Sketch of Proof. If s € C with R(s) > 1 and 7 € H, then define
1
(3.1) Gs ()= Y =5 SO
> i(7,7)
€T \I'0(16)
where j(7,7) is as in Section [2.2] It is then clear that

Es (1) =Y (Gs |sA7")(7).

AeS

The proof follows exactly as in Proposition (3.2} O

Remark. If G5 (1) denotes the analytic continuation of G %75(7) to s = 0, then Proposition
holds with G's and ['0(16) in place of Es and Co(4).

To compute inner products of the form ([F3/s, g]nm, f) using Propositions and , we
consider the action of the Fricke involution on Eisenstein series of half-integral weight and
theta functions.
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Lemma 3.4. The following are true.
(1) We have

i 1 i
Es|(W§) = iBs; O|W, = e 16; 0(47) Wi = Ee—wm.

(2) If G% denotes the analytic continuation of G%, at s = 0, then we have

S

Fy =2°2.Gs|Wys  and  Gs|(Wf) = iGs.

[SI[9)

Proof. The proof of (1) is trivial. On the other hand, note that G%VS(T) = Es (47), and
therefore, by analytic continuation, Gs(7) = Es (47). The proof of (2) reduces to an elemen-
tary computation. L]

S

4. PROOF OF THEOREM [1.1]

The main tool for proving Theorem is the next theorem that gives the Hecke traces in
terms of the coefficients of specific holomorphic projections of H(7) with theta functions.

Theorem 4.1. If p > 3 is a prime,m € N and k = 2m + 2, then the following are true.
(1) If ot (), (7)) = 3 am(n)2s and g = pr, then

am(q) = —% : (4%) - Try, (To(4),9) -
(2) Thol([H(7),0(7)]m) = >_ am(n)qr, and ¢ =p", then

n>1

anlin) = =2( 70" ) T SL2(2), ).

(3) If maot ([H(7), 0(47)|m) = >_ bm(n)qy, then

n>1

1 2m
bia) = =5+ () (-STo (T4, )+ 24T (002, ).
4.1. The proof of Theorem [4.1I We require the following convenient expression for the
Petersson norm of newforms f.

Lemma 4.2. If f(7) = > af(n)q? is a normalized newform of weight k and level N, then
n>1
we have

7 (k—1)! 1 ap(n?
wn-3- ST (1-) S

PIN s

Sketch of Proof. 1t is well known (see Corollary 11.12.3 of [5]) that ) ‘afr(l—n”z converges for
n>1
(4)

$(s) > k and has a simple pole at s = k, with residue % . (k_ll;!

(f, f). Since f is a newform
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on I'g(N) with trivial nebentypus, a(n) is real for all n and we have (see p. 80 of [17]) that

S U sk 3 e

n>1 ne n>1
where (y(s) = Y. -5. The lemma follows by taking residues at s = k. O
n>1
(n,N)=1

To prove Theorem {.1, we now compute o ([H(7), 0(7)]1m) and mner ([H(7), 0(47)],) with
newforms and their images under V' (d) operator. This depends on the level of the newform.
The first lemma concerns the level 4.

Lemma 4.3. If f(7) € S35, (I'0(4)) is a normalized newform, then the following are true.
(1) We have that

()00, 1) = = L) ).

(76,0600, 1) = - L1 ),

(2) We have that

(3) We have that
(mhol ([H(7), 0(47)]m), fIV(2)) = 0.
(4) We have that

(). 04 A1V ) =+ Lad g gy

Proof. For brevity, we only prove (1). By Proposition [2.4] we have
<7Th01([H7 0]771)7 f> - <[H) e]mu f>
We write H in terms of Fisenstein series to obtain

([, Ol ) = —— L B Wi B, .

B0 ) — 5
Since W2 acts trivially on My (T(4)) when k is an even integer, Proposition (2) shows
that

(B3 W8, £) = (B3l (Wo)2, 01V, £IW2),
Using Lemma [3.4] we have that

1 1
<[H7 G]WH f> = _ﬁqE%’ e]mv f> - ﬁqE%v G]WH f‘W4>
Since f is a newform of level 4, f|W, = —f (see Theorem 7 of [I]). Therefore, we have
1
<7Th01<[H7 9]771)7 f> - _ﬂqE%) Q]mv f>

Proposition [3.2] then gives

a0 1) = =1 ("% ) s X -

m
n>1
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We apply Lemma [£.2] to obtain

<7Thol([H7 e]m)a f> =

N B R
Since 5 = %, the claim follows.

The proofs of (2),(3), and (4) are similar, where Proposition |3.3| takes the place of Propo-

sition 3.2, Furthermore, the Fourier coefficients at the cusps given in Proposition [3.3| are the

same as the Fourier coefficients at ico, since the matrices in S are in I'y(4), and f is modular
on I'g(4). O

1 (m+3\ (2m) (47)2m+2 3
_5'( m )(47r)2m+1'2'(2m+1)!?<f’f>'

If the level is 2, we have the following lemma.

Lemma 4.4. If f(1) € S35, (I'0(2)) is a normalized newform, then the following are true.
(1) We have that

<7Thol([H7 e]m)a f> = _% ) (4771_:)<f7 f>
(2) We have that
(ot ([H, O]m), f1V(2)) = 0.
(8) We have that

(ra(1(), 86 1) = — - Lk ).

(4) We have that

(Mot ([H(7), 0(47)]m), fIV(2)) = (muat ([H(7), 0(47)]m), fIV(4)) = 0.
(5) We have that

Xa(f) G

(Mot ((H(7), 0(47)]1n), FIV(8)) = === - == (f. f)-

Proof. The proof is analogous to the proof of Lemma Case (5) is more involved when
computing the Fourier coefficients of f|V'(8) at cusps. We note that

(| (5 3)) = (v (X D) (5 1)) 0
—a0) (1v| (5 1))

= Xo(f) - 4™ ap(n)(=1)"q;"

n>1

0|

Similarly, we have that

(ol )01 3 6 D)o

= Xa(f) Y _as(n)-i"ql.
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and

(] (7 1)) 0 =2 E asto- o

n>1

For newforms on SLy(Z) (i.e. level 1), we have the following lemma.

Lemma 4.5. If f(7) € Som12(SLa(Z)) is a normalized newform, then the following are true.
(1) We have that

<7Thol([H79]m)7f> = _% ) (4m_m)<f7 f>

m

(2) We have that

(Rt M. O)), FIV(2)) = — - 42). (m—m>(f, f)-
(3) We have that

(Thot([H, 0)m), fIV(4)) = —% i (Lm)g, £).
(4) If L € {0,2,4}, then

(). 84, A1V ) = —5 - L gy,
(5) If L € {1,3}, then

H(T),0(4 V(2h) = 1 “f_(z)@
(Mol ([(7), 0(47)]m), fIV(Z)) = 6 9omt+l gm (f, )
Proof. The proof is similar to Lemmas [£.3] and [4.4] with the following modification.
1 ay(2n?) 1 1 ) _— n2
Z om+1 " 2m+2 - Z om+1 ¢ 2m~+2 ’ af(2)af(n ) — 2% ayr 7

n>1 n>1

_ () —ap(n?) 1 1 af(2n?)
~ om+1 Z n2m+2 9 Z om+1 p2m+1
n>1 n>1

2 ap(2) — ap(n?)
T3 omtl Z n2m+2’

n_

O

Since f and f|V(d) are not always orthogonal when d > 1, we compute (f, f|V(d)) in

terms of (f, f). This depends on the level of f. If f is of level 4, we have the following
lemma.

Lemma 4.6. If f(7) € S (['y(4)) is a normalized newform and 1 > 1, then (f, f|V(2')) =
0.
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Proof. Theorem [3.1] implies that

vy = TE= Z o 2“”(%)

3 47T :c—>oo ;

_ _(k’— 1 li Z (Zf 2l af
3 (4m)* aHoo x/21 ot

n<z/2!

It is well-known (see Proposition 13.3.14 (a) of [6]) that the coefficients with even index of
a normalized newform of level 4 vanish, proving the claim. U

If f is of level 2, we have the following lemma whose proof is analogous to that of
Lemma .6l

Lemma 4.7. If f(7) = > as(n)q € §" (I'0(2)) is a normalized newform and [ > 0, then

n>1

A2 (f)

e = (-2 ) 3

For newforms on SLy(Z), we have the following lemma.

Lemma 4.8. If f(7) € Sk (SLa(Z)) is a normalized newform, then the following are true.
(1) We have that
2)

1
g ’ ;kf/gfl <f> f>

(. [IV(2) =
(2) We have that

(3) We have that

FAVE) = (15 S — o 5 ) U )

(4) We have that

a 4 a 2
. AV00) = (57 1k — 31+ s + 1) D)

Proof. The same argument in the proofs of Lemmas [4.6] and [4.7] gives us that
L FIVE) =273 (FlU@), £),

for all [ > 0. Since f is of level 1, the relation between a(2'n) and a(n) is more involved.
Therefore, we must determine the Hecke operator T'(2!) in terms of U and V operators. We
make this precise for (1), and leave the remaining cases to the reader.

Hecke’s recurrence relations (see Corollary 10.4.4 of [6]) imply that T'(2)f = f|U(2) +
25-1f|V(2). On the other hand, since f is a normalized eigenform of T'(2), we have that
T(2)f = as(2)f. Combining these two equations together, we have that

ap(2)f = flU2) +2: 71 f|V(2).
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Taking the inner product with f on both sides, we find that

ar2(f, f) = (£, FIU@)) + 2271, FIV(2)
=25 (£, fIV(2) + 257 {£ SV (2).
This completes the proof of (1). O
Lemmas combine to prove Theorem 4.1
Proof of Theorem[{.1. We prove (1) and (2). By Lemmas some linear algebra gives

(4.1) T ([H(7),0(7))m) = % [ _ %Zf _ ;Zg _ Zh
- %ZAQ(Q)QIV@) + %Z h\v S nvi ]

where f, g and h run over newforms of levels 4,2 and 1 respectively. Comparing the coeffi-
cients of ¢Z on both sides of |4.1] gives (1).

To prove (2), we write f(7) = > ap(n)q?, g(t) = > ay(n)¢! and h(1) = > an(n)q’.
n>1 n>1 n>1
Using (4.1]), we have that

(4.2) an(ig) = L) -

20 [ 23 a1g) 5 3 (ay(40) + alg) - 27y (20)

g

f
(an(49) — an(2)an(2q) + 4" ar(q))]

Wl

?M

Since f denotes a newform of level 4, then af(4q) = 0. Furthermore, since g denotes a
newform of level 2 and weight 2m + 2, we have that A\2(g) = —27™ay(2). (for example, see
Proposition 13.3.14 (b) of [6]). Furthermore, a,(2n) = a,(2)ay(n). This implies that a,(4q) +
A2(9)-2™a,4(2q) = 0. Finally, the Hecke relations give that aj,(2)an(29) = an(4q)+2*"ay(q),
and so we have

an(4q) — an(2)an(2q) + 4™ ap(q) = 2- 4™ - an(q).
Combining this with gives (2). O

4.2. Proof of Theorem [1.1] For brevity, we prove (2), leaving the proofs of (1) and (3) to
the reader. Thanks to Theorem [4.1, we have

am(q):—1 G) - Try, (To(4), q)

3 4m
and
1 2m
bldg) =~ - (2™ - (8T (0 (4).) + 24T, ((2).9)).
Using Lemma [2.3] and Theorem [2.5] after some simplifcation we find that

mZUgm ( ) H*(q — 8%) + Aami1(q) = —% - Try, (To(4), q)

SEL



and

q" Z Uam ( ) H*(4q — 45) + 2Xoms1(q) = —% (—=8Try (To(4), q) + 24Tr (To(2), q)) -
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SEL

Taking an appropriate linear combination, we then have

"3 Ui (22 ) H a5 3 e (2 ) HY40=453) 20 () = T (2.0

SEZ

Since the summands are nonzero only if s> < ¢ or s = ¢ and ¢ is a square, (2) follows from
the fact that H*(0) = —<5 and Uy, (1) = 2m + 1. This proves (2).
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