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Abstract

We consider certain constant-coefficient differential operators on R? that have positive-definite symbols.
Each such operator A with symbol P defines a semigroup of operators e’ Atr>o, admitting a continuous
convolution kernel H ;, for which the large-time behavior of H 1tD (0) cannot be deduced by basic scaling
arguments. The simplest example has symbol P (&) = (n+ {2)2 + n4, E=Mm,0) e RZ. We devise a method
that allows us to determine the large-time behavior of H 53 (0) for several classes of examples of this type
and we show that these large-time asymptotics are preserved by perturbations of A by certain higher-order
differential operators. For the P just given, it turns out that H ;, ©0) ~c PI_S/ 8 when ¢ tends to infinity.
We show how such results are relevant to understand the iterated convolution powers of certain finitely-
supported complex functions on Z4. We also discuss how these techniques provide precise small-time
asymptotics for H fD (0) in some cases when the operator A is not hypoelliptic. The simplest such example
A has symbol P(§) = n2 +(n— &2)4 and we show that pr ) ~ cPt_1/2 as t tends to O in this case. Our
work represents a first basic step towards a good understanding of the semigroups associated with these
differential operators. Obtaining meaningful off-diagonal upper bounds for the convolution kernels of these
semigroups remains an interesting challenge.
© 2023 Elsevier Inc. All rights reserved.
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1. Introduction

On R?, consider the constant-coefficient partial differential operator

A =07 + 07, +2i0,,07, — 07,

X1Yxp

and its symbol

PE=m+H*+7t

defined for &€ = (n,¢) € RZ2. It is evident that A is a non-negative, symmetric, and fourth-order
elliptic operator. Thus, when defined initially on the set of compactly supported smooth func-
tions, C° (R?), A extends uniquely to a non-negative self-adjoint operator on L*(R?) which,
by an abuse of notation, we denote by A. Via the spectral calculus or the Hille-Yosida construc-
tion, —A generates a continuous one-parameter semigroup of contractions on L?(R?) which is
denoted by {e~'A} and called the heat semigroup associated to A. Thanks to the Fourier trans-
form,' this semigroup has the integral representation

(e_tAf)(X)Z/HE(X—y)f(y)dy (D
R?

for each f € L?(R?) where Hp = Hg)(~) is called the heat kernel associated to A and is given
by

Hb(x) = / e P®mint g )

R2

(2m)?

for t > 0 and x € R2. For its central role in the analysis surrounding A, including its spectral
theory, associated Sobolev inequalities, and properties of the semigroup {e¢~/*}, we are interested
in the behavior and properties of the heat kernel Hp. As we demonstrate below, this curiosity
is further spurred by the appearance of Hp as a scaled limit of convolution powers of complex-
valued functions on Z2, just as the Gaussian density appears as the scaled limit in the local
(central) limit theorem [1].

Consider the function ¢ : Z2 — C defined by

1 1

1 1
¢=m<12¢1+§¢2+§¢3> 3

I On Rd,' we shall take the Fourier transform  and inverse Fourier transform F ! to be giyen by F(f)(&) = f(g) =
Jra f0)e*E dx for f e L2RY) N L' (RY) and F~1(g)(x) = g(x) = W Jrd §E)e™ X6 dg for g € L2(RY) N

LI(RY), respectively.
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where

41375061 (x1,%2) = (0,0)
1080000 4 969232  (x1, x2) = (1, 0)
—165072 (x1,x2) = +(2,0)

P10 =1 22000 + 9024 (x1, x2) = T(3,0)
—38256 (x1,x2) ==£(4,0)
0 else
1228800  (x1, x2) = (0, £1)
286328 (x1,x2) = (0, £2)
—9524  (x1,x2) = (0, +4)

Pa2(x) =
2232 (x1, x2) = (0, £6)
~179 (x1, x2) = (0, £8)
0 else

and

£1152000  (x1,%2) = (1, 1), (F1, —1)
16939 (x1,x0) = (T1,2), (£1,-2)
216 (x1, x2) = (£2,2), (£2, —2)
1128 (x1, x2) = (£3,2), (£3, —2)

BOZN 110620 () = (£1.4), (1, —d)
54 (x1, x2) = (£2, 4), (+£2, —4)
+77i (x1,x2) = (F1,6), (F1, —6)
0 else

for x = (x1,x) € 7. With this function, we define its iterated convolution powers ¢(") (72—
C by putting ¢V = ¢ and, for n > 2,

o™ @)=Y ¢" N —»ep(y)

yeZ?

for x € Z?. Motivated by applications to data smoothing and partial differential equations, we
are interested in the asymptotic behavior of ¢ as n — oco. Given the nature of convolution,
it is reasonable to expect that the mass of qb(") “spreads out” on 72 as n increases, however,
exactly how it does this is not a priori clear. In Section 5, we show that, for large n, q&(”) is well
approximated by the heat kernel Hp evaluated at = n/100. This so-called local limit theorem
is illustrated in Fig. | and it motivates us to understand H,(-) for large ¢.

In light of the fast growth of P(£) as £ — oo, it is not difficult to show that, for each ¢ > 0,
x + H} (x) is a Schwartz function. Given that A is a fourth-order (uniformly) elliptic operator,
Hp is known to satisfy the following estimate: There are positive constants A, B, and C for
which
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20 -20

(a) Re(¢(™) for n = 1000 (b) Re(HY) for t = n/100

Fig. 1. The graphs of Re(db(”)) and Re(Hp) for n = 1000.
it A sl o A
|Hp )| <z exp (—Br|5| +Ci @

for t > 0 and x € R? [2,3]. Using this so-called off-diagonal estimate, it is easily verified that
the semigroup {e~*2}, initially defined on L?(R?), extends uniquely to a continuous semigroup
{e7"2r} on LP(R?) for all 1 < p < co. In fact, this estimate also guarantees that the spectrum of
A = A independent of p, cf., [3, Theorem 20].

For the present article, we shall focus our attention on the so-called on-diagonal behavior of
H f,, (x). That is, we are interested in the behavior of

¢(t) == Hp(0) = sup |H}p(x)|

xeR2

defined for r > 0. Given that P is non-negative, ¢ is evidently a non-increasing function on
(0, 00). In view of the representation (1), we observe immediately that

le ™™ 100 = sup [Hp(x)| = o()
xeR4

fort > 0,1i.e., e~ is a bounded operator from L!(R?) to L>(R?) with operator norm precisely

¢(t). By virtue of Plancherel’s theorem,

t 2 —tP 2
IHpllz = le”" "3 =

fe—ZtP(S) dé = H3' (0) = ¢(21)
R2

1
(2m)? | (27)?

for ¢ > 0. From this it follows that e ~'# is a bounded operator from L%(R?) to L*®(R?) with

le Mmoo = 1 Hb l2 = v 21)

for ¢ > 0. In other words, the semigroup {e~*"} is ultracontractive with bound characterized by
. Tt is well known that the ultracontractivity of the semigroup {e~"*} can be used to establish
various Sobolev-type inequalities associated to A, e.g., Sobolev, Nash, Gagliardo-Nirenberg [4—
9]. To do this, however, it is necessary to have a good understanding of the function ¢(¢). Further,
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given our motivation to understand the convolution powers of the example ¢ given above, we are
especially interested in understanding the function ¢(¢) for large values of ¢ and, in fact, we will
find that [|¢™ |00 < @(n) for’ n e Ny :={1,2,...}.

Analyzing ¢ in small time is straightforward. Using (4), we see that

C
@) < 2 &)

for all 0 < ¢ <1 where C is a positive constant. We can, of course, do better by employing the
following elementary scaling argument: Upon noting that

lim P~ V4) = lime PV, V) =t 4+ ¢4 (6)
t—0 t—0

for each £ = (17, £) € R?, the change of variables & — t=V4% = (1= V4, t71/4¢) in (2) followed
by an application of the dominated convergence theorem yields

1
lim 1120 () = / e~ dnd = —T(5/4)% ~0.0832420 )
t—0 T

RZ

(2m)?

where I is Euler’s Gamma function. Consequently, ¢(¢) =< t~/% for 0 <t < 1. It is noteworthy
that the scaled limit (6) at + = 0 “picks out” the homogeneous fourth-order polynomial Py(§) =
n* 4+ ¢* which is precisely the principal symbol of A. Though not directly related, we refer
the reader to the works of Evgrafov and Postnikov [10], and Tintarev [1 1] who established short-
time off-diagonal asymptotics similar to the right hand side in (4) for heat kernels of higher-order
elliptic operators. See also the related works of Barbatis and Davies [12-15].

Following Davies [15] and driven by the motivations previously discussed, we seek to under-
stand the behavior of ¢ (¢) in large time. For this goal, it is clear that the estimate (4) is useless for,
in contrast to ¢(r), the function 7 > 1~ 1/2 exp(Ct) is increasing for ¢ > 1/2C. In looking back
through the scaling argument above, we wonder: Perhaps there is a rescaling of the symbol P
that will yield an asymptotic (or simply a useful estimate) for ¢ in large time. In fact, this type of
approach was taken in [15] to characterize the large-time on-diagonal behavior of the heat kernel
associated to the fourth-order elliptic operator f +— ‘57{: - ZZTJ; in one spatial dimension. We note
that Davies’ results addressed a question posed by M. van den Berg concerning the necessity of
the term Ct in off-diagonal estimates of the form (4). Given real numbers « and 8, we make the

change of variables £ = (,{) — (7 %n, t=P¢) in the integral (2) to see that

t*(a+l3)

()2
R2

o(t) = e PO g ®)

for t > 0. With the aim of mimicking our small-time scaling argument, we seek values of « and
B for which t P(t—*n, t=P¢) is sufficiently well behaved as r — co. Upon noting that

2 Here and in what follows, for real-valued functions f and g defined, at least, on a non-empty set X, we shall write
f(x) < g(x) for x € X to mean that there are positive constants C and C’ for which Cg(x) < f(x) < C’g(x) for all
xeX.
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tP(t_aT), l‘_ﬁf) — t1—2an2 + tl—a—2ﬂ2n§.2 + t1—4an4 + tl_4ﬂ§4
for t > 0 and (17, ¢) € R? and considering all possibilities for o and S, we find that

M+t a=1/2,p=1/4

2
=1/2 1/4
lim PGy, Poy=1", a=1/2,p>1/
t—00 z a>1/2,6=1/4
0 or oo otherwise

for 2almost every (n, g;) € R2. Given that none of the functions (7, ¢) e_(”"‘fz)z, n,¢) —
e, or(n, &) e % are integrable, it follows that

lim ¢~/ P¢ "m0 gg
—>0o0
R2

is either O or oo for all possible cases of o and 8. Consequently,

lim [ e tPE 700 ge 9)

t—0o0

RZ

cannot be determined by interchanging the integral and limit (for any values of «, 8) and hence
the argument we used to establish the small-time asymptotics for ¢ is not helpful to us. In fact,
it can be shown that no “reasonable” scaling, which is linear in &, can be used to deduce the
asymptotic behavior of ¢(t) as t — oco. These observations are tied, in some sense, to the absence
of a well-behaved lower-order component of P characterizing the behavior of ¢(¢) in large time
just as the principal symbol 5* + ¢# does for small time. Without a tractable scaling method for
large time, the nature of the decay of ¢(¢) as t — oo — be it exponential, polynomial, or otherwise
—is not a priori clear. Our main theorem, Theorem 3.1, yields the (to us) surprising conclusion
that ¢(r) = t=/8 for r > 1. By an application of Theorem 3.4, we are able to obtain the “true
asymptotic”,

1
im 580() = —— ~
Jim 175 () = 5T (9/8) ~ 0.0845624.

Curiously, we find in view of (8) that the limit (9) does exist (and is equal to 271721 (9/8))
whenever « + 8 = 5/8 yet, as we previously noted, this observation cannot be seen via dominated
convergence.

Taking this example as motivation, we introduce and study a class of symbols on R¢ for which
it is possible to establish on-diagonal heat kernel asymptotics in large (and small) time. For these
examples, the small-time behavior is often characterized by a principal homogeneous term and
we focus on the interesting question of large-time behavior. In particular, for positive integers a
and b with d = a + b, we consider a polynomial of the form

PE)=Pi(n+ Q)+ P(n)
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for £ = (17,¢) € R? =R® x R? where P; and P, are real-valued positive homogeneous polyno-
mials in sense of [1] and Q : R” — R? is a so-called multivariate nondegenerate homogeneous
polynomial. The notions of positive homogeneous and multivariate nondegenerate homogeneous
are presented in Section 2; we remark that the prototypical example of a positive homogeneous
polynomial is a positive-definite and homogeneous semi-elliptic polynomial [16,1,17,7]. The
homogeneous structure (and order) of P; and P> need not coincide and so P is generally inho-
mogeneous and further, as seen in our motivating example, no rescaling of P in large time yields
a tractable homogeneous term. To the constant-coefficient operator A on R? with symbol P,
provided that P grows sufficiently fast as £ — oo (which will always be the case for us), there
corresponds a heat semigroup {e~'*} with heat kernel given by

Hp(x) = /‘e_”D(S)e_"x"§ d&

]Rd

@2m)?

for # > 0 and x € R¥ and, with this, we define o(t)=H fo (0) for ¢ > 0. Under certain hypotheses
concerning P;, P, and Q, our main theorem (Theorem 3.1) gives positive numbers g and poo
for which

o tTh O0<t<1
LR PE T
for ¢ > 0; in particular, our result describes the elusive behavior of ¢(#) in large time. Under one
addition hypothesis, we also show that the limits

lim t*0¢(z) and lim ()
t—0 t—00

exist and are positive computable numbers depending only on P;, P» and Q; this is Theorem 3.4.
We note that Theorems 3.1 and 3.4 are stated in terms of positive homogeneous functions P; and
P> (in the sense of [18]) and a multivariate nondegenerate homogeneous function Q (introduced
in Section 2) and, correspondingly, P need not be a polynomial nor Hp correspond to a constant-
coefficient partial differential operator. Following Section 3, we treat a perturbation theory in
which P is replaced by P 4+ R where R(§) = o(P(£)) as® & — 0 and, under certain conditions,
we show that H;,+R (0) < @(t) < t—Heo for t > 1; this is Theorem 4.1. Further, viewing it essen-
tially as a perturbation problem, we then apply our methods to the related problem of determining
the asymptotic behavior of the convolution powers of certain complex-valued functions ¢ on Z.
Our results in this direction, Theorem 5.1 and Corollary 5.2, describe the asymptotic behavior
of ™ in the form of local limit theorems and sup-norm asymptotics. Our theory provides an
inhomogeneous counterpart to the homogeneous theory developed in [1], [18], and [19]. Specifi-
cally, Theorem 5.1 can be compared to Theorem 1.6 in [1] and Theorems 1.9 and 3.8 of [19] and
Corollary 5.2 can be compared to Theorem 4.1 of [1], Theorem 3.2 of [18], and Theorem 3.1 of
[19]. Applying our results to the ¢ discussed in this introduction, we find that ||¢™ ||, =< n™>/8
for n € Ny and obtain the value of the (existent) limit, lim,_, oo 7°/8[0" || oo

3 This “little-0” notation means that, for each € > 0, there is an open neighborhood O € R4 of 0 for which IR(&)| <
€ P (&) whenever & € O.
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The entire theory developed in this article has a parallel version where the large-time behavior
of ¢(t) is easy to compute while the small-time behavior is unclear. In fact, a key to our proof
of Theorem 3.1 is that the heat kernel Hp associated to A agrees on the diagonal with the heat
kernel Hp associated to a “dual” constant-coefficient partial differential operator 1~\, i.e.,

w(t) = Hp(0) = H5(0) = 3(1)

for all ¢ > 0. The utility of this correspondence is that the large-time behavior of ¢ is easily and
directly computed. For the fourth-order elliptic operator A considered in this introduction,
A=—037 +9] +4id] o7 — 607 87, — 4idy, 90, + 3%,

which is not an elliptic operator, nor is it semi-elliptic or even hypoelliptic. Consequently, the
heat kernel corresponding to A, especially for small time, is not well understood. Akin to the
fact that A has elliptic principal part Ag = 8;‘1 + 8?2 which determines the small-time decay of
o(t), A has “lowest-order” component which is well behaved and determines the behavior of
@ () in large time. This component, which could be called the principal symbol at infinity, is the
operator

~

Aoo=—07 + 3%

which is semi-elliptic and determines the 5/8 = 1/2 4 1/8 exponent of polynomial decay of
@ = ¢ for large time. In view of this, the authors see evidence for a useful notion of large-time
semi-ellipticity for operators and a theory surrounding it which is akin (and perhaps dual to)
the standard theory of elliptic/semi-elliptic operators. In Section 6, we discuss this and future
directions of the theory presented in this article.

2. Homogeneous functions

In this section, we give a brief account of the theory of positive homogeneous functions (pre-
sented more fully in [18]) and introduce a multivariate generalization of such functions, which
we will call nondegenerate multivariate homogeneous functions. For a positive integer d, we
shall denote by End(R?) the set of linear endomorphisms of R4 and by GI(RY) the correspond-
ing subset of automorphisms. We shall take End(R?) to be equipped with the operator norm
| - || inherited from the standard Euclidean norm |-| on R¢. For a given E € End(R%), we define
T : (0, 00) — GI(R?) by

o0 k
(Int)
T, =tf =exp((In1)E) = § o EX
k=0

for t > 0. It is straightforward to verify that T is a Lie group homomorphism from the set of
positive real numbers under multiplication into GI(RY). The collection {T} : t > 0} = {t¥ : 1 > 0},
which we view both as a set and as a subgroup of GI(R9), is called the continuous one-parameter
group generated by E; it will usually be written {t£};.o or simply {t£}. It is a standard fact that
every continuous one-parameter (sub)group of {7;} € GI(R?) is of this form, i.e., is generated by
some E € End(R?). An account of the theory of continuous one-parameter groups can be found
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in [20]. Two notions of particular interest for us are captured by the following definition; the first
of which is equivalent to the so-called Lyapunov stability of the one-parameter additive group
R>t— T,-+ =exp(—tE) [20].

Definition 2.1. Let {7;} C GI(R9) be a continuous one-parameter group.

1. We say that {7;} is contracting if
lim || 7; || = 0.
t—0

2. We say that {T;} is non-expanding if

sup || 73] < oo.
0<t=<l1

Thanks to the continuity of T : (0, o0) — GI(R?), every contracting group is non-expanding.

Proposition 2.2. Let {T;} be a continuous one-parameter group generated by E € End(RY). If
{T:} is contracting, then tr E > 0. If {T;} is non-expanding, then tr E > 0.

Proof. By virtue of the continuity of the determinant map and the fact that det(tf) = r"F,
have

we
lim /" = lim det(+¥) = det(0) =0
t—0 t—0

provided {t¥} is contracting. In this case, it follows that tr E > 0. If {tf} is expanding with
M = supg_, < |17 |, we have

sup t%F = sup det(tF) < sup |det(A)| < oo
0<r<l1 0<r<l1 IAl=M

because {A € End(R?) : ||A|| < M} is a compact set. Thus tr E > 0. O

Given a function P : R? — R and E € End(R?), we shall say that P is homogeneous with
respect to E if

tP(§) = P(t"§)
for all 7 > 0 and £ € R?; in this case we say that E is a member of the exponent set of P and
write E € Exp(P). Central to the definition of positive homogeneous function given below is the

following characterization taken from [18].

Proposition 2.3. Let P : R? — R be continuous, positive-definite (in the sense that P > 0 and
P (&) =0 only when &€ =0), and have Exp(P) # &. Then the following are equivalent:
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1. The so-called unital level set of P,

Spi={£ eRY:|P&)|=PE) =1},

is compact.

There is a positive number M for which P(§) > 1 whenever |§| > M.
For each E € Exp(P), {tE} is contracting.

There exists E € Exp(P) for which {tE} is contracting.

We have

LRk W

lim P(&) = oco.

&]—00
Definition 2.4. Let P : RY — R be continuous, positive definite and have Exp(P) # @. If any
one (and hence all) of the equivalent conditions in Proposition 2.3 are fulfilled, we say that P is

positive homogeneous. We will also say that P is a positive homogeneous function on R¢.

The following proposition amasses some basic facts about positive homogeneous functions
and its proof can be found in Section 2 of [18].

Proposition 2.5. Let P be a positive homogeneous function and denote by Sym(P) the set of
O € End(R?) for which P(O&) = P(€) for all £ € R%. We have

1. Sym(P) is a compact subgroup of GI(R9).
2. Foreach E, E € Exp(P), we have

trE=trE > 0.

In view of the preceding proposition, we define the homogeneous order of P to be the unique
positive number p p for which

up =trkE
for all E € Exp(P).
Example 1. For any o > 0, the map £ — |£|® is a positive homogeneous function on R?. Indeed,

it is evident that it is continuous and positive-definite and its unital level set is precisely the unit
sphere S|« =Sz in RY. Further,

1
Exp(|-|*) = S tod

where I is the identity map on R¢ and oy is the Lie algebra of the orthogonal group O(R¢) and
is characterized by the set of skew symmetric matrices. A

Example 2. Given a d-tuple of positive even integers m = (my,my, ..., mg), we consider a
polynomial of the form
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PE) = ) aut” (10)
lem|=1
for &€ = (&1,&,...,&) € R4 where, for each multi-index « = (a1,a2,...,aq) € N4, E% =
gi"lgéh .. .g:;‘d and
o
| :m|:= —.
=1 "k

A polynomial of the form (10) is said to be semi-elliptic provided P (£) vanishes only at £ = 0.
Appearing in L. Hormander’s treatise on linear partial differential operators [16], semi-elliptic
polynomials are the symbols of a class of hypoelliptic partial differential operators, called semi-
elliptic operators. For a semi-elliptic polynomial P (&) of the form (10), its corresponding semi-
elliptic operator is the constant-coefficient linear partial differential operator given by

P(D) = Z agD*
Joe:m|=1
where we have written D = (—idy,, —i0y,, ..., —i0y,) and, for each multi-index o = (a1, a2,
...,ag) N4 DY = (=i 0y, ) (—i0x,)*? - - - (—idx,)¥ . For a polynomial P (&) of the form (10),
observe that, for E € End(R?) with standard matrix representation diag(1/m1, 1/ma, ..., 1/my),

P(tFe)= " a,(t"me) @ ¢!/ mg) (Mg = N " at*™E* = 1P (%)

lem|=1 |oe:m|=1
for all t > 0 and & = (£1,&,...,&7) € R?. Thus E € Exp(P) and, because {tf} is clearly
contracting, Proposition 2.3 guarantees that P is positive homogeneous whenever it is positive-

definite. Thus, whenever a semi-elliptic polynomial P of the form (10) is positive-definite, it is
positive homogeneous with homogeneous order

1 1
pup=trtE=|1:m=—+—+---+ —.
1
For two concrete examples, consider

PiE) =£ &5 and Py =& +E1E +E&

defined for £ = (£1, &) € R2. These are positive homogeneous semi-elliptic polynomials on R2
with homogeneous order up, =1/4+1/6 =5/12and pup, =1/24+1/4 =3 /4, respectively. A

Before we conclude our treatment of positive homogeneous functions and turn our attention
to multivariate homogeneous functions, we present the following lemma which is used several
times throughout the course of this paper. Its proof makes use of the generalized polar-coordinate
integration formula developed and presented in Theorem 1.4 of [18].
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Lemma 2.6. Let P be a positive homogeneous function on R? with relatively compact unit ball
Bp={£ e€R?: P&) <1} and homogeneous order wp > 0. Then, for each € > 0,

r 1
fe—eP(E) dé = m(Bp)%
€

R4

where m(Bp) denoted the Lebesgue measure of Bp. In particular, for each € > 0, exp(—€P) €
LY(RY).

Proof. By an appeal to Theorem 1.5 of [18], we obtain a Borel measure 0 = op on S = Sp for
which o (S) = up -m(Bp) and

00 o0
/e—eP(S)dg://e—fP(tEn)tMP—ldtg(dn)://e_“t‘“’_ldta(dn)
S 0 S 0

G

for any E € Exp(P). Thus

o o
r 1
/e_ep(g)dé=G(S)/€_€'l“”_la’t=m(BP)M—P/e_ss‘”’_lds=m(BP)7('uP+ )
eHr enp
R4 0 0

where we have used the Laplace-transform representation of Euler’s Gamma function and the
property that wp - U'(up) =T (up +1). O

We now introduce a generalization of the notion of positive homogeneous function. Given
non-negative integers a and b and a function Q : R? — R?, we say that Q is nondegenerate

if Q(¢) # 0 whenever ¢ # 0. Given a pair (E, E’) € End(R?) x End(R?), we say that Q is
homogeneous with respect to the pair (E, E') provided that

£ 0(0) = 0" ¢)
for all > 0 and ¢ € R”. Akin to Proposition 2.3, we have the following:
Proposition 2.7. Let Q : R? — R¢ be continuous, nondegenerate, and homogeneous with re-
spect to some pair (E, E') € End(R?) x End(R?) for which {t£},~¢ is contracting. Then, the

following are equivalent:

1. For any compact set K C R¢, Q_l (K) C R? is compact.
2. The set

So={¢eR’:10(0)=1)

is compact.
3. There is a number M > 0 for which |Q(¢)| > 1 forall |£] > M.
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4. For each pair (E, E") € End(R%) x End(R?) for which Q is homogeneous and {t*} is con-
tracting, {t* /} must also be contracting.

5. There exists a pair (E, E') € End(R%) x End(R?) for which Q is homogeneous and {t¥} and
{tE,} are both contracting.

6. We have

Jim10()] =00,

Proof. (1=2). Since Sp = 0~ 1(S,) where S, is the unit sphere in R4, this is immediate.

(2=3). Assuming that Sp is compact, let M > 0 be such that |Q(¢)| # 1 for all [¢| > M.
Denote by By the closed ball in R? with center 0 and radius M and by Oy = R? \ By its
complement. Let us first treat the situation in which b > 1. In this case, the fact that Oy, is
path connected and Q(¢) is continuous ensures that there cannot be two elements ¢; and ¢> in
Opm with |Q(Z1)] < 1 < |Q(&2)] for otherwise the intermediate value theorem would imply that
|Q(¢3)] =1 for some ¢3 € Oy, an impossibility. Thus, to prove the statement, we simply need to
rule out the possibility that |Q(¢)| < 1 for all £ € Oyy. Let us assume, to reach a contradiction,
that |Q(¢)| < 1 for all ¢ € Oy. Let (E, E') € End(R%) x End(R?) be a pair for which Q is
homogeneous and {r£} is contracting and let ¢y be a non-zero element in R”. The nondegener-
ateness of Q and the fact that {t£} is contracting guarantees that

o= i 010 = i 0|

In view of our hypothesis it follows that, for all sufficiently large #, tE,{o € By,. Of course, this
implies that ¢ — |Q(¢)| is unbounded on the compact set B and this is impossible for we know
that Q is continuous.

In the case that b = 1, we first argue that Q(¢) > 1 for all ¢ > M > 0. Of course, since
(M, o0) is connected, an argument analogous to that above for b > 1 guarantees that it suffices
to rule out the case that Q(¢) < 1 for all ¢ > M. We therefore assume, to reach a contradiction,
that Q(¢) < 1 for all £ > M and select a pair (E, E’) € End(R%) x End(R?) for which Q is
homogeneous and {¢} contracting. Due to the simplicity of End(R?) = End(R), E' = &'I for
some o/ € R and so tE'¢ =1*'¢ for all 1 > 0 and £ € R = R?. Using the fact that {rF} is
contracting, we have

o0 = im0 = Jim [0¢*)

and so, in view of our supposition, it follows that 0 < e < M for all sufficiently large ¢ (which,
at the same time guarantees that o’ < 0). This, however, contradicts that fact that Q is continuous
at 0. Hence, Q(¢) > 1 for all ¢ > M. A similar argument shows that Q(¢) > 1 forall ¢ < —M.
Thus Q(¢) > 1 forall |¢| > M, as was asserted. /

(3=4). We prove the contrapositive statement. Let us assume that there is a pair (E, E’) €
End(R%) x End(R?) for which Q is homogeneous and {¢£} is contracting, but {t£} is not con-

tracting. It follows that, for some ¢ € R? and € > 0, there is a sequence t; — 0 for which
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E/

for all k. In the case that {t,f /§ } is bounded, we assume without loss of generality (by passing to
a subsequence, if needed) that limy_, 5, tkE/C = o where |¢g| > €. Consequently,

Qo) = lim Q€)= lim 1£0(¢) =0

since #; — 0 and {tf} is contracting. Since o # 0, this is impossible for we know that Q is
/ . . .
nondegenerate. Thus, we must conclude that {t,f ¢} is unbounded. Without loss of generality,

we may assume (by passing to a subsequence, if necessary) that ¢ = t,f/g' — 00 as k — oo.
Consequently, there is a sequence {x — oo for which

lim Q) = lim £ Q(7) =0.
k— 00 k— 00
This shows that Item 3 cannot hold, as was asserted.

(4=15). In view of the hypotheses, this is immediate.

(5=6). We fix a pair (E, E’) € End(R%) x End(R?) for which Q is homogeneous and both {r£}
and {tE/} are contracting. Let {¢;} C R? be a sequence with ¢y — 0o as k — oo. Since {tE/} is
contracting and in view of Proposition A.5 of [18], we can write {; = t,f/ nx where |ng| = 1 for
each k and #; — o0o0. We claim that

lim ‘r,fQ(nk)‘ = 0.
k—00

To see this, we assume, to reach a contradiction, that a subsequence has the property that
1€ 0Gn,)

< M for some M. In this case, we see that

Q)| = \(1/rk,)Er,£j". Q)| = MII(L/u )P
for all j and, since 1/#; — 0 as j — o0, the fact that {tE} is contracting implies that
0= inf |Q(Z)].
1g1=1

This is, however, impossible because Q is continuous and nonvanishing on the compact unit
sphere in R?. We have therefore substantiated our claim and so it follows that

lim 100l = fim | @ no)| = lim [1£ Q)| =oc,
k—o00 k—o00 k—o00
as desired. /
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(6=1). Let K € R? be compact. The fact that Q is continuous ensures that Q_l(K ) is nec-
essarily closed. If 0~ !(K) were unbounded, we could find a sequence i € 0~ 1(K) for which
[¢k| — oo yet Q(&k) € K for all k. Of course, this is impossible in light of our assumption. Hence
0~1(K) must be bounded and therefore compact in view of the Heine-Borel theorem. / O

Definition 2.8. Let Q : R’ — R¢ be continuous, nondegenerate and homogeneous with respect
to a pair (E, E’) € End(R%) x End(R?) for which {¢£} is contracting. If any (hence, every) of
the equivalent conditions listed in Proposition 2.7 are satisfied, we say that Q is nondegenerate
multivariate homogeneous.

Example 3. For a given positive integer «, consider O : R — R defined by Q(¢) = ¢“. Itis clear
that Q(¢) is continuous and nondegenerate. We observe further that

0t')=Q@r) =1¢ =11 ¢

for all + > 0 and ¢ € R where [ is the identity transformation on R. Thus Q is homogeneous
with respect to (af, I) and, further, it is clear that {r*/} = {t*} and {t!} = {t} are both con-
tracting. Thus, by virtue of Proposition 2.7, we conclude that Q is nondegenerate multivariate
homogeneous. A

Example 4. Given positive integers a and b, let o1, 02, ..., 0, be a collection of positive integers
for which, as sets, {1,2,...,b} ={01,02,...,04} and, given positive integers o1, @2, ..., &g,
define Q : R? — R? by

0 =01, 8oy ) = (E1, 882, .., £80) (an

for ¢ = (1,02, ..., &) € RP. We claim that Q is nondegenerate multivariate homogeneous. To
see this, we observe first that Q is clearly continuous (in fact, Q € C*) and Q(¢) = 0 if and only
if $o; =0forall j =1,2,...,a. In view of the condition that {01,072, ...,04,} ={1,2,...,b},
we conclude that Q(¢) = 0 if and only if ¢ = (¢1, &2, ..., &) = 0 and so Q is nondegenerate.
Observe that

Q)= Qe) = ("¢, 12¢2, .. 1%l =1 Q1)

where [ is the identity on R’ and E € End(R?) has standard representation diag(c, a2, ..., @g).
Consequently, Q is homogeneous with respect to (E, I) and, since {t¥} and {t'} are contract-

ing, we conclude that Q is nondegenerate multivariate homogeneous. For a concrete example,
consider Q : R? — R3 defined by

01, 8) = (&2, ¢}, 83)

for ¢ = (¢1, £2) € R?. This is a nondegenerate multivariate homogeneous function of the above
formwithoy =03=2,0p=1,a01=1,0p=4,and a3 =3. A

We remark that, for any Q of the form (11), we have b < a. The following example generalizes
that above and allows for b > a. In addition, the example shows that all positive homogeneous

functions are nondegenerate multivariate homogeneous.
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Example 5. For positive integers a and b, let q1(¢), q2(¢), ..., q4(¢) be a collection of contin-
uous real-valued functions on R? which satisfy the following conditions:

1. If ¢ #0, then g (¢) #0 for at leastone k =1, 2,...,a.
2. There exists £’ € End(R?) for which {t£} is contracting and E’ € Exp(gx) for all k =
1,2,...,a.

Given such a collection, let o1, o, . .., &y be positive integers and define Q : R? — R by

0(5) =(q1 (D), q2(5)**, ..., qa(§)*) 12)

for ¢ € R”. We claim that Q is nondegenerate multivariate homogeneous. Indeed, Q is continu-
ous and nondegenerate in view of Condition 1. Upon taking E’ € End(R”) satisfying Condition
2, we observe that Q is homogeneous with respect to the pair (E, E’) where E € End(R?) has
standard representation diag(a, o, . .., o). Since {tf} and {tE/} are contracting, we conclude
that Q is nondegenerate multivariate homogeneous in view of Proposition 2.7.

In the case that a = 1, a1 = 1, and q1(¢) = P(¢) is a positive homogeneous function, the
above conditions are automatically satisfied for any E’ € Exp(P). From this we conclude that
positive homogeneous functions are nondegenerate multivariate homogeneous. We remark that,
for any E' € Exp(P), Q(¢) = q1(¢) = P(¢) is homogeneous with respect to the pair (I, E')
where [ is the identity on R.

For a concrete example of a multivariate homogeneous function of the form (12) (and for
which 1 < a < b), consider Q : R3 — R? defined by

0=+, @ +8))

for ¢ = (¢1, {2, £3) € R3. This can be written equivalently as

o) = <((§E ') (n +§§’)5>

for ¢ = (¢1,¢2,¢3) € R3. This is clearly of the form (12) with ¢1(0) = (¢ + ¢HV?, q2(¢) =
o+ §33, o] =2 and ap = 5. In this case, it is easy to see that g1 (¢) and g2 (¢) satisfy Condition
1. Further, observe that, for E € End(R3) with standard representation diag(1, 1/2,1/3), we
have E’ € Exp(q1) N Exp(q2). Since {tE,} is clearly contracting, we may conclude that Q is
nondegenerate multivariate homogeneous and homogeneous with respect to (E, E’) where E’ is
that above and E € End(R?) has standard representation diag(2, 5). Of course, we can confirm
the homogeneity of Q with respect to the pair (E, E”) directly: For t > 0 and ¢ = (¢1, &2, £3),

QF'5) = 061,100, t)
5
= ((z;])z + 20, (00 + 1)) )

_ <t2 (;12 + c;‘) e (§1 + 433)5>
=t Q). &
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Proposition 2.9. Suppose that P is a positive homogeneous function on R%, Q : R? — R4
is a nondegenerate multivariate homogeneous function and, for some E € Exp(P) and E’ €
End(Rb), O is homogeneous with respect to the pair (E,E"). Then P o Q and P o (—Q)
are positive homogeneous functions on R? whose exponent sets contain E’. In particular,

HPoQ = [tPo(~0) =T E'.

Proof. It is clear that Q is nondegenerate multivariate homogeneous if and only if —Q is non-
degenerate multivariate homogeneous and Q is homogeneous with respect to a pair (E, E’) if
and only if —Q is. Thus, to prove the proposition, it suffices to prove that P o Q is positive
homogeneous with E’ € Exp(P o Q). Because P is continuous and positive-definite and Q is
continuous and nondegenerate, it is evident that P o Q is continuous and positive-definite. Given
the pair (E, E’) as in the statement of the proposition, we observe that

(Po Q)" ) =P Q) =1P(Q() =1(P o Q)(?)
for all 7 > 0 and ¢ € R®. Thus, E' € Exp(P o Q). Finally, since {t¥} is contracting thanks to

Proposition 2.3, {¢E'} must also be contracting in view or Proposition 2.7 and so we conclude
that P o Q is positive homogeneous in light of Proposition 2.3. O

Example 6. Consider the nondegenerate multivariate homogeneous function Q : R? — R? from
the previous example given by

Q@) =i+, @ +8))

for ¢ = (¢1, 22, £3) € R3. Also, consider the positive homogeneous function P : R?> — R defined
by

P(E)=P(E1.&) =& +£
for &£ = (&1,&) € R2. We see that P is homogeneous with respect to E € End(R?) with stan-

dard representation diag(1/5,1/2). Consider also E’ € End(R?) with standard representation
diag(1/10, 1/20, 1/30) and observe that

0t ey = "0, 11120, 1'/30¢3)
= (1"t + e P+ 6))
=1"0()
fort >0and ¢ = (¢1,82,83) € R3. Thus, by the preceding proposition, we have that P o Q is

positive homogeneous with up.g = tr E/ = 11/60. Of course, this can be verified directly by
simplification of P o Q. We have

(Po Q&) =G+ + @1 +¢)"
which is clearly positive homogeneous with E’ € Exp(P o Q). A
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3. On-diagonal asymptotics

Theorem 3.1. Given positive integers a and b, let Py and P> be positive homogeneous functions
on R% with homogeneous orders p, and (p,, respectively, and let Q : R? — R% be a C!
function which is nondegenerate multivariate homogeneous. Set d = a + b and define P : R? —
R by

PE) =P, ) =Pi(n+ Q1))+ P(n)

for £ =(n,¢) € R% x R? = R4, Suppose that there exist E1 € Exp(P1), E2 € Exp(P2), and
F1, F> € End(R?) for which the following conditions hold:

1. Fork=1,2, Q is homogeneous with respect to the pair (Ey, Fy).
2. We have [Ey, E2] = E1E2 — E2E1 =0 and {t¥17F2} is non-expanding.

In particular, Py o Q and P o (—Q) are positive homogeneous on R? (by virtue of Proposi-
tion 2.9) with homogeneous orders |Lp,oo and | p,o(— ), respectively. Then the heat kernel

Hy(x) = /e—”’(@e—”f dg

]Rd

(2m)d

exists for each t > 0 and x € R¥. Upon setting ¢(t) := H}, (0) for t > 0, we have the following
on-diagonal asymptotics:

tTH O0<t<1
tTHo 1 <t<o0

() =< {

fort >0 where (1o = pLp, + Lpog and poo = 4Py + [LPyo(—0)-

Remark 1. In view of Propositions 2.5 and 2.9, up, =trEy, up, = tr £, ptpog = tr Fy, and
HPyo(—0) = tr Fp where Ey, Ej, Fy, I, are those given in the hypotheses of Theorem 3.1 (or any
which satisfy Conditions 1 and 2). In these terms, the asymptotics for ¢(¢) can be equivalently
written

t*(tr E1+tr Fy)

t*(trETHrFl) 0<t<l1
@) < -
l1<t<oo

fort > 0.

Remark 2. Given our hypothesis that Q is nondegenerate multivariate homogeneous, when
we ask that Q be homogeneous with respect to the pair (Eq, F1) for some E; € Exp(P;) and
F; € End(R?), we are ensuring that {t’1} is contracting by virtue of Proposition 2.7 since
it is known that {t£1} is contracting thanks to Proposition 2.3. For the same reason, {r2}
must also be contracting. Of course, these observations also follow from Proposition 2.9 since
F1 € Exp(P1 o Q) and F; € Exp(P2 0o (—Q)).
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In this direction, if Condition 1 were adjusted to include the hypothesis that, for F; (or F>),
{(tF1} (or {t'2}) is contracting, then the initial hypothesis could be weakened to ask only that
0:R¢— R be nondegenerate and C!. In this case, the modified Condition 1 would ensure
that QO were nondegenerate multivariate homogeneous by virtue of Item 5 of Proposition 2.7.

Remark 3. If Condition 2 were replaced by the stronger condition that [E, E>] = E{E; —
E>E; =0 and {tf17F2} is contracting, then one finds that the small and large-time asymp-
totics +~#0 and ¢~# are “true asymptotics” in the sense that the limits lim,_,¢#*°¢(¢) and
lim;_, oo t*°@(t) both exist and are positive numbers. This result is presented in Theorem 3.4.
The theorem, in fact, gives us the precise value of these limits in terms of P, P, and Q.

Example 7. Let ¢ and / be even positive integers with ¢ </ and let p € N;. We consider P :
R? — R defined by

P.O)=m+ P +1

for (1, ¢) € R? and the corresponding heat kernel Hp defined by

Hp(x,y) =

/eftP(n,f)efi(n,i)'(x,y) d¢ dn
R2

2m)?

fort >0and (x,y) € RZ. In this case, we can write

P, 8)=Pi(n+ Q()) + P2(n)

where Pi(n) = n? and P»(n) = n' are positive homogeneous on R = R! and Q(¢) = ¢? is
evidently a nondegenerate multivariate homogeneous C! function from R to itself. For Pj, we
have E1 = 1/q € Exp(P1) and wp, = 1/q and, for P», we have E» = I/l and up, = 1/1. Further,
we observe that

t710() =1"9c? = (P e)? = 0t 'Vre)

for ¢z > 0 and ¢ € R and from this we see that Q is homogeneous with respect to the pair (E1, F1)
where F1 = I/qp. Similarly, Q is also homogeneous with respect to the pair (E», F») where
F> =1/Ip. Finally, we observe that E; and E> commute and, since ¢ < [, tF17F2 = ¢(1/¢=1/DI
is non-expanding. Thus, an application of the theorem is valid and we conclude that

t*(l/H’l/QP) < 1

— gt -
(p(t) - HP(O) - t_(l/‘I+1/l[7) t> 1

because o= pp, + Upog =trEx+trF1 =1/141/qp and poo = pp, + (pyo(—0) =tr E1 +
trFh=1/q+1/Ip.

We recognize that the motivating example in the introduction is of the above form where
p=qg=2andl=4,ie.,

P, )=+ +1
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for (17, ¢) € R%. From this, we conclude that

® 12 0<r<1
PUI= ] s t>1

for t > 0, as was asserted. Following Theorem 3.4, we revisit this example to obtain precise
values of lim,_.q1'/?¢(r) and lim,_ o /80(1). Necessarily, the + — 0 limit is precisely that
obtained by the scaling argument presented in the introduction. A

Example 8. In view of Example 4, let Q : R* — R? be a nondegenerate multivariate homoge-
neous function of the form

Q0= 001,62, -+, &) = oty Sotays -+ Sota

where o1, o, ..., @y € Ny and o is a permutation of {1, 2, ..., a}; in particular, {o (1), 0 (2), ...,
o(a)}={1,2,...,a}. We remark that Q is clearly smooth. Now, let P; and P, be positive homo-
geneous functions on R¢ and suppose that, for k = 1, 2, Exp(Px) contains E; € End(R?) having
standard matrix representation diag(Ak 1, Ak2, ..., Akqa) Where Ay ; > O for j=1,2,...,a. If,
for k = 1,2, we consider Fj with standard matrix representation

diag (Ak,ol(l) Meoo-1(2) )‘k,al(a)) ’

Olg—l(l) ’ aa—l(z) ’ ag—l(a)
we see that
() = (r“’l Cotiy 520 )0 zwci‘?a)) =0("¢)

for all # > 0 and ¢ € R?. Correspondingly, Q is homogeneous with respect to the pair (Ey, F)
for k = 1,2. We have the following result.

Proposition 3.2. If L1 ; > Ao j for j=1,2,...,a, then for P : R?* — R defined by

P(n,8)=Pi(n+ Q)+ P(m)

for (n,¢) e R*, we have

fort > 0 where

and
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a
Ao i
»J
Hoo = AL+ —].
o] Z ( J o
J=1

Proof. The hypothesis guarantees that 1£1~2 is non-expanding and so, in view of Remark 1,

we only need to verify that the exponents (o and (o, are as stated. Of course, since o is a
permutation of {1,2,...,a},

)\,1 —1 1
Ao—1(j) j=1
The computation for (1 is done analogously. O
In this example, we have assumed that a = b. We remark that the results found above can be

extended to arbitrary dimensions a and b by considering Q’s of the form found in Examples 4
and 5. We leave these details to the reader. A

Our proof of Theorem 3.1 makes use of the following lemma, whose proof can be found in
Appendix A.

Lemma 3.3. Let Py and P; be positive homogeneous functions on R®. If there exist E1 € Exp(P1)
and E, € Exp(P2) for which [E1, E2] =0 and {tEl_Ez} is non-expanding, then the following
statements hold:

1. There are positive constants C,C', M, M’ for which

C(PIE)+ Ps(n) — M < PP P2+ )+ Py(p) < C'(PL(E) + Pa()) + M' - (13)

forallé, neRand 0 <t <1.
2. There are positive constants C, C', M, M’ for which

C(Pi(n) + P1(E)) — M < Pi() + PP P24+ 6) < C'(Pa(m) + P2EN + M’ (14)

foralln,E €eRand 0 <t < 1.

As the reader will see, this lemma is fundamental to our work throughout the article and,
in addition to its appearance in the proof of Theorem 3.1, it is used essentially in the proofs of
Theorems 4.1 and 5.1. In these applications, & is taken to be Q(¢) in (13) and —Q(¢) in (14). For
the aid of the reader, we find it useful to state these inequalities in the context of our introductory
example where P (1, ¢) = (n+¢2)%> +n*. In this case, using £ = Q(¢) = ¢? in the first inequality
and £ = —Q(¢) = —¢? in the second, the lemma gives the following estimates.

1. There are positive constants C, C’, M, M’ for which
Cet+n)y =M=+ 4+t <C' ¢t + M
foralln, eRand0 <7 <1.
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2. There are positive constants C, C’, M, M’ for which
CoP+cH-—M=<n*+@"Mp—H <+ S+ M
foralln, eRand0 <z <1.

Proof of Theorem 3.1. We first treat the # < 1 behavior. Using the homogeneity of P; and P,
we observe that

1P, &) = Pi (1104151 0()) + Po™m) = Pi (1P + 04T 0)) + PatPn)

for all t > 0, n € R* and ¢ € R?. By making the change of variables (1, ¢) — (t~F2n,t=F1¢),
we see that

t—(trE2+trF1)

— gt —
o) = Hy0) = —

/ e (PEFT 2000 +P) g g ()

Rd

for t > 0. By virtue of Lemma 3.3, we find that there are positive constants C, C’, M, M’ for
which

—M' = C'(PI(Q(©) + Px() < P17 " P2n + Q(0)) — P2(n) < M — C(PI(Q(D)) + P2(n)
(16)

forall 7 <1, n € R4, and ¢ € R. Upon noting that (1, ¢) +— P1(Q(¢)) + P2(n) is a positive

homogeneous function on R¢ in view of Proposition 2.9, it follows from Lemma 2.6 that

/ ~<PLQE+PA0) gy 1
R4

is a positive finite number for each € > 0. With this in mind, the inequality (16) guarantees
constants C, C’ > 0 for which

C<

/e—P. (FF1E2040(0)) ,=Pa) gy g < !

Rd

@n)?

forall 0 <t <1, and from (15) we conclude that

o(t) < (W Exte ) _ —(p,+itpio0)

fort <1.
On the other hand, establishing the ¢ > 1 asymptotics is more difficult. A first hope would be

to introduce the change of variables (1, ¢) — (%15, 1= F1¢) and find that
t—(trE1+trF1)

@) = o

/e—Pl(TH'Q(C))—Pz(TEz_El D dnde
G
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for ¢ > 0. This is problematic, however. To see this, let us assume momentarily that {t£1=£2} is
contracting and observe that

lim e*P1<"+Q(C>)*P2(’EZ’E"'>dnd;:/e*P'<"+Q@>)dnd;=oo

—>00

R4 R4

by virtue of Fatou’s lemma and the fact that

/ =PI g g — / =P 4 de’ = oo,
Rd R
Consequently, in the case that {t£1~F2} is contracting, the only information found by this argu-
ment is that ¢(¢) decays more slowly than =@ E1+ ) — y=(p+ipe0) 451 5 0.

Instead, we return to the assumption that {t£1~£2} is non-expanding and make the non-linear
change of variables (n, ¢) — (n — Q(¢), ¢). Denoting this transformation by 7', we find that

DT(1,0) = (’0 _’?;Q>

where DT and D;Q are the Jacobian matrices for T and Q, respectively, and I, and I, are
the identity matrices on R¢ and R?, respectively. With this, it is easy to see that T is measure
preserving and consequently

o(t) = / ¢ 1P det(DT (0, ¢)) dn dt

]Rd

/ e*fﬁ(ﬁyé) dnd¢
R

@n)?

o
- Q2nr)

for r > 0, where

P(,0)=(PoT)n, &)= Pi(n) + Pa(n — Q)

for (1, ¢) € RY. Observe that

tP(n, &)= PitE'n) + Pyt B2n — 0t 20))

for t > 0 and (1, ¢) € R? and, upon making the change of variables (1, ¢) — (t~F1n, t72¢), it
follows that

¢~ (T Ej+tr Fp)

() = W

/e—Pl(m—Pz(rErEln—Q(c))dnd; an
R4

for t > 0. By virtue of Lemma 3.3, there are positive constants C, C’, M, M’ for which
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—M' = C'(Py(n) + Po(—=Q()) < —(Pi(m) + P2 ">~ F1n — 0(2))
=M —-C(Pi(n) + P1(—=0Q()))
for all n € R4, ¢ € R?, and 1 <t < oo since {tF17F2} is non-expanding and rF2=F1 =
(1/t)F1=E2 With the observation that (n,¢) — Pi(¢) + P1(—Q()) and (1,¢) — P>(¢) +

P>(—Q(n)) are positive homogeneous functions on R4, it follows from (14) and Lemma 2.6
that there are positive numbers C, C’ for which

c< f e~ PIN=PAEE =0 gy 1 <
R4

forall 1 <1 < oo. Hence,
o(t) < W Bt F) t_(MPl +PLP20(—Q))
fort>1. O

Our final result in this section shows that, in the case that {t£1~£2} is contracting, the asymp-
totics of Theorem 3.1 are “true asymptotics”.

Theorem 3.4. Let P : R? — R satisfy the hypotheses of Theorem 3.1 and, for Py, P, and Q as
in the theorem’s statement, put

Po(§) = P1(Q(0) + P2(n) and P (§) = P1(n) + P2(—=Q(¢))

for £ = (n,¢) e RY. Also, let ¢(t), 1o, oo, E1, and E, be as they appear in the statement of
Theorem 3.1. If {t©1=E2} is contracting, then

1
lim 40 H) —Po(§)
llII(l)l‘ o) = PO(O) = @) fe d¢
R4

and

1
1 Moo — 1 — —Po(§)
thm t">pt)=Hp (0)= Gy /e d§.
R4

In particular, lim;_, oo t">°@(t) exists, is a positive number, and can be computed using
Lemma 2.6.

Proof. We shall prove the statement involving the limit as t — oo; the  — 0 statement is proved
analogously. In view of (17), we have

o0 (1) = /e—P1(n)—Pz<tEl—E2n—Q(;>) dt

R4

(2m)d
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for ¢ > 0. Now, given that {t¥1~F2} is contracting, we have

lim e~ P1M—P2F27E1n=0(0)) _ = Poo(®)
—>0o0

for each £ = (17, ¢) € R?. As noted in the proof of Theorem 3.1 in the paragraph following (17),
the integrands & > exp(— Py (n) — P2(t527E1y — Q(¢))) are uniformly dominated, for 7 > 1, by
the integrable function & + exp(M — C(P1(n) + P1(—Q(¢)))) and so our desired result follows
by an appeal to the dominated convergence theorem. 0O

Example 9. In Example 7, we found that

t—(1/1+1/¢117) 0<t§ 1

— H! -
v(t) = Hp(0) = {t—(l/q+l/l,ﬂ) r>1

fort > 0 where P(n,¢) = Pi(n+ Q(¢))+ P>(n) = (n+¢P)4 4+ for p € N, and positive even
integers g and [ with g <. As we noted in the example, E; — E» = (1/g — 1/1)I where [ is the
identity transformation on R and therefore {t£1~£2} is contracting whenever ¢ < /. Upon noting
that Po(n, ¢) = ¢97 + ' and Pao(n, £) = n9 + ¢'P for (n, ¢) € R?, Theorem 3.4 guarantees that

1 qp
tli_r)r(l)t(l/l+l/qp)(p(t)=]—]})0(0):m /e—gu d¢ /e_mdr]
R R

1 1 1
=—2F 1+— )14+ -
T qp l

and similarly

1 1 1
lim ¢4V (1) = Hy,_(0) = ?F (1 + ;) r (1 + —)

t—00 lp

provided ¢ < I. In particular, for our introductory example in which P(n, ¢) = (n + ¢2)* + n*,
i.e., where 2 = p = g <[ =4, this gives the (expected) limit (7) and, more interestingly,

1
- 5/8 _ gl _ ~
Jim (g0 = Hp (0)= 75 T(9/8) ~0.0845624. A

4. A perturbation theory

Let us take the classical viewpoint that the theory of elliptic/semi-elliptic operators is a “per-
turbation theory” in which a sufficiently well-behaved partial differential operator is perturbed
by adding operators whose order is lower than that of the given operator. In that setting, one may
investigate properties of solutions to related partial differential equations which are preserved
under such perturbations. For example, in the theory of elliptic operators, short-time heat kernel
estimates for a uniformly elliptic operator are determined by the operator’s principal symbol. In
this way, perturbation by lower-order operators — provided they are sufficiently well behaved —
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will not essentially change the short-time behavior of heat kernels. In this short section, we ex-
plore perturbation by higher-order operators/symbols. In particular, we show that, under certain
conditions, the large-time decay of ¢(r) = H},(0) is essentially unchanged when P is replaced
with P 4+ R where R(£) = o(P(§)) as £ — 0. Given that our analysis is done exclusively in the
frequency domain, our results amount, essentially, to a perturbation theory of constant-coefficient
operators. We suspect that a successful variable-coefficient theory is possible, however, we do
not pursue that here. Our main result is as follows.

Theorem 4.1. Let P satisfy the hypotheses of Theorem 3.1 and let R : R? — C be a continuous
Sfunction for which R(§) = o(P(&§)) as & — 0 and & — Re(R(§)) non-negative. Then

Hp  g(x) = /‘e*t(P(S)JrR(é))efi»E dg

R4

@2m)d

exists forallt > 0 and x € R4, Further, for Hp = H;)(') and o as given in Theorem 3.1,
Hb, g (¥) = Hp(x) + 0(t7#) (18)
uniformly for x € R? as t — oc. In particular, we have the following large-time on-diagonal

asymptotics:
1.

OB (19)
fort>1.

2. If {tE1=E2} s contracting (where E\ and E, are as given in the statement of Theorem 3.1),
then

Jim 1 H g0 = H),(0) =

/efpm(é)dg (20)
R

@2m)d

where P is as defined in Theorem 3.4.

Before proving the theorem, we shall first treat a technical lemma which will also be found
useful in our application to convolution powers of complex-valued functions presented in Sec-
tion 5. The lemma introduces the useful notion of subhomogeneity on an ad hoc basis; for a more
complete treatment, we refer the reader to Section 2 of [18].

Lemma 4.2. Let P satisfy the hypotheses of Theorem 3.1 and take E1 and F; as in the statement
of the theorem. For convenience of notation, we set G = E1 & F> and P=PoT where T :
RY — R is the measure-preserving transformation defined by T(n,¢) = (n — Q(¢), ¢) for
(1, ¢) € R? x R? =R4. Finally, given an open neighborhood @ CR¢ of 0, let R : © — C be a
continuous function and set R=RoT. Then the following statements hold.

1. R(E)=o0(P(&)) as &€ — 0 ifand only if R(§) = o(P (€)) as &€ — O.
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If either of the preceding equivalent conditions is satisfied, then R is subhomogeneous with

respect to G in the sense that, for each € > 0 and compact set K C RY, there exists ty > 0 for
which

[RaCe)| <
whenever O <t <tyand & € K.

Proof. Because T is a homeomorphism with 7'(0) = 0, the first assertion is immediate. For the

second assertion, let us fix a compact set K and a positive number €. Also, given that RE) =
o(P(§)) as € — 0, let § > 0 be such that |R(£)| < (¢/M) P (&) for |£| < § where

M= sup C'(Pa(n)+ P(=Q()+ M
§=(.0)ekK

where C’ and M’ are those positive constants appearing in (14) of Lemma 3.3. Using the fact

that {tG} is a contracting group, there exists 0 < fo < 1 for which ‘tGé | < 4§ forall £ € K and
0 <t <ty. Consequently, for £ = (n,¢) € K and 0 <t < tp, we have

[RaCe)| < (e/mPCe)
= (e/M) (PLCF ) + PP = 1720.0)

= (e/M) (1P1 () + 1 P2 F ~E2 = 0(0) )

< (e/M)t (C'(P2() + P(=Q()) + M)

<et

thanks to Lemma 3.3. O

Proof of Theorem 4.1. Given that

efr<P<s)+R@>>‘ — ¢ 1PE) g~ IRRE) < ,=1P()

for £ € R, the first assertion follows immediately from Theorem 3.1. For the second assertion,
observe that

H () — Hp(x) =

(21)d /eftP(S) (esz(s) _ 1) e gt
T

R4
_ ! ; /e—rﬁ@) (e—tﬁ(@_])e—iw@dg
2w
(2m) 7
Moo 5(,~G F(~C i -G
_ _d/e—zp(z £) (e—tR(t £ 1) e in T8 g
2w
(2m) o
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for r > 0 and x € R? where G = E1 ® F, and peo =trEy + tr F> = tr G. By an appeal to
Lemma 3.3, we find that

—tP708) = —(Pi(n) + P(tB27 By — Q(2)) < M — CP.(§)

for all # > 1 where M and C are positive constants and we have set P.(§) = P1(n) + P1(—Q(¢))
for &£ = (n, ¢) € R4. Consequently,

eM _ L R(:—G
tuoo|H;J+R(x)—H},(x)| < ) /e CP*(S)‘e IR1t%¢) _ l‘d“g‘ 1)
R

fort > 1 and x € RY. Given that R(§) =0(P(§)) as £ — 0, Lemma 4.2 guarantees that

lim e—CP*(S)‘e—tﬁ(t’GS) — 1l = 1im e—CP*(E)‘e—S’IE(xGE) _ 1) -0
t— 00 s—0

for each & € R?. Upon noting that the integrand in (21) is dominated by the integrable function
£ > 2e P (see Lemma 2.6), an appeal to the dominated convergence theorem guarantees
that, for each € > 0, there exists 7y > 1 for which

' |Hp, p(x) — Hp(x)| <€

for all x € R? and 1 > fo; this is precisely the uniform limit (18). Applying this result at x =0,
we immediately obtain (19) from Theorem 3.1 and (20) from Theorem 3.4. O

Example 10. For the operator

A=d} +9) +2i0,07 — a7,
we consider the perturbation A + A? with symbol P (&) + R(&) where P(§) = (n + 2+t
and R(£€) = P (&) for £ = (n,¢) € R2. As shown in Example 7, P satisfies the hypotheses of
Theorem 3.1 and, from the theorem, we obtain the large-time asymptotic: ¢(r) < ¢~>/8 fort > 1.
Since P is continuous at 0 and R(§) = P (& )2 > 0, it is evident that R satisfies the hypotheses of
Theorem 4.1. Consequently, the heat kernel

H1t>+R(x)=

/e—t(P(s>+R<s>)e—ix-s dt

RZ

(2m)?

associated to the operator A + A has

Hb g(x) = Ho(x) +0(t7/%)
uniformly for x € R? as t — oo; here, Hp is that given in (2) and illustrated in Fig. 1b for r = 10.
Also, in view of our analysis in Example 9, Theorem 4.1 gives us the large-time asymptotics,

|H},+R(O)| =t7>/8forr>1and
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lim >/HL ,(0) = Lr(9/8)
1—>00 P+R 2732 :

—12

We note that, by contrast, H;, 1z (0) does not obey the 7 small-time on-diagonal asymptotic

of Hp. Indeed, A + A? is an eighth-order elliptic operator and necessarily decays as /4 in
small time. A

The following example generalizes the previous one and places the result in the context of
semigroups and ultracontractivity.

Example 11. Let A be a constant-coefficient partial differential operator on R? = R x R? with
polynomial symbol

P(E)=Pi(n+ Q%)) + P2(n)
satisfying the hypotheses of Theorem 3.1. Let g(A) be a real-valued polynomial of a single real
variable for which ¢(0) =0, ¢’(0) =1 and g(X) > A for all A > 0. Using the Fourier transform
or the spectral calculus, it is easy to see that ¢(A) is a positive self-adjoint operator on LZ(R%)
and therefore —g(A) generates a continuous semigroup {e 4} on L?(R?). Denoting by E
the spectral resolution of A, observe that, for f € L>(R9),

[
||€_t(q(A)_A)f||% :/e—2t(q(k)—)n) dEf,f()‘) < ||f||%
0

and therefore, for each 7 > 0, {e7"@(M) =M} j5 a contraction on L>(R?). Consequently,

e M oy oo = [le ™ Re @M=y | < leTT@ATA L e A s o
<o @21) < C't7H=/?

for r > 1 where C’ is a positive constant and

Moo = p + hpyo(—0) =T E] +1tr Fp

as given in the statement of Theorem 3.1. By duality, we find that ||e ™9™ |||_, o, < Ct# for
t > 1 for some positive constant C. It follows (see Lemma 2.1.2 of [6]) that {e~" q(A)} has integral
representation

(eftq(l\)f) (x) = / H'(x,y) f(y)dy
R4

where
lle M ||\ Loo = sup |H' (x, y)| < CtH= (22)
x,y
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for r > 1. Of course, given that g is a polynomial, it is easy to verify that, in fact, H' (x, y) =
Hy p(x—y)forx,ye R and t > 0 where

H! () = /e—t(qom@e—ix-s dt

Rd

@2m)?

for £ = (,¢) € R%. Thus,

le™" ™M 1100 = sup |H' (x, y)| = H}, p (0).
x’y

We claim that
Hyp(0) <171

for > 1 and so the upper bound in the ultracontractive estimate (22) is optimal. Indeed, under
the given hypotheses concerning g, we may write

g(A)=A+r(N)

where r is a polynomial having r(1) — 0 as A — 0 and r(1) > 0 for A > 0. From this it follows
that

(go P)(§)=P(E)+R(EG)
where R(§) = r(P(£)) is continuous, non-negative, and has R(¢) = o(P(§)) as &€ — 0. With
this, our claim follows by an application of Theorem 4.1. If we additionally assume that, for £

and E; as they appear in the statement of Theorem 3.1, {t£1~£2} is contracting, then Theorem 4.1
also guarantees that

lim 1% Hi p(0) = Hp,_(0). A

In contrast to the preceding examples, we now consider a perturbation of an operator A by
one which is not easily comparable to A.

Example 12. Consider
A+ (=AY (23)

where A = BJ%I + 8)%2 is the Laplacian on R? and A = 8;‘1 + 8;‘2 + 2idy, 3%2 - 8)%]. Associated to
the operator (23) is the heat kernel

/efrw(s)w@))efi»s dt
R2

H}"I’R('x) = (27T)d

where

96



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67-125

PE) =m+H*+0 and R(E) = (* + )

for & = (17, ¢) € R%. We claim that R(§) = o(P(£)) as &€ — 0. To see this, we consider the open
neighborhood O = {£ = (1, ¢) e R?: P(£) < 1} of 0 and write © = R| U R, where

Ri=le=m0e0:|n+e? <a-1v2¢2) 4
and
Ro=le=m.0)e0:|n+e?z -1V, 5)
For & = (1, {) € R1, observe that 0 < ¢2 < —+/21 and therefore
4P© =4+ +u) 2 dnt = &8,
Thus,
P+ = PO V2P = (P +V2) POV <sP@ 20

for§ =(n,¢) € R1. On Ry, we find that

1 2
P(£) > max in“, (1 —~ ﬁ> 44}

so that

P+ <PEVP+R+VIPEV=3+V2)PE)* <5PE)V 27)

for £ = (n,¢) € Ry. Since O = R U Ry, the estimates (26) and (27) guarantee that, for each
E§=m.0)€0,

IRE)| = * + D + D) <6250 + ¢ P(E)

and, from this, our claim follows immediately. Since R(£) is non-negative, an appeal to Theo-
rem 4.1 is valid and we conclude that |H},+R(0)| =t7/8 fort > 1 and

lim >/8HL, . (0) = Lr(9/8)
t—00 P+R 2773/2

in view of Example 9. A

As evidenced by the preceding example, it isn’t straightforward to show that R(§) = o(P(§))
as & — 0. This is connected to the fact that P is generally inhomogeneous and so examining a
polynomial R along the coordinate axes or by comparing the order of its terms against those of P
is not often helpful. For P(§) = (n+ 52 +n*, a careful study of the example shows that R(§) =
o(P(&)) as &£ — 0 provided that R is a polynomial comprised of terms whose (multivariate) order
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is at least nine. Still, polynomials R with terms of lower order can decay as “little-0” of P, e.g.,
(1, £) = n*, however, in general, it is difficult to tell. For example, consider the polynomials

Ri(&) =n*c?+2nct +¢° and Ro(8) =n’¢c*

defined for & = (5, ¢) € R?. Though the polynomial R; contains terms of lower order than R,
and thus decays more slowly than R; as & — 0 (at least, along rays), R1(§) =o(P(§)) as& — 0
while, by contrast, Ry (&) #£ o(P(£€)) as & — 0. For sorting out these somewhat unintuitive state-
ments, the following refinement of Lemma 4.2 is helpful; its proof can be found in Appendix A.

Proposition 4.3. Let P satisfy the hypotheses of Theorem 3.1 and let P, P>, Q, Ey, E», F| and
F> be as in the statement of the theorem. Set G = E1 & F, and P=PoT where T :RY — R?
is the measure-preserving transformation defined by T (n,¢) = (n — Q(¢), ¢) for (n,¢) € R4,

Finally, given an open neighborhood O < R? of 0, let R : © — C be a continuous function and
set R=RoT. If {tF1=E2} is contracting, then the following statements are equivalent:

1. RE) =0(P(§)) as & 0,
2. R&) =o(P(¢)) as& —0.

3. R is subhomogeneous with respect to G in the sense that, for each € > 0 and compact set
K CRY, there exists to > O for which

|R(%)| < er
whenever O <t <tyand £ € K.
We now use the proposition to prove the assertions made right before it.
Example 13. Let R; and R; be as in the paragraph preceding the proposition and let P(§) =
(n+¢%)?+n*. As shown in Example 7, we have Py (n) = n%, P(n) =n*, Q(¢) =¢2, E1=1/2,

E> =1/4, and F, = 1/8. Observe that, since E1 — Er = 1/4, {tE'_Ez} is contracting and so an
application of proposition is justified for R; and R;. Focusing first on Ry, we compute

R@=Ro-:20= (- +20 - D2 +54) 2 =%
and, because G = E| & F> has standard matrix representation diag(1/2, 1/8),
Ri(98) = (") P)? =12

fort >0and & =(n,¢) € R2. Consequently, given € > 0 and a compact set K C R2, we observe
that

[Ri%e)| <702 g e < e

whenever £ = (,¢) € K and 0 <1 <t :=¢€*/(1 + SUP(;,z)ek n?¢2)*. Thus Ry is subhomoge-
neous with respect to G and from Proposition 4.3 we conclude that R (§) =o(P(§)) as &€ — O.
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For R,, we have
Ry&)=(n—¢H**
and therefore
~ 2 4
Ro%e) = (120 — @ 5)?) (1'5c) = ra'n - eH%*
fort > 0 and & = (, ¢) € R?. Thus, for any £ = (17, ¢) € R? for which ¢ # 0,
limt 'Ry (1%8) =8 #0.
t—0

Consequently, R is not subhomogeneous with respect to G and, by virtue of the proposition, we
conclude that Ry(§) #o(P(§))asé — 0. A

Example 14. We return to the set-up of Example 8 and let O : R — R“ be a nondegenerate
multivariate homogeneous function given by

0) = (54, 652 -5 (28)
for ¢ = (¢1,¢2,...,%4) € R* where oy, a2,...,04 € Ny and o is a permutation of the set
{1,2,...,a}. As in that example we shall take positive homogeneous functions P; and P, on

R4 for which, for k = 1, 2, Exp(Py) contains E; € End(R?) with standard matrix representation
diag(Ak,1, Ak,2, - -5 Ak,a) Where Ag j >0 for j =1,2,...,a. As we showed in Example 8, the
function P : R* — R defined by

P&)=Pi(n+ Q)+ P(n)

for £ = (1, ¢) € R?* satisfies the hypotheses of Theorem 3.1 provided that Aj, j = A, for all
j=1,2,...,a.In that case, we proved that

@(t) = Hp(0) <t H>

for t > 1 where
a
A2,
Moo = Z (Al,A] + Z) .
j=1
Motivated by the example preceding Proposition 4.3, we shall perturb P : R?* — R by
L) = 1§ = (Il + g P

for &£ = (1, ¢) € R?* where k > 0. We have the following result.

99



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67-125

Proposition 4.4. Suppose that Ay j > A2 j for j =1,2,...,a. If

1

k> ; ’
2minj=12,...a(A2,j/@;)

then Ly (§) =o(P(&)) as & — 0.

Proof. We have
~ k
L@ = (n— 2P +1¢ 1)

for £ = (n,¢) € R*. Using our analysis in Example 4, we see that F> has standard matrix
representation

oy

%oln) | %l %l

. (Azglm A g-1(2) AZ(,l(a))
diag d d : .

Thus, for G = E| & F>, we have

z>k

= (\tEZ(tEl—EZn —ow| + |

Lk = (\tEln —oa"of + |

2)"
2 k
< (ntEZuz\tEl—EZn - 00| + ||tF2||2|;|2>
2 k
< <||r‘52||2 (E =B+ 10@)1) + ||rF2||2|¢|2>

fort >0and&=(n,¢) € R2“. Given that E 1, E2, and F, are diagonal, our hypotheses guarantee
that |[¢E17E2| < 1, ||#E2|| <, and ||tF2] < 1© for 0 < ¢ < | where

,,,,,

vy

Therefore,

~ k k
Let%) = (22 (0l + 10D + 2215 2) < (1 +10@)D? + ¢ )

for0 <7 <1and&=(n,¢)eR*. Since 2kw = 2k (minjzl,zwa )»zyj/aj) > 1, it follows that,
for each € > 0 and compact set K C R24,

Let%)| zer
for £ € K and 0 <t <ty where 79 > 0 is chosen so that
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k
ot sup ((nl+ 1O+ P) <e.
§=(.5)ek

Given that Ay ; > A, ;j for j =1,2,...,a, we observe that {tEl’EZ} is contracting and so the
desired result follows immediately from Proposition 4.3. O

Upon noting that the hypotheses of Proposition 4.4 guarantee that {t£1~2} is contracting,
by an application of Theorem 4.1 and Proposition 4.4, we immediately obtain the following
corollary.

Corollary 4.5. Let A be a constant-coefficient operator on R>* with symbol P (&) = P (n +
0(¢)) + P2(n) where Q is given by (28) and Py and P, are positive-definite semi-elliptic poly-
nomials given by

Pip= Y b’ and Pm= Y bagn®
B:mD|=1 Bm@|=1
forn € R?, respectively, where mD = (mgl), mgl), el mél)) andm® = (m(lz), méz), e, m{(12)>

are a-tuples of even positive integers. Also, let A = 8%1 + 8%2 4+ 8§2a denote the Laplacian

on R%*, Ifmi.z) > mi.l)for all j =1,2,...,a, then, for any integer

)
k> max o ;im: 2,
(/‘_1,2 ..... a I )/

the heat kernel H}, L (x) associated to the operator A + (—A)¥ satisfies the on-diagonal large-
time asymptotics, H;, L (0) <t fort > 1 and

1
1 00 — 1 — *Poo
thrgot“ Hp,; (0)=Hp_(0)= 5 /e © gg
R4

where

and

Pu@= Y bipgn’+ Y bp(=0@)°

gm0 =1 |pm®|=1

= Z bl,ﬁ’)ﬁ—F Z bz,ﬁ(—l)‘miﬁl@ﬂ

1pm(D|=1 Ipm®|=1
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for & = (7, ¢) € R* where ¢, denotes the action of the permutation o on { = (¢1,82, ..., Ca)
defined by {5 = ($5(1) $o(2)s - - - » $o(a)) and for each multi-index B, we have set |B| = B1 + B2 +
ot o, OB = (12, 22, ..., AaPa)

For an easy application of this corollary, consider our motivating example in which P(§) =
Pi(n+ Q@)+ Pr(n) = (n+¢>)?>+n* for & = (n, ¢) € R2. In this case, P; and P; are positive-
definite and semi-elliptic with m(D = (mgl)) = (2) and m® = (m§2)) = (4), respectively, and
0()=1t%isa nondegenerate multivariate homogeneous of the form (28) with «; = 2. Thus, for
any integer

k > (maxajmg.z)) /2=138/2=4,
J
the heat kernel Hp 1, associated to

A+ (=N =8} + 9 +2i0,, 02, — 82 + (—A)F
has H},+Lk (0) < /8 for t > 1 and limy_, oo t5/8H;,+Lk (0) =T(9/8)/273/%. In particular, this
holds for k =5 and so we have recaptured the result of Example 12. A

5. An application to the study of convolution powers of complex-valued functions on Z¢

Given a finitely-supported* function ¢ : Z¢ — C, we are interested in the behavior of its
convolution powers ¢ : Z¢ — C defined iteratively by putting ¢! = ¢ and, for n > 2,

¢ @)=Y " Vx -y

yeZ4

for x € Z9. In the case that ¢ is non-negative and > ¢ (x) =1, the behavior of o™ is well-
known and is the subject of the local central limit theorem [21]. Beyond the probabilistic setting,
the study of convolution powers of complex-valued functions dates back to the late nineteenth
century and was initially investigated by E. L. de Forest through its applications to data smooth-
ing. During the explosion of scientific computing in the mid-twentieth century, the study was
reinvigorated by applications to numerical solution algorithms to partial differential equations.
Early on, these studies focused almost entirely in one spatial dimension, i.e., d = 1, and, for an
account of these results and a thorough discussion of the early history, we refer the reader to the
article [22]. Recent developments in the context of one dimension can be found in [23], [24], and
[25]. Moving beyond one spatial dimension, the articles [1], [18], and [19] develop a theory for
convolution powers of complex-valued functions on 74 and, in particular, the article [1] estab-
lishes local limit theorems, sup-norm estimates, off-diagonal estimates, and stability results in
that context. As we only briefly discuss the local limit theorems of [1] and [19] below, we refer
the reader to these articles, both of which provide history and a more thorough presentation of
the theory than is given here.

4 We work with this condition for simplicity. One can assume, more generally, that ¢ and all of its multivariate moments
are absolutely summable, cf., [1].
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For our finitely-supported function ¢ : Z¢ — C, we define its Fourier transform a by

PE) =Y px)e™*

xeZd

for & € R4. With this, we obtain the representation

1
@n)?

6 (x) = / FEye i az (29)
']I‘d

for x € Z¢ and n € N, where T¢ = (—m, 7] or, equivalently, any representation of the d di-
mensional torus of the form (—m, 7]¢ 4+ &' for &’ € R%. Beyond the assumption of finite support,
we shall assume that ¢ has been normalized so that

max|¢(§)] = sup p@®)|=1.

Also, and though this assumption can be significantly weakened (cf., [1,19]), we shall assume
that this maximum is attained at exactly one point & € T¢ and that

P& + &)

(&)= k’g( 30

>=ia.s—P<s>+R<s) (30)

where « € R?, P is a positive-definite polynomial and R is a smooth complex-valued function
for which R(£) = o(P(&)) as £ — 0. Extending the one-dimensional results of [22] and [23],
the article [1] establishes local limit theorems in the case that the polynomial P is a positive
homogeneous function on R?. Under the assumptions above, if P is a positive homogeneous
polynomial on R, Theorem 1.6 of [1] says that

o™ (x) = p(£0)"e O HE (x — na) + o(n"HP) 31)

uniformly for x € Z¢ as n — oo where 1 p is the homogeneous order of P and, for each x € R¢
andn € Ny,

Hp(x) = /e_”P@)e_i"'éE d&.

Rd

1
Qm)d
Thanks to the homogeneity of P, it is easy to see that

Hi(x)=n""*Hy(n E x) (32)
forall x e RY, n e N4, and E € Exp(P) where E* denotes the adjoint of E. In this way, the
local limit theorem (31) can be written in terms of the single rescaled attractor, H 113. We note that
homogeneity and the resultant space-time rescaling in (32) are central to the proof of Theorem
1.6 of [1]. Using homogeneity as a main ingredient and making use of the generalized polar-

coordinate integration formula developed in [18], the recent article [19] extends Theorem 1.6 of
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[1] further to include the case in which the positive homogeneous polynomial P is replaced by
i Q(£) where Q is a real-valued function on R¢ for which & — |Q(&)] is positive homogeneous;
see Theorems 1.9 and Theorem 3.8 of [19]. At present and to our knowledge, all known local
limit theorem on Z¢ assume, in one way or another, that the expansion (30) is dominated, at low
order, by a homogeneous polynomial. The following treats an example in which this assumption
is not satisfied.

Theorem S.1. For positive integers a and b, set d = a + b and consider ¢ : 74 — C as above,
i.e., ¢ is finitely supported on 7%, ¢ is maximized in absolute value at a single point & € T¢ and
the local approximation T'gy(§) =i - & — P(§) + R(&) is valid on the domain of T's, where o €

R? Pisa positive-definite polynomial, and R(§) = o(P(§)) as § — 0. Suppose, additionally,
that P satisfies the hypotheses of Theorem 3.1. That is, we assume that

PE)=Pi(n+ Q)+ P.(n)
for &£ =, ¢) e R* x R® =R? where:
1. Py and P, are positive homogeneous functions on R? with homogeneous orders jup, and [ p,,
respectively.
2. Q:R? — R is nondegenerate multivariate homogeneous.

3. There exist E1 € Exp(P), E2 € Exp(P2), and F1, F> € End(R?) for which

(a) Fork =1,2, Q is homogeneous with respect to the pair (Ey, Fy).
(b) We have [E\, E;]l = E1Ey — E2E and {tEl_Ez} is non-expanding.

Upon setting |1y = (Lp, + [ pyo(—0) = T E| + tr I, and taking Hp as in Theorem 3.1, we have
the following local limit theorem: For each € > 0, there exists N € N for which

™ (x) — ¢(50)"e O HE (x — nar)| < enTHe
foralln > N and x € 74, In other words,
¢ (x) = $(§0)"e O Hp (x — na) + o(n"H?)
uniformly for x € Z% as n — oc.
Combining this result with Theorem 3.1 and Theorem 3.4, we obtain the following corollary.
Corollary 5.2. Let ¢ satisfy the hypotheses of the above theorem. If « =0, then
19 oo = n ™" (33)
for n > 1. If, additionally, {tEl_Ez} is contracting, then

1
. e (n) 1 — —Px(§)
nhm n"? )¢ oo = Hp_(0) Gy /e d& 34)
R4
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where Poo(§) = P1(1)) + P2(—Q(2)) for £ = (n,¢) e RY.

Proof. For each € > 0, an application of Theorem 5.1 guarantees that
6 )| s ene 4 [Hp ()] < en™"¢ + H(O) (35)

for all x € Z¢ and sufficiently large values of n; here, we have noted that }$(§o)”e’ix'50 | =1land
‘H;’, (x)| < H};(0) whenever n € Ny and x € Z4. By virtue of Theorem 3.1 and in view of the
fact that gy = oo, We have

19l = sup [ x)| < Cnte
xeZ4

for sufficiently large n where C is some positive constant. We now obtain a matching lower
bound. Using Theorem 3.1, H3(0) > 2C'n~#¢ for all n € N, for some C’ > 0. An appeal to
Theorem 5.1 (with € = C’) now guarantees that

207 < [§(60)" H 0)] = (60" H} @) = ¢ 0)] + [0 0)] = C'n + [ 0)|
and consequently
C'n < |6 )
for all sufficiently large n. Thus, for some N € N,

Cn <600 = 1Pl = Cn e

for n > N. With this, the asymptotic (33) follows by, if necessary, adjusting C and C’ to account
for those n from 1 to N — 1 (and while noting that [|¢" ||« cannot vanish for any such n for
otherwise all subsequent convolution powers would vanish identically).

We now prove (34). In view of (35), for each € > 0,

19 oo = sup 1| ()| < € + 0 H0)
xeZ4

for all sufficiently large n. Upon noting that (4 = (40, an appeal to Theorem 3.4 guarantees that

lim sup n#*¢ 0™ loo <€ + limsupn*? Hp (0) =€ + H}l,oo 0)

n—oo n—oo

for each € > 0 and therefore

limsupn®® ¢ |l < H}_(0).

n—oo

By virtue of Theorem 3.4 and Theorem 5.1, observe that
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HL (0)= lim n™ H(0) = lim n™|$(&0)"HA(0)| = lim nie ‘¢<">(0) ‘
(=) n—00 n—00 n—o00
Since ¢ (0)| < [|¢™ || for all n, it follows that

< H},_(0)

H}, (0) = liminfn*? ‘¢<">(0)‘ < liminfn”¢||¢"™ || oo < limsupn™® ¢ ||
© n—oo n—oo n—00

and, from this, (34) follows at once. O

As we did in the proofs of Theorem 3.1 and Theorem 4.1, our proof of Theorem 5.1 makes
use of the measure-preserving transformation 7'(n,¢) = (n — Q(¢), ¢) from RY = R4 x R?
to itself. It is easy to verify that 7T : R? — ]Rd is a homeomorphism and 7'(0) = 0. With this
transformation, we define P = P o T and R = R o T and note that the domain of R coincides
with the preimage of I'g,’s domain under 7" and necessarily contains an open neighborhood of 0.
Finally, for convenience of notation, we shall set G = E; @ F> and recall that {r® = £ @ 12}
is a contracting group. Before the proof of the theorem, we present two lemmas; the first follows
immediately from Lemma 4.2.

Lemma 5.3. For any compact set K CR? and € > 0, there is a natural number N for which
o R(n8) _ l) <€
foralln> N and & € K.

The following lemma asserts that the collection {E > exp(—n P (n=9¢) /2)}n is uniformly
integrable.

Lemma 5.4. For any € > 0, there exists a compact set K for which
/ PO ge
RI\K
foralln e Ny.

Proof. Fix € > 0 and observe that, forn € N, and § = (n,¢) € R4,

nP(n=08) = nPy(n~F1n) + nPy(n~F1y — Q0 20))
= Pi(n) + (™" Py — 0(0)

where we have used the fact that Q is homogeneous with respect to the pair (E», F>). By virtue
of Lemma 3.3, we can find positive constants C and M for which

2C(P1(n) + P1(—Q()) —2M < Py (n) + P(n>~F1y — 0(2))
for all (17, ¢) € R? and n € N . Consequently,
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—nP(n=%8)2=—1/2)(Pi(n) + Px(nE> B2y — 0(0)) < M — C(P1() + P1(—=Q(0))

forall = (n,¢) e R? and n € N . Upon noting that £ = (n,¢) — C(P1(n) + P1(—Q(¢)) is a
positive homogeneous function, an appeal to Lemma 2.6 guarantees a compact set K € R¢ for
which

/efnﬁ(n*%/zdsi / M=CPLO+PI=0) gg

RA\K RI\K
forallne Ny, O

Proof of Theorem 5.1. Fix ¢ > 0. Without loss of generality, we shall assume that &y lives on
the interior of T¢ for, otherwise, another representation of the d-dimensional torus can be used
as the domain of integration in (29) and the proof proceeds without change. Let us select a
sufficiently small open neighborhood Og, € T of & for which the following properties hold:

P1 The functions I'g, and R are defined and smooth on the open neighborhood O := O, — &
of 0.
P2 The open neighborhood U/ := T~ 1(O) = T~! (Og, — &o) of 0 has

|R@©)| < P&)/2
forall £ e U.

The fact that O, can be chosen so that P1 holds is clear from the definitions of I'g, and R. The
ability to choose O, so that Property P2 also holds is a consequence of Item 1 of Lemma 4.2.
Using Lemma 5.4, let K € R bea compact set for which

/ e_’”g("_a‘g)/2 dé <e¢
R‘I\K

forall n € N4.

With the sets Og,, O, U, and K in hand, we shall now go about selecting N. First, because
{9} is a contracting group and I{ is an open neighborhood of 0, there exists N1 € N for which
n~%(K) CU (equivalently, K € n%U)) foralln > N;. By an appeal to Lemma 5.3, let N> € N,
be such that

N R00E) _ 1) €
m(K)+1

for all £ € K and n > N; where m(K) is the d-dimensional Lebesgue measure of K. Finally,
given that |¢(§)| is maximized only at &g,

pi= sup [(®)]<1
EGTd\OgO
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and so we may choose a natural number N > max{Ny, N>} for which n*¢ p”/(Zn)d < €/4 for
alln > N.
By virtue of the identity (29), we compute

w99 () — GEo)"e™ T HL (x — neo)|

/¢(g)n 71x§d§ ¢(%—0)n —ix- So/‘efﬂp(f)efi(X7nOl)~§ dé:

(2 )d o

nte ~
< o | e

Td\(')go
n, —ix-& n_—ix-&§ —nP(&) —l(x na)-&
(zﬂ)d [ dereitas —gere i [ dt
050 R4

nte IO n /¢(S+E )n —ix- (€+§0)d5 ¢(€0)n —txéof —nP(S) —i(x— nOl)Ed%-
- (2 )4 (2 )d o
< f+ nhe /enl"go(é})e—ixf dé_/e—nP(g)e—i(x—na)E dg (36)
— 4 Q2m)d

o R4
forall n > N and x € Z¢ where we have made the change of variables & — & + & and made use

of the fact that \5 (E0)" e x50 | = 1. Let us now make the measure-preserving change of variables
& — T (&) to see that

/ e (®g=ivE g — / M TeoT)E) ,=ixTE) g
@ u

_ / M TeeT)E) y=ixTE) g | / T oT)E) ,=ix T(E) g
n=G(K) U\n=G6(K)

foreachn > N > Njand x € 74, Similarly,
/e—nP@)g—i(x—na)-s dt = / 1 PE) i) ) g
R4 =G (K)

n / 1P @) y=i—n) T®) g
R\~ (K)

for all n € N and x € Z?. Consequently, for x € Z¢ andn > N,
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/ Tl () ixE g _ / NP E) g=iG—na)E g

o R4
- /' TegoT)®) ,—ix-T(®) dE — f e—nﬁ(é)e—i(x—na)T(E) dg
n*G(K) YFG(K)
. f e D) TE) g | 4 / ¢ PE) gmine) TE) 4e
UG (K) R\n=G(K)
n=C(K)
n / en(l"gooT)(é)efixT(S))dg+ / }e*nﬁ(é)efi(xfna)‘T(é) dg
U\n~G (K) R~ (K)
< f [e=R® 1] g
n=C(K)
I / Rl oD@ g 4 / e—nF(S) dg 37
UG (K) RAn=E(K)

where we have used the fact that (I's, o T)(§) =i - T'(§) — F(é) + ﬁ(é) and P is non-negative.
Upon making the change of variables & — n~C& and recalling how N> was chosen, observe that

m(K) <en™H¢

/ ‘efnﬁ(é) — 1)d$ :n*trG/ ’ef’“?("fcg) —1|ds <n™H <
(m(K)+1)
K

n=6(K)
(38)

whenever n > N > N»; here, we have recalled that r G = tr(E1 ® F2) =tr Ey + tr Fo = jug.
Recalling our choice of K and upon noting that

Re[(Tg, 0 T)(§)] = —P(§) +Re[R(€)] < —P () + P(£)/2=—P(£)/2
for all £ € U thanks to P2, we find that
/ SR TN E] g / P2 g

U\n=6(K) U\n=6(K)

< / PO g

R\n=C(K)
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=n M1 / 37"5("_(;5)/2 dé <en Mo (39)
RI\K

for all n > N where we have made the change of variables § — n~Y& between the final and
penultimate lines. Finally, using the fact that P is non-negative, a similar computation shows
that

/ e—nﬁ({-‘) dg <n =M / e—nﬁ(n‘GS)ﬂ dé <en Mo (40)
R\n=G(K) RAK

for all n € N. Combining (37), (38), (39), and (40) yields

nfe /g”réo(f)e—ix'f dg — / e P &) pmilx—na)E dé| < 3e < 3_6
@m) Qmyd = 4
(@] R4

for all n > N and x € Z<. Finally, substituting the above estimate into (36) gives
w4 (x) = G(6o)"e O H (x — nt)| < e
foralln > N and x € Z9, as was asserted. O

Example 15 (The introductory example). For ¢ : Z> — C given by (3), we have

-~ 1 . . 797
o) = 100 <100 — (sm(n) + 451112(;/2)) ~ %00 sin (n) —10 sm6(n/2) s1n6(§)

—ﬂsm ( )—lsm( )sm ( )—lsm( )s1n6( )—4—731n( ) sin( )3
1200 "™ ¢ MSIN(E) = Gag SN SINAE) = 755 sin()7sin(

3
+ﬁ sin (17) sin (§))

foré =(n,¢) eR%2 A straightforward computation shows that maxg |$ (&) =1 and, Xvithin T2,

this maximum is attained only at the origin, &) = (0, 0). To give a reader a sense of ¢, we have
illustrated its absolute value in Fig. 2. It is easy to see that ¢(&p) = 1 and we compute

Tg, (6) = log(6(6)) = —mP(E)JrR(é)

where P (&) = (n + ¢2)? 4+ n* is the symbol discussed throughout the introduction and

_ 1
R(§) = ~ 1000

+0(El”)

n¢

AT sea 79 a4 120155 60739 o 37233979
e 455 T 400" 1000 9000 "~ 16800000
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Fig. 2. The graph of |¢(€)| for & = (n,¢) € T2.

as & — 0. Observe that & > |£|° = L4s5(&) where Ly is defined in Example 12 and corre-
sponds to the k-th power of the Laplacian. As shown in that example (following Corollary 4.5),
L4s5(E) =o(P(§)) as € — 0 and so it follows that O(|§|9) =o0(P(£)/100) as & — 0. Thus,
to show that R(§) = o(P(£)/100) as & — 0 so that we may apply Theorem 5.1 and Corol-
lary 5.2, we must show that the monomials R{(§) := N2, Ry(&) = n3ct, R3(&) == n*c?,
R4(&) :=1°¢%, Rs(£) :=n°, and Rg(&) = n® are “little-0” of P (&) as € — 0 and, to this end,
our approach will employ Proposition 4.3 just as we did in Example 13. Indeed, we have

Ri(§)=(RioT)(1,8) =(n—cH2%¢b

for &€ = (n,¢) € R? where T (1, ¢) = (n — ¢2, ¢). Therefore,
Ria8) ="y — @By @B’ =544y — ¢3)*¢°

for t >0 and £ = (n,0) € R2 where G = E; @ F> has standard matrix representation
diag(1/2, 1/8). From this it follows (by the same argument used in Example 13) that Ry is
subhomogeneous with respect to G and therefore Ri(§) = o(P(&)) = o(P(£)/100) as &€ — 0O
on account of Proposition 4.3. We leave it to the reader to verify this conclusion for Ry for
k=2,3,...,6. Consequently, R(§) = o(P(£)/100) as & — O.

Since & > P(£)/100 meets the hypotheses of Theorem 5.1 (as well as Theorem 3.1) with
oo =5/8 and R(§) = o(P(§)/100) as & — 0, an appeal to Theorem 5.1 guarantees that

¢ (x) = ¢(€0)"e O HR 100(x — ner) + 0(n %) = H} 100(x) + 0(n %)

uniformly for x € Z? as n — o0; here, we have noted that Mo = Moo =5/8, 8 =(0,0), 3(&0) =

1, and a = (0, 0). Upon noting that Hp, /100 = H;l,/ ]00, we see that this conclusion was precisely

that discussed in the introduction and illustrated in Fig. 1. Finally, we appeal to Corollary 5.2 to
conclude that [|¢p"™ ||oo < n >/ as n > 1 and
. 5/8 1
Jim 7286 oo = Hip,109),, 0).
Of course, (P/100)so = Pao/100 where Pso(£) = n? + ¢® and therefore

H{p 100y, ©) = Hyl " (0) = (100)°"* Hp (0)

111



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67-125

—=log(|1¢""]|~)
——log(1.5x n">%)

102 10% 108
log(n)

Fig. 3. A log-log plot of [|¢" [0 and 1.5 x n=>/8 for 10! <n < 10°.

where we have used the homogeneity of P, with respect to G. In view of the calculations done
in Example 9, we conclude that

(100)3/8

CS/8 )y 5/8 71 _
Jim 77 ¢ oo = (100)" " Hp (0) = 7732

r'9/8) ~ 1.50376.

This is illustrated in Fig. 3 wherein ||| o is compared with 1.5 x n—3/8

100 <n<100. A

on a log-log scale for

Example 16 (A nearby non-example). In this example, we consider a complex-valued function
¥ on Z? which is a close approximation to the function ¢ of the preceding example, however,
its convolution powers ¥ behave distinctly from those of ¢. In particular, this example shows
that the hypotheses concerning R(£) in the expansion (30) of Theorem 5.1 are necessary and,
further, it demonstrates the delicate nature of “higher order” terms present in these expansions
insofar as they affect the behavior of convolution powers. In what follows, we shall assume the
notation of the preceding example and consider v : Z*> — C defined by

1
Y= 960000 (V1 + Y2 +¥3)
where
862318 , =(0,0
- 1) =0.0) 38400 (x1,x) = (0, +1)
22500 & 19200i  (x1, x2) = £(1,0)
—9225 (x1,x2) =(0,%2)
—3412 (x1,x2) ==%(2,0)
Yi(x) = ) Yo(x)=1-150  (x1,x2) = (0, =4)
1500 (x1,x2) ==£(3,0)
25 (x1,x2) = (0, £6)
—797 (x1,x2) ==%(4,0)
0 else
0 else
and
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LN
SRS
RS

(a) |9(€)| for &€ = (n,¢) € T2 (b) |6(&)| for & = (n,¢) € T2,

Fig. 4. Nlustration of the Fourier transforms of v and ¢ on T2,

£9600i  (x1.x2) = (F1, 1, (F1,—1)
Y3 (x) =
0 else
for x = (x1, x2) € Z*. We remark that ¥ is close to ¢ in several senses. For example, we have
lo — ¥lloo =51/20935 = 0.0024 =~ 0.0024 X ||P|lco and || — ¥|l2 = 1/4/247293 = 0.0020 =~
0.0022 x ||@]|2. Of course, given that the behavior of convolution powers w(") is determined by

the nature of the Fourier transform of ¥ near points at which is it maximized in absolute value
(cf., [23,1,18,19]), we analyze . We have

1

VE) = 100 — (s 4sin?(c/2)) - L sin
w<s>—m( — (sin(p) +4sin’(¢/2))" - Zsin @))

for £ = (n,¢) € R2. As illustrated in Fig. 4, the graph of |1///\ (&)| is extremely similar to that of

|$ (€)] on T2. Akin to the previous example, maxg |1://\ (£)] = 1 and this maximum is attained only
at & = (0, 0) in T2 where we have ¥ (£) = 1. We compute

~ 1
g (6) =log(¥(§)) = ——=P(&) + R()

100
where P (&) = (n+¢%)? + n* and
1179 o 1 23 3 47
REY = — (228 1 a2 6 O 2.4 2T 30
®) 100(1200§ 6™ 900" “ 100" ¢ Tis0" ¢
I (1, 47 5, 227 4, 1003 5, 60739 ,
*+70000 (3” 37 600" 300 900
37233979 4 .
2840
s+ Ol ))
=:Ri1(§) + R2(8) 41)

as £ = (n, ¢) — 0. In other words, akin to the analogous expansion for a, "¢, is made up of the
polynomial — P (£)/100 and a series R(&) consistent of “higher order terms” relative to those
of P. With the initial aim of applying Theorem 5.1 or Corollary 5.2 to this example, we ask if
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—>—log(|l ™|
— —log(1.5x n'5/a)

102 104 108
log(n)

Fig. 5. A log-log plot of || ||« and 1.5 x n=5/8 for 10! <n < 106.
R()=o0(P(&)) as& — 0. As we did in the preceding example, we investigate this by composing

by the non-linear transformation 7 and then checking if R{(£) and R, (&) are subhomogeneous
with respect to G = E| @ F>. We find that

>3 _ L 2,4 23 a6 3 . 204
RI(E)_lO()(lZOOg + - ( -8 900(77 ¢9)¢ 100(77 )¢
4_ 2\3,2
+150(n )¢ )
for & = (n, ¢). From this it follows that
lim¢ 'R (t9¢) = lim l(n — VAt = —0 (42)
t—0 t—06

whenever & = (), ¢) is such that ¢ # 0. Consequently, ﬁl is not subhomogeneous with respect to
G. By contrast, we find that Ry is subhomogeneous with respect to G by an argument analogous
to that used in Example 13. In view of Proposition 4.3, we conclude that R(§) # o(P(€)) as
& — 0. We note that, though our calculation above for R 1 shows that R is not well controlled
by P (&) for small &, this loss of control only happens from below and from this we will still be
able to deduce something useful (see Lemma 5.6 and Proposition 5.5 below).

Though the expansion of I'g, for w agrees with that for ¢ at the lowest order (both are
—P(£)/100), we cannot apply Theorem 5.1 or Corollary 5.2 to this example because R(§) #
o(P(£)) as &€ — 0. In particular, for ||/ ||o, we are not able to deduce from Corollary 5.2 the
decay of n >/ which is characteristic of H 4 /100 and ||¢™ || . Fig. 5 presents strong numerical
evidence that ||| decays faster than n=>/3
confirms that this is the case.

as n — oo. In fact, the following proposition

Proposition 5.5. We have
lim 28y ™5 =0
n—0o0
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Lemma 5.6. There exists § € (0, 1) and an open neighborhood © C T? of O for which

RE < 2 p)
100

for& € O.

Proof. In (41), we have written R(§) = R{(§) + R2(&) and noted, on account of Proposition 4.3,
that Ry(§) = o(P(£)/100) as &€ — 0. Thus, to prove the statement at hand, it suffices to find an
open neighborhood O C T2 of 0 and p € (0, 1) for which

179 1 23 3 47
£(E) = S 4 onet — =g — — 0?4+ —— 32 = 100R (§) < pP
(é) 2005 76" ~ 500" ~ 100" ¢ t1507¢ 16) <pP(§)
for all £ = (n,¢) € O. As a first approximation, we set O = {& = (n, ¢) : P(§) < 1} and decom-
poseitas O =R; UR, where R and R; are given by (24) and (25), respectively. In view of our
analysis in Example 12, we observe that, for§ = (n,¢{) e R1,0< ;2 < —«/in and, in particular,
n is non-positive. Therefore,

4<7

179 2342
f)n =5P®

179 23
EE) < —an* +0+ V2’1 +04 0= — + =—=
€)= o0+ Jr900(“/—)’7 +O 300 T 450

for & = (n,¢) € R1. On Ry, we have
1 2
max {n“, (1 - ﬁ) ;4} < P(&)

(6+4v2)2P(£)> + é(6 +4V2)P(£)*

and therefore

179
EE) < m

+%<6 +4v2)2PE)* + 0+ 2—70@ +V2)PE)* < 150P )/

where we have used the fact that P(&) < 1 for & € O. Thus, by further restricting the open set
O so that 150P (£)1/* < 7/9, the preceding estimates ensure that £(£) < pP(£) for all £ € O
where p=7/9. O

Proof of Proposition 5.5. By an appeal to the preceding lemma, let © C T2 be an open neigh-
borhood of 0 for which

|]’/;(%-)| = ¢~ PE/100+RE) < ,—7P() (43)

for & € O where y =§/100 > 0. Using similar arguments to those which appear in the proof of
Theorem 5.1, we find that

1% loo = sup
xeZ?

v )| Sp"+/|$(s>|"ds
(@)
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for all n € N4 where 0 < p < 1. Focusing on the integral above, we make the change of variables
£ T(n"9¢) to see that

- BoGe) -
n5/8f|w<s>| dt = / exp(—n <%—Rm—cs>)> d
(@] nU)

for each n € N where & = T~1(O). Upon noting that T (n~&) € O whenever £ € n% ), it
follows from Lemma 3.3 and (43) that

_ . )
o <_” (% - ﬁ(”_cg))) X0 ® STy @) < M€

forall n € Ny and £ = (1, ¢) € R?; here M and C are positive constants and, for a measurable

set A C R?, X4 denotes the indicator function of A. Also, thanks to the computation (42) and
the fact that Ry(§) = o(P(&)) as &€ — 0, we have

. P=%) =~
nll)rgoexp (—n (W — R(n 5))) X6 0 8) =0,

for almost every £ € R%. Given that & > e e~ CP+eh ¢ 1 (R?), an appeal to the dominated
convergence theorem is justified and we conclude that

lim 738y ™ |l = lim n8p" + lim n‘S/S/ ¥©)|" dé
n—00 n—00 n—00
O

5, —G
=0+ lim exp <—n <% - ﬁ(n_cg))) d§

To our knowledge, there is no known theory that is able to treat this example and, in particular,
the asymptotic behavior of ||y || remains unknown. A

6. Discussion
6.1. Another perspective

As we noted in the introduction and demonstrated in the proof of Theorem 3.1, key to the
analysis in this paper is the observation that

¢(1) = Hp(0) = H5(0) = §(1)

forall# > 0 where P = P o T can be seen, in some sense, as a “‘dual” symbol to P. In terms of
our motivating example in which P (&) = (n + ¢2)?> + n* and
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A=0} +9) +2id, 07 — o}

2 X2 X1

PE) =n*+0n—tH)*fors =) cR?and corresponds to the constant coefficient operator

A=—37 49} +4id] 82 — 607 8} —4id 90 + 9% .

X1 7Xx2 X1 7X2

Though the operator A is a self-adjoint fourth-order elliptic operator and is therefore well under-
stood, A is mysterious and somewhat poorly behaved as the following proposition shows.

Proposition 6.1. The operator A with symbol P= n* + (n — ¢2)* is not hypoelliptic. Still, —A
generates a semigroup {e~'™},~o with heat kernel given by

Hf;(x) =—

T

RZ

defined for t > 0 and x € R>. This heat kernel has

—-1/2
~ ot T 0<r=<1
gﬂ([) - Hﬁ(o) ~ {t_s/g

t>1
for t > 0 and, further,
limt'2G @) = ir(5/4)2 and lim £3g@) = ;F(9/8)
t—0 ¢ - 72 t—00 ¢ - 273/2 ’

Proof. The statements concerning Hp and ¢ follow directly from our analysis in Examples 7
and 9 through the identity ¢ = ¢@. Thus, it remains to prove that A is not hypoelliptic. To see this,
we compute

O P(n.¢) =384¢" — 115207 (n — £7) + 144(¢ — ¢*)?
to see that

4P (2,
im M=384.
t—>oo P(£2,7)

Thus, for the multi-index a = (0, 4),

P@ )
m ———- )
[El—»o00  P(§)

here, for a multi-index o = (a1, ap), P@ = ' 8?213 in the notation of L. Hormander [16]. By
virtue of Theorem 11.1.1 of [16], we conclude that A is not hypoelliptic. O
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Of course, as we discussed in the introduction, the theory formulated in this article has a
version in which one begins with the operator A whose heat kernel H 5, along the diagonal, is
well behaved in large time but whose small time behavior is elusive and is deduced more easily
from Hp via the correspondence H},(0) = H 1’3(0).

6.2. Future directions

This article has focused on on-diagonal large-time asymptotics for the heat kernels Hp of
certain inhomogeneous operators A and symbols P and well-behaved associated perturbations.
At present, we do not have a good understanding of the off-diagonal behavior of these kernels
in large time. Knowledge of this behavior could greatly improve our understanding of the theory
presented in this article and it would also inform our study of convolution powers. In particular,
having a good handle on this off-diagonal behavior would inform on the stability of convolution
powers (seen as numerical difference schemes) as it has in [26], [24] (see also [27] and Section
6 of [1]).

The symbols P (&) treated throughout this article all take the special form P;(n 4+ Q(¢)) +
P>(n) resemblant of our motivating example in which P (5, ¢) = (7 + ¢%)? + n*. Our methods
appear to be more broadly applicable, however. Consider, for example, the symbol

P& =m+cD+nc?

defined for & = (17, ¢) € R2. Akin to our motivating example, P’ lacks a tractable scaling from
which large-time asymptotics for ¢'(r) = H}, (0) may be computed directly. Still, by composing
P’ with the measure-preserving transformation T'(n, {) = (n — ¢2, ¢), we find that

lim tP/(¢t "2, 700y = n? 4 ¢©

—>0o0

for (1, ¢) € R where P'=PoT. Accompanied by the fact that tﬁ(l’“zn, =00y > (n* +
¢*—2)/8 fort>1and (n,¢) € R?, the change of variables (1, ¢) — (1=, 171/¢) followed
by an application of the dominated convergence theorem shows that

. 2/3 / _ 77)27{6 _ 1
tlirgot ¢ )= /e dnd¢ = —27_[3/2F(7/6).

RZ

(2m)?

Another class of example can be produced easily by considering powers of symbols P(§) =
Pi(n+ Q())+ Pr(n) on R4 satisfying the hypotheses of Theorem 3.1. Specifically, given such
a symbol P(§) and x > 0, our methods show that the heat kernel Hp« associated to P (&)
satisfies the on-diagonal asymptotics

TR 0 <<
[*Moo/K l‘Zl

Hb, (0) < {

for + > 0 where pp and @ are those given by Theorem 3.1. At this time, describing precisely
the set of examples to which our methods apply is an open question. These questions will be
explored in a forthcoming article.
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Appendix A. Technical estimates

Lemma A.1. Let P be a positive homogeneous function and let F € End(R%) be such that {tF}

is non-expanding. If there exits E € Exp(P) such that [E, F] =0, then, for any § > 0, there
exists p > 0 for which

pP ") <8P
forallneRand 0 <t < 1.
Proof. Because P (0) = 0, it suffices to prove that, for some C > 0,
P(t"n) < CP(y)
for all 0 < ¢ < 1 and non-zero n € R%. Denote by S the unital level set of P and observe that
K:{tFn:O<t§1, nes}

is a bounded set because S is compact and {t/}o-;<| is uniformly bounded. By virtue of the
continuity of P, it follows that, forevery 0 <¢ <1l and 5 € S,

P(tFn) <sup P(§)=:C < o0.
EeK

Given any non-zero i € R?, Proposition 4.1 of [18] guarantees that n = r£ 5o where r = P(y)) >

0, no € S, and E is as in the statement of the lemma. Using the fact that £ and F commute, we
have

Pfn)y=PuEtFno) =rPt no) <rc=CP(®),
as desired. O

Lemma A.2. Let P be a positive homogeneous function on R®. Then, for any positive constants
P1, P2, there exists € > 0 for which

eEPE) <P +E+mP©)
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forall &, ¢ € R,

Proof. Let p;, p» > 0 and define R : R?** — R by

RE.5)=p1P(E+E)+p,P(C)

for (£,7) € R x R =R It is clear that R is a continuous and positive-definite function on
R2¢. For any E € Exp(P), observe that

R*OEE, 0)=R( 6,15 0) = p PAFc +158) + ;P17 0) = 1R(E.¢)
forall r > 0 and (£, ¢) € R*. Thus, R is homogeneous with respect to E @ E and, because {t%}
is a contracting group on R?, it is evident that {t£®F} is a contracting group on R?“. In view of
Proposition 1.1 of [18], we conclude that R is a positive homogeneous function. Denote by S the

unital level set of R and, because S is compact and (&, ¢) — P(§) is continuous and does not
identically vanish on S, we have

-1
62=< sup P(E)) > 0.
((RIEN

Given a non-zero (£,¢) € R2, Proposition 4.1 of [18] ensures that (§,¢) = rE®FE (0, ¢0) =
(rf&, rfeo) where r = R(£,¢) > 0, (0, o) € S and E € Exp(P). With this, we observe that

€eP(E)=erP(§0) =r=R(E =P +E)+ p2P ().
Since this inequality holds trivially when (&, ¢) = (0, 0), the proof is complete. O

By making analogous arguments to those in the proof above, we easily obtain the following
lemma.

Lemma A.3. Let P be a positive homogeneous function on R%. Then, for any positive constants
P1, P2, there exists € > 0 for which

€P(E+E)<p1PE)+,mP(&)
forall &£, e R%.
Lemma A.4. Let P1 and P, be positive homogeneous functions on R? and let E1 € Exp(P1) and

E> € Exp(P). If [E1, E2]1 =0 and {tE1—E2} g non-expanding, then, for any 8 > 0, there are
constants p, M > 0 for which

pPLF E) < M + 8P ()
forallneR*and 0 <t < 1.
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Proof. Let § > 0. We shall first prove that, there are constants p, M > 0 for which

pPi1(n) <M +35P(n)
for all n € R?. We note that this is the desired inequality evaluated at ¢t = 1; we shall obtain the
full inequality by scaling. Now, denote by S and B the unital level set and unit ball associated to
P =§P,. Because B is relatively compact and {tE 1—E2 }o<r<1 is uniformly bounded,

K:{rEl*Ezn:O<r§1,neB}

is bounded and hence relatively compact. Since P, is positive and does not vanish identically on

K,
-1
pi= (sup P (5)) > 0.

EeK

Now, for any n € R% \ B, it follows from Proposition 4.1 of [18] that n = r~F2nq for r =
1/P(n) =1/(6P2(n)) <1 and ng € S. Consequently,

_ P _ 1
PPN = pPi(r™ o) = = P1(r®1 ™ B0) < — =8 P2,
Of course, P;(n) is bounded on B and so it follows that, for some constant M > 0,

oP1() <M+ 5P(n)

for all n € R%, as claimed. Finally, for 0 < ¢ <1 and n € R%, we apply the preceding inequality
to 1 ~F2y to see that

pP B B2y = 1o P (1 F2) <1t (M + 5P2(I_E277)) <tM+8Py(n) <M +38P>(n)
as desired. O

Proof of Lemma 3.3. We shall first prove the estimate (14). For the lower estimate in (14), si-
multaneous appeals to Lemmas A.1 and A.4 give positive constants p1, p2, and M for which

P1P1(C) <M + Py(Q) and p2 P15 E2n) < Py(n) /2

for ¢,n € R* and 0 < ¢ < 1. With the constants p; and p, in hand, we appeal to Lemma A.2 to
find a positive constant € > 0 for which

eP1(E) =p1Pi(E+8)+ p2Pi(8)
for all £, ¢ € R%. Consequently, for§,n e R and 0 <t <1,
€PI(§) = o PLEP T +8) + ;2 PLa TR ) < M+ PP T+ 6) + Pi(n) /2.
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Upon setting C = min{e, 1/2} > 0, it follows that

C(P\(n) + P1(§)) — M < Py(0)/2 + €P1(§) — M < Pi(n) + P,(tF' " F2n + &)

for all n,& € R and 0 < ¢t < 1. For the upper estimate in (14), we first make an appeal to
Lemma A.4 to obtain positive constants M’ and C; for which

Pi(n) <M+ C1P2(n)

for all n € R%. By virtue of Lemma A.3, there is a positive constant C; for which

Py(§ +8) = Co(Pa(§) + P2(8))
for all £, ¢ € R“. Finally, an appeal to Lemma A.l guarantees a positive constant C3 for which
Pyt 7F2) < C3 P2 ()

for all n € R and 0 < ¢ < 1. Upon combining these estimates, we obtain
Pi(n) + Pyt 2+ &) < M+ CLPa(n) + C2 P2 P F2n) + Co Pa(8)
<M+ (C1 4+ C2C3) P2() + Ca P2 (§)
for all n,& € R% and 0 <t < 1. Our desired (upper) estimate in (14) follows immediately by
taking C' = max{C,, C| + C»C3} and so the proof of (14) is complete.

To prove (13), we first make an appeal to Lemma A.4 to obtain positive constants p and M
for which

pP1(tE17E2) < M + Py(n) /2

for all n € R% and 0 < ¢t < 1. With this p, an appeal to Lemma A.2 yields € > 0 for which

ePIE) =PI +E) +pPi(0)
for all &, ¢ € R%. Upon setting C = min{e, 1/2}, we obtain
C(P1()+ Pr(m) —M <eP1(§) + P(n)/2—M

<PitE B8y +pP B B2y + P2 — M

< PP 4 6) + Py(n)
for all n,&€ € R? and 0 < ¢ <1 and this is precisely the lower estimate in (14). Making use of
Lemmas A.4 and A.3, the upper estimate in (14) is established in a similar way to that for (13);

we leave the remaining details to the reader. O

Our final goal in this appendix is to prove Proposition 4.3. Before the proof, we present two
lemmas.
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Lemma A.5. Assume the notation and hypotheses of Proposition 4.3 and define
Po® =P+ P(=0©)  and  Eo(®) =P — Px(®)
for & =(n,¢) € RY. Then goo (&) is subhomogeneous with respectto G = E| @ F5.

Proof. Lete >0and K CR% bea compact set. Since {tf17F2} is contracting and P, and Q are
continuous, we can find 0 < fg < 1 for which

|PLOD + Po 17 F2 = 0(0)) = Poo(®)] = | P2 0P 2 = 0(0)) = Pa(=0(0))| < €
forall 0 <7 <foand £ = (1, ¢) € K. Thus, for every 0 < £ < 1o and & = (, ¢) € K, we have
98| = [P + P — 0GP 6) = PLaPin) — Pa(=0(70))|
= | PPy =122 0(0) — Pa(=1"20(0))|
= 1| P21 E = 0(6) = Pa(-0(0))|

<et,
as desired. O

The following lemma asserts loosely that Pis approximately homogeneous with respect to G
in small time whenever {t£17F2} is contracting.

Lemma A.6. Assume the notation and hypotheses of Proposition 4.3. Then, there exists a com-
pact set K € R such that, for any t > 0 and 0 < € < 1, there exists 0 < tg < T for which

O={cR: £=00rE=1¢for0O<t <tyand & € K}
is an open neighborhood of 0 and, for each non-zero € =t%&¢' € O,
(- <PE=Pu) < +ex

Proof. Let K =S5  be the unital level set of Py and, by an appeal to the preceding lemma, let
0 <ty < t be such that

‘5000

<€t

whenever 0 <t <19 and &’ € K. In this notation, we observe that O, as defined in the statement,
coincides with the Poo-adapted open ball B, = {§ € RY : PC>o (&) < tp} since G € Exp(Poo)
in particular, O = By, is necessarily an open neighborhood of 0 (see Proposition 4.1 of [18]).
Further, for each non-zero £ =1%¢' € O = By, we have Poo (&) =t and therefore

< et

P©) — 1| = |8 ®)] = |t
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sothat (1 —e)t < P(E) =P <(1+e)t. O

Proof of Proposition 4.3. In view of Lemma 4.2, we need only to prove the sufficiency of the
subhomogeneity condition. Specifically, we prove that R(§) = o(P(§)) as § — 0 when {tE1—E2y
is contracting and R is subhomogeneous with respect to G. To this end, let € > 0 and take K
as in the preceding lemma. With our assumption that R is subhomogeneous with respect to G,

let T > 0 be such that |§(IG§/)| < et/2 whenever £’ € K and 0 < ¢ < 7. By an appeal to the
preceding lemma, let 0 < #p < t for which

PE) =P =12
whenever & = r9&’ is a non-zero member of the open neighborhood
O={ecR?:E=00r&=19"for0 <t <tgand & € K}
of 0 in RY. Thus, for any non-zero & =t%¢' € O,

|R@)| = |RaCg)| set/2 <ePaSs) =ePee).

By the continuity of R and P, this estimate clearly holds when & = 0 and so we have shown that
R(E)=o0(P(£)) as & — 0 as was asserted. O
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