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Abstract

We consider certain constant-coefficient differential operators on Rd that have positive-definite symbols. 
Each such operator � with symbol P defines a semigroup of operators e−t�, t > 0, admitting a continuous 
convolution kernel Ht

P
for which the large-time behavior of Ht

P
(0) cannot be deduced by basic scaling 

arguments. The simplest example has symbol P(ξ) = (η+ ζ 2)2 +η4, ξ = (η, ζ ) ∈R2. We devise a method 
that allows us to determine the large-time behavior of Ht

P
(0) for several classes of examples of this type 

and we show that these large-time asymptotics are preserved by perturbations of � by certain higher-order 
differential operators. For the P just given, it turns out that Ht

P
(0) ∼ cP t−5/8 when t tends to infinity. 

We show how such results are relevant to understand the iterated convolution powers of certain finitely-
supported complex functions on Zd . We also discuss how these techniques provide precise small-time 
asymptotics for Ht

P
(0) in some cases when the operator � is not hypoelliptic. The simplest such example 

� has symbol P(ξ) = η2 + (η − ξ2)4 and we show that Ht
P

(0) ∼ cP t−1/2 as t tends to 0 in this case. Our 
work represents a first basic step towards a good understanding of the semigroups associated with these 
differential operators. Obtaining meaningful off-diagonal upper bounds for the convolution kernels of these 
semigroups remains an interesting challenge.
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1. Introduction

On R2, consider the constant-coefficient partial differential operator

� = ∂4
x1

+ ∂4
x2

+ 2i∂x1∂
2
x2

− ∂2
x1

and its symbol

P(ξ) = (η + ζ 2)2 + η4

defined for ξ = (η, ζ ) ∈ R2. It is evident that � is a non-negative, symmetric, and fourth-order 
elliptic operator. Thus, when defined initially on the set of compactly supported smooth func-
tions, C∞

c (R2), � extends uniquely to a non-negative self-adjoint operator on L2(R2) which, 
by an abuse of notation, we denote by �. Via the spectral calculus or the Hille-Yosida construc-
tion, −� generates a continuous one-parameter semigroup of contractions on L2(R2) which is 
denoted by {e−t�} and called the heat semigroup associated to �. Thanks to the Fourier trans-
form,1 this semigroup has the integral representation

(e−t�f )(x) =
∫
R2

Ht
P (x − y)f (y) dy (1)

for each f ∈ L2(R2) where HP = H
(·)
P (·) is called the heat kernel associated to � and is given 

by

Ht
P (x) = 1

(2π)2

∫
R2

e−tP (ξ)e−ix·ξ dξ (2)

for t > 0 and x ∈ R2. For its central role in the analysis surrounding �, including its spectral 
theory, associated Sobolev inequalities, and properties of the semigroup {e−t�}, we are interested 
in the behavior and properties of the heat kernel HP . As we demonstrate below, this curiosity 
is further spurred by the appearance of HP as a scaled limit of convolution powers of complex-
valued functions on Z2, just as the Gaussian density appears as the scaled limit in the local 
(central) limit theorem [1].

Consider the function φ :Z2 → C defined by

φ = 1

3840000

(
1

12
φ1 + 1

8
φ2 + 1

3
φ3

)
(3)

1 On Rd , we shall take the Fourier transform F and inverse Fourier transform F−1 to be given by F(f )(ξ) = f̂ (ξ) =∫
Rd f (x)eix·ξ dx for f ∈ L2(Rd ) ∩ L1(Rd ) and F−1(g)(x) = ǧ(x) = 1

(2π)d

∫
Rd g(ξ)e−ix·ξ dξ for g ∈ L2(Rd ) ∩

L1(Rd ), respectively.
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where

φ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

41375061 (x1, x2) = (0,0)

1080000 ± 969232i (x1, x2) = ±(1,0)

−165072 (x1, x2) = ±(2,0)

72000 ± 9024 (x1, x2) = ∓(3,0)

−38256 (x1, x2) = ±(4,0)

0 else

,

φ2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1228800 (x1, x2) = (0,±1)

−286328 (x1, x2) = (0,±2)

−9524 (x1, x2) = (0,±4)

2232 (x1, x2) = (0,±6)

−179 (x1, x2) = (0,±8)

0 else

and

φ3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

±115200i (x1, x2) = (∓1,1), (∓1,−1)

±6939i (x1, x2) = (∓1,2), (∓1,−2)

216 (x1, x2) = (±2,2), (±2,−2)

1128i (x1, x2) = (±3,2), (±3,−2)

±1062i (x1, x2) = (±1,4), (±1,−4)

−54 (x1, x2) = (±2,4), (±2,−4)

±77i (x1, x2) = (∓1,6), (∓1,−6)

0 else

for x = (x1, x2) ∈ Z2. With this function, we define its iterated convolution powers φ(n) : Z2 →
C by putting φ(1) = φ and, for n ≥ 2,

φ(n)(x) =
∑
y∈Z2

φ(n−1)(x − y)φ(y)

for x ∈ Z2. Motivated by applications to data smoothing and partial differential equations, we 
are interested in the asymptotic behavior of φ(n) as n → ∞. Given the nature of convolution, 
it is reasonable to expect that the mass of φ(n) “spreads out” on Z2 as n increases, however, 
exactly how it does this is not a priori clear. In Section 5, we show that, for large n, φ(n) is well 
approximated by the heat kernel HP evaluated at t = n/100. This so-called local limit theorem 
is illustrated in Fig. 1 and it motivates us to understand Ht

P (·) for large t .
In light of the fast growth of P(ξ) as ξ → ∞, it is not difficult to show that, for each t > 0, 

x 
→ Ht
P (x) is a Schwartz function. Given that � is a fourth-order (uniformly) elliptic operator, 

HP is known to satisfy the following estimate: There are positive constants A, B , and C for 
which
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Fig. 1. The graphs of Re(φ(n)) and Re(HP ) for n = 1000.

∣∣Ht
P (x)
∣∣≤ A

t1/2 exp

(
−Bt

∣∣∣x
t

∣∣∣4/3 + Ct

)
(4)

for t > 0 and x ∈ R2 [2,3]. Using this so-called off-diagonal estimate, it is easily verified that 
the semigroup {e−t�}, initially defined on L2(R2), extends uniquely to a continuous semigroup 
{e−t�p } on Lp(R2) for all 1 ≤ p ≤ ∞. In fact, this estimate also guarantees that the spectrum of 
� = �p independent of p, cf., [3, Theorem 20].

For the present article, we shall focus our attention on the so-called on-diagonal behavior of 
Ht

P (x). That is, we are interested in the behavior of

ϕ(t) := Ht
P (0) = sup

x∈R2

∣∣Ht
P (x)
∣∣

defined for t > 0. Given that P is non-negative, ϕ is evidently a non-increasing function on 
(0, ∞). In view of the representation (1), we observe immediately that

‖e−t�‖1→∞ = sup
x∈Rd

∣∣Ht
P (x)
∣∣= ϕ(t)

for t > 0, i.e., e−t� is a bounded operator from L1(R2) to L∞(R2) with operator norm precisely 
ϕ(t). By virtue of Plancherel’s theorem,

‖Ht
P ‖2

2 = 1

(2π)2 ‖e−tP ‖2
2 = 1

(2π)2

∫
R2

e−2tP (ξ) dξ = H 2t
P (0) = ϕ(2t)

for t > 0. From this it follows that e−t� is a bounded operator from L2(R2) to L∞(R2) with

‖e−t�‖2→∞ = ‖Ht
P ‖2 =√ϕ(2t)

for t > 0. In other words, the semigroup {e−t�} is ultracontractive with bound characterized by 
ϕ. It is well known that the ultracontractivity of the semigroup {e−t�} can be used to establish 
various Sobolev-type inequalities associated to �, e.g., Sobolev, Nash, Gagliardo-Nirenberg [4–
9]. To do this, however, it is necessary to have a good understanding of the function ϕ(t). Further, 
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given our motivation to understand the convolution powers of the example φ given above, we are 
especially interested in understanding the function ϕ(t) for large values of t and, in fact, we will 
find that ‖φ(n)‖∞ 
 ϕ(n) for2 n ∈ N+ := {1, 2, . . . }.

Analyzing ϕ in small time is straightforward. Using (4), we see that

ϕ(t) ≤ C

t1/2 (5)

for all 0 < t ≤ 1 where C is a positive constant. We can, of course, do better by employing the 
following elementary scaling argument: Upon noting that

lim
t→0

tP (t−1/4ξ) = lim
t→0

tP (t−1/4η, t−1/4ζ ) = η4 + ζ 4 (6)

for each ξ = (η, ζ ) ∈ R2, the change of variables ξ 
→ t−1/4ξ = (t−1/4η, t−1/4ζ ) in (2) followed 
by an application of the dominated convergence theorem yields

lim
t→0

t1/2ϕ(t) = 1

(2π)2

∫
R2

e−(η4+ζ 4) dη dζ = 1

π2 
(5/4)2 ≈ 0.0832420 (7)

where 
 is Euler’s Gamma function. Consequently, ϕ(t) 
 t−1/2 for 0 < t ≤ 1. It is noteworthy 
that the scaled limit (6) at t = 0 “picks out” the homogeneous fourth-order polynomial P0(ξ) =
η4 + ζ 4 which is precisely the principal symbol of �. Though not directly related, we refer 
the reader to the works of Evgrafov and Postnikov [10], and Tintarev [11] who established short-
time off-diagonal asymptotics similar to the right hand side in (4) for heat kernels of higher-order 
elliptic operators. See also the related works of Barbatis and Davies [12–15].

Following Davies [15] and driven by the motivations previously discussed, we seek to under-
stand the behavior of ϕ(t) in large time. For this goal, it is clear that the estimate (4) is useless for, 
in contrast to ϕ(t), the function t 
→ t−1/2 exp(Ct) is increasing for t > 1/2C. In looking back 
through the scaling argument above, we wonder: Perhaps there is a rescaling of the symbol P
that will yield an asymptotic (or simply a useful estimate) for ϕ in large time. In fact, this type of 
approach was taken in [15] to characterize the large-time on-diagonal behavior of the heat kernel 

associated to the fourth-order elliptic operator f 
→ d4f

dx4 − d2f

dx2 in one spatial dimension. We note 
that Davies’ results addressed a question posed by M. van den Berg concerning the necessity of 
the term Ct in off-diagonal estimates of the form (4). Given real numbers α and β , we make the 
change of variables ξ = (η, ζ ) 
→ (t−αη, t−βζ ) in the integral (2) to see that

ϕ(t) = t−(α+β)

(2π)2

∫
R2

e−tP (t−αη,t−βζ ) dξ (8)

for t > 0. With the aim of mimicking our small-time scaling argument, we seek values of α and 
β for which tP (t−αη, t−βζ ) is sufficiently well behaved as t → ∞. Upon noting that

2 Here and in what follows, for real-valued functions f and g defined, at least, on a non-empty set X, we shall write 
f (x) 
 g(x) for x ∈ X to mean that there are positive constants C and C′ for which Cg(x) ≤ f (x) ≤ C′g(x) for all 
x ∈ X.
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tP (t−αη, t−βζ ) = t1−2αη2 + t1−α−2β2ηζ 2 + t1−4αη4 + t1−4βζ 4

for t > 0 and (η, ζ ) ∈R2 and considering all possibilities for α and β , we find that

lim
t→∞ tP (t−αη, t−βζ ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(η + ζ 2)2 α = 1/2, β = 1/4

η2 α = 1/2, β > 1/4

ζ 4 α > 1/2, β = 1/4

0 or ∞ otherwise

for almost every (η, ζ ) ∈ R2. Given that none of the functions (η, ζ ) 
→ e−(η+ζ 2)2
, (η, ζ ) 
→

e−η2
, or (η, ζ ) 
→ e−ζ 4

are integrable, it follows that∫
R2

lim
t→∞ e−tP (t−αη,t−βζ ) dξ

is either 0 or ∞ for all possible cases of α and β . Consequently,

lim
t→∞

∫
R2

e−tP (t−αη,t−βζ ) dξ (9)

cannot be determined by interchanging the integral and limit (for any values of α, β) and hence 
the argument we used to establish the small-time asymptotics for ϕ is not helpful to us. In fact, 
it can be shown that no “reasonable” scaling, which is linear in ξ , can be used to deduce the 
asymptotic behavior of ϕ(t) as t → ∞. These observations are tied, in some sense, to the absence 
of a well-behaved lower-order component of P characterizing the behavior of ϕ(t) in large time 
just as the principal symbol η4 + ζ 4 does for small time. Without a tractable scaling method for 
large time, the nature of the decay of ϕ(t) as t → ∞ – be it exponential, polynomial, or otherwise 
– is not a priori clear. Our main theorem, Theorem 3.1, yields the (to us) surprising conclusion 
that ϕ(t) 
 t−5/8 for t ≥ 1. By an application of Theorem 3.4, we are able to obtain the “true 
asymptotic”,

lim
t→∞ t5/8ϕ(t) = 1

2π3/2 
(9/8) ≈ 0.0845624.

Curiously, we find in view of (8) that the limit (9) does exist (and is equal to 2π1/2
(9/8)) 
whenever α+β = 5/8 yet, as we previously noted, this observation cannot be seen via dominated 
convergence.

Taking this example as motivation, we introduce and study a class of symbols on Rd for which 
it is possible to establish on-diagonal heat kernel asymptotics in large (and small) time. For these 
examples, the small-time behavior is often characterized by a principal homogeneous term and 
we focus on the interesting question of large-time behavior. In particular, for positive integers a
and b with d = a + b, we consider a polynomial of the form

P(ξ) = P1(η + Q(ζ)) + P2(η)
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for ξ = (η, ζ ) ∈ Rd = Ra ×Rb where P1 and P2 are real-valued positive homogeneous polyno-
mials in sense of [1] and Q : Rb → Ra is a so-called multivariate nondegenerate homogeneous 
polynomial. The notions of positive homogeneous and multivariate nondegenerate homogeneous 
are presented in Section 2; we remark that the prototypical example of a positive homogeneous 
polynomial is a positive-definite and homogeneous semi-elliptic polynomial [16,1,17,7]. The 
homogeneous structure (and order) of P1 and P2 need not coincide and so P is generally inho-
mogeneous and further, as seen in our motivating example, no rescaling of P in large time yields 
a tractable homogeneous term. To the constant-coefficient operator � on Rd with symbol P , 
provided that P grows sufficiently fast as ξ → ∞ (which will always be the case for us), there 
corresponds a heat semigroup {e−t�} with heat kernel given by

Ht
P (x) = 1

(2π)d

∫
Rd

e−tP (ξ)e−ix·ξ dξ

for t > 0 and x ∈ Rd and, with this, we define ϕ(t) = Ht
P (0) for t > 0. Under certain hypotheses 

concerning P1, P2, and Q, our main theorem (Theorem 3.1) gives positive numbers μ0 and μ∞
for which

ϕ(t) 

{

t−μ0 0 < t ≤ 1

t−μ∞ t ≥ 1

for t > 0; in particular, our result describes the elusive behavior of ϕ(t) in large time. Under one 
addition hypothesis, we also show that the limits

lim
t→0

tμ0ϕ(t) and lim
t→∞ tμ∞ϕ(t)

exist and are positive computable numbers depending only on P1, P2 and Q; this is Theorem 3.4. 
We note that Theorems 3.1 and 3.4 are stated in terms of positive homogeneous functions P1 and 
P2 (in the sense of [18]) and a multivariate nondegenerate homogeneous function Q (introduced 
in Section 2) and, correspondingly, P need not be a polynomial nor HP correspond to a constant-
coefficient partial differential operator. Following Section 3, we treat a perturbation theory in 
which P is replaced by P + R where R(ξ) = o(P (ξ)) as3 ξ → 0 and, under certain conditions, 
we show that Ht

P+R(0) 
 ϕ(t) 
 t−μ∞ for t ≥ 1; this is Theorem 4.1. Further, viewing it essen-
tially as a perturbation problem, we then apply our methods to the related problem of determining 
the asymptotic behavior of the convolution powers of certain complex-valued functions φ on Zd . 
Our results in this direction, Theorem 5.1 and Corollary 5.2, describe the asymptotic behavior 
of φ(n) in the form of local limit theorems and sup-norm asymptotics. Our theory provides an 
inhomogeneous counterpart to the homogeneous theory developed in [1], [18], and [19]. Specifi-
cally, Theorem 5.1 can be compared to Theorem 1.6 in [1] and Theorems 1.9 and 3.8 of [19] and 
Corollary 5.2 can be compared to Theorem 4.1 of [1], Theorem 3.2 of [18], and Theorem 3.1 of 
[19]. Applying our results to the φ discussed in this introduction, we find that ‖φ(n)‖∞ 
 n−5/8

for n ∈N+ and obtain the value of the (existent) limit, limn→∞ n5/8‖φ(n)‖∞.

3 This “little-o” notation means that, for each ε > 0, there is an open neighborhood O ⊆ Rd of 0 for which |R(ξ)| ≤
εP (ξ) whenever ξ ∈ O.
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The entire theory developed in this article has a parallel version where the large-time behavior 
of ϕ(t) is easy to compute while the small-time behavior is unclear. In fact, a key to our proof 
of Theorem 3.1 is that the heat kernel HP associated to � agrees on the diagonal with the heat 
kernel HP̃ associated to a “dual” constant-coefficient partial differential operator �̃, i.e.,

ϕ(t) = Ht
P (0) = Ht

P̃
(0) = ϕ̃(t)

for all t > 0. The utility of this correspondence is that the large-time behavior of ϕ̃ is easily and 
directly computed. For the fourth-order elliptic operator � considered in this introduction,

�̃ = −∂2
x1

+ ∂4
x1

+ 4i∂3
x1

∂2
x2

− 6∂2
x1

∂4
x2

− 4i∂x1∂
6
x2

+ ∂8
x2

which is not an elliptic operator, nor is it semi-elliptic or even hypoelliptic. Consequently, the 
heat kernel corresponding to �̃, especially for small time, is not well understood. Akin to the 
fact that � has elliptic principal part �0 = ∂4

x1
+ ∂4

x2
which determines the small-time decay of 

ϕ(t), �̃ has “lowest-order” component which is well behaved and determines the behavior of 
ϕ̃(t) in large time. This component, which could be called the principal symbol at infinity, is the 
operator

�̃∞ = −∂2
x1

+ ∂8
x2

which is semi-elliptic and determines the 5/8 = 1/2 + 1/8 exponent of polynomial decay of 
ϕ̃ = ϕ for large time. In view of this, the authors see evidence for a useful notion of large-time 
semi-ellipticity for operators and a theory surrounding it which is akin (and perhaps dual to) 
the standard theory of elliptic/semi-elliptic operators. In Section 6, we discuss this and future 
directions of the theory presented in this article.

2. Homogeneous functions

In this section, we give a brief account of the theory of positive homogeneous functions (pre-
sented more fully in [18]) and introduce a multivariate generalization of such functions, which 
we will call nondegenerate multivariate homogeneous functions. For a positive integer d , we 
shall denote by End(Rd) the set of linear endomorphisms of Rd and by Gl(Rd) the correspond-
ing subset of automorphisms. We shall take End(Rd) to be equipped with the operator norm 
‖ · ‖ inherited from the standard Euclidean norm |·| on Rd . For a given E ∈ End(Rd), we define 
T : (0, ∞) → Gl(Rd) by

Tt = tE = exp((ln t)E) =
∞∑

k=0

(ln t)k

k! Ek

for t > 0. It is straightforward to verify that T is a Lie group homomorphism from the set of 
positive real numbers under multiplication into Gl(Rd). The collection {Tt : t > 0} = {tE : t > 0}, 
which we view both as a set and as a subgroup of Gl(Rd), is called the continuous one-parameter 
group generated by E; it will usually be written {tE}t>0 or simply {tE}. It is a standard fact that 
every continuous one-parameter (sub)group of {Tt} ⊆ Gl(Rd) is of this form, i.e., is generated by 
some E ∈ End(Rd). An account of the theory of continuous one-parameter groups can be found 
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in [20]. Two notions of particular interest for us are captured by the following definition; the first 
of which is equivalent to the so-called Lyapunov stability of the one-parameter additive group 
R � t → Te−t = exp(−tE) [20].

Definition 2.1. Let {Tt } ⊆ Gl(Rd) be a continuous one-parameter group.

1. We say that {Tt } is contracting if

lim
t→0

‖Tt‖ = 0.

2. We say that {Tt } is non-expanding if

sup
0<t≤1

‖Tt‖ < ∞.

Thanks to the continuity of T : (0, ∞) → Gl(Rd), every contracting group is non-expanding.

Proposition 2.2. Let {Tt } be a continuous one-parameter group generated by E ∈ End(Rd). If 
{Tt } is contracting, then trE > 0. If {Tt } is non-expanding, then trE ≥ 0.

Proof. By virtue of the continuity of the determinant map and the fact that det(tE) = t trE , we 
have

lim
t→0

t trE = lim
t→0

det(tE) = det(0) = 0

provided {tE} is contracting. In this case, it follows that trE > 0. If {tE} is expanding with 
M = sup0<t≤1 ‖tE‖, we have

sup
0<t≤1

t trE = sup
0<t≤1

det(tE) ≤ sup
‖A‖≤M

|det(A)| < ∞

because {A ∈ End(Rd) : ‖A‖ ≤ M} is a compact set. Thus trE ≥ 0. �
Given a function P : Rd → R and E ∈ End(Rd), we shall say that P is homogeneous with 

respect to E if

tP (ξ) = P(tEξ)

for all t > 0 and ξ ∈ Rd ; in this case we say that E is a member of the exponent set of P and 
write E ∈ Exp(P ). Central to the definition of positive homogeneous function given below is the 
following characterization taken from [18].

Proposition 2.3. Let P : Rd → R be continuous, positive-definite (in the sense that P ≥ 0 and 
P(ξ) = 0 only when ξ = 0), and have Exp(P ) �= ∅. Then the following are equivalent:
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1. The so-called unital level set of P ,

SP := {ξ ∈ Rd : |P(ξ)| = P(ξ) = 1},

is compact.
2. There is a positive number M for which P(ξ) > 1 whenever |ξ | > M .
3. For each E ∈ Exp(P ), {tE} is contracting.
4. There exists E ∈ Exp(P ) for which {tE} is contracting.
5. We have

lim|ξ |→∞P(ξ) = ∞.

Definition 2.4. Let P : Rd → R be continuous, positive definite and have Exp(P ) �= ∅. If any 
one (and hence all) of the equivalent conditions in Proposition 2.3 are fulfilled, we say that P is 
positive homogeneous. We will also say that P is a positive homogeneous function on Rd .

The following proposition amasses some basic facts about positive homogeneous functions 
and its proof can be found in Section 2 of [18].

Proposition 2.5. Let P be a positive homogeneous function and denote by Sym(P ) the set of 
O ∈ End(Rd) for which P(Oξ) = P(ξ) for all ξ ∈ Rd . We have

1. Sym(P ) is a compact subgroup of Gl(Rd).
2. For each E, Ẽ ∈ Exp(P ), we have

trE = tr Ẽ > 0.

In view of the preceding proposition, we define the homogeneous order of P to be the unique 
positive number μP for which

μP = trE

for all E ∈ Exp(P ).

Example 1. For any α > 0, the map ξ 
→ |ξ |α is a positive homogeneous function on Rd . Indeed, 
it is evident that it is continuous and positive-definite and its unital level set is precisely the unit 
sphere S|·|α = Sd in Rd . Further,

Exp(|·|α) = 1

α
I + od

where I is the identity map on Rd and od is the Lie algebra of the orthogonal group O(Rd) and 
is characterized by the set of skew symmetric matrices. �

Example 2. Given a d-tuple of positive even integers m = (m1, m2, . . . , md), we consider a 
polynomial of the form
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P(ξ) =
∑

|α:m|=1

aαξα (10)

for ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd where, for each multi-index α = (α1, α2, . . . , αd) ∈ Nd , ξα :=
ξ

α1
1 ξ

α2
2 · · · ξαd

d and

|α : m| :=
d∑

k=1

αk

mk

.

A polynomial of the form (10) is said to be semi-elliptic provided P(ξ) vanishes only at ξ = 0. 
Appearing in L. Hörmander’s treatise on linear partial differential operators [16], semi-elliptic 
polynomials are the symbols of a class of hypoelliptic partial differential operators, called semi-
elliptic operators. For a semi-elliptic polynomial P(ξ) of the form (10), its corresponding semi-
elliptic operator is the constant-coefficient linear partial differential operator given by

P(D) =
∑

|α:m|=1

aαDα

where we have written D = (−i∂x1 , −i∂x2 , . . . , −i∂xd
) and, for each multi-index α = (α1, α2,

. . . , αd) ∈ Nd , Dα = (−i∂x1)
α1(−i∂x2)

α2 · · · (−i∂xd
)αd . For a polynomial P(ξ) of the form (10), 

observe that, for E ∈ End(Rd) with standard matrix representation diag(1/m1, 1/m2, . . . , 1/md),

P(tEξ) =
∑

|α:m|=1

aα(t1/m1ξ1)
α1(t1/m2ξ2)

α2 · · · (t1/md ξd)αd =
∑

|α:m|=1

aαt |α:m|ξα = tP (ξ)

for all t > 0 and ξ = (ξ1, ξ2, . . . , ξd) ∈ Rd . Thus E ∈ Exp(P ) and, because {tE} is clearly 
contracting, Proposition 2.3 guarantees that P is positive homogeneous whenever it is positive-
definite. Thus, whenever a semi-elliptic polynomial P of the form (10) is positive-definite, it is 
positive homogeneous with homogeneous order

μP = trE = |1 : m| = 1

m1
+ 1

m2
+ · · · + 1

md

.

For two concrete examples, consider

P1(ξ) = ξ4
1 + ξ6

2 and P2(ξ) = ξ2
1 + ξ1ξ

2
2 + ξ4

2

defined for ξ = (ξ1, ξ2) ∈ R2. These are positive homogeneous semi-elliptic polynomials on R2

with homogeneous order μP1 = 1/4 +1/6 = 5/12 and μP2 = 1/2 +1/4 = 3/4, respectively. �

Before we conclude our treatment of positive homogeneous functions and turn our attention 
to multivariate homogeneous functions, we present the following lemma which is used several 
times throughout the course of this paper. Its proof makes use of the generalized polar-coordinate 
integration formula developed and presented in Theorem 1.4 of [18].
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Lemma 2.6. Let P be a positive homogeneous function on Rd with relatively compact unit ball 
BP = {ξ ∈ Rd : P(ξ) < 1} and homogeneous order μP > 0. Then, for each ε > 0,∫

Rd

e−εP (ξ) dξ = m(BP )

(μP + 1)

εμP

where m(BP ) denoted the Lebesgue measure of BP . In particular, for each ε > 0, exp(−εP ) ∈
L1(Rd).

Proof. By an appeal to Theorem 1.5 of [18], we obtain a Borel measure σ = σP on S = SP for 
which σ(S) = μP · m(BP ) and

∫
Rd

e−εP (ξ) dξ =
∫
S

∞∫
0

e−εP (tEη)tμP −1 dt σ (dη) =
∫
S

∞∫
0

e−εt tμP −1 dt σ (dη)

for any E ∈ Exp(P ). Thus

∫
Rd

e−εP (ξ) dξ = σ(S)

∞∫
0

e−εt tμP −1 dt = m(BP )
μP

εμP

∞∫
0

e−ssμP −1 ds = m(BP )

(μP + 1)

εμP

where we have used the Laplace-transform representation of Euler’s Gamma function and the 
property that μP · 
(μP ) = 
(μP + 1). �

We now introduce a generalization of the notion of positive homogeneous function. Given 
non-negative integers a and b and a function Q : Rb → Ra , we say that Q is nondegenerate
if Q(ζ) �= 0 whenever ζ �= 0. Given a pair (E, E′) ∈ End(Ra) × End(Rb), we say that Q is 
homogeneous with respect to the pair (E, E′) provided that

tEQ(ζ ) = Q(tE
′
ζ )

for all t > 0 and ζ ∈Rb . Akin to Proposition 2.3, we have the following:

Proposition 2.7. Let Q : Rb → Ra be continuous, nondegenerate, and homogeneous with re-
spect to some pair (E, E′) ∈ End(Ra) × End(Rb) for which {tE}t>0 is contracting. Then, the 
following are equivalent:

1. For any compact set K ⊆Ra , Q−1(K) ⊆ Rb is compact.
2. The set

SQ = {ζ ∈ Rb : |Q(ζ)| = 1}

is compact.
3. There is a number M > 0 for which |Q(ζ)| > 1 for all |ζ | > M .
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4. For each pair (E, E′) ∈ End(Ra) × End(Rb) for which Q is homogeneous and {tE} is con-
tracting, {tE′ } must also be contracting.

5. There exists a pair (E, E′) ∈ End(Ra) × End(Rb) for which Q is homogeneous and {tE} and 
{tE′ } are both contracting.

6. We have

lim|ζ |→∞
|Q(ζ)| = ∞.

Proof. (1⇒2). Since SQ = Q−1(Sa) where Sa is the unit sphere in Ra , this is immediate. //

(2⇒3). Assuming that SQ is compact, let M > 0 be such that |Q(ζ)| �= 1 for all |ζ | > M . 
Denote by BM the closed ball in Rb with center 0 and radius M and by OM = Rb \ BM its 
complement. Let us first treat the situation in which b > 1. In this case, the fact that OM is 
path connected and Q(ζ) is continuous ensures that there cannot be two elements ζ1 and ζ2 in 
OM with |Q(ζ1)| < 1 < |Q(ζ2)| for otherwise the intermediate value theorem would imply that 
|Q(ζ3)| = 1 for some ζ3 ∈ OM , an impossibility. Thus, to prove the statement, we simply need to 
rule out the possibility that |Q(ζ)| < 1 for all ζ ∈ OM . Let us assume, to reach a contradiction, 
that |Q(ζ)| < 1 for all ζ ∈ OM . Let (E, E′) ∈ End(Ra) × End(Rb) be a pair for which Q is 
homogeneous and {tE} is contracting and let ζ0 be a non-zero element in Rb. The nondegener-
ateness of Q and the fact that {tE} is contracting guarantees that

∞ = lim
t→∞
∣∣∣tEQ(ζ0)

∣∣∣= lim
t→∞
∣∣∣Q(tE

′
ζ0)

∣∣∣.
In view of our hypothesis it follows that, for all sufficiently large t , tE

′
ζ0 ∈ BM . Of course, this 

implies that ζ 
→ |Q(ζ)| is unbounded on the compact set BM and this is impossible for we know 
that Q is continuous.

In the case that b = 1, we first argue that Q(ζ) > 1 for all ζ > M > 0. Of course, since 
(M, ∞) is connected, an argument analogous to that above for b > 1 guarantees that it suffices 
to rule out the case that Q(ζ) < 1 for all ζ > M . We therefore assume, to reach a contradiction, 
that Q(ζ) < 1 for all ζ > M and select a pair (E, E′) ∈ End(Ra) × End(Rb) for which Q is 
homogeneous and {tE} contracting. Due to the simplicity of End(Rb) = End(R), E′ = α′I for 
some α′ ∈ R and so tE

′
ζ = tα

′
ζ for all t > 0 and ζ ∈ R = Rb . Using the fact that {tE} is 

contracting, we have

∞ = lim
t→∞
∣∣∣tEQ(1)

∣∣∣= lim
t→∞
∣∣∣Q(tα

′
)

∣∣∣
and so, in view of our supposition, it follows that 0 < tα

′ ≤ M for all sufficiently large t (which, 
at the same time guarantees that α′ < 0). This, however, contradicts that fact that Q is continuous 
at 0. Hence, Q(ζ) > 1 for all ζ > M . A similar argument shows that Q(ζ) > 1 for all ζ < −M . 
Thus Q(ζ) > 1 for all |ζ | > M , as was asserted. //

(3⇒4). We prove the contrapositive statement. Let us assume that there is a pair (E, E′) ∈
End(Ra) × End(Rb) for which Q is homogeneous and {tE} is contracting, but {tE′ } is not con-
tracting. It follows that, for some ζ ∈ Rb and ε > 0, there is a sequence tk → 0 for which
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∣∣∣tE′
k ζ

∣∣∣≥ ε

for all k. In the case that {tE′
k ζ } is bounded, we assume without loss of generality (by passing to 

a subsequence, if needed) that limk→∞ tE
′

k ζ = ζ0 where |ζ0| ≥ ε. Consequently,

Q(ζ0) = lim
k→∞Q(tE

′
k ζ ) = lim

k→∞ tEk Q(ζ ) = 0

since tk → 0 and {tE} is contracting. Since ζ0 �= 0, this is impossible for we know that Q is 
nondegenerate. Thus, we must conclude that {tE′

k ζ } is unbounded. Without loss of generality, 
we may assume (by passing to a subsequence, if necessary) that ζk = tE

′
k ζ → ∞ as k → ∞. 

Consequently, there is a sequence ζk → ∞ for which

lim
k→∞Q(ζk) = lim

k→∞ tEk Q(ζ ) = 0.

This shows that Item 3 cannot hold, as was asserted. //

(4⇒5). In view of the hypotheses, this is immediate. //

(5⇒6). We fix a pair (E, E′) ∈ End(Ra) ×End(Rb) for which Q is homogeneous and both {tE}
and {tE′ } are contracting. Let {ζk} ⊆ Rb be a sequence with ζk → ∞ as k → ∞. Since {tE′ } is 
contracting and in view of Proposition A.5 of [18], we can write ζk = tE

′
k ηk where |ηk| = 1 for 

each k and tk → ∞. We claim that

lim
k→∞

∣∣∣tEk Q(ηk)

∣∣∣= ∞.

To see this, we assume, to reach a contradiction, that a subsequence has the property that ∣∣∣tEkj
Q(ηkj

)

∣∣∣≤ M for some M . In this case, we see that

∣∣Q(ηkj
)
∣∣= ∣∣∣(1/tkj

)EtEkj
Q(ηkj )

∣∣∣≤ M‖(1/tkj
)E‖

for all j and, since 1/tkj
→ 0 as j → ∞, the fact that {tE} is contracting implies that

0 = inf|ζ |=1
|Q(ζ)|.

This is, however, impossible because Q is continuous and nonvanishing on the compact unit 
sphere in Rb. We have therefore substantiated our claim and so it follows that

lim
k→∞|Q(ζk)| = lim

k→∞

∣∣∣Q(tE
′

k ηk)

∣∣∣= lim
k→∞

∣∣∣tEk Q(ηk)

∣∣∣= ∞,

as desired. //
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(6⇒1). Let K ⊆ Ra be compact. The fact that Q is continuous ensures that Q−1(K) is nec-
essarily closed. If Q−1(K) were unbounded, we could find a sequence ζk ∈ Q−1(K) for which 
|ζk| → ∞ yet Q(ζk) ∈ K for all k. Of course, this is impossible in light of our assumption. Hence 
Q−1(K) must be bounded and therefore compact in view of the Heine-Borel theorem. // �

Definition 2.8. Let Q : Rb → Ra be continuous, nondegenerate and homogeneous with respect 
to a pair (E, E′) ∈ End(Ra) × End(Rb) for which {tE} is contracting. If any (hence, every) of 
the equivalent conditions listed in Proposition 2.7 are satisfied, we say that Q is nondegenerate 
multivariate homogeneous.

Example 3. For a given positive integer α, consider Q :R → R defined by Q(ζ) = ζ α . It is clear 
that Q(ζ) is continuous and nondegenerate. We observe further that

Q(tI ζ ) = Q(tζ ) = tαζ α = tαI ζ α

for all t > 0 and ζ ∈ R where I is the identity transformation on R. Thus Q is homogeneous 
with respect to (αI, I ) and, further, it is clear that {tαI } = {tα} and {t I } = {t} are both con-
tracting. Thus, by virtue of Proposition 2.7, we conclude that Q is nondegenerate multivariate 
homogeneous. �

Example 4. Given positive integers a and b, let σ1, σ2, . . . , σa be a collection of positive integers 
for which, as sets, {1, 2, . . . , b} = {σ1, σ2, . . . , σa} and, given positive integers α1, α2, . . . , αa , 
define Q :Rb → Ra by

Q(ζ) = Q(ζ1, ζ2, . . . , ζb) = (ζ α1
σ1

, ζ α2
σ2

, . . . , ζ αa
σa

) (11)

for ζ = (ζ1, ζ2, . . . , ζb) ∈ Rb . We claim that Q is nondegenerate multivariate homogeneous. To 
see this, we observe first that Q is clearly continuous (in fact, Q ∈ C∞) and Q(ζ) = 0 if and only 
if ζσj

= 0 for all j = 1, 2, . . . , a. In view of the condition that {σ1, σ2, . . . , σa} = {1, 2, . . . , b}, 
we conclude that Q(ζ) = 0 if and only if ζ = (ζ1, ζ2, . . . , ζb) = 0 and so Q is nondegenerate. 
Observe that

Q(tI ζ ) = Q(tζ ) = (tα1ζ α1
σ1

, tα2ζ α2
σ2

, . . . , tαa ζ αa
σa

) = tEQ(ζ )

where I is the identity on Rb and E ∈ End(Ra) has standard representation diag(α1, α2, . . . , αa). 
Consequently, Q is homogeneous with respect to (E, I ) and, since {tE} and {t I } are contract-
ing, we conclude that Q is nondegenerate multivariate homogeneous. For a concrete example, 
consider Q :R2 → R3 defined by

Q(ζ1, ζ2) = (ζ2, ζ
4
1 , ζ 3

2 )

for ζ = (ζ1, ζ2) ∈ R2. This is a nondegenerate multivariate homogeneous function of the above 
form with σ1 = σ3 = 2, σ2 = 1, α1 = 1, α2 = 4, and α3 = 3. �

We remark that, for any Q of the form (11), we have b ≤ a. The following example generalizes 
that above and allows for b > a. In addition, the example shows that all positive homogeneous 
functions are nondegenerate multivariate homogeneous.
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Example 5. For positive integers a and b, let q1(ζ ), q2(ζ ), . . . , qa(ζ ) be a collection of contin-
uous real-valued functions on Rb which satisfy the following conditions:

1. If ζ �= 0, then qk(ζ ) �= 0 for at least one k = 1, 2, . . . , a.
2. There exists E′ ∈ End(Rb) for which {tE′ } is contracting and E′ ∈ Exp(qk) for all k =

1, 2, . . . , a.

Given such a collection, let α1, α2, . . . , αa be positive integers and define Q :Rb → Ra by

Q(ζ) = (q1(ζ )α1 , q2(ζ )α2 , . . . , qa(ζ )αa ) (12)

for ζ ∈ Rb . We claim that Q is nondegenerate multivariate homogeneous. Indeed, Q is continu-
ous and nondegenerate in view of Condition 1. Upon taking E′ ∈ End(Rb) satisfying Condition 
2, we observe that Q is homogeneous with respect to the pair (E, E′) where E ∈ End(Rd) has 
standard representation diag(α1, α2, . . . , αa). Since {tE} and {tE′ } are contracting, we conclude 
that Q is nondegenerate multivariate homogeneous in view of Proposition 2.7.

In the case that a = 1, α1 = 1, and q1(ζ ) = P(ζ ) is a positive homogeneous function, the 
above conditions are automatically satisfied for any E′ ∈ Exp(P ). From this we conclude that 
positive homogeneous functions are nondegenerate multivariate homogeneous. We remark that, 
for any E′ ∈ Exp(P ), Q(ζ) = q1(ζ ) = P(ζ ) is homogeneous with respect to the pair (I, E′)
where I is the identity on R.

For a concrete example of a multivariate homogeneous function of the form (12) (and for 
which 1 < a < b), consider Q :R3 → R2 defined by

Q(ζ) = (ζ 2
1 + ζ 4

2 , (ζ1 + ζ 3
3 )5)

for ζ = (ζ1, ζ2, ζ3) ∈ R3. This can be written equivalently as

Q(ζ) =
((

(ζ 2
1 + ζ 4

2 )1/2
)2

,
(
ζ1 + ζ 3

3

)5
)

for ζ = (ζ1, ζ2, ζ3) ∈ R3. This is clearly of the form (12) with q1(ζ ) = (ζ 2
1 + ζ 4

2 )1/2, q2(ζ ) =
ζ1 + ζ 3

3 , α1 = 2 and α2 = 5. In this case, it is easy to see that q1(ζ ) and q2(ζ ) satisfy Condition 
1. Further, observe that, for E′ ∈ End(R3) with standard representation diag(1, 1/2, 1/3), we 
have E′ ∈ Exp(q1) ∩ Exp(q2). Since {tE′ } is clearly contracting, we may conclude that Q is 
nondegenerate multivariate homogeneous and homogeneous with respect to (E, E′) where E′ is 
that above and E ∈ End(R2) has standard representation diag(2, 5). Of course, we can confirm 
the homogeneity of Q with respect to the pair (E, E′) directly: For t > 0 and ζ = (ζ1, ζ2, ζ3),

Q(tE
′
ζ ) = Q(t1ζ1, t

1/2ζ2, t
1/3ζ3)

=
(

(tζ1)
2 + (t1/2ζ2)

4,
(
(tζ1) + (t1/3ζ3)

3
)5
)

=
(

t2
(
ζ 2

1 + ζ 4
2

)
, t5
(
ζ1 + ζ 3

3

)5
)

= tEQ(ζ ). �
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Proposition 2.9. Suppose that P is a positive homogeneous function on Ra , Q : Rb → Ra

is a nondegenerate multivariate homogeneous function and, for some E ∈ Exp(P ) and E′ ∈
End(Rb), Q is homogeneous with respect to the pair (E, E′). Then P ◦ Q and P ◦ (−Q)

are positive homogeneous functions on Rb whose exponent sets contain E′. In particular, 
μP◦Q = μP◦(−Q) = trE′.

Proof. It is clear that Q is nondegenerate multivariate homogeneous if and only if −Q is non-
degenerate multivariate homogeneous and Q is homogeneous with respect to a pair (E, E′) if 
and only if −Q is. Thus, to prove the proposition, it suffices to prove that P ◦ Q is positive 
homogeneous with E′ ∈ Exp(P ◦ Q). Because P is continuous and positive-definite and Q is 
continuous and nondegenerate, it is evident that P ◦Q is continuous and positive-definite. Given 
the pair (E, E′) as in the statement of the proposition, we observe that

(P ◦ Q)(tE
′
ζ ) = P(tEQ(ζ )) = tP (Q(ζ )) = t (P ◦ Q)(ζ )

for all t > 0 and ζ ∈ Rb . Thus, E′ ∈ Exp(P ◦ Q). Finally, since {tE} is contracting thanks to 
Proposition 2.3, {tE′ } must also be contracting in view or Proposition 2.7 and so we conclude 
that P ◦ Q is positive homogeneous in light of Proposition 2.3. �
Example 6. Consider the nondegenerate multivariate homogeneous function Q :R3 → R2 from 
the previous example given by

Q(ζ) = (ζ 2
1 + ζ 4

2 , (ζ1 + ζ 3
3 )5)

for ζ = (ζ1, ζ2, ζ3) ∈ R3. Also, consider the positive homogeneous function P :R2 → R defined 
by

P(ξ) = P(ξ1, ξ2) = ξ5
1 + ξ2

2

for ξ = (ξ1, ξ2) ∈ R2. We see that P is homogeneous with respect to E ∈ End(R2) with stan-
dard representation diag(1/5, 1/2). Consider also E′ ∈ End(R3) with standard representation 
diag(1/10, 1/20, 1/30) and observe that

Q(tE
′
ζ ) = Q(t1/10ζ1, t

1/20ζ2, t
1/30ζ3)

=
(
t1/5(ζ 2

1 + ζ 4
2 ), t1/2(ζ1 + ζ 3

3 )5
)

= tEQ(ζ )

for t > 0 and ζ = (ζ1, ζ2, ζ3) ∈ R3. Thus, by the preceding proposition, we have that P ◦ Q is 
positive homogeneous with μP◦Q = trE′ = 11/60. Of course, this can be verified directly by 
simplification of P ◦ Q. We have

(P ◦ Q)(ζ ) = (ζ 2
1 + ζ 4

2 )5 + (ζ1 + ζ 3
3 )10

which is clearly positive homogeneous with E′ ∈ Exp(P ◦ Q). �
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3. On-diagonal asymptotics

Theorem 3.1. Given positive integers a and b, let P1 and P2 be positive homogeneous functions 
on Ra with homogeneous orders μP1 and μP2 , respectively, and let Q : Rb → Ra be a C1

function which is nondegenerate multivariate homogeneous. Set d = a + b and define P :Rd →
R by

P(ξ) = P(η, ζ ) = P1(η + Q(ζ)) + P2(η)

for ξ = (η, ζ ) ∈ Ra × Rb = Rd . Suppose that there exist E1 ∈ Exp(P1), E2 ∈ Exp(P2), and 
F1, F2 ∈ End(Rb) for which the following conditions hold:

1. For k = 1, 2, Q is homogeneous with respect to the pair (Ek, Fk).
2. We have [E1, E2] = E1E2 − E2E1 = 0 and {tE1−E2} is non-expanding.

In particular, P1 ◦ Q and P2 ◦ (−Q) are positive homogeneous on Rb (by virtue of Proposi-
tion 2.9) with homogeneous orders μP1◦Q and μP2◦(−Q), respectively. Then the heat kernel

Ht
P (x) = 1

(2π)d

∫
Rd

e−tP (ξ)e−ix·ξ dξ

exists for each t > 0 and x ∈ Rd . Upon setting ϕ(t) := Ht
P (0) for t > 0, we have the following 

on-diagonal asymptotics:

ϕ(t) 

{

t−μ0 0 < t ≤ 1

t−μ∞ 1 ≤ t < ∞

for t > 0 where μ0 = μP2 + μP1◦Q and μ∞ = μP1 + μP2◦(−Q).

Remark 1. In view of Propositions 2.5 and 2.9, μP1 = trE1, μP2 = trE2, μP1◦Q = trF1, and 
μP2◦(−Q) = trF2 where E1, E2, F1, F2 are those given in the hypotheses of Theorem 3.1 (or any 
which satisfy Conditions 1 and 2). In these terms, the asymptotics for ϕ(t) can be equivalently 
written

ϕ(t) 

{

t−(trE2+trF1) 0 < t ≤ 1

t−(trE1+trF2) 1 ≤ t < ∞

for t > 0.

Remark 2. Given our hypothesis that Q is nondegenerate multivariate homogeneous, when 
we ask that Q be homogeneous with respect to the pair (E1, F1) for some E1 ∈ Exp(P1) and 
F1 ∈ End(Rb), we are ensuring that {tF1} is contracting by virtue of Proposition 2.7 since 
it is known that {tE1} is contracting thanks to Proposition 2.3. For the same reason, {tF2}
must also be contracting. Of course, these observations also follow from Proposition 2.9 since 
F1 ∈ Exp(P1 ◦ Q) and F2 ∈ Exp(P2 ◦ (−Q)).
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In this direction, if Condition 1 were adjusted to include the hypothesis that, for F1 (or F2), 
{tF1} (or {tF2}) is contracting, then the initial hypothesis could be weakened to ask only that 
Q : Ra → Rd be nondegenerate and C1. In this case, the modified Condition 1 would ensure 
that Q were nondegenerate multivariate homogeneous by virtue of Item 5 of Proposition 2.7.

Remark 3. If Condition 2 were replaced by the stronger condition that [E1, E2] = E1E2 −
E2E1 = 0 and {tE1−E2} is contracting, then one finds that the small and large-time asymp-
totics t−μ0 and t−μ∞ are “true asymptotics” in the sense that the limits limt→0 tμ0ϕ(t) and 
limt→∞ tμ∞ϕ(t) both exist and are positive numbers. This result is presented in Theorem 3.4. 
The theorem, in fact, gives us the precise value of these limits in terms of P1, P2, and Q.

Example 7. Let q and l be even positive integers with q ≤ l and let p ∈ N+. We consider P :
R2 →R defined by

P(η, ζ ) = (η + ζp)q + ηl

for (η, ζ ) ∈ R2 and the corresponding heat kernel HP defined by

Ht
P (x, y) = 1

(2π)2

∫
R2

e−tP (η,ζ )e−i(η,ζ )·(x,y) dζ dη

for t > 0 and (x, y) ∈R2. In this case, we can write

P(η, ζ ) = P1(η + Q(ζ)) + P2(η)

where P1(η) = ηq and P2(η) = ηl are positive homogeneous on R = R1 and Q(ζ) = ζp is 
evidently a nondegenerate multivariate homogeneous C1 function from R to itself. For P1, we 
have E1 = I/q ∈ Exp(P1) and μP1 = 1/q and, for P2, we have E2 = I/ l and μP2 = 1/l. Further, 
we observe that

tE1Q(ζ) = t1/qζp = (t1/qpζ )p = Q(t1/qpζ )

for t > 0 and ζ ∈R and from this we see that Q is homogeneous with respect to the pair (E1, F1)

where F1 = I/qp. Similarly, Q is also homogeneous with respect to the pair (E2, F2) where 
F2 = 1/lp. Finally, we observe that E1 and E2 commute and, since q ≤ l, tE1−E2 = t (1/q−1/l)I

is non-expanding. Thus, an application of the theorem is valid and we conclude that

ϕ(t) = Ht
P (0) 


{
t−(1/l+1/qp) t ≤ 1

t−(1/q+1/lp) t ≥ 1

because μ0 = μP2 + μP1◦Q = trE2 + trF1 = 1/l + 1/qp and μ∞ = μP1 + μP2◦(−Q) = trE1 +
trF2 = 1/q + 1/lp.

We recognize that the motivating example in the introduction is of the above form where 
p = q = 2 and l = 4, i.e.,

P(η, ζ ) = (η + ζ 2)2 + η4
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for (η, ζ ) ∈ R2. From this, we conclude that

ϕ(t) 

{

t−1/2 0 < t ≤ 1

t−5/8 t ≥ 1

for t > 0, as was asserted. Following Theorem 3.4, we revisit this example to obtain precise 
values of limt→0 t1/2ϕ(t) and limt→∞ t5/8ϕ(t). Necessarily, the t → 0 limit is precisely that 
obtained by the scaling argument presented in the introduction. �

Example 8. In view of Example 4, let Q : Ra → Ra be a nondegenerate multivariate homoge-
neous function of the form

Q(ζ) = Q(ζ1, ζ2, . . . , ζa) = (ζ
α1
σ(1)

, ζ
α2
σ(2)

, . . . , ζ
αa

σ (a)
)

where α1, α2, . . . , αa ∈ N+ and σ is a permutation of {1, 2, . . . , a}; in particular, {σ(1), σ(2), . . . ,
σ (a)} = {1, 2, . . . , a}. We remark that Q is clearly smooth. Now, let P1 and P2 be positive homo-
geneous functions on Ra and suppose that, for k = 1, 2, Exp(Pk) contains Ek ∈ End(Ra) having 
standard matrix representation diag(λk,1, λk,2, . . . , λk,a) where λk,j > 0 for j = 1, 2, . . . , a. If, 
for k = 1, 2, we consider Fk with standard matrix representation

diag

(
λk,σ−1(1)

ασ−1(1)

,
λk,σ−1(2)

ασ−1(2)

, . . . ,
λk,σ−1(a)

ασ−1(a)

)
,

we see that

tEkQ(ζ ) =
(
tλk,1ζ

α1
σ(1), t

λk,2ζ
α2
σ(2), . . . , t

λk,2ζ
αa

σ(a)

)
= Q(tFk ζ )

for all t > 0 and ζ ∈ Ra . Correspondingly, Q is homogeneous with respect to the pair (Ek, Fk)

for k = 1, 2. We have the following result.

Proposition 3.2. If λ1,j ≥ λ2,j for j = 1, 2, . . . , a, then for P :R2a →R defined by

P(η, ζ ) = P1(η + Q(ζ)) + P2(η)

for (η, ζ ) ∈ R2a , we have

ϕ(t) 

{

t−μ0 t ≤ 1

t−μ∞ t ≥ 1

for t > 0 where

μ0 =
a∑

j=1

(
λ2,j + λ1,j

αj

)

and
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μ∞ =
a∑

j=1

(
λ1,j + λ2,j

αj

)
.

Proof. The hypothesis guarantees that tE1−E2 is non-expanding and so, in view of Remark 1, 
we only need to verify that the exponents μ0 and μ∞ are as stated. Of course, since σ is a 
permutation of {1, 2, . . . , a},

μ0 = trE2 + trF1 =
a∑

j=1

λ2,j +
a∑

j ′=1

λ1,σ−1(j ′)
ασ−1(j ′)

=
a∑

j=1

λ2,j +
a∑

j=1

λ1,j

αj

.

The computation for μ∞ is done analogously. �
In this example, we have assumed that a = b. We remark that the results found above can be 

extended to arbitrary dimensions a and b by considering Q’s of the form found in Examples 4
and 5. We leave these details to the reader. �

Our proof of Theorem 3.1 makes use of the following lemma, whose proof can be found in 
Appendix A.

Lemma 3.3. Let P1 and P2 be positive homogeneous functions on Ra . If there exist E1 ∈ Exp(P1)

and E2 ∈ Exp(P2) for which [E1, E2] = 0 and {tE1−E2} is non-expanding, then the following 
statements hold:

1. There are positive constants C, C′, M, M ′ for which

C(P1(ξ) + P2(η)) − M ≤ P1(t
E1−E2η + ξ) + P2(η) ≤ C′(P1(ξ) + P2(η)) + M ′ (13)

for all ξ, η ∈ Ra and 0 < t ≤ 1.
2. There are positive constants C, C′, M, M ′ for which

C(P1(η) + P1(ξ)) − M ≤ P1(η) + P2(t
E1−E2η + ξ) ≤ C′(P2(η) + P2(ξ)) + M ′ (14)

for all η, ξ ∈ Ra and 0 < t ≤ 1.

As the reader will see, this lemma is fundamental to our work throughout the article and, 
in addition to its appearance in the proof of Theorem 3.1, it is used essentially in the proofs of 
Theorems 4.1 and 5.1. In these applications, ξ is taken to be Q(ζ) in (13) and −Q(ζ) in (14). For 
the aid of the reader, we find it useful to state these inequalities in the context of our introductory 
example where P(η, ζ ) = (η+ζ 2)2 +η4. In this case, using ξ = Q(ζ) = ζ 2 in the first inequality 
and ξ = −Q(ζ) = −ζ 2 in the second, the lemma gives the following estimates.

1. There are positive constants C, C′, M, M ′ for which

C(ζ 4 + η4) − M ≤ (t1/4η + ζ 2)2 + η4 ≤ C′(ζ 4 + η4) + M ′

for all η, ζ ∈R and 0 < t ≤ 1.
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2. There are positive constants C, C′, M, M ′ for which

C(η2 + ζ 4) − M ≤ η2 + (t1/4η − ζ 2)4 ≤ C′(η4 + ζ 8) + M ′

for all η, ζ ∈R and 0 < t ≤ 1.

Proof of Theorem 3.1. We first treat the t ≤ 1 behavior. Using the homogeneity of P1 and P2, 
we observe that

tP (η, ζ ) = P1

(
tE1η + tE1Q(ζ)

)
+ P2(t

E2η) = P1

(
tE1η + Q(tF1ζ )

)
+ P2(t

E2η)

for all t > 0, η ∈ Ra and ζ ∈ Rb. By making the change of variables (η, ζ ) 
→ (t−E2η, t−F1ζ ), 
we see that

ϕ(t) = Ht
P (0) = t−(trE2+trF1)

(2π)d

∫
Rd

e−(P1
(
tE1−E2 η+Q(ζ)

)+P2(η)
)
dη dζ (15)

for t > 0. By virtue of Lemma 3.3, we find that there are positive constants C, C′, M, M ′ for 
which

−M ′ − C′(P1(Q(ζ )) + P2(η)) ≤ −P1(t
E1−E2η + Q(ζ)) − P2(η) ≤ M − C(P1(Q(ζ )) + P2(η))

(16)
for all t ≤ 1, η ∈ Ra , and ζ ∈ Rb . Upon noting that (η, ζ ) 
→ P1(Q(ζ )) + P2(η) is a positive 
homogeneous function on Rd in view of Proposition 2.9, it follows from Lemma 2.6 that∫

Rd

e−ε(P1(Q(ζ ))+P2(η)) dη dζ

is a positive finite number for each ε > 0. With this in mind, the inequality (16) guarantees 
constants C, C′ > 0 for which

C ≤ 1

(2π)d

∫
Rd

e−P1
(
tE1−E2η+Q(ζ)

)
e−P2(η) dη dζ ≤ C′

for all 0 < t ≤ 1, and from (15) we conclude that

ϕ(t) 
 t−(trE2+trF1) = t−(μP2+μP1◦Q)

for t ≤ 1.
On the other hand, establishing the t ≥ 1 asymptotics is more difficult. A first hope would be 

to introduce the change of variables (η, ζ ) 
→ (t−E1η, t−F1ζ ) and find that

ϕ(t) = t−(trE1+trF1)

(2π)d

∫
d

e−P1(η+Q(ζ))−P2(t
E2−E1 η) dη dζ
R
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for t > 0. This is problematic, however. To see this, let us assume momentarily that {tE1−E2} is 
contracting and observe that

lim
t→∞

∫
Rd

e−P1(η+Q(ζ))−P2(t
E2−E1η) dη dζ =

∫
Rd

e−P1(η+Q(ζ)) dη dζ = ∞

by virtue of Fatou’s lemma and the fact that∫
Rd

e−P1(η+Q(ζ)) dη dζ =
∫
Rd

e−P1(η
′) dη′ dζ ′ = ∞.

Consequently, in the case that {tE1−E2} is contracting, the only information found by this argu-
ment is that ϕ(t) decays more slowly than t−(trE1+trF1) = t−(μP1+μP1◦Q) as t → ∞.

Instead, we return to the assumption that {tE1−E2} is non-expanding and make the non-linear 
change of variables (η, ζ ) 
→ (η − Q(ζ), ζ ). Denoting this transformation by T , we find that

DT (η, ζ ) =
(

Ia −Dζ Q

0 Ib

)
where DT and Dζ Q are the Jacobian matrices for T and Q, respectively, and Ia and Ib are 
the identity matrices on Ra and Rb, respectively. With this, it is easy to see that T is measure 
preserving and consequently

ϕ(t) = 1

(2π)d

∫
Rd

e−t (P◦T )(η,ζ ) det(DT (η, ζ )) dη dζ

= 1

(2π)d

∫
Rd

e−t P̃ (η,ζ ) dη dζ

for t > 0, where

P̃ (η, ζ ) = (P ◦ T )(η, ζ ) = P1(η) + P2(η − Q(ζ))

for (η, ζ ) ∈ Rd . Observe that

t P̃ (η, ζ ) = P1(t
E1η) + P2(t

E2η − Q(tF2ζ ))

for t > 0 and (η, ζ ) ∈ Rd and, upon making the change of variables (η, ζ ) 
→ (t−E1η, t−F2ζ ), it 
follows that

ϕ(t) = t−(trE1+trF2)

(2π)d

∫
Rd

e−P1(η)−P2(t
E2−E1 η−Q(ζ)) dη dζ (17)

for t > 0. By virtue of Lemma 3.3, there are positive constants C, C′, M, M ′ for which
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−M ′ − C′(P2(η) + P2(−Q(ζ)) ≤ −(P1(η) + P2(t
E2−E1η − Q(ζ))

≤ M − C(P1(η) + P1(−Q(ζ)))

for all η ∈ Ra , ζ ∈ Rb , and 1 ≤ t < ∞ since {tE1−E2} is non-expanding and tE2−E1 =
(1/t)E1−E2 . With the observation that (η, ζ ) 
→ P1(ζ ) + P1(−Q(η)) and (η, ζ ) 
→ P2(ζ ) +
P2(−Q(η)) are positive homogeneous functions on Rd , it follows from (14) and Lemma 2.6
that there are positive numbers C, C ′ for which

C ≤
∫
Rd

e−P1(η)−P2(t
E2−E1η−Q(ζ)) dη dζ ≤ C′

for all 1 ≤ 1 < ∞. Hence,

ϕ(t) 
 t−(trE1+trF2) = t−
(
μP1+μP2◦(−Q)

)
for t ≥ 1. �

Our final result in this section shows that, in the case that {tE1−E2} is contracting, the asymp-
totics of Theorem 3.1 are “true asymptotics”.

Theorem 3.4. Let P : Rd → R satisfy the hypotheses of Theorem 3.1 and, for P1, P2, and Q as 
in the theorem’s statement, put

P0(ξ) = P1(Q(ζ )) + P2(η) and P∞(ξ) = P1(η) + P2(−Q(ζ))

for ξ = (η, ζ ) ∈ Rd . Also, let ϕ(t), μ0, μ∞, E1, and E2 be as they appear in the statement of 
Theorem 3.1. If {tE1−E2} is contracting, then

lim
t→0

tμ0ϕ(t) = H 1
P0

(0) = 1

(2π)d

∫
Rd

e−P0(ξ) dξ

and

lim
t→∞ tμ∞ϕ(t) = H 1

P∞(0) = 1

(2π)d

∫
Rd

e−P∞(ξ) dξ.

In particular, limt→∞ tμ∞ϕ(t) exists, is a positive number, and can be computed using 
Lemma 2.6.

Proof. We shall prove the statement involving the limit as t → ∞; the t → 0 statement is proved 
analogously. In view of (17), we have

tμ∞ϕ(t) = 1

(2π)d

∫
d

e−P1(η)−P2(t
E1−E2η−Q(ζ)) dξ
R

90



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67–125
for t > 0. Now, given that {tE1−E2} is contracting, we have

lim
t→∞ e−P1(η)−P2(t

E2−E1η−Q(ζ)) = e−P∞(ξ)

for each ξ = (η, ζ ) ∈ Rd . As noted in the proof of Theorem 3.1 in the paragraph following (17), 
the integrands ξ 
→ exp

(−P1(η) − P2(t
E2−E1η − Q(ζ))

)
are uniformly dominated, for t ≥ 1, by 

the integrable function ξ 
→ exp(M − C(P1(η) + P1(−Q(ζ)))) and so our desired result follows 
by an appeal to the dominated convergence theorem. �
Example 9. In Example 7, we found that

ϕ(t) = Ht
P (0) 


{
t−(1/l+1/qp) 0 < t ≤ 1

t−(1/q+1/lp) t ≥ 1

for t > 0 where P(η, ζ ) = P1(η+Q(ζ)) +P2(η) = (η+ ζp)q +ηl for p ∈ N+ and positive even 
integers q and l with q ≤ l. As we noted in the example, E1 − E2 = (1/q − 1/l)I where I is the 
identity transformation on R and therefore {tE1−E2} is contracting whenever q < l. Upon noting 
that P0(η, ζ ) = ζ qp + ηl and P∞(η, ζ ) = ηq + ζ lp for (η, ζ ) ∈ R2, Theorem 3.4 guarantees that

lim
t→0

t (1/l+1/qp)ϕ(t) = H 1
P0

(0) = 1

4π2

⎛⎝∫
R

e−ζ qp

dζ

⎞⎠⎛⎝∫
R

e−ηl

dη

⎞⎠
= 1

π2 


(
1 + 1

qp

)



(
1 + 1

l

)
and similarly

lim
t→∞ t (1/q+1/lp)ϕ(t) = H 1

P∞(0) = 1

π2 


(
1 + 1

q

)



(
1 + 1

lp

)
provided q < l. In particular, for our introductory example in which P(η, ζ ) = (η + ζ 2)2 + η4, 
i.e., where 2 = p = q < l = 4, this gives the (expected) limit (7) and, more interestingly,

lim
t→∞ t5/8ϕ(t) = H 1

P∞(0) = 1

2π3/2 
(9/8) ≈ 0.0845624. �

4. A perturbation theory

Let us take the classical viewpoint that the theory of elliptic/semi-elliptic operators is a “per-
turbation theory” in which a sufficiently well-behaved partial differential operator is perturbed 
by adding operators whose order is lower than that of the given operator. In that setting, one may 
investigate properties of solutions to related partial differential equations which are preserved 
under such perturbations. For example, in the theory of elliptic operators, short-time heat kernel 
estimates for a uniformly elliptic operator are determined by the operator’s principal symbol. In 
this way, perturbation by lower-order operators – provided they are sufficiently well behaved – 
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will not essentially change the short-time behavior of heat kernels. In this short section, we ex-
plore perturbation by higher-order operators/symbols. In particular, we show that, under certain 
conditions, the large-time decay of ϕ(t) = Ht

P (0) is essentially unchanged when P is replaced 
with P + R where R(ξ) = o(P (ξ)) as ξ → 0. Given that our analysis is done exclusively in the 
frequency domain, our results amount, essentially, to a perturbation theory of constant-coefficient 
operators. We suspect that a successful variable-coefficient theory is possible, however, we do 
not pursue that here. Our main result is as follows.

Theorem 4.1. Let P satisfy the hypotheses of Theorem 3.1 and let R : Rd → C be a continuous 
function for which R(ξ) = o(P (ξ)) as ξ → 0 and ξ 
→ Re(R(ξ)) non-negative. Then

Ht
P+R(x) = 1

(2π)d

∫
Rd

e−t (P (ξ)+R(ξ))e−ix·ξ dξ

exists for all t > 0 and x ∈Rd . Further, for HP = H
(·)
P (·) and μ∞ as given in Theorem 3.1,

Ht
P+R(x) = Ht

P (x) + o(t−μ∞) (18)

uniformly for x ∈ Rd as t → ∞. In particular, we have the following large-time on-diagonal 
asymptotics:

1. ∣∣Ht
P+R(0)

∣∣
 t−μ∞ (19)

for t ≥ 1.
2. If {tE1−E2} is contracting (where E1 and E2 are as given in the statement of Theorem 3.1), 

then

lim
t→∞ tμ∞Ht

P+R(0) = H 1
P∞(0) = 1

(2π)d

∫
Rd

e−P∞(ξ) dξ (20)

where P∞ is as defined in Theorem 3.4.

Before proving the theorem, we shall first treat a technical lemma which will also be found 
useful in our application to convolution powers of complex-valued functions presented in Sec-
tion 5. The lemma introduces the useful notion of subhomogeneity on an ad hoc basis; for a more 
complete treatment, we refer the reader to Section 2 of [18].

Lemma 4.2. Let P satisfy the hypotheses of Theorem 3.1 and take E1 and F2 as in the statement 
of the theorem. For convenience of notation, we set G = E1 ⊕ F2 and P̃ = P ◦ T where T :
Rd → Rd is the measure-preserving transformation defined by T (η, ζ ) = (η − Q(ζ), ζ ) for 
(η, ζ ) ∈ Ra ×Rb = Rd . Finally, given an open neighborhood O ⊆ Rd of 0, let R : O → C be a 
continuous function and set R̃ = R ◦ T . Then the following statements hold.

1. R(ξ) = o(P (ξ)) as ξ → 0 if and only if R̃(ξ) = o(P̃ (ξ)) as ξ → 0.
92



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67–125
2. If either of the preceding equivalent conditions is satisfied, then R̃ is subhomogeneous with 
respect to G in the sense that, for each ε > 0 and compact set K ⊆Rd , there exists t0 > 0 for 
which ∣∣∣R̃(tGξ)

∣∣∣≤ εt

whenever 0 < t ≤ t0 and ξ ∈ K .

Proof. Because T is a homeomorphism with T (0) = 0, the first assertion is immediate. For the 
second assertion, let us fix a compact set K and a positive number ε. Also, given that R̃(ξ) =
o(P̃ (ξ)) as ξ → 0, let δ > 0 be such that 

∣∣R̃(ξ)
∣∣≤ (ε/M)P̃ (ξ) for |ξ | ≤ δ where

M = sup
ξ=(η,ζ )∈K

C′(P2(η) + P2(−Q(ζ)) + M ′

where C′ and M ′ are those positive constants appearing in (14) of Lemma 3.3. Using the fact 
that {tG} is a contracting group, there exists 0 < t0 ≤ 1 for which 

∣∣tGξ
∣∣ ≤ δ for all ξ ∈ K and 

0 < t ≤ t0. Consequently, for ξ = (η, ζ ) ∈ K and 0 < t ≤ t0, we have∣∣∣R̃(tGξ)

∣∣∣≤ (ε/M)P̃ (tGξ)

= (ε/M)
(
P1(t

E1η) + P2(t
E1η − tE2Q(ζ))

)
= (ε/M)

(
tP1(η) + tP2(t

E1−E2η − Q(ζ))
)

≤ (ε/M)t
(
C′(P2(η) + P2(−Q(ζ)) + M ′)

≤ εt

thanks to Lemma 3.3. �
Proof of Theorem 4.1. Given that∣∣∣e−t (P (ξ)+R(ξ))

∣∣∣= e−tP (ξ)e−t Re(R(ξ)) ≤ e−tP (ξ)

for ξ ∈ Rd , the first assertion follows immediately from Theorem 3.1. For the second assertion, 
observe that

Ht
P+R(x) − Ht

P (x) = 1

(2π)d

∫
Rd

e−tP (ξ)
(
e−tR(ξ) − 1

)
e−ix·ξ dξ

= 1

(2π)d

∫
Rd

e−t P̃ (ξ)
(
e−tR̃(ξ) − 1

)
e−ix·T (ξ) dξ

= t−μ∞

(2π)d

∫
d

e−t P̃ (t−Gξ)
(
e−tR̃(t−Gξ) − 1

)
e−ix·T (t−Gξ) dξ
R
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for t > 0 and x ∈ Rd where G = E1 ⊕ F2 and μ∞ = trE1 + trF2 = trG. By an appeal to 
Lemma 3.3, we find that

−t P̃ (t−Gξ) = −(P1(η) + P2(t
E2−E1η − Q(ζ)) ≤ M − CP∗(ξ)

for all t ≥ 1 where M and C are positive constants and we have set P∗(ξ) = P1(η) +P1(−Q(ζ))

for ξ = (η, ζ ) ∈ Rd . Consequently,

tμ∞ ∣∣Ht
P+R(x) − Ht

P (x)
∣∣≤ eM

(2π)d

∫
Rd

e−CP∗(ξ)
∣∣∣e−tR̃(t−Gξ) − 1

∣∣∣dξ (21)

for t ≥ 1 and x ∈Rd . Given that R(ξ) = o(P (ξ)) as ξ → 0, Lemma 4.2 guarantees that

lim
t→∞ e−CP∗(ξ)

∣∣∣e−tR̃(t−Gξ) − 1
∣∣∣= lim

s→0
e−CP∗(ξ)

∣∣∣e−s−1R̃(sGξ) − 1
∣∣∣= 0

for each ξ ∈ Rd . Upon noting that the integrand in (21) is dominated by the integrable function 
ξ 
→ 2e−CP∗(ξ) (see Lemma 2.6), an appeal to the dominated convergence theorem guarantees 
that, for each ε > 0, there exists t0 ≥ 1 for which

tμ∞∣∣Ht
P+R(x) − Ht

P (x)
∣∣< ε

for all x ∈ Rd and t ≥ t0; this is precisely the uniform limit (18). Applying this result at x = 0, 
we immediately obtain (19) from Theorem 3.1 and (20) from Theorem 3.4. �
Example 10. For the operator

� = ∂4
x1

+ ∂4
x2

+ 2i∂x1∂
2
x2

− ∂2
x1

,

we consider the perturbation � + �2 with symbol P(ξ) + R(ξ) where P(ξ) = (η + ζ 2)2 + η4

and R(ξ) = P(ξ)2 for ξ = (η, ζ ) ∈ R2. As shown in Example 7, P satisfies the hypotheses of 
Theorem 3.1 and, from the theorem, we obtain the large-time asymptotic: ϕ(t) 
 t−5/8 for t ≥ 1. 
Since P is continuous at 0 and R(ξ) = P(ξ)2 ≥ 0, it is evident that R satisfies the hypotheses of 
Theorem 4.1. Consequently, the heat kernel

Ht
P+R(x) = 1

(2π)2

∫
R2

e−t (P (ξ)+R(ξ))e−ix·ξ dξ

associated to the operator � + �2 has

Ht
P+R(x) = Ht

P (x) + o(t−5/8)

uniformly for x ∈R2 as t → ∞; here, HP is that given in (2) and illustrated in Fig. 1b for t = 10. 
Also, in view of our analysis in Example 9, Theorem 4.1 gives us the large-time asymptotics, ∣∣Ht (0)

∣∣
 t−5/8 for t ≥ 1 and
P+R
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lim
t→∞ t5/8Ht

P+R(0) = 1

2π3/2 
(9/8).

We note that, by contrast, Ht
P+R(0) does not obey the t−1/2 small-time on-diagonal asymptotic 

of HP . Indeed, � + �2 is an eighth-order elliptic operator and necessarily decays as t−1/4 in 
small time. �

The following example generalizes the previous one and places the result in the context of 
semigroups and ultracontractivity.

Example 11. Let � be a constant-coefficient partial differential operator on Rd =Ra ×Rb with 
polynomial symbol

P(ξ) = P1(η + Q(ζ)) + P2(η)

satisfying the hypotheses of Theorem 3.1. Let q(λ) be a real-valued polynomial of a single real 
variable for which q(0) = 0, q ′(0) = 1 and q(λ) ≥ λ for all λ ≥ 0. Using the Fourier transform 
or the spectral calculus, it is easy to see that q(�) is a positive self-adjoint operator on L2(Rd)

and therefore −q(�) generates a continuous semigroup {e−tq(�)} on L2(Rd). Denoting by E
the spectral resolution of �, observe that, for f ∈ L2(Rd),

‖e−t (q(�)−�)f ‖2
2 =

∞∫
0

e−2t (q(λ)−λ) dEf,f (λ) ≤ ‖f ‖2
2

and therefore, for each t > 0, {e−t (q(�)−�)} is a contraction on L2(Rd). Consequently,

‖e−tq(�)‖2→∞ = ‖e−t�e−t (q(�)−�)‖2→∞ ≤ ‖e−t (q(�)−�)‖2→2‖e−t�‖2→∞
≤√ϕ(2t) ≤ C′t−μ∞/2

for t ≥ 1 where C′ is a positive constant and

μ∞ = μP1 + μP2◦(−Q) = trE1 + trF2

as given in the statement of Theorem 3.1. By duality, we find that ‖e−tq(�)‖1→∞ ≤ Ct−μ∞ for 
t ≥ 1 for some positive constant C. It follows (see Lemma 2.1.2 of [6]) that {e−tq(�)} has integral 
representation

(
e−tq(�)f

)
(x) =

∫
Rd

H t (x, y)f (y) dy

where

‖e−tq(�)‖1→∞ = sup
∣∣Ht(x, y)

∣∣≤ Ct−μ∞ (22)

x,y
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for t ≥ 1. Of course, given that q is a polynomial, it is easy to verify that, in fact, Ht(x, y) =
Ht

q◦P (x − y) for x, y ∈ Rd and t > 0 where

Ht
q◦P (x) = 1

(2π)d

∫
Rd

e−t (q◦P)(ξ)e−ix·ξ dξ

for ξ = (η, ζ ) ∈ Rd . Thus,

‖e−tq(�)‖1→∞ = sup
x,y

∣∣Ht(x, y)
∣∣= Ht

q◦P (0).

We claim that

Ht
q◦P (0) 
 t−μ∞

for t ≥ 1 and so the upper bound in the ultracontractive estimate (22) is optimal. Indeed, under 
the given hypotheses concerning q , we may write

q(�) = � + r(�)

where r is a polynomial having r(λ) → 0 as λ → 0 and r(λ) ≥ 0 for λ ≥ 0. From this it follows 
that

(q ◦ P)(ξ) = P(ξ) + R(ξ)

where R(ξ) = r(P (ξ)) is continuous, non-negative, and has R(ξ) = o(P (ξ)) as ξ → 0. With 
this, our claim follows by an application of Theorem 4.1. If we additionally assume that, for E1
and E2 as they appear in the statement of Theorem 3.1, {tE1−E2} is contracting, then Theorem 4.1
also guarantees that

lim
t→∞ tμ∞Ht

q◦P (0) = H 1
P∞(0). �

In contrast to the preceding examples, we now consider a perturbation of an operator � by 
one which is not easily comparable to �.

Example 12. Consider

� + (−�)5 (23)

where � = ∂2
x1

+ ∂2
x2

is the Laplacian on R2 and � = ∂4
x1

+ ∂4
x2

+ 2i∂x1∂
2
x2

− ∂2
x1

. Associated to 
the operator (23) is the heat kernel

Ht
P+R(x) = 1

(2π)d

∫
R2

e−t (P (ξ)+R(ξ))e−ix·ξ dξ

where
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P(ξ) = (η + ζ 2)2 + η4 and R(ξ) = (η2 + ζ 2)5

for ξ = (η, ζ ) ∈ R2. We claim that R(ξ) = o(P (ξ)) as ξ → 0. To see this, we consider the open 
neighborhood O = {ξ = (η, ζ ) ∈ R2 : P(ξ) < 1} of 0 and write O =R1 ∪R2 where

R1 =
{
ξ = (η, ζ ) ∈ O :

∣∣∣η + ζ 2
∣∣∣≤ (1 − 1/

√
2)ζ 2
}

(24)

and

R2 =
{
ξ = (η, ζ ) ∈O :

∣∣∣η + ζ 2
∣∣∣≥ (1 − 1/

√
2)ζ 2
}

. (25)

For ξ = (η, ζ ) ∈ R1, observe that 0 ≤ ζ 2 ≤ −√
2η and therefore

4P(ξ) = 4
(
(η + ζ 2)2 + η4

)
≥ 4η4 ≥ ζ 8.

Thus,

η2 + ζ 2 ≤ P(ξ)1/2 + √
2P(ξ)1/4 =

(
P(ξ)1/4 + √

2
)

P(ξ)1/4 ≤ 5P(ξ)1/4 (26)

for ξ = (η, ζ ) ∈ R1. On R2, we find that

P(ξ) ≥ max

{
η4,

(
1 − 1√

2

)2

ζ 4

}

so that

η2 + ζ 2 ≤ P(ξ)1/2 + (2 + √
2)P (ξ)1/2 = (3 + √

2)P (ξ)1/2 ≤ 5P(ξ)1/4 (27)

for ξ = (η, ζ ) ∈ R2. Since O = R1 ∪ R2, the estimates (26) and (27) guarantee that, for each 
ξ = (η, ζ ) ∈ O,

|R(ξ)| = (η2 + ζ 2)(η2 + ζ 2)4 ≤ 625(η2 + ζ 2)P (ξ)

and, from this, our claim follows immediately. Since R(ξ) is non-negative, an appeal to Theo-
rem 4.1 is valid and we conclude that 

∣∣Ht
P+R(0)

∣∣
 t−5/8 for t ≥ 1 and

lim
t→∞ t5/8Ht

P+R(0) = 1

2π3/2 
(9/8)

in view of Example 9. �

As evidenced by the preceding example, it isn’t straightforward to show that R(ξ) = o(P (ξ))

as ξ → 0. This is connected to the fact that P is generally inhomogeneous and so examining a 
polynomial R along the coordinate axes or by comparing the order of its terms against those of P
is not often helpful. For P(ξ) = (η+ζ 2)2 +η4, a careful study of the example shows that R(ξ) =
o(P (ξ)) as ξ → 0 provided that R is a polynomial comprised of terms whose (multivariate) order 
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is at least nine. Still, polynomials R with terms of lower order can decay as “little-o” of P , e.g., 
(η, ζ ) 
→ η4, however, in general, it is difficult to tell. For example, consider the polynomials

R1(ξ) = η2ζ 2 + 2ηζ 4 + ζ 6 and R2(ξ) = η2ζ 4

defined for ξ = (η, ζ ) ∈ R2. Though the polynomial R1 contains terms of lower order than R2
and thus decays more slowly than R2 as ξ → 0 (at least, along rays), R1(ξ) = o(P (ξ)) as ξ → 0
while, by contrast, R2(ξ) �= o(P (ξ)) as ξ → 0. For sorting out these somewhat unintuitive state-
ments, the following refinement of Lemma 4.2 is helpful; its proof can be found in Appendix A.

Proposition 4.3. Let P satisfy the hypotheses of Theorem 3.1 and let P1, P2, Q, E1, E2, F1 and 
F2 be as in the statement of the theorem. Set G = E1 ⊕ F2 and P̃ = P ◦ T where T : Rd → Rd

is the measure-preserving transformation defined by T (η, ζ ) = (η − Q(ζ), ζ ) for (η, ζ ) ∈ Rd . 
Finally, given an open neighborhood O ⊆ Rd of 0, let R : O → C be a continuous function and 
set R̃ = R ◦ T . If {tE1−E2} is contracting, then the following statements are equivalent:

1. R(ξ) = o(P (ξ)) as ξ → 0.
2. R̃(ξ) = o(P̃ (ξ)) as ξ → 0.
3. R̃ is subhomogeneous with respect to G in the sense that, for each ε > 0 and compact set 

K ⊆Rd , there exists t0 > 0 for which ∣∣∣R̃(tGξ)

∣∣∣≤ εt

whenever 0 < t ≤ t0 and ξ ∈ K .

We now use the proposition to prove the assertions made right before it.

Example 13. Let R1 and R2 be as in the paragraph preceding the proposition and let P(ξ) =
(η+ζ 2)2 +η4. As shown in Example 7, we have P1(η) = η2, P2(η) = η4, Q(ζ) = ζ 2, E1 = I/2, 
E2 = I/4, and F2 = 1/8. Observe that, since E1 − E2 = I/4, {tE1−E2} is contracting and so an 
application of proposition is justified for R1 and R2. Focusing first on R1, we compute

R̃1(ξ) = R1(η − ζ 2, ζ ) =
(
(η − ζ 2)2 + 2(η − ζ 2)ζ 2 + ζ 4

)
ζ 2 = η2ζ 2

and, because G = E1 ⊕ F2 has standard matrix representation diag(1/2, 1/8),

R̃1(t
Gξ) = (t1/2η)2(t1/8ζ )2 = t5/4η2ζ 2

for t > 0 and ξ = (η, ζ ) ∈ R2. Consequently, given ε > 0 and a compact set K ⊆R2, we observe 
that ∣∣∣R̃1(t

Gξ)

∣∣∣≤ t5/4η2ζ 2 ≤ t t
1/4
0 η2ζ 2 ≤ εt

whenever ξ = (η, ζ ) ∈ K and 0 < t ≤ t0 := ε4/(1 + sup(η,ζ )∈K η2ζ 2)4. Thus R̃1 is subhomoge-
neous with respect to G and from Proposition 4.3 we conclude that R1(ξ) = o(P (ξ)) as ξ → 0.
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For R2, we have

R̃2(ξ) = (η − ζ 2)2ζ 4

and therefore

R̃2(t
Gξ) =

(
t1/2η − (t1/8ζ )2

)2 (
t1/8ζ
)4 = t (t1/4η − ζ 2)2ζ 4

for t > 0 and ξ = (η, ζ ) ∈ R2. Thus, for any ξ = (η, ζ ) ∈ R2 for which ζ �= 0,

lim
t→0

t−1R̃2(t
Gξ) = ζ 8 �= 0.

Consequently, R̃2 is not subhomogeneous with respect to G and, by virtue of the proposition, we 
conclude that R2(ξ) �= o(P (ξ)) as ξ → 0. �

Example 14. We return to the set-up of Example 8 and let Q : Ra → Ra be a nondegenerate 
multivariate homogeneous function given by

Q(ζ) =
(
ζ

α1
σ(1), ζ

α2
σ(2), . . . , ζ

αa

σ (a)

)
(28)

for ζ = (ζ1, ζ2, . . . , ζa) ∈ Ra where α1, α2, . . . , αa ∈ N+ and σ is a permutation of the set 
{1, 2, . . . , a}. As in that example we shall take positive homogeneous functions P1 and P2 on 
Ra for which, for k = 1, 2, Exp(Pk) contains Ek ∈ End(Ra) with standard matrix representation 
diag(λk,1, λk,2, . . . , λk,a) where λk,j > 0 for j = 1, 2, . . . , a. As we showed in Example 8, the 
function P :R2a →R defined by

P(ξ) = P1(η + Q(ζ)) + P2(η)

for ξ = (η, ζ ) ∈ R2a satisfies the hypotheses of Theorem 3.1 provided that λ1,j ≥ λ2,j for all 
j = 1, 2, . . . , a. In that case, we proved that

ϕ(t) = Ht
P (0) 
 t−μ∞

for t ≥ 1 where

μ∞ =
a∑

j=1

(
λ1,j + λ2,j

αj

)
.

Motivated by the example preceding Proposition 4.3, we shall perturb P :R2a → R by

Lk(ξ) = |ξ |2k = (|η|2 + |ζ |2)k

for ξ = (η, ζ ) ∈ R2a where k > 0. We have the following result.
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Proposition 4.4. Suppose that λ1,j > λ2,j for j = 1, 2, . . . , a. If

k >
1

2 minj=1,2,...,a(λ2,j /αj )
,

then Lk(ξ) = o(P (ξ)) as ξ → 0.

Proof. We have

L̃k(ξ) =
(
|η − Q(ζ)|2 + |ζ |2

)k
for ξ = (η, ζ ) ∈ R2a . Using our analysis in Example 4, we see that F2 has standard matrix 
representation

diag

(
λ2,σ−1(1)

ασ−1(1)

,
λ2,σ−1(2)

ασ−1(2)

, . . . ,
λ2,σ−1(a)

ασ−1(a)

)
.

Thus, for G = E1 ⊕ F2, we have

L̃k(t
Gξ) =

(∣∣∣tE1η − Q(tF2ζ )

∣∣∣2 +
∣∣∣tF2ζ

∣∣∣2)k

=
(∣∣∣tE2(tE1−E2η − Q(ζ))

∣∣∣2 +
∣∣∣tF2ζ

∣∣∣2)k

≤
(

‖tE2‖2
∣∣∣tE1−E2η − Q(ζ)

∣∣∣2 + ‖tF2‖2|ζ |2
)k

≤
(

‖tE2‖2
(
‖tE1−E2‖|η| + |Q(ζ)|

)2 + ‖tF2‖2|ζ |2
)k

for t > 0 and ξ = (η, ζ ) ∈ R2a . Given that E1, E2, and F2 are diagonal, our hypotheses guarantee 
that ‖tE1−E2‖ ≤ 1, ‖tE2‖ ≤ tω, and ‖tF2‖ ≤ tω for 0 < t ≤ 1 where

ω = min (Spec(F2)) = min
j=1,2,...,a

(λ2,j /αj ) ≤ min
j=1,2...,a

λ2,j = min (Spec(E2)) .

Therefore,

L̃k(t
Gξ) ≤

(
t2ω (|η| + |Q(ζ)|)2 + t2ω|ζ |2

)k ≤ t2kω
(
(|η| + |Q(ζ)|)2 + |ζ |2

)k
for 0 < t ≤ 1 and ξ = (η, ζ ) ∈ R2a . Since 2kω = 2k

(
minj=1,2,...,a λ2,j /αj

)
> 1, it follows that, 

for each ε > 0 and compact set K ⊆R2a ,∣∣∣L̃k(t
Gξ)

∣∣∣≤ εt

for ξ ∈ K and 0 < t ≤ t0 where t0 > 0 is chosen so that
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t2kω−1
0 sup

ξ=(η,ζ )∈K

(
(|η| + |Q(ζ)|)2 + |ζ |2

)k
< ε.

Given that λ1,j > λ2,j for j = 1, 2, . . . , a, we observe that {tE1−E2} is contracting and so the 
desired result follows immediately from Proposition 4.3. �

Upon noting that the hypotheses of Proposition 4.4 guarantee that {tE1−E2} is contracting, 
by an application of Theorem 4.1 and Proposition 4.4, we immediately obtain the following 
corollary.

Corollary 4.5. Let � be a constant-coefficient operator on R2a with symbol P(ξ) = P1(η +
Q(ζ)) + P2(η) where Q is given by (28) and P1 and P2 are positive-definite semi-elliptic poly-
nomials given by

P1(η) =
∑

|β:m(1)|=1

b1,βηβ and P2(η) =
∑

|β:m(2)|=1

b2,βηβ

for η ∈Ra , respectively, where m(1) =
(
m

(1)
1 ,m

(1)
2 , . . . ,m

(1)
a

)
and m(2) =

(
m

(2)
1 ,m

(2)
2 , . . . ,m

(2)
a

)
are a-tuples of even positive integers. Also, let � = ∂2

x1
+ ∂2

x2
+ · · · + ∂2

x2a
denote the Laplacian 

on R2a . If m(2)
j > m

(1)
j for all j = 1, 2, . . . , a, then, for any integer

k >

(
max

j=1,2,...,a
αjm

(2)
j

)
/2,

the heat kernel Ht
P+Lk

(x) associated to the operator � + (−�)k satisfies the on-diagonal large-
time asymptotics, Ht

P+Lk
(0) 
 t−μ∞ for t ≥ 1 and

lim
t→∞ tμ∞Ht

P+Lk
(0) = H 1

P∞(0) = 1

(2π)d

∫
Rd

e−P∞(ξ) dξ

where

μ∞ =
a∑

j=1

(
1

m
(1)
j

+ 1

αjm
(2)
j

)

and

P∞(ξ) =
∑

|β:m(1)|=1

b1,βηβ +
∑

|β:m(2)|=1

b2,β(−Q(ζ))β

=
∑

|β:m(1)|=1

b1,βηβ +
∑

|β:m(2)|=1

b2,β(−1)|β|ζ α�β
σ
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for ξ = (η, ζ ) ∈ R2a where ζσ denotes the action of the permutation σ on ζ = (ζ1, ζ2, . . . , ζa)

defined by ζσ = (ζσ(1), ζσ(2), . . . , ζσ(a)) and for each multi-index β , we have set |β| = β1 + β2 +
· · · + βa , α � β = (α1β2, α2β2, . . . , αaβa).

For an easy application of this corollary, consider our motivating example in which P(ξ) =
P1(η+Q(ζ)) +P2(η) = (η+ ζ 2)2 +η4 for ξ = (η, ζ ) ∈ R2. In this case, P1 and P2 are positive-
definite and semi-elliptic with m(1) = (m

(1)
1 ) = (2) and m(2) = (m

(2)
1 ) = (4), respectively, and 

Q(ζ) = ζ 2 is a nondegenerate multivariate homogeneous of the form (28) with α1 = 2. Thus, for 
any integer

k >

(
max

j
αjm

(2)
j

)
/2 = 8/2 = 4,

the heat kernel HP+Lk
associated to

� + (−�)k = ∂4
x1

+ ∂4
x2

+ 2i∂x1∂
2
x2

− ∂2
x1

+ (−�)k

has Ht
P+Lk

(0) 
 t−5/8 for t ≥ 1 and limt→∞ t5/8Ht
P+Lk

(0) = 
(9/8)/2π3/2. In particular, this 
holds for k = 5 and so we have recaptured the result of Example 12. �

5. An application to the study of convolution powers of complex-valued functions on Zd

Given a finitely-supported4 function φ : Zd → C, we are interested in the behavior of its 
convolution powers φ(n) : Zd → C defined iteratively by putting φ(1) = φ and, for n ≥ 2,

φ(n)(x) =
∑

y∈Zd

φ(n−1)(x − y)φ(y)

for x ∈ Zd . In the case that φ is non-negative and 
∑

x φ(x) = 1, the behavior of φ(n) is well-
known and is the subject of the local central limit theorem [21]. Beyond the probabilistic setting, 
the study of convolution powers of complex-valued functions dates back to the late nineteenth 
century and was initially investigated by E. L. de Forest through its applications to data smooth-
ing. During the explosion of scientific computing in the mid-twentieth century, the study was 
reinvigorated by applications to numerical solution algorithms to partial differential equations. 
Early on, these studies focused almost entirely in one spatial dimension, i.e., d = 1, and, for an 
account of these results and a thorough discussion of the early history, we refer the reader to the 
article [22]. Recent developments in the context of one dimension can be found in [23], [24], and 
[25]. Moving beyond one spatial dimension, the articles [1], [18], and [19] develop a theory for 
convolution powers of complex-valued functions on Zd and, in particular, the article [1] estab-
lishes local limit theorems, sup-norm estimates, off-diagonal estimates, and stability results in 
that context. As we only briefly discuss the local limit theorems of [1] and [19] below, we refer 
the reader to these articles, both of which provide history and a more thorough presentation of 
the theory than is given here.

4 We work with this condition for simplicity. One can assume, more generally, that φ and all of its multivariate moments 
are absolutely summable, cf., [1].
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For our finitely-supported function φ : Zd → C, we define its Fourier transform φ̂ by

φ̂(ξ) =
∑
x∈Zd

φ(x)eix·ξ

for ξ ∈Rd . With this, we obtain the representation

φ(n)(x) = 1

(2π)d

∫
T d

φ̂(ξ)ne−ix·ξ dξ (29)

for x ∈ Zd and n ∈ N+ where T d = (−π, π]d or, equivalently, any representation of the d di-
mensional torus of the form (−π, π]d + ξ ′ for ξ ′ ∈ Rd . Beyond the assumption of finite support, 
we shall assume that φ has been normalized so that

max
ξ

∣∣φ̂(ξ)
∣∣= sup

ξ

∣∣φ̂(ξ)
∣∣= 1.

Also, and though this assumption can be significantly weakened (cf., [1,19]), we shall assume 
that this maximum is attained at exactly one point ξ0 ∈T d and that


ξ0(ξ) := log

(
φ̂(ξ + ξ0)

φ̂(ξ0)

)
= iα · ξ − P(ξ) + R(ξ) (30)

where α ∈ Rd , P is a positive-definite polynomial and R is a smooth complex-valued function 
for which R(ξ) = o(P (ξ)) as ξ → 0. Extending the one-dimensional results of [22] and [23], 
the article [1] establishes local limit theorems in the case that the polynomial P is a positive 
homogeneous function on Rd . Under the assumptions above, if P is a positive homogeneous 
polynomial on Rd , Theorem 1.6 of [1] says that

φ(n)(x) = φ̂(ξ0)
ne−ix·ξ0Hn

P (x − nα) + o(n−μP ) (31)

uniformly for x ∈Zd as n → ∞ where μP is the homogeneous order of P and, for each x ∈Rd

and n ∈N+,

Hn
P (x) = 1

(2π)d

∫
Rd

e−nP (ξ)e−ix·ξ dξ.

Thanks to the homogeneity of P , it is easy to see that

Hn
P (x) = n−μP H 1

P (n−E∗
x) (32)

for all x ∈ Rd , n ∈ N+, and E ∈ Exp(P ) where E∗ denotes the adjoint of E. In this way, the 
local limit theorem (31) can be written in terms of the single rescaled attractor, H 1

P . We note that 
homogeneity and the resultant space-time rescaling in (32) are central to the proof of Theorem 
1.6 of [1]. Using homogeneity as a main ingredient and making use of the generalized polar-
coordinate integration formula developed in [18], the recent article [19] extends Theorem 1.6 of 
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[1] further to include the case in which the positive homogeneous polynomial P is replaced by 
iQ(ξ) where Q is a real-valued function on Rd for which ξ 
→ |Q(ξ)| is positive homogeneous; 
see Theorems 1.9 and Theorem 3.8 of [19]. At present and to our knowledge, all known local 
limit theorem on Zd assume, in one way or another, that the expansion (30) is dominated, at low 
order, by a homogeneous polynomial. The following treats an example in which this assumption 
is not satisfied.

Theorem 5.1. For positive integers a and b, set d = a + b and consider φ : Zd → C as above, 
i.e., φ is finitely supported on Zd , φ̂ is maximized in absolute value at a single point ξ0 ∈T d and 
the local approximation 
ξ0(ξ) = iα · ξ − P(ξ) + R(ξ) is valid on the domain of 
ξ0 where α ∈
Rd , P is a positive-definite polynomial, and R(ξ) = o(P (ξ)) as ξ → 0. Suppose, additionally, 
that P satisfies the hypotheses of Theorem 3.1. That is, we assume that

P(ξ) = P1(η + Q(ζ)) + P2(η)

for ξ = (η, ζ ) ∈ Ra ×Rb =Rd where:

1. P1 and P2 are positive homogeneous functions on Ra with homogeneous orders μP1 and μP2 , 
respectively.

2. Q : Rb →Ra is nondegenerate multivariate homogeneous.
3. There exist E1 ∈ Exp(P1), E2 ∈ Exp(P2), and F1, F2 ∈ End(Rb) for which

(a) For k = 1, 2, Q is homogeneous with respect to the pair (Ek, Fk).
(b) We have [E1, E2] = E1E2 − E2E1 and {tE1−E2} is non-expanding.

Upon setting μφ = μP1 + μP2◦(−Q) = trE1 + trF2 and taking HP as in Theorem 3.1, we have 
the following local limit theorem: For each ε > 0, there exists N ∈ N+ for which∣∣∣φ(n)(x) − φ̂(ξ0)

ne−ix·ξ0Hn
P (x − nα)

∣∣∣< εn−μφ

for all n ≥ N and x ∈ Zd . In other words,

φ(n)(x) = φ̂(ξ0)
ne−ix·ξ0Hn

P (x − nα) + o(n−μφ )

uniformly for x ∈Zd as n → ∞.

Combining this result with Theorem 3.1 and Theorem 3.4, we obtain the following corollary.

Corollary 5.2. Let φ satisfy the hypotheses of the above theorem. If α = 0, then

‖φ(n)‖∞ 
 n−μφ (33)

for n ≥ 1. If, additionally, {tE1−E2} is contracting, then

lim
n→∞nμφ‖φ(n)‖∞ = H 1

P∞(0) = 1

(2π)d

∫
d

e−P∞(ξ) dξ (34)
R
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where P∞(ξ) = P1(η) + P2(−Q(ζ)) for ξ = (η, ζ ) ∈ Rd .

Proof. For each ε > 0, an application of Theorem 5.1 guarantees that∣∣∣φ(n)(x)

∣∣∣≤ εn−μφ + ∣∣Hn
P (x)
∣∣≤ εn−μφ + Hn

P (0) (35)

for all x ∈ Zd and sufficiently large values of n; here, we have noted that 
∣∣φ̂(ξ0)

ne−ix·ξ0
∣∣= 1 and ∣∣Hn

P (x)
∣∣ ≤ Hn

P (0) whenever n ∈ N+ and x ∈ Zd . By virtue of Theorem 3.1 and in view of the 
fact that μφ = μ∞, we have

‖φ(n)‖∞ = sup
x∈Zd

∣∣∣φ(n)(x)

∣∣∣≤ Cn−μφ

for sufficiently large n where C is some positive constant. We now obtain a matching lower 
bound. Using Theorem 3.1, Hn

P (0) ≥ 2C′n−μφ for all n ∈ N+ for some C′ > 0. An appeal to 
Theorem 5.1 (with ε = C′) now guarantees that

2C′n−μφ ≤ ∣∣φ̂(ξ0)
nHn

P (0)
∣∣≤ ∣∣∣φ̂(ξ0)

nHn
P (0) − φ(n)(0)

∣∣∣+ ∣∣∣φ(n)(0)

∣∣∣≤ C′n−μφ +
∣∣∣φ(n)(0)

∣∣∣
and consequently

C′n−μφ ≤
∣∣∣φ(n)(0)

∣∣∣
for all sufficiently large n. Thus, for some N ∈N+,

C′n−μφ ≤
∣∣∣φ(n)(0)

∣∣∣≤ ‖φ(n)‖∞ ≤ Cn−μφ

for n ≥ N . With this, the asymptotic (33) follows by, if necessary, adjusting C and C′ to account 
for those n from 1 to N − 1 (and while noting that ‖φ(n)‖∞ cannot vanish for any such n for 
otherwise all subsequent convolution powers would vanish identically).

We now prove (34). In view of (35), for each ε > 0,

nμφ‖φ(n)‖∞ = sup
x∈Zd

nμφ

∣∣∣φ(n)(x)

∣∣∣≤ ε + nμφHn
P (0)

for all sufficiently large n. Upon noting that μφ = μ∞, an appeal to Theorem 3.4 guarantees that

lim sup
n→∞

nμφ‖φ(n)‖∞ ≤ ε + lim sup
n→∞

nμφHn
P (0) = ε + H 1

P∞(0)

for each ε > 0 and therefore

lim sup
n→∞

nμφ‖φ(n)‖∞ ≤ H 1
P∞(0).

By virtue of Theorem 3.4 and Theorem 5.1, observe that
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H 1
P∞(0) = lim

n→∞nμφHn
P (0) = lim

n→∞nμφ
∣∣φ̂(ξ0)

nHn
P (0)
∣∣= lim

n→∞nμφ

∣∣∣φ(n)(0)

∣∣∣.
Since 

∣∣φ(n)(0)
∣∣≤ ‖φ(n)‖∞ for all n, it follows that

H 1
P∞(0) = lim inf

n→∞ nμφ

∣∣∣φ(n)(0)

∣∣∣≤ lim inf
n→∞ nμφ‖φ(n)‖∞ ≤ lim sup

n→∞
nμφ‖φ(n)‖∞ ≤ H 1

P∞(0)

and, from this, (34) follows at once. �
As we did in the proofs of Theorem 3.1 and Theorem 4.1, our proof of Theorem 5.1 makes 

use of the measure-preserving transformation T (η, ζ ) = (η − Q(ζ), ζ ) from Rd = Ra × Rb

to itself. It is easy to verify that T : Rd → Rd is a homeomorphism and T (0) = 0. With this 
transformation, we define P̃ = P ◦ T and R̃ = R ◦ T and note that the domain of R̃ coincides 
with the preimage of 
ξ0 ’s domain under T and necessarily contains an open neighborhood of 0. 
Finally, for convenience of notation, we shall set G = E1 ⊕ F2 and recall that {tG = tE1 ⊕ tF2}
is a contracting group. Before the proof of the theorem, we present two lemmas; the first follows 
immediately from Lemma 4.2.

Lemma 5.3. For any compact set K ⊆Rd and ε > 0, there is a natural number N for which∣∣∣enR̃
(
n−Gξ

)
− 1
∣∣∣< ε

for all n ≥ N and ξ ∈ K .

The following lemma asserts that the collection 
{
ξ 
→ exp

(−nP̃ (n−Gξ)/2
)}

n
is uniformly 

integrable.

Lemma 5.4. For any ε > 0, there exists a compact set K for which∫
Rd\K

e−nP̃ (n−Gξ)/2 dξ < ε

for all n ∈N+.

Proof. Fix ε > 0 and observe that, for n ∈N+ and ξ = (η, ζ ) ∈ Rd ,

nP̃ (n−Gξ) = nP1(n
−E1η) + nP2(n

−E1η − Q(n−F2ζ ))

= P1(η) + P2(n
E2−E1η − Q(ζ))

where we have used the fact that Q is homogeneous with respect to the pair (E2, F2). By virtue 
of Lemma 3.3, we can find positive constants C and M for which

2C(P1(η) + P1(−Q(ζ)) − 2M ≤ P1(η) + P2(n
E2−E1η − Q(ζ))

for all (η, ζ ) ∈Rd and n ∈N+. Consequently,
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−nP̃ (n−Gξ)/2 = −(1/2)(P1(η) + P2(n
E2−E2η − Q(ζ)) ≤ M − C(P1(η) + P1(−Q(ζ))

for all ξ = (η, ζ ) ∈ Rd and n ∈ N+. Upon noting that ξ = (η, ζ ) 
→ C(P1(η) + P1(−Q(ζ)) is a 
positive homogeneous function, an appeal to Lemma 2.6 guarantees a compact set K ⊆ Rd for 
which ∫

Rd\K
e−nP̃ (n−Gξ)/2 dξ ≤

∫
Rd\K

eM−C(P1(η)+P1(−Q(ζ))) dξ < ε

for all n ∈N+. �
Proof of Theorem 5.1. Fix ε > 0. Without loss of generality, we shall assume that ξ0 lives on 
the interior of T d for, otherwise, another representation of the d-dimensional torus can be used 
as the domain of integration in (29) and the proof proceeds without change. Let us select a 
sufficiently small open neighborhood Oξ0 ⊆T d of ξ0 for which the following properties hold:

P1 The functions 
ξ0 and R are defined and smooth on the open neighborhood O := Oξ0 − ξ0
of 0.

P2 The open neighborhood U := T −1(O) = T −1(Oξ0 − ξ0) of 0 has

∣∣R̃(ξ)
∣∣≤ P̃ (ξ)/2

for all ξ ∈ U .

The fact that Oξ0 can be chosen so that P1 holds is clear from the definitions of 
ξ0 and R. The 
ability to choose Oξ0 so that Property P2 also holds is a consequence of Item 1 of Lemma 4.2. 
Using Lemma 5.4, let K ⊆Rd be a compact set for which∫

Rd\K
e−nP̃ (n−Gξ)/2 dξ < ε

for all n ∈N+.
With the sets Oξ0 , O, U , and K in hand, we shall now go about selecting N . First, because 

{tG} is a contracting group and U is an open neighborhood of 0, there exists N1 ∈ N+ for which 
n−G(K) ⊆ U (equivalently, K ⊆ nG(U)) for all n ≥ N1. By an appeal to Lemma 5.3, let N2 ∈ N+
be such that ∣∣∣enR̃(n−Gξ) − 1

∣∣∣< ε

m(K) + 1

for all ξ ∈ K and n ≥ N1 where m(K) is the d-dimensional Lebesgue measure of K . Finally, 
given that 

∣∣φ̂(ξ)
∣∣ is maximized only at ξ0,

ρ := sup
ξ∈T d\O

∣∣φ̂(ξ)
∣∣< 1
ξ0

107



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67–125
and so we may choose a natural number N ≥ max{N1, N2} for which nμφρn/(2π)d < ε/4 for 
all n ≥ N .

By virtue of the identity (29), we compute

nμφ

∣∣∣φ(n)(x) − φ̂(ξ0)
ne−ix·ξ0Hn

P (x − nα)

∣∣∣
= nμφ

(2π)d

∣∣∣∣∣∣∣
∫
T d

φ̂(ξ)ne−ix·ξ dξ − φ̂(ξ0)
ne−ix·ξ0

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣
≤ nμφ

(2π)d

∫
T d\Oξ0

∣∣φ̂(ξ)
∣∣n dξ +

nμφ

(2π)d

∣∣∣∣∣∣∣
∫

Oξ0

φ̂(ξ)ne−ix·ξ dξ − φ̂(ξ0)
ne−ix·ξ0

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣
≤ nμφ

(2π)d
ρn + nμφ

(2π)d

∣∣∣∣∣∣∣
∫
O

φ̂(ξ + ξ0)
ne−ix·(ξ+ξ0) dξ − φ̂(ξ0)

ne−ix·ξ0

∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣
≤ ε

4
+ nμφ

(2π)d

∣∣∣∣∣∣∣
∫
O

en
ξ0 (ξ)e−ix·ξ dξ −
∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣ (36)

for all n ≥ N and x ∈ Zd where we have made the change of variables ξ 
→ ξ + ξ0 and made use 
of the fact that 

∣∣φ̂(ξ0)
ne−ix·ξ0

∣∣= 1. Let us now make the measure-preserving change of variables 
ξ 
→ T (ξ) to see that∫

O

en
ξ0 (ξ)e−ix·ξ dξ =
∫
U

en(
ξ0 ◦T )(ξ)e−ix·T (ξ) dξ

=
∫

n−G(K)

en(
ξ0 ◦T )(ξ)e−ix·T (ξ) dξ +
∫

U\n−G(K)

en(
ξ0 ◦T )(ξ)e−ix·T (ξ) dξ

for each n ≥ N ≥ N1 and x ∈Zd . Similarly,∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ =
∫

n−G(K)

e−nP̃ (ξ)e−i(x−nα)·T (ξ) dξ

+
∫

Rd\n−G(K)

e−nP̃ (ξ)e−i(x−nα)·T (ξ) dξ

for all n ∈N+ and x ∈ Zd . Consequently, for x ∈Zd and n ≥ N ,
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∣∣∣∣∣∣∣
∫
O

en
ξ0 (ξ)e−ix·ξ dξ −
∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

n−G(K)

en(
ξ0◦T )(ξ)e−ix·T (ξ) dξ −
∫

n−G(K)

e−nP̃ (ξ)e−i(x−nα)·T (ξ) dξ

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∫

U\n−G(K)

en(
ξ0 ◦T )(ξ)e−ix·T (ξ) dξ

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫

Rd\n−G(K)

e−nP̃ (ξ)e−i(x−nα)·T (ξ) dξ

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫

n−G(K)

(
enR̃(ξ) − 1

)
e−nP̃ (ξ)e−i(x−nα)·T (ξ) dξ

∣∣∣∣∣∣∣
+

∫
U\n−G(K)

∣∣∣en(
ξ0 ◦T )(ξ)e−ix·T (ξ)
∣∣∣dξ +

∫
Rd\n−G(K)

∣∣∣e−nP̃ (ξ)e−i(x−nα)·T (ξ)
∣∣∣dξ

≤
∫

n−G(K)

∣∣∣e−nR̃(ξ) − 1
∣∣∣dξ

+
∫

U\n−G(K)

enRe[(
ξ0 ◦T )(ξ)] dξ +
∫

Rd\n−G(K)

e−nP̃ (ξ) dξ (37)

where we have used the fact that (
ξ0 ◦T )(ξ) = iα ·T (ξ) − P̃ (ξ) + R̃(ξ) and P̃ is non-negative. 
Upon making the change of variables ξ 
→ n−Gξ and recalling how N2 was chosen, observe that∫
n−G(K)

∣∣∣e−nR̃(ξ) − 1
∣∣∣dξ = n− trG

∫
K

∣∣∣e−nR̃(n−Gξ) − 1
∣∣∣dξ ≤ n−μφ

ε

(m(K) + 1)
m(K) < εn−μφ

(38)

whenever n ≥ N ≥ N2; here, we have recalled that trG = tr(E1 ⊕ F2) = trE1 + trF2 = μφ . 
Recalling our choice of K and upon noting that

Re[(
ξ0 ◦ T )(ξ)] = −P̃ (ξ) + Re[R̃(ξ)] ≤ −P̃ (ξ) + P̃ (ξ)/2 = −P̃ (ξ)/2

for all ξ ∈ U thanks to P2, we find that∫
U\n−G(K)

enRe[(
ξ0 ◦T )(ξ)] dξ ≤
∫

U\n−G(K)

e−nP̃ (ξ)/2 dξ

≤
∫

d −G

e−nP̃ (ξ)/2 dξ
R \n (K)
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= n−μφ

∫
Rd\K

e−nP̃ (n−Gξ)/2 dξ < εn−μφ (39)

for all n ≥ N where we have made the change of variables ξ 
→ n−Gξ between the final and 
penultimate lines. Finally, using the fact that P̃ is non-negative, a similar computation shows 
that ∫

Rd\n−G(K)

e−nP̃ (ξ) dξ ≤ n−μφ

∫
Rd\K

e−nP̃ (n−Gξ)/2 dξ < εn−μφ (40)

for all n ∈N+. Combining (37), (38), (39), and (40) yields

nμφ

(2π)d

∣∣∣∣∣∣∣
∫
O

en
ξ0 (ξ)e−ix·ξ dξ −
∫
Rd

e−nP (ξ)e−i(x−nα)·ξ dξ

∣∣∣∣∣∣∣<
3ε

(2π)d
<

3ε

4

for all n ≥ N and x ∈Zd . Finally, substituting the above estimate into (36) gives

nμφ

∣∣∣φ(n)(x) − φ̂(ξ0)
ne−ix·ξ0Hn

P (x − nα)

∣∣∣< ε

for all n ≥ N and x ∈Zd , as was asserted. �
Example 15 (The introductory example). For φ :Z2 →C given by (3), we have

φ̂(ξ) = 1

100

(
100 −

(
sin(η) + 4 sin2(ζ/2)

)2 − 797

600
sin4(η) − 10 sin6(η/2) − 1

6
sin6(ζ )

− 179

1200
sin8(ζ ) − 1

6
sin(η) sin4(ζ ) − 77

900
sin(η) sin6(ζ ) − 47

150
sin(ζ )2 sin(η)3

+ 3

100
sin2(η) sin4(ζ )

)
for ξ = (η, ζ ) ∈ R2. A straightforward computation shows that maxξ |φ̂(ξ)| = 1 and, within T 2, 
this maximum is attained only at the origin, ξ0 = (0, 0). To give a reader a sense of φ̂, we have 
illustrated its absolute value in Fig. 2. It is easy to see that φ̂(ξ0) = 1 and we compute


ξ0(ξ) = log
(
φ̂(ξ)
)= − 1

100
P(ξ) + R(ξ)

where P(ξ) = (η + ζ 2)2 + η4 is the symbol discussed throughout the introduction and

R(ξ) = − 1

1000

(
1

5
η2ζ 6 − 47

45
η3ζ 4 − 79

400
η4ζ 4 − 1201

1000
η5ζ 2 − 60739

9000
η6 − 37233979

16800000
η8
)

+ O(|ξ |9)
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Fig. 2. The graph of |φ̂(ξ)| for ξ = (η, ζ ) ∈ T2.

as ξ → 0. Observe that ξ 
→ |ξ |9 = L4.5(ξ) where Lk is defined in Example 12 and corre-
sponds to the k-th power of the Laplacian. As shown in that example (following Corollary 4.5), 
L4.5(ξ) = o(P (ξ)) as ξ → 0 and so it follows that O(|ξ |9) = o(P (ξ)/100) as ξ → 0. Thus, 
to show that R(ξ) = o(P (ξ)/100) as ξ → 0 so that we may apply Theorem 5.1 and Corol-
lary 5.2, we must show that the monomials R1(ξ) := η2ζ 6, R2(ξ) := η3ζ 4, R3(ξ) := η4ζ 4, 
R4(ξ) := η5ζ 2, R5(ξ) := η6, and R6(ξ) = η8 are “little-o” of P(ξ) as ξ → 0 and, to this end, 
our approach will employ Proposition 4.3 just as we did in Example 13. Indeed, we have

R̃1(ξ) = (R1 ◦ T )(η, ζ ) = (η − ζ 2)2ζ 6

for ξ = (η, ζ ) ∈ R2 where T (η, ζ ) = (η − ζ 2, ζ ). Therefore,

R̃1(t
Gξ) = (t1/2η − (t1/8ζ )2)2(t1/8ζ )6 = t5/4(t1/4η − ζ 2)2ζ 6

for t > 0 and ξ = (η, ζ ) ∈ R2 where G = E1 ⊕ F2 has standard matrix representation 
diag(1/2, 1/8). From this it follows (by the same argument used in Example 13) that R̃1 is 
subhomogeneous with respect to G and therefore R1(ξ) = o(P (ξ)) = o(P (ξ)/100) as ξ → 0
on account of Proposition 4.3. We leave it to the reader to verify this conclusion for Rk for 
k = 2, 3, . . . , 6. Consequently, R(ξ) = o(P (ξ)/100) as ξ → 0.

Since ξ 
→ P(ξ)/100 meets the hypotheses of Theorem 5.1 (as well as Theorem 3.1) with 
μ∞ = 5/8 and R(ξ) = o(P (ξ)/100) as ξ → 0, an appeal to Theorem 5.1 guarantees that

φ(n)(x) = φ̂(ξ0)
ne−ix·ξ0Hn

P/100(x − nα) + o(n−5/8) = Hn
P/100(x) + o(n−5/8)

uniformly for x ∈ Z2 as n → ∞; here, we have noted that μφ = μ∞ = 5/8, ξ0 = (0, 0), φ̂(ξ0) =
1, and α = (0, 0). Upon noting that Hn

P/100 = H
n/100
P , we see that this conclusion was precisely 

that discussed in the introduction and illustrated in Fig. 1. Finally, we appeal to Corollary 5.2 to 
conclude that ‖φ(n)‖∞ 
 n−5/8 as n ≥ 1 and

lim
n→∞n5/8‖φ(n)‖∞ = H 1

(P/100)∞(0).

Of course, (P/100)∞ = P∞/100 where P∞(ξ) = η2 + ζ 8 and therefore

H 1 (0) = H
1/100

(0) = (100)5/8HP∞(0)
(P/100)∞ P∞
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Fig. 3. A log-log plot of ‖φ(n)‖∞ and 1.5 × n−5/8 for 101 ≤ n ≤ 106.

where we have used the homogeneity of P∞ with respect to G. In view of the calculations done 
in Example 9, we conclude that

lim
n→∞n5/8‖φ(n)‖∞ = (100)5/8H 1

P∞(0) = (100)5/8

2π3/2 
(9/8) ≈ 1.50376.

This is illustrated in Fig. 3 wherein ‖φ(n)‖∞ is compared with 1.5 × n−5/8 on a log-log scale for 
101 ≤ n ≤ 106. �

Example 16 (A nearby non-example). In this example, we consider a complex-valued function 
ψ on Z2 which is a close approximation to the function φ of the preceding example, however, 
its convolution powers ψ(n) behave distinctly from those of φ. In particular, this example shows 
that the hypotheses concerning R(ξ) in the expansion (30) of Theorem 5.1 are necessary and, 
further, it demonstrates the delicate nature of “higher order” terms present in these expansions 
insofar as they affect the behavior of convolution powers. In what follows, we shall assume the 
notation of the preceding example and consider ψ : Z2 →C defined by

ψ = 1

960000
(ψ1 + ψ2 + ψ3)

where

ψ1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

862318 (x1, x2) = (0,0)

22500 ± 19200i (x1, x2) = ±(1,0)

−3412 (x1, x2) = ±(2,0)

1500 (x1, x2) = ±(3,0)

−797 (x1, x2) = ±(4,0)

0 else

, ψ2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

38400 (x1, x2) = (0,±1)

−9225 (x1, x2) = (0,±2)

−150 (x1, x2) = (0,±4)

25 (x1, x2) = (0,±6)

0 else

and
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Fig. 4. Illustration of the Fourier transforms of ψ and φ on T2.

ψ3(x) =
{

±9600i (x1, x2) = (∓1,1), (∓1,−1)

0 else

for x = (x1, x2) ∈ Z2. We remark that ψ is close to φ in several senses. For example, we have 
‖φ − ψ‖∞ = 51/20935 ≈ 0.0024 ≈ 0.0024 × ‖φ‖∞ and ‖φ − ψ‖2 = 1/

√
247293 ≈ 0.0020 ≈

0.0022 × ‖φ‖2. Of course, given that the behavior of convolution powers ψ(n) is determined by 
the nature of the Fourier transform of ψ near points at which is it maximized in absolute value 
(cf., [23,1,18,19]), we analyze ψ̂ . We have

ψ̂(ξ) = 1

100

(
100 −

(
sin(η) + 4 sin2(ζ/2)

)2 − 1

6
sin6(ζ )

)
for ξ = (η, ζ ) ∈ R2. As illustrated in Fig. 4, the graph of |ψ̂(ξ)| is extremely similar to that of 
|φ̂(ξ)| on T 2. Akin to the previous example, maxξ |ψ̂(ξ)| = 1 and this maximum is attained only 
at ξ0 = (0, 0) in T 2 where we have ψ̂(ξ0) = 1. We compute


ξ0(ξ) = log
(
ψ̂(ξ)
)= − 1

100
P(ξ) + R(ξ)

where P(ξ) = (η + ζ 2)2 + η4 and

R(ξ) = 1

100

(
179

1200
ζ 8 + 1

6
ηζ 4 − 23

900
ηζ 6 − 3

100
η2ζ 4 + 47

150
η3ζ 2
)

+ 1

10000

(
1

3
η2ζ 6 − 47

18
η3ζ 4 − 227

600
η4ζ 4 − 1003

300
η5ζ 2 + 60739

900
η6

−37233979

1680000
η8 + O(|ξ |9)

)
=: R1(ξ) + R2(ξ) (41)

as ξ = (η, ζ ) → 0. In other words, akin to the analogous expansion for φ̂, 
ξ0 is made up of the 
polynomial −P(ξ)/100 and a series R(ξ) consistent of “higher order terms” relative to those 
of P . With the initial aim of applying Theorem 5.1 or Corollary 5.2 to this example, we ask if 
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Fig. 5. A log-log plot of ‖ψ(n)‖∞ and 1.5 × n−5/8 for 101 ≤ n ≤ 106.

R(ξ) = o(P (ξ)) as ξ → 0. As we did in the preceding example, we investigate this by composing 
by the non-linear transformation T and then checking if R1(ξ) and R2(ξ) are subhomogeneous 
with respect to G = E1 ⊕ F2. We find that

R̃1(ξ) = 1

100

(
179

1200
ζ 8 + 1

6
(η − ζ 2)ζ 4 − 23

900
(η − ζ 2)ζ 6 − 3

100
(η − ζ 2)2ζ 4

+ 47

150
(η − ζ 2)3ζ 2

)
for ξ = (η, ζ ). From this it follows that

lim
t→0

t−1R̃1(t
Gξ) = lim

t→0

1

6
(η − t−1/4ζ 2)ζ 4 = −∞ (42)

whenever ξ = (η, ζ ) is such that ζ �= 0. Consequently, R̃1 is not subhomogeneous with respect to 
G. By contrast, we find that R̃2 is subhomogeneous with respect to G by an argument analogous 
to that used in Example 13. In view of Proposition 4.3, we conclude that R(ξ) �= o(P (ξ)) as 
ξ → 0. We note that, though our calculation above for R̃1 shows that R1 is not well controlled 
by P(ξ) for small ξ , this loss of control only happens from below and from this we will still be 
able to deduce something useful (see Lemma 5.6 and Proposition 5.5 below).

Though the expansion of 
ξ0 for ψ̂ agrees with that for φ̂ at the lowest order (both are 
−P(ξ)/100), we cannot apply Theorem 5.1 or Corollary 5.2 to this example because R(ξ) �=
o(P (ξ)) as ξ → 0. In particular, for ‖ψ(n)‖∞, we are not able to deduce from Corollary 5.2 the 
decay of n−5/8 which is characteristic of Hn

P/100 and ‖φ(n)‖∞. Fig. 5 presents strong numerical 

evidence that ‖ψ(n)‖∞ decays faster than n−5/8 as n → ∞. In fact, the following proposition 
confirms that this is the case.

Proposition 5.5. We have

lim n5/8‖ψ(n)‖∞ = 0.

n→∞
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Lemma 5.6. There exists δ ∈ (0, 1) and an open neighborhood O ⊆T 2 of 0 for which

R(ξ) ≤ 1 − δ

100
P(ξ)

for ξ ∈O.

Proof. In (41), we have written R(ξ) = R1(ξ) +R2(ξ) and noted, on account of Proposition 4.3, 
that R2(ξ) = o(P (ξ)/100) as ξ → 0. Thus, to prove the statement at hand, it suffices to find an 
open neighborhood O ⊆T 2 of 0 and ρ ∈ (0, 1) for which

E(ξ) := 179

1200
ζ 8 + 1

6
ηζ 4 − 23

900
ηζ 6 − 3

100
η2ζ 4 + 47

150
η3ζ 2 = 100R1(ξ) ≤ ρP (ξ)

for all ξ = (η, ζ ) ∈ O. As a first approximation, we set O = {ξ = (η, ζ ) : P(ξ) < 1} and decom-
pose it as O =R1 ∪R2 where R1 and R2 are given by (24) and (25), respectively. In view of our 
analysis in Example 12, we observe that, for ξ = (η, ζ ) ∈ R1, 0 ≤ ζ 2 ≤ −√

2η and, in particular, 
η is non-positive. Therefore,

E(ξ) ≤ 179

1200
4η4 + 0 + 23

900
(
√

2)3η4 + 0 + 0 =
(

179

300
+ 23

√
2

450

)
η4 ≤ 7

9
P(ξ)

for ξ = (η, ζ ) ∈ R1. On R2, we have

max

{
η4,

(
1 − 1√

2

)2

ζ 4

}
≤ P(ξ)

and therefore

E(ξ) ≤ 179

1200
(6 + 4

√
2)2P(ξ)2 + 1

6
(6 + 4

√
2)P (ξ)5/4

+ 23

900
(6 + 4

√
2)3/2P(ξ)7/4 + 0 + 47

150
(2 + √

2)P (ξ)5/4 ≤ 150P(ξ)5/4

where we have used the fact that P(ξ) < 1 for ξ ∈ O. Thus, by further restricting the open set 
O so that 150P(ξ)1/4 < 7/9, the preceding estimates ensure that E(ξ) ≤ ρP (ξ) for all ξ ∈ O
where ρ = 7/9. �
Proof of Proposition 5.5. By an appeal to the preceding lemma, let O ⊆ T 2 be an open neigh-
borhood of 0 for which ∣∣ψ̂(ξ)

∣∣= e−P(ξ)/100+R(ξ) ≤ e−γP (ξ) (43)

for ξ ∈ O where γ = δ/100 > 0. Using similar arguments to those which appear in the proof of 
Theorem 5.1, we find that

‖ψ(n)‖∞ = sup
x∈Z2

∣∣∣ψ(n)(x)

∣∣∣≤ ρn +
∫ ∣∣ψ̂(ξ)

∣∣n dξ
O
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for all n ∈N+ where 0 < ρ < 1. Focusing on the integral above, we make the change of variables 
ξ 
→ T (n−Gξ) to see that

n5/8
∫
O

∣∣ψ̂(ξ)
∣∣n dξ =

∫
nG(U)

exp

(
−n

(
P̃ (n−Gξ)

100
− R̃(n−Gξ)

))
dξ

for each n ∈ N+ where U = T −1(O). Upon noting that T (n−Gξ) ∈ O whenever ξ ∈ nG(U), it 
follows from Lemma 3.3 and (43) that

exp

(
−n

(
P̃ (n−Gξ)

100
− R̃(n−Gξ)

))
χ

nG(U)
(ξ ) ≤ e−nγ P̃ (n−Gξ)χ

nG(U)
(ξ ) ≤ eMe−C(η2+ζ 4)

for all n ∈ N+ and ξ = (η, ζ ) ∈ R2; here M and C are positive constants and, for a measurable 
set A ⊆ R2, χA denotes the indicator function of A. Also, thanks to the computation (42) and 
the fact that R̃2(ξ) = o(P̃ (ξ)) as ξ → 0, we have

lim
n→∞ exp

(
−n

(
P̃ (n−Gξ)

100
− R̃(n−Gξ)

))
χ

nG(U)
(ξ ) = 0,

for almost every ξ ∈ Rd . Given that ξ 
→ eMe−C(η2+ζ 4) ∈ L1(R2), an appeal to the dominated 
convergence theorem is justified and we conclude that

lim
n→∞n5/8‖ψ(n)‖∞ = lim

n→∞n5/8ρn + lim
n→∞n−5/8

∫
O

∣∣ψ̂(ξ)
∣∣n dξ

= 0 + lim
n→∞

∫
nG(U)

exp

(
−n

(
P̃ (n−Gξ)

100
− R̃(n−Gξ)

))
dξ

= 0. �
To our knowledge, there is no known theory that is able to treat this example and, in particular, 

the asymptotic behavior of ‖ψ(n)‖∞ remains unknown. �

6. Discussion

6.1. Another perspective

As we noted in the introduction and demonstrated in the proof of Theorem 3.1, key to the 
analysis in this paper is the observation that

ϕ(t) = Ht
P (0) = Ht

P̃
(0) = ϕ̃(t)

for all t > 0 where P̃ = P ◦ T can be seen, in some sense, as a “dual” symbol to P . In terms of 
our motivating example in which P(ξ) = (η + ζ 2)2 + η4 and
116



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67–125
� = ∂4
x1

+ ∂4
x2

+ 2i∂x1∂
2
x2

− ∂2
x1

,

P̃ (ξ) = η2 + (η − ζ 2)4 for ξ = (η, ζ ) ∈ R2 and corresponds to the constant coefficient operator

�̃ = −∂2
x1

+ ∂4
x1

+ 4i∂3
x1

∂2
x2

− 6∂2
x1

∂4
x2

− 4i∂x1∂
6
x2

+ ∂8
x2

.

Though the operator � is a self-adjoint fourth-order elliptic operator and is therefore well under-
stood, �̃ is mysterious and somewhat poorly behaved as the following proposition shows.

Proposition 6.1. The operator �̃ with symbol P̃ = η2 + (η − ζ 2)4 is not hypoelliptic. Still, −�̃

generates a semigroup {e−t�̃}t>0 with heat kernel given by

Ht

P̃
(x) = 1

(2π)2

∫
R2

e−t P̃ (ξ)e−ix·ξ dξ

defined for t > 0 and x ∈ R2. This heat kernel has

ϕ̃(t) = Ht

P̃
(0) 


{
t−1/2 0 < t ≤ 1

t−5/8 t ≥ 1

for t > 0 and, further,

lim
t→0

t1/2ϕ̃(t) = 1

π2 
(5/4)2 and lim
t→∞ t5/8ϕ̃(t) = 1

2π3/2 
(9/8).

Proof. The statements concerning HP̃ and ϕ̃ follow directly from our analysis in Examples 7
and 9 through the identity ϕ = ϕ̃. Thus, it remains to prove that �̃ is not hypoelliptic. To see this, 
we compute

∂4
ζ P̃ (η, ζ ) = 384ζ 4 − 1152ζ 2(η − ζ 2) + 144(ζ − ζ 2)2

to see that

lim
ζ→∞

∂4
ζ P̃ (ζ 2, ζ )

P̃ (ζ 2, ζ )
= 384.

Thus, for the multi-index α = (0, 4),

lim|ξ |→∞
P̃ (α)(ξ)

P̃ (ξ)
�= 0;

here, for a multi-index α = (α1, α2), P̃ (α) = ∂
α1
η ∂

α2
ζ P̃ in the notation of L. Hörmander [16]. By 

virtue of Theorem 11.1.1 of [16], we conclude that �̃ is not hypoelliptic. �

117



E. Randles and L. Saloff-Coste Journal of Differential Equations 363 (2023) 67–125
Of course, as we discussed in the introduction, the theory formulated in this article has a 
version in which one begins with the operator �̃ whose heat kernel HP̃ , along the diagonal, is 
well behaved in large time but whose small time behavior is elusive and is deduced more easily 
from HP via the correspondence Ht

P (0) = Ht

P̃
(0).

6.2. Future directions

This article has focused on on-diagonal large-time asymptotics for the heat kernels HP of 
certain inhomogeneous operators � and symbols P and well-behaved associated perturbations. 
At present, we do not have a good understanding of the off-diagonal behavior of these kernels 
in large time. Knowledge of this behavior could greatly improve our understanding of the theory 
presented in this article and it would also inform our study of convolution powers. In particular, 
having a good handle on this off-diagonal behavior would inform on the stability of convolution 
powers (seen as numerical difference schemes) as it has in [26], [24] (see also [27] and Section 
6 of [1]).

The symbols P(ξ) treated throughout this article all take the special form P1(η + Q(ζ)) +
P2(η) resemblant of our motivating example in which P(η, ζ ) = (η + ζ 2)2 + η4. Our methods 
appear to be more broadly applicable, however. Consider, for example, the symbol

P ′(ξ) = (η + ζ 2) + η2ζ 2

defined for ξ = (η, ζ ) ∈ R2. Akin to our motivating example, P ′ lacks a tractable scaling from 
which large-time asymptotics for ϕ′(t) = Ht

P ′(0) may be computed directly. Still, by composing 
P ′ with the measure-preserving transformation T (η, ζ ) = (η − ζ 2, ζ ), we find that

lim
t→∞ t P̃ ′(t−1/2η, t−1/6ζ ) = η2 + ζ 6

for (η, ζ ) ∈ R2 where P̃ ′ = P ′ ◦ T . Accompanied by the fact that t P̃ ′(t−1/2η, t−1/6ζ ) ≥ (η2 +
ζ 4 − 2)/8 for t ≥ 1 and (η, ζ ) ∈R2, the change of variables (η, ζ ) 
→ (t−1/2η, t−1/6ζ ) followed 
by an application of the dominated convergence theorem shows that

lim
t→∞ t2/3ϕ′(t) = 1

(2π)2

∫
R2

e−η2−ζ 6
dη dζ = 1

2π3/2 
(7/6).

Another class of example can be produced easily by considering powers of symbols P(ξ) =
P1(η + Q(ζ)) + P2(η) on Rd satisfying the hypotheses of Theorem 3.1. Specifically, given such 
a symbol P(ξ) and κ > 0, our methods show that the heat kernel HPκ associated to P(ξ)κ

satisfies the on-diagonal asymptotics

Ht
Pκ (0) 


{
t−μ0/κ 0 < t ≤ 1

t−μ∞/κ t ≥ 1

for t > 0 where μ0 and μ∞ are those given by Theorem 3.1. At this time, describing precisely 
the set of examples to which our methods apply is an open question. These questions will be 
explored in a forthcoming article.
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Appendix A. Technical estimates

Lemma A.1. Let P be a positive homogeneous function and let F ∈ End(Ra) be such that {tF }
is non-expanding. If there exits E ∈ Exp(P ) such that [E, F ] = 0, then, for any δ > 0, there 
exists ρ > 0 for which

ρP (tF η) ≤ δP (η)

for all η ∈Ra and 0 < t ≤ 1.

Proof. Because P(0) = 0, it suffices to prove that, for some C > 0,

P(tF η) ≤ CP(η)

for all 0 < t ≤ 1 and non-zero η ∈Ra . Denote by S the unital level set of P and observe that

K = {tF η : 0 < t ≤ 1, η ∈ S}
is a bounded set because S is compact and {tF }0<t≤1 is uniformly bounded. By virtue of the 
continuity of P , it follows that, for every 0 < t ≤ 1 and η ∈ S,

P(tF η) ≤ sup
ξ∈K

P (ξ) =: C < ∞.

Given any non-zero η ∈ Ra , Proposition 4.1 of [18] guarantees that η = rEη0 where r = P(η) >
0, η0 ∈ S, and E is as in the statement of the lemma. Using the fact that E and F commute, we 
have

P(tF η) = P(rEtF η0) = rP (tF η0) ≤ rC = CP(η),

as desired. �
Lemma A.2. Let P be a positive homogeneous function on Ra . Then, for any positive constants 
ρ1, ρ2, there exists ε > 0 for which

εP (ξ) ≤ ρ1P(ζ + ξ) + ρ2P(ζ )
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for all ξ, ζ ∈ Ra .

Proof. Let ρ1, ρ2 > 0 and define R :R2a →R by

R(ξ, ζ ) = ρ1P(ζ + ξ) + ρ2P(ζ )

for (ξ, ζ ) ∈ Ra × Ra = R2a . It is clear that R is a continuous and positive-definite function on 
R2a . For any E ∈ Exp(P ), observe that

R(tE⊕E(ξ, ζ )) = R(tEξ, tEζ ) = ρ1P(tEζ + tEξ) + ρ2P(tEζ ) = tR(ξ, ζ )

for all t > 0 and (ξ, ζ ) ∈R2a . Thus, R is homogeneous with respect to E ⊕ E and, because {tE}
is a contracting group on Ra , it is evident that {tE⊕E} is a contracting group on R2a . In view of 
Proposition 1.1 of [18], we conclude that R is a positive homogeneous function. Denote by S the 
unital level set of R and, because S is compact and (ξ, ζ ) 
→ P(ξ) is continuous and does not 
identically vanish on S, we have

ε :=
(

sup
(ξ,ζ )∈S

P (ξ)

)−1

> 0.

Given a non-zero (ξ, ζ ) ∈ R2a , Proposition 4.1 of [18] ensures that (ξ, ζ ) = rE⊕E(ξ0, ζ0) =
(rEξ0, rEζ0) where r = R(ξ, ζ ) > 0, (ξ0, ζ0) ∈ S and E ∈ Exp(P ). With this, we observe that

εP (ξ) = εrP (ξ0) ≤ r = R(ξ, ζ ) = ρ1P(ζ + ξ) + ρ2P(ζ ).

Since this inequality holds trivially when (ξ, ζ ) = (0, 0), the proof is complete. �
By making analogous arguments to those in the proof above, we easily obtain the following 

lemma.

Lemma A.3. Let P be a positive homogeneous function on Ra . Then, for any positive constants 
ρ1, ρ2, there exists ε > 0 for which

εP (ζ + ξ) ≤ ρ1P(ξ) + ρ2P(ζ )

for all ξ, ζ ∈ Ra .

Lemma A.4. Let P1 and P2 be positive homogeneous functions on Ra and let E1 ∈ Exp(P1) and 
E2 ∈ Exp(P2). If [E1, E2] = 0 and {tE1−E2} is non-expanding, then, for any δ > 0, there are 
constants ρ, M > 0 for which

ρP1(t
E1−E2η) ≤ M + δP2(η)

for all η ∈Ra and 0 < t ≤ 1.
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Proof. Let δ > 0. We shall first prove that, there are constants ρ, M > 0 for which

ρP1(η) ≤ M + δP2(η)

for all η ∈ Ra . We note that this is the desired inequality evaluated at t = 1; we shall obtain the 
full inequality by scaling. Now, denote by S and B the unital level set and unit ball associated to 
P = δP2. Because B is relatively compact and {tE1−E2}0<t≤1 is uniformly bounded,

K = {rE1−E2η : 0 < r ≤ 1, η ∈ B}

is bounded and hence relatively compact. Since P2 is positive and does not vanish identically on 
K ,

ρ :=
(

sup
ξ∈K

P1(ξ)

)−1

> 0.

Now, for any η ∈ Ra \ B , it follows from Proposition 4.1 of [18] that η = r−E2η0 for r =
1/P (η) = 1/(δP2(η)) ≤ 1 and η0 ∈ S. Consequently,

ρP1(η) = ρP1(r
−E2η0) = ρ

r
P1(r

E1−E2η0) ≤ 1

r
= δP2(η).

Of course, P1(η) is bounded on B and so it follows that, for some constant M > 0,

ρP1(η) ≤ M + δP2(η)

for all η ∈ Ra , as claimed. Finally, for 0 < t ≤ 1 and η ∈ Ra , we apply the preceding inequality 
to t−E2η to see that

ρP1(t
E1−E2η) = tρP1(t

−E2η) ≤ t
(
M + δP2(t

−E2η)
)

≤ tM + δP2(η) ≤ M + δP2(η)

as desired. �
Proof of Lemma 3.3. We shall first prove the estimate (14). For the lower estimate in (14), si-
multaneous appeals to Lemmas A.1 and A.4 give positive constants ρ1, ρ2, and M for which

ρ1P1(ζ ) ≤ M + P2(ζ ) and ρ2P1(t
E1−E2η) ≤ P1(η)/2

for ζ, η ∈ Ra and 0 < t ≤ 1. With the constants ρ1 and ρ2 in hand, we appeal to Lemma A.2 to 
find a positive constant ε > 0 for which

εP1(ξ) ≤ ρ1P1(ζ + ξ) + ρ2P1(ζ )

for all ξ, ζ ∈Ra . Consequently, for ξ, η ∈Ra and 0 < t ≤ 1,

εP1(ξ) ≤ ρ1P1(t
E1−E2η + ξ) + ρ2P1(t

E1−E2η) ≤ M + P2(t
E1−E2η + ξ) + P1(η)/2.
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Upon setting C = min{ε, 1/2} > 0, it follows that

C(P1(η) + P1(ξ)) − M ≤ P1(η)/2 + εP1(ξ) − M ≤ P1(η) + P2(t
E1−E2η + ξ)

for all η, ξ ∈ Ra and 0 < t ≤ 1. For the upper estimate in (14), we first make an appeal to 
Lemma A.4 to obtain positive constants M ′ and C1 for which

P1(η) ≤ M ′ + C1P2(η)

for all η ∈Ra . By virtue of Lemma A.3, there is a positive constant C2 for which

P2(ζ + ξ) ≤ C2(P2(ζ ) + P2(ξ))

for all ξ, ζ ∈Ra . Finally, an appeal to Lemma A.1 guarantees a positive constant C3 for which

P2(t
E1−E2η) ≤ C3P2(η)

for all η ∈Ra and 0 < t ≤ 1. Upon combining these estimates, we obtain

P1(η) + P2(t
E1−E2η + ξ) ≤ M ′ + C1P2(η) + C2P2(t

E1−E2η) + C2P2(ξ)

≤ M ′ + (C1 + C2C3)P2(η) + C2P2(ξ)

for all η, ξ ∈ Ra and 0 < t ≤ 1. Our desired (upper) estimate in (14) follows immediately by 
taking C′ = max{C2, C1 + C2C3} and so the proof of (14) is complete.

To prove (13), we first make an appeal to Lemma A.4 to obtain positive constants ρ and M
for which

ρP1(t
E1−E2η) ≤ M + P2(η)/2

for all η ∈Ra and 0 < t ≤ 1. With this ρ, an appeal to Lemma A.2 yields ε > 0 for which

εP1(ξ) ≤ P1(ζ + ξ) + ρP1(ζ )

for all ξ, ζ ∈Ra . Upon setting C = min{ε, 1/2}, we obtain

C(P1(ξ) + P2(η)) − M ≤ εP1(ξ) + P2(η)/2 − M

≤ P1(t
E1−E2η + ξ) + ρP1(t

E1−E2η) + P2(η)/2 − M

≤ P1(t
E1−E2η + ξ) + P2(η)

for all η, ξ ∈ Ra and 0 < t ≤ 1 and this is precisely the lower estimate in (14). Making use of 
Lemmas A.4 and A.3, the upper estimate in (14) is established in a similar way to that for (13); 
we leave the remaining details to the reader. �

Our final goal in this appendix is to prove Proposition 4.3. Before the proof, we present two 
lemmas.
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Lemma A.5. Assume the notation and hypotheses of Proposition 4.3 and define

P̃∞(ξ) = P1(η) + P2(−Q(ζ)) and Ẽ∞(ξ) = P̃ (ξ) − P̃∞(ξ)

for ξ = (η, ζ ) ∈ Rd . Then Ẽ∞(ξ) is subhomogeneous with respect to G = E1 ⊕ F2.

Proof. Let ε > 0 and K ⊆Rd be a compact set. Since {tE1−E2} is contracting and P2 and Q are 
continuous, we can find 0 < t0 ≤ 1 for which∣∣∣P1(η) + P2(t

E1−E2η − Q(ζ)) − P̃∞(ξ)

∣∣∣= ∣∣∣P2(t
E1−E2η − Q(ζ)) − P2(−Q(ζ))

∣∣∣< ε

for all 0 < t ≤ t0 and ξ = (η, ζ ) ∈ K . Thus, for every 0 < t ≤ t0 and ξ = (η, ζ ) ∈ K , we have∣∣∣Ẽ∞(tGξ)

∣∣∣= ∣∣∣P1(t
E1η) + P2(t

E1η − Q(tF2ζ )) − P1(t
E1η) − P2(−Q(tF2ζ ))

∣∣∣
=
∣∣∣P2(t

E1η − tE2Q(ζ)) − P2(−tE2Q(ζ))

∣∣∣
= t

∣∣∣P2(t
E1−E2η − Q(ζ) − P2(−Q(ζ))

∣∣∣
≤ εt,

as desired. �
The following lemma asserts loosely that P̃ is approximately homogeneous with respect to G

in small time whenever {tE1−E2} is contracting.

Lemma A.6. Assume the notation and hypotheses of Proposition 4.3. Then, there exists a com-
pact set K ⊆Rd such that, for any τ > 0 and 0 < ε < 1, there exists 0 < t0 ≤ τ for which

O := {ξ ∈ Rd : ξ = 0 or ξ = tGξ ′ for 0 < t < t0 and ξ ′ ∈ K}

is an open neighborhood of 0 and, for each non-zero ξ = tGξ ′ ∈ O,

(1 − ε)t ≤ P̃ (ξ) = P̃ (tGξ ′) ≤ (1 + ε)t

Proof. Let K = SP̃∞ be the unital level set of P̃∞ and, by an appeal to the preceding lemma, let 
0 < t0 ≤ τ be such that ∣∣∣Ẽ∞(tGξ ′)

∣∣∣≤ εt

whenever 0 < t ≤ t0 and ξ ′ ∈ K . In this notation, we observe that O, as defined in the statement, 
coincides with the P̃∞-adapted open ball Bt0 = {ξ ∈ Rd : P̃∞(ξ) < t0} since G ∈ Exp(P̃∞); 
in particular, O = Bt0 is necessarily an open neighborhood of 0 (see Proposition 4.1 of [18]). 
Further, for each non-zero ξ = tGξ ′ ∈ O = Bt0 , we have P̃∞(ξ) = t and therefore

∣∣P̃ (ξ) − t
∣∣= ∣∣Ẽ∞(ξ)

∣∣= ∣∣∣Ẽ∞(tGξ ′)
∣∣∣≤ εt
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so that (1 − ε)t ≤ P̃ (ξ) = P̃ (tGξ ′) ≤ (1 + ε)t . �
Proof of Proposition 4.3. In view of Lemma 4.2, we need only to prove the sufficiency of the 
subhomogeneity condition. Specifically, we prove that R̃(ξ) = o(P̃ (ξ)) as ξ → 0 when {tE1−E2}
is contracting and R̃ is subhomogeneous with respect to G. To this end, let ε > 0 and take K
as in the preceding lemma. With our assumption that R̃ is subhomogeneous with respect to G, 
let τ > 0 be such that 

∣∣R̃(tGξ ′)
∣∣ ≤ εt/2 whenever ξ ′ ∈ K and 0 < t ≤ τ . By an appeal to the 

preceding lemma, let 0 < t0 ≤ τ for which

P̃ (ξ) = P̃ (tGξ ′) ≥ t/2

whenever ξ = tGξ ′ is a non-zero member of the open neighborhood

O = {ξ ∈Rd : ξ = 0 or ξ = tGξ ′ for 0 < t < t0 and ξ ′ ∈ K}

of 0 in Rd . Thus, for any non-zero ξ = tGξ ′ ∈O,∣∣R̃(ξ)
∣∣= ∣∣∣R̃(tGξ ′)

∣∣∣≤ εt/2 ≤ εP̃ (tGξ ′) = εP̃ (ξ).

By the continuity of R̃ and P̃ , this estimate clearly holds when ξ = 0 and so we have shown that 
R̃(ξ) = o(P̃ (ξ)) as ξ → 0 as was asserted. �
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