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Abstract. We study left-invariant Laplacians on compact connected groups that are
form-comparable perturbations of bi-invariant Laplacians. Our results show that Gaussian
bounds for derivatives of heat kernels enjoyed by certain bi-invariant Laplacians hold for
their form-comparable perturbations. We further show that the parabolic operators asso-
ciated with such left-invariant Laplacians, in particular, with the bi-invariant Laplacians,
are hypoelliptic in various senses.

1. Introduction. Let (G,v) be a compact connected metrizable group
where v is the normalized Haar measure. The main interest of the results
developed here is for infinite-dimensional groups G, such as infinite products
of compact Lie groups. Symmetric Gaussian convolution semigroups of mea-
sures on G exhibit a rich variety of behaviors [1, 2, 3]. In [4], Bendikov and
Saloff-Coste showed that (1) when they exist, continuous density functions
of symmetric central Gaussian convolution semigroups (u)¢>o of measures
on G admit spatial derivatives of all orders in certain directions, and (2) the
derivatives satisfy certain Gaussian upper bounds if the density function sat-
isfies lim;_,o tlog i (e) = 0 (referred to as the (CKx) condition). The same
authors studied various function spaces on G with norms involving different
combinations of derivatives, and examined hypoellipticity properties related
to the generators of such Gaussian semigroups. See [6, 7]. In these works,
the semigroup being central, or equivalently, its generator being bi-invariant,
plays an essential role.

In the present paper we consider symmetric (noncentral) convolution
semigroups on G (referred to as perturbed semigroups) that are comparable
to symmetric central Gaussian semigroups in the sense that their associated
Dirichlet forms are comparable.

2020 Mathematics Subject Classification: Primary 22E66; Secondary 31C25, 60G51,
60B15.

Key words and phrases: hypoellipticity, Gaussian convolution semigroup, heat equation.
Received 25 October 2021; revised 4 August 2022.

Published online 8 November 2022.

DOI: 10.4064/cm8696-8-2022 [105] © Instytut Matematyczny PAN, 2023



106 Q. HOU AND L. SALOFF-COSTE

More precisely, any generator —A of a symmetric central Gaussian semi-
group (pf)¢=0 on G is a bi-invariant operator of the form —A = >7°°, X2,
where {X;}; forms a basis of left-invariant vector fields in some proper sense
(i.e. a projective basis). In such a projective basis, the generator —L of any
symmetric Gaussian semigroup (if);~o is of the form —L = > i XiX;
(see [10, 11]). This operator L is only left-invariant in general. If further the
following relation holds between the Dirichlet forms associated with A, L:

cEn < &L < CEp,

for some ¢,C > 0, we call L a form-comparable perturbation of A. In this
paper we only consider those L that are form-comparable perturbations of
bi-invariant Laplacians A.

We show that when the semigroup utA admits a continuous density func-
tion, denoted again by uf, so does the semigroup p, and the density func-
tions ,utA and pF both belong to certain smooth function spaces associated
with A and L (Theorem 4.1). We then show that when 7 further satisfies
the (CKx) condition, (1) both density functions and their derivatives satisfy
certain Gaussian estimates, and (2) both 9y + A and 9; + L are hypoelliptic
in various senses (Proposition 4.2 and Theorem 3.5). As in [7], our proof for
the hypoellipticity properties follows the general heat kernel /semigroup ap-
proach by Kusuoka and Stroock [16], with some additional ideas to overcome
the difficulties brought by dropping the bi-invariance assumption. Note that
in the bi-invariant operator case, the hypoellipticity of J; + A is new even
though the hypoellipticity of A has been studied in |7, 9]. For a thorough
discussion of hypoellipticity in this context, see [9].

We organize this paper as follows. In Section 2 we briefly introduce the
setting and fix notations. In Section 3 we present the main theorem on
hypoellipticity, Theorem 3.5, and give an example. Sections 4 and 5 are
devoted to the proof of the hypoellipticity theorem, where other theorems
regarding heat kernels are presented first and they constitute an important
part of the proof. Some details are postponed to the Appendix.

2. Setting and notation. This section contains a minimal introduction
to the setting of our study. For more details, see |3, 5, 8] and the references
therein. Write N := {0,1,...}.

2.1. Basic structures. In this entire paper, let G be a compact con-
nected metrizable group with identity element e. The group G can be viewed
as the projective limit of a sequence of Lie groups [14, 15],

G = lim Go.

aeR
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Here the index set XN is finite or countable; G, = G/K, where {K,} is a
decreasing sequence of compact normal subgroups with [ cx Ko = {e}; for
a < B, the map 7, g : Go — Gg is the projection map. Denote the projection
map G — G, = G/K, by 7.

The Bruhat test function space B(G) is defined as

BG):={f:G—>R: f=¢om, for some a € R, p € C°(G,)}.

Here C*°(Gy) denotes the set of all smooth functions on G,; B(G) is in-
dependent of the choice of {Kg}aer [12, 7]. The Bruhat test functions are
generalizations of cylindric functions on the infinite torus T (i.e. smooth
functions that depend on only finitely many coordinates). Let B'(G) be the
dual space of B(G) with the strong dual topology; elements of B'(G) are
called Bruhat distributions. In Section 2.4 we introduce more smooth func-
tion spaces on GG and their dual spaces as distribution spaces.

Lastly, we recall the following definitions of convolutions.

e The convolution of any two Borel measures i, o on G, uy * po, is the
measure defined by

prxpa(f) = | flay)dm () dus(y), Vf e C(@)
GxXG

e The convolution of any two functions f,g € C(G) is the function given by

frg(x) =\ flay " gy) dv(y) = | FW)a(y™" =) du(y).
G G

e The convolution of a function f € C'(G) and a Borel measure p is defined
as

por fla) =\ fly " 2)duy),  frp@) =\ flay™) duy).
G G
e The convolution of a function f € B(G) and a distribution U € B'(G) is
defined by

(fxU)@) =U(f*9), (Uxf)lo)=Ulpxf). VoeBG).

2.2. Gaussian semigroups and generators. Recall that a family
(1t)¢>0 of probability measures on G is called a symmetric Gaussian convo-
lution semigroup, if it satisfies the following properties:

(i) (semigroup property) py * pis = pig4s for any t, s > 0;
(ii) (weakly continuous) u; — 6. weakly as ¢ — 0;
(iii) (Gaussian) t~11;(V¢) — 0 as t — 0 for any neighborhood V of the
identity e € G,
(iv) (symmetric) fiy = pg for any ¢ > 0; here fi; is defined by (V) =
pe(V 1) for any Borel subset V C G.
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For t > 0, set
Hf(x) = f* fu(x) = | flay) du(y), VfeC@),

G
and then extend it to L?(G). This formula defines a semigroup of self-adjoint
operators on L?(G). Let —L be the (L2-)infinitesimal generator of (H;)>o,
—Lf :=lim M’
t—0 t
with domain D(L) equal to the space of functions in L?(G) for which this
limit exists in L?(G).

2.3. Projective bases and sub-Laplacians. The Lie algebra of GG
(denoted by g) is defined to be the projective limit of the Lie algebras of G,
(denoted by gn), with projection maps dmq g for o, 8 € X, a < . A family
{X;}iez of elements of g is called a projective basis of g, if for each o € N,
there is a finite subset Z, C Z such that dn,(X;) = 0 for all i ¢ Z,, and
{dna(X;)}iez, is a basis of the Lie algebra g,. The Lie algebra g admits
many projective bases [11, 15]. For future use, let

RO .= {& = (&)iez : all but finitely many entries are zero}.

For a fixed projective basis X = {X,};c7, to any infinite real symmetric
nonnegative coeflicient matrix A = (a;;j)zxz, we associate the second-order
left-invariant differential operator (acting on B(G))

(21) LA == Z ainin.
1,J€TL
Here A being real symmetric nonnegative means that a;; = aj; are real

numbers, and ) a;;&E; > 0 for all £ = (&)ier € R®) . We refer to these
differential operators as sub-Laplacians. The matrix A can be degenerate.
When A is positive definite, we call L4 a Laplacian.

There is a one-to-one correspondence between symmetric Guassian con-
volution semigroups (u;)¢>o and infinite real symmetric nonnegative matri-
ces A |7, 10]. This correspondence is given by the fact that the infinitesimal
generator of (u:)i~0 (and of the corresponding semigroup (H¢)i~o) is of the
form —L 4 for some matrix A. More precisely, this generator, computed on
Bruhat test functions, has the form

H, f —
%f = —LAf = Z aininf.

i.jET

lim

t—0

Conversely, given a sub-Laplacian L, there is a semigroup that we denote

by (HF)i>0, whose generator agrees with —L in the above sense. The sym-
metric Gaussian semigroup corresponding to (H});~¢ is denoted by (uF)s>o.
The semigroup (H})i~o is Markov and commutes with left translations. See
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e.g. |7] for more details. Let (€1, F1) denote the Dirichlet form associated
with (H})¢~0 with domain Fy,.

2.4. Smooth function spaces and distribution spaces. Let I C R
be an open interval. Corresponding to B(G) defined in the first subsection,
define the Bruhat test function space on I x G, B(I x G), as

B(I x G) :=
{f:IXxG—-R:f=¢om, for some a € X, ¢ € CZ(I x Gqo)}.

Here 7 : I x G — I X G, (t,z) — (t,ma(x)), is the projection map, and
CX(I x G4) is the set of smooth functions on I x G, with compact support.

In the following we review some norms and seminorms and consider the
function spaces as completions of B(G) with respect to these (semi)norms.
See [6] for detailed discussions of these function spaces. Along the way we
define the corresponding spaces on I x G; they serve as generalizations of
the classical test function space D(R"™) to spaces of test functions in I x G.

REMARK 2.1. We only define the “smooth” function spaces in the sense
that the completions are with respect to (semi)norms of all orders. Spaces as
completions with respect to (semi)norms of orders up to some k € N can be
correspondingly defined, and denoted accordingly with the “oc0” superscripts
replaced by k.

Spaces C¥(G) and C¥ (I x G). Given any projective basis {X;}iez and
multi-index [ = (I1,...,1x) € ZF where k € N, for any f € B(G), denote
XU () = Xy - Xiy f2) =t Dif (XKoo, Xiy).
For k = 0, this is taken as f itself. Let C3(G) be the completion of B(G)
with respect to the seminorms

{HleHLm(G) = sup IX!f|:leTt ke N}.

Correspondingly, for any open interval J € I, let C5%(J x G) be the
completion of B(J x G) with respect to the seminorms

{\|apxlf\|m(]xg) — sup [9"X | sl e T*, m,k € N}.
JxXG

Here the subscript “0” refers to the vanishing of the function and all its
derivatives on the boundary 0J. To clarify notations, if f = ¢ o7, is as in
the definition of B(J x G), then

0" Xy, - Xy, f(t,x) = (0 dma(Xy,) - - - dma (X7, 9) (T, Ta ().

The spaces are equipped with the topology defined by the seminorms
above. Note that for any two open intervals I; € I, functions in CS’OX (I1 xG)
can be naturally extended by 0 to I> x G, thus C5% (I1 x G) C C% (12 x G).
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Finally, define C5 (I x G) as the inductive limit of {C§%(J X G)}jer-
Spaces SY(G) and SY(I x G). For any k € N, f € B(G), define a
function |D* f|x : G — [0, +oc0] by
ID*flx(2) = [Diflx
1/2
= (kX x)R) T = (31X @) P)
leTk leTk

When k =1, [DLf[% = 3 ,c7 | Xif(2)]? is the square of the gradient of f,
often denoted by I'(f, f) in the literature (see e.g. [6]). Let S¥(G) be the
completion of B(G) with respect to the norms {S% }ren defined as

1/2

Sé“((f) ;= sup H|Dmf|XHL°°(G) = sup sup|DI'f|x.
0<m<k 0<m<k zeqG
REMARK 2.2. It is shown in [6] that for any two projective bases {X; }iez
and {Z;}iez such that S° X2 =372 forallx € G and k € N, |[D¥f|x =
|DEf|z and S%(f) = SE(f). In other words, the space SP(G) depends on
the projective basis {X;};cz through its associated sum of squares operator

L=-) X}
1€l
As {X;}ie1 is taken as a projective basis, L is what we called a Laplacian ear-
lier. Below, we write S¥(f) = S%(f), |DXf|L = |DEflx, S¥(G) = S¥(G).
For any projective basis X = {X;}icz and L = — > X2, for any open
interval J € I, the space Sg%(J x G) = 8§57(J x G) is defined as the
completion of B(J x G) with respect to the (semi)norms
{Sﬁ’p(J X G, f) = sup supSK(d?f) = sup sup |D;”(8ff)\L}
0<a<p teJ 0<a<p (t,x)eJxG
0<m<k
Here writing J x G in S]]—i’p(J x G, f) is to clarify the set on which the

supremum is taken. The space S7°(I x G) is defined as the inductive limit
of the spaces {857, (J X G)}er

Spaces 7/°(G) and 7;°(1 x G). It is not known if S7°(G) is contained
in the C(G)-domain of L [6, p. 178|. There, to address this problem, the
authors introduced the space 7,°(G) which we now recall.

Fix any projective basis X = {X;};cz and let L = — ", 7 X?. For any
kEeNand A= (Ao, A1,..., ) € Nt and any f € B(G), let

k,pEN‘

1/2
IDFA flx = |DEAf|), = (Z ‘L/\OXllLAlezL)\Z“‘XlkLAkf(x)’2> :

leTk
The subscripts can be written as X or L because the quantity depends
only on the sum of squares associated with the projective basis X; see also
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Remark 2.2. Now we take the supremum over k£ and A to build a norm. We
first introduce the following two abbreviations.

e For any | € 7F and A € NFt1 set
P f = LX) DM X, L - X, L f.

For any bi-invariant Laplacian A, Pz)‘f = X, Xpy o+ Xy AN Ak f
e For any k,m € N, let A(k, m) denote the set of all possible (k + 1)-tuples
of integers that sum up to m, i.e.,

k
A(k,m) = {)\ = QoA A L N YO = m}
Using these notations, for any N € N, define

MY (f) = M (f) =

1/2
sup sup sup ]DI;’Af\L =sup sup sup (Z \Pl A 2)
z€G kmeN XeA(k,m) ze€G kmeN XeA(k,m) leTk
k+2m<N k+2m<N €
Define 7/°(G) as the completion of B(G) with respect to the norms
{MY} nen. For any open interval J € I, define 0.2.( X G) as the completion
of B(J x G) with respect to the set of (semi)norms

{MYP(1 %G p) = sup sup ME (97 )

0<a<p teJ
1/2
(SN
= sup sup sup E |P 0 f(t, x) ) },
a,k,meN (t,2)eJxG AeA(k,m)
Gems) (t2) leTk
k+2m<N

where N, p € N. As before, the space 7°(1 x G) is defined as the inductive
limit of {737 (J x G)}Jer-

Distribution spaces 7/ (G) and 7/ (I x G). Let T/(G) and T/ (I x G)
be the dual spaces of 7,°(G) and T;°(I x G), respectively, equipped with
the strong dual topology. Recall that it means that for any U € T/ (I x G)
and any precompact open subset J & I, there exist some C(J) > 0 and
N(J),p(J) € N (written as N, p below) such that for any f € 757 (J x G),

U(f)| < CI)MYP(F).

REMARK 2.3. In this paper, we deal with distributional solutions U of
the heat equation (0;+L)U = F. Because C§ and S¢° may not be contained
in the domain of L, to make sense of LU we do not consider their dual spaces.
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To summarize, the above spaces on I X G satisfy
B(IxG)CT(IxG)CSP(I xG)
CCRUIXxG)CTLIxG)CBLIxG);

the same inclusions hold for the corresponding spaces on G.

By the previously recalled definitions of convolutions, the convolution of
any two functions f,g € C(R x G) (at least one with compact support) is
the function given by

(2.2) f*g(s,z) = S S f(t,2)g(s —t, 2" x) dt dv(z).
RG

Notation. To emphasize the difference between convolutions on G and
on I x GG, in the rest of the paper we write x instead of * for convolutions
involving both time and space. For example, we write f x g for (2.2).

We also use the following convolution. Let f be any function with the
property that f, f € T°(R x G), where f(s,z) = f(=s,z~1). Let U be any
distribution in 7/ (I x G) with compact support in I x G. We may define
their convolutions as

(f*xU)@) =U(fx9), (Uxf)d)=Ulp*f), VoeTIxaq).
These convolutions are well-defined, because (1) both f* ¢ and ¢ f belong
to TL(R x G); (2) as U has compact support in I x G, there is some function
n € Tr.(I x G) with compact support such that U = nU.

2.5. Bi-invariant Laplacians and their perturbations. By defini-
tion, a symmetric Gaussian semigroup (p¢)¢>o is called central if for all t > 0,
pi(a=tBa) = puy(B) for any Borel set B C G and any a € G. Central semi-
groups commute with any other factor in convolutions. Their generators
are bi-invariant Laplacians. In this paper we use the symbol A to denote a
bi-invariant Laplacian, and L for a general left-invariant sub-Laplacian that
may or may not be bi-invariant. As a bi-invariant operator, A satisfies

AZf = ZAf

for any left-invariant vector field Z € g and any smooth function f € B(G).

Let L, P be two sub-Laplacians. We say that L, P are form-comparable
perturbations of each other if their corresponding Dirichlet forms (£r,, Fr)
and (Ep, Fp) are comparable. That is, there exist ¢, C' > 0 such that for any

f € B(G),

Note that (2.3) implies that Fz, = Fp. In the present paper we study pertur-
bations of bi-invariant Laplacians; these perturbations have to be Laplacians
themselves.
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Given a bi-invariant Laplacian A and a left-invariant Laplacian L, we
can mix them up to define the function/distribution spaces T3 (I x G),
A1 x G) as follows. Suppose A= —3", 7 X?. The space TipI x G)is
the inductive limit of {7, ; (J x G)}jer, where 7%, ; (J x G) for each open
interval J € I is defined as the completion of B(J ’><7G) with respect to the
(semi)norms

(24)  MAL(J X G, f) =

1/2
sup sup Z |LY X, LM - Xy, LY APO2 f(8, x)|2) .
0<a<p AeA(k,m) leTk
20+k+2m<N A=(Ao,.... \p) ©
(t,x)eJxG

A.1(I x G) is the strong topological dual of 785 (I x G).

REMARK 2.4. Suppose L = —> . Yi2 for another projective basis
{Yi}iez. In the Appendix, we show that the norms defined using {Y;}iez
instead of {X;};ez or using both {X;}iez and {Y;};cz are equivalent to the
norms (2.4).

2.6. Properties of the spaces. We record here some properties of the
above function spaces that are particularly useful in the present paper. See [6]
for more details. The first three items hold for function spaces associated with
general left-invariant sub-Laplacians L = — > Y;2.

(i) All the function spaces on G introduced above (B(G), C&(G), S¥(G),
TE(G), k € NU {co}) are algebras for pointwise multiplication. See
[6, Sections 2, 3|. Based on this fact it is straightforward to check that
the corresponding function spaces on I x G are algebras for pointwise
multiplication as well.

(ii) Let &(G) be any of the function spaces B(G), CE(G), S¥(G), and
TE(G). For any Borel measure u, for any function f € &(G), we have
wx* f € S(G), and the map (convolution with g on the left)

pr: 6(G) = 6(G),  frpxf,

is continuous. Let || - || denote any norm involved in the definitions of
these spaces. Then || * f|| < |u|||f]| where |u| is the total mass of u.
The same statement holds for ux : §(I xG) — &(I x G), if the measure
pison I x G.

(iii) For any sequence ¢, € L'(G) with ¢, — &, weakly as n — oo, for
any f € &(G) as in the previous item, the sequence f,, = ¢, * f
converges to f in &(G). The same statement holds for any sequence
¢n € L1((0,1) x G) with ¢,, — d(0,e) weakly and any f € &(I x G).

When & = B(G) or B(I x G), conclusions of (ii) and (iii) hold too for
convolutions on the right. When the space & is any of the other three types,
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however, due to the fact that the differential operators are left-invariant (they
act on the rightmost function in a convolution), the order of the convolutions
in (ii) and (iii) is crucial. For instance, even if the approximation of identity
{®n}nen in (iii) consists of very nice functions that are in B(G) or B(R x G),
for an arbitrary function f in T#(G) or 7}1”" (I x G) it is not clear in general
if f* ¢, converges to f in the T-space. On the other hand, using a trick
mentioned in [6, 7] regarding the use of certain right-invariant vector fields,
one can make some statements for convolutions on the right. We list a few
relevant results here. As above, the results are true for spaces of each finite
order and on G or I x G. For simplicity we only write the superscript co and
do not specify the underlying space.

(iv) For a bi-invariant Laplacian (denoted by A), conclusions of (ii) and (iii)
hold for convolutions on the right when & = S¥ or T3°.

(v) For a left-invariant Laplacian L that is form-comparable to a bi-invar-
iant Laplacian A, by Lemma 6.1 in the Appendix, S7° = S¥°. Hence
(ii) and (iii) hold for convolutions on the right when & = S7°.

Finally, we record a result for C-type spaces. For any left-invariant vector
field Z, let Z be the right-invariant vector field on G such that Z(e) = Z(e).
For any projective basis Y = {Y;};e7 of left-invariant vector fields, in [7] the
authors considered a right-invariant version of the Cf- space (k € N), denoted
by RCI}“/, which is analogously defined as the completion of the Bruhat space
with respect to the seminorms H}u/l flloo- A special case is when Y is a so-called
special projective basis, which roughly speaking requires that each Y; is a
finite linear combination of {Y Yier: Yi = Z]EJ @) aUY where each a;; is in

B(G) and J(i) is a finite index set, and vice versa for each Y;. When Y is a
special projective basis, C& = RC’;. For a bi-invariant Laplacian, A, there
exists a special projective basis X = {X;};ez such that A = —3 X2. See
[7, Section 4.2|. Hence the next item follows.

(vi) For a bi-invariant Laplacian, A, and any special projective basis, X =
{Xi}iez, such that A = —>" X2, (ii) and (iii) hold for convolutions on
the right when & = C§ = RC¥.

3. Statement of the main results. As preparations for the main re-
sults, we first review some definitions mentioned in the Introduction.

DEFINITION 3.1 (Property (CKx)). Let (ut)¢>0 be a symmetric Gaussian
convolution semigroup. We say that (i)~ satisfies Property (CKx) if for
any t > 0, uy admits a continuous density u:(-) with respect to the Haar
measure v, and the density function satisfies

(3.1) lim ¢log e (e) = 0.
t—0+
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REMARK 3.2. Let A be a bi-invariant Laplacian satisfying Property
(CKx). Let L be a left-invariant Laplacian that is form-comparable to A.
Then there are some 3,y > 0 such that £g4 < & < &, a. Denote the two
operators’ associated (symmetric) semigroups as ,utA, pl, respectively. Then
= ,utL*ﬁ Ay ,uf A, indicating that p! admits a continuous density because

utﬂA does. Moreover, because i is symmetric and ||uf || (q) = pf(e),
L—B8A A A
u(e) = u % a4 e) < (o)
Hence pl also satisfies (CKx).

DEFINITION 3.3 (Hypoellipticity). Let L be a left-invariant sub-Laplacian
on G and I C R be an open interval. Let 2 be a space of distributions in
time and space. Let & be a space of continuous functions on I x G. The
associated parabolic operator d; 4+ L is said to be 2A-&-hypoelliptic if for any
UeAand F € B'(I x Q) such that

O+ L)U=F inB(IxGaq),
and for any open subset J x 2 C I x G such that

Vo € Bo(J x 2), ¢F €6,
U satisfies

Vo € Bo(J x 2), U € 6.

Here B.(J x £2) consists of functions in B(I x G) with compact support
in J x £2. For example, 2 can be T4 (I x G), and & can be C(I x G).

REMARK 3.4. Observe that for any N,p € N U {oco}, functions in
Siv’p (I x G) have compact supports in I x G, whereas functions in
CP(I — SN(G)) need not. Nevertheless, by definition, being T/(I x G)-
Siv’p(l x G)-hypoelliptic is equivalent to being 77(I x G)-CP(I — SN(G))-
hypoelliptic. The same is true for C- and T-type spaces.

The main results of this paper regarding hypoellipticity are summarized
in the following theorem.

THEOREM 3.5. Let (G,v) be a compact connected metrizable group with
normalized Haar measure v, let I C R be an open interval. Let (uf)io be
a symmetric central Gaussian convolution semigroup on G with generator
—A and write A = =Y X? for some special projective basis X = {X;}iez.
Suppose (uf)i=o satisfies Property (CKx). Let L be any form-comparable
perturbation of A in the sense of (2.3). Then the parabolic operator O+ L is
TA}L-G-hypoelliptic. Here & can be TAN”’, Siv’p = Sg’p, Cg’p, where N,p €
N U {oo}; all spaces are on I x G.
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REMARK 3.6. Together with Remark 3.4, Theorem 3.5 implies that L is

A.r(I x G)-C(I x G)-hypoelliptic, and more generally, L is T} ; (I x G)-
CP(I — CY¥(G))-hypoelliptic for N,p € NU {oo}.

REMARK 3.7. Note that in Theorem 3.5, the only T-type space we con-

sider in hypoellipticity is the Ta space; our proof does not cover the Ty and
TA,L cases.

Recall that given A = — 3" XZ-2 , all other sub-Laplacians on G are of the
form Ly = — ) a;;X;X; for some matrix A = (a;;); jez. The next example
provides a simple well-known condition on the matrix A such that L4 is a
form-comparable perturbation of A in the sense of (2.3).

ExAMPLE 3.8. For any number 0 < € < 1, we say that a matrix A =
(aij)i7jez is e-diagonally dominant if for any ¢ € Z,

e\aii| > Z ]aij\.

J#
Let (G,v) be a compact connected group and A = =3 X2 be a bi-
invariant Laplacian on G as before. Let L4 := — Ei,jeI a;; X; X be a Lapla-

cian on G where A = (a;;); jez is an e-diagonally dominant matrix for some
0 < e < 1. Then L4 is a form-comparable perturbation of A. Theorem 3.5
applies if (4 )¢~ satisfies Property (CKx).

4. Proof of Theorem 3.5: properties of the perturbed heat ker-
nel. In this section we prove that certain regularity properties of the heat
kernel are preserved by form-comparable perturbations of bi-invariant Lapla-
cians. These results are useful in the proof of Theorem 3.5 and are interesting
in themselves. For simplicity we write T, for TAO?L.

THEOREM 4.1. Let G be a compact connected metrizable group. Let
(1 )0 be a symmetric central Gaussian semigroup on G with genera-
tor —A. Assume that (u )0 admits a continuous density function, denoted
again by utA. Then for any left-invariant Laplacian L that is form-comparable
to A, the corresponding semigroup (ul)i=o admits a contmuous densz'ty func-
tion (denoted again by ul), and the density functions puf and uf both belong
to C*°((0,00) = Ta,L(G)).

Note that by Theorem 4. 1 for any bump function b(t), say in C2°((0,1)),
the product functions b(t)uf* and b(t)uF belong to Ta ((0,1) x G).

Proof of Theorem 4.1. We first show that uf* € C*((0, 00) — TA,L(G)).
For convenience, we sometimes write the density function pf (z) as u?(t, x).
Let {X;}iez, {Yi}ier be two projective bases such that A = — > X2 L =
~3V2 By [4], uf € C>((0,00) — Ta(G)). Because the seminorms of Tx f,
can be given using either {X; };ez or {Y;}iez (see Remark 2.4), for simplicity
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of notations we use {Y;};er here, and because dyuf* = —Auf in C(G), to
show that uf* € C=((0,00) = Ta rL(G)), it suffices to show that for any
N,p € Nand any ¢t > 0,

MN@Puf) = sup sup sup (Z | PP (2)| ) < 0.
k,meN zeG AeA(k,m) leTk
k-+2m<N

We now compute PL pi(z) = LAY, LM - Y, LM (z). First, let e :=
2k+1 For any fixed a with 0 < a < eC~! = m (C asin & < CEn),
we have Eca_qr > 0EA for some small 6 > 0. Thus as A commutes with L,
p can be decomposed as

A 1—€)A A—
e

Because ,utA commutes with any function in convolution,
Vi, LM = Y, (% s gt l s o “L>
= Y (! 720N A s Dt )
_ Mgl 2¢)A *MEAfaL " LAkM?L * lek eA
So
I\
PL :U*tA( ) L)\OYllL)\1 ’ ”YlkL)\k/itA(w)
— L/\OY L)q . '}/EkflL)\kil(ui(fl_QE)A % ,LLEA al L)\k aL * }/lk €A)<I')
— M;A al L)\kM?L " szugA " (L/\())/'ZIL)Q . YlkilLAkilugl 2E)A)<I')
Repeating this decomposition process k times, we get
P eA—
(41)  PRpit (@) = (g2 s LM gt 5 Y s
o (g7 LM R Y ) w T L0 ().

(1@ R) = 1Pt @)l

€Tk

i.e., the [? norm of the Z*-indexed vector (PL’)‘,utA(:E))., we use the following
bound: for any [? vector functions u(z) = (u;(x));, v(x) = (v;(z));, where
u;,v; € C(G) for each i, 7,

(4.2) [usv(z)[z < (full2 « [[v];2)().
To see this, we apply the Minkowski inequality twice:

e v(a) % = Z(Zm (@) ?)
=3 ik v @R < Dl ¢ [vlie(@)? < (alle [Vl (@)

To estimate
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Repeatedly applying (4.2), we get

.7/\ A
(4.3) (1P pi () [l
S 2 R (O Tt TH R T A Tl
* (Y ) Nl 5 28 | LR (2),

where each component is a continuous function on (0,00) x G. The same is
true if we replace p2 L, u@t | 154 in (4.3) by any of their time derivatives.
Hence MY () = MY (G, 0P u) < oo for any N,p € N and any ¢ > 0,
and i belongs to C=((0,00) — TaL(G)).

Finally, by decomposing the semigroup (uf)s~¢ into convolutions simi-
larly to the above we find that (uf)s~o admits a continuous density func-
tion which further belongs to C*°((0,00) = Ta,.(G)). For example, for any
k,n € N, similar to (4.1), we can fix some 0 < 8 < ¢/2 (c as in c€x < &)
and decompose as follows:

(44) LYY, LM Y, LM A"k

17 1
_ L/\OY'llL)q . sz(AnlutﬁA % ,UthL BA « L)\k/,LfL

)
1A lr_pA ir 1
= Anﬂtzﬁ % HtQ B % LAkMtQ * LAOYllLAl . }/lk_lL)\k,llutg

The last term is then in the form of (4.1). We can thus bound the terms
(> iezr \Pé’)‘AnﬁfutL(x)\Q)l/Z as was done for uf.

Next we show that u) satisfies similar off-diagonal Gaussian estimates
to those for uf'; the latter are obtained in [4].

BA

PROPOSITION 4.2. Let G be a compact connected metrizable group. Let
(MtA)t>0 be a symmetric central Gaussian semigroup on G with generator —A.
Suppose (uf)i=o satisfies Property (CKx). Let L be any form-comparable
perturbation of A. Then for any compact set K C G with e ¢ K, and any
T>0,NeN, >0, A a>0,

eAML(onf)

(4.5) Oi‘tJETTM]AV,L(K, pt) < +oc.

Here My (t) := log ut(e).
Proof. As in (4.4), (4.3) of the previous theorem, the terms

1/2
(1P A @) = (P A ).
lezk
are bounded above by convolutions of terms of the form |A"u?|, | DLA™u? |
(equivalent to |DLA™uP| A), |LM pF ()|, and pfL=4(z), where 6, € € R are
such that &y _.a is comparable with £4. The terms utA, uk, qu_EA satisfy
the following estimates.



PERTURBATION RESULTS FOR LEFT-INVARIANT LAPLACIANS 119

(i) By |4, Section 4.2], for any compact set K C G with e ¢ K, and any

T>0,NeN >0, A a>0,
AMA(OLt)
(4.6) sup tiMA (K, uf) < +o0,
0<t<T

where Ma(t) := log u(e).

(ii) For the term uF, by Remark 3.2, pf satisfies Property (CKx) and
pt(e) < qu(e) for some > 0. Then

M (t) = log b (e) < log 1f (e) = o(1/2).

By [2, Section 3| (see also [4, Theorem 4.8]), for any ¢ € B(G) with
Dyl <1, |Ly| <1,

cr(i(x) - 1/1(6))2}

(o) < exp { by (o) - LA

for some ¢y, > 0. It follows that for any compact set K with e ¢ K,

lim sup pl(z) = 0.
t—0 zeK

Further, by [13, Theorem 4|, for any a € N,
(4.7) lim sup |08 uF ()] = lim sup |Luk (z)| = 0.
t—0zeK t—=0xeK

L—eA

(iii) Applying the same arguments to ,ut as to uf (because Epr_ca is

comparable to E4) gives
(4.8) lim sup |pfL=4(z)| = 0.
t—0 zeK
As discussed above, each t=7eAMe(o) (S, | PR A™ iE (2)|2) 12 is bounded
above by a convolution of terms all of which satisfy the off-diagonal bound
as described in Lemma 4.3 below (see (4.6)—(4.8)). The desired bound (4.5)
thus follows from Lemma 4.3. u

LEMMA 4.3. If two families of functions (u¢)i>o and (v¢)i=o on G both
satisfy the following off-diagonal bound: for any compact set K with e ¢ K,

lim sup u¢(z) = lim sup v(x) = 0,
t—0 zeK t—0 zeK

then us x vy also satisfies this off-diagonal bound.

Proof. Let V; be an open neighborhood of e with V; N K = ). For any
e K, let U, be a small open neighborhood of x that is away from V;. Let
o(US) ™t ={zy~! |y € UE}; then 2(US) ! is away from e, i.e. z(US) ™1 C (U)®
for some open neighborhood U, of e. Let V,, € U, be a smaller open neigh-
borhood of z. We may pick U, such that for any & € V,, 2(US)~! C (U,)°.
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For any such Z (i.e., Z € V),

(4.9)  urxv(T) = S u(Fy~Hve(y) dv(y)
e
= | w@ Hu@de@)+ | w@y ey dey)
ye(UI)C yeU,
< sup |w(a)] - [[vefloo - (G) + [utlloo - sup [ve(y)| - v(G).
aG(Ue)C yeUI

Because K is compact, using some finite collection {V,, }1<n<n, to cover K,
with each z,, € K and Vj,, chosen in the above way, the estimate (4.9) then
implies that

lim sup |ug * ve(z)| = 0. »
t—0zxeK

REMARK 4.4. As a consequence, for any 0 < a < b < oo, any A, a,T > 0,
o >0, N,p € N, and any compact set K with e ¢ K,

exp {AMp (aT)}

0<r<T T

MY?((ar,br) x K, p*) < oc.

5. Proof of Theorem 3.5: hypoellipticity. We now use results in the
previous section to prove hypoellipticity properties of the parabolic operator
¢+ L. By definition of T} ;-&-hypoellipticity, for any U € T} ; (I x G) and
F € B'(I x G) such that (0;+ L)U = F, for any open subset I’ x 2’ C I x G
such that Y F € & for any ¢ € B.(I' x £2'), we need to show that U € &
for any ¢ € B.(I' x ).

Recall that in Theorem 3.5, & can be TAN P Siv’p ) Cg’p , where all spaces
are on I x G, and X = {X,},cr is any special projective basis such that
A= -3 X2 We prove the theorem for the case

G =T x G) = Ta(l x G);

the proofs for the other cases are very similar.

Fix any ¢ € B.(I' x £2'). To show that YU € Ta(I x G), we construct
an approximation sequence in Ta(I x G). Let Iy x 2, I1 x §21, Is X {29 be
open sets such that

Supp¢C10XQ[]@IlXQl@IQX.QQ@I/X.Q/.

Pick some n € B(I x G) with n =1 on I; X {21 and suppn C Iy x 2. Fix
some bump function p € C2°((1,2)) that satisfies p > 0 and {; p(t) dt = 1.
For any 7 > 0, let p,(t) := (1/7)p(t/7). Then p, is supported in (7,27). Let
¢p be a positive number to be determined in Lemma 5.1. For any (o, 7) €
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[0,1] x [0, co] \ {(0,0)}, define
(Pap?) * (NU) * (prp*)  when (a,7) € (0,1] x (0, ¢,
(,7,177 = Uor = (nU) * (prp) when 7 >0, a =0,
[7&70 = (pap®) * (nU)  when o > 0, 7 = 0.
Recall that we use x to emphasize that the convolution is in time and space
(see (2.2)). The two-parameter sequence {¥)Uq r}q,r is our approximation
sequence. The following lemma shows that YU, » € Ta(I xG) for all (o, 7) €
[0,1] > [0, co] \ {(0,0)}-
LEMMA 5.1. For any W € TAL(I x G) with compact support in I x G,
there exists some O < ¢ < 1 such that for any fired 0 < 7 < ¢y,

Wy =W x (prpl) € Ta(I x G).

Proof. First note that p,u’ € Ta((0,2) x G). The convolution W, can
be interpreted as a continuous function

Wr(s,x) = W((t,y) = pr(s — )i (z7'y))
= W((t,y) = pr(s — t)us_o(y "))
So the function (shift of the time by 7/2 for u”)
wr iR G =R, (s,2) = W((ty) = prls =k, p(y~ '),
is continuous. In fact, w, € O (R — C(G)). As uk , = usLithﬂ * M£/2,

Wy (s,@) = W ((y) = prls = ) Sl oy~ a2 )k p(2) d(2) )
G

= (W 9) o prls — O, oy 257 ) ek (2) d(z)
G
= (wr(s,") * iy po)(2)-
Because 1“7-/2 € Ta(G), the convolution W is in Tao(R x G). When 7 > 0 is
small enough, W € TA(I x G).
REMARK 5.2. The same proof shows that W x (pou?) = (pap?) x W €

TA(RxG). The above method further shows that Wx(pau”) and W (pau?)
belong to Ta,.(R x G), but this fact is not needed in the proof below.

REMARK 5.3. It is not clear if W % p,u” converges to W in Th L(I x G)
(which is convergence in a very weak sense), because for any ¢ € Tx L(I x@G),

(W prp®) () = W (g * (pr12")),

and it is not clear if ¢ (p,j1l) converges to ¢ in T 1,(I X G). See Section 2.6.
For this reason, we use the two-parameter approximation sequence {U, ; }
to approximate YnU = ¥U.
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We now take the following steps to prove the convergence of the approx-
imation sequence {YUqs. r}a r-

STEP 1. For any fixed 7 € (0, co], think of 11}(7&77- as a Ta(I x G)-valued
function in a. Then

YUy € C([0,1] = Ta(I x @Q)).

To prove this, it suffices to check that ﬁom is continuous at o« = 0. This is
true because pou? * (U) x prp) = (U) % prp™ as o — 0 in Ta(I x G).

STEP 2. As 7 — 0, the sequence {wﬁa77}7>0 converges uniformly to
some function G, in C([0,1] — Ta(I x G)), because for any N,p € N,

sup  sup Mg’p(lo x £, 87(7%7) < sup M]AV’p(IO x £, (97[7077) < 00.
0<a<1 0<7<cg 0<7<co

We prove this fact in Proposition 5.4 below.

STEP 3. For0 < a <1, G, = ¢ﬁa,0, because (papu? * (nU)) * prpt —
patt® x (nU) in C(I x G) as 7 — 0.

STEP 4. Because utA commutes with any function in convolution, we
have Uy — nU in T (I x G) as a — 0. Hence Gy = ¢ynU = yU, and
YU € Ta(I x G).

To complete the proof of Theorem 3.5, it remains to verify Step 2, which
we address in the next proposition.

PROPOSITION 5.4. Under the hypotheses of Theorem 3.5, using the no-
tations introduced at the beginning of this section,

sup M]AV’p(Io x £, 8Tﬁgﬂ-) < o0.
0<7<cg

Proof. For short we write (,NIT for (,NTOJ. By computation, 0, p(s)=—0sp-(s)
where p,(s) := (s/72)p(s/7), and

87_([77-(8,.%')) = U((tay) = _n(tv y)asﬁT(s - t):usL—t(x_ly))
= U(—n0s(pr(s — ')Eac—lﬂsL—~)) +U(np-(s — ')asﬁx—lﬂsL—~)-

Here L represents left-translation, i.e., for any x € G and any function f,
L. f(y) = f(zy). In the first term, rewrite the function inside U as

—n(t,y)0s(pr(s — t)'cx—lﬂg—t(y))
= 0(n(t, Y)pr (s — 1) Lomrp1s—o(y)) — Oen(t,y) + pr(s — ) Lomr iy (y)-
For the second term, use 9sL,—1pl ,(y)=—L, 1 Luk (y)=—LLy1pl ,(y).
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= —((0 + L)U) (npr(s — ) Lo i)

~ U0 prls = VL1 ) + (MLU = L(U)) (pr(s — ) Lp1p1s)
= I1(s,x) + I (s,x) + (s, x).

Here 01n(t,y) := 0m(t,y), the partial derivative of  with respect to the first
variable. We estimate each part separately.

Estimate of I.. For

I (s,2) = —((3 + L)U) 0 (s — Lqmrib) = —(F) % (") (5, ),

to use the condition that nF € Ta(I x G) with support in I x {25, we use a
trick mentioned in [6, 7| which works as follows. Because A is bi-invariant,
A= - X?= -3 X2 In [6] it is shown that (seec Lemma 4.1 and the
proof of Lemma 5.2 there)

1/2
MA(f) =sup sup (DT 1Ky, - X, A (@)?)
ze€G k,meN &
k+om<nN €T

=sup sup (Z \le "'Xlkﬂmf(x)fz)
z€G k,meN leTk
k+2m<N

1/2

The same is true for the M]AV’p norms. Hence for any 0 < 7 < ¢g, using the

“right-invariant” expression of M]AV’p , we get
N N _ N
MEP (L) < MEP(F) 5 ot < 2M57 (nF).

Estimate of II.. To estimate Miv’p(lo x (2, II;), as in the proof of
Lemma 5.1, let

(51)  ur(s,w) = U((t,) = Dunlt, 9)pr(s — O, ly™')).
Then
I (s,x) = —u(s,-) * uf/Q(x).

Note that s € Iy, whereas for the function 9;n(t,y)p-(s —t) to be nonzero,
we need t € I and 7 < s —t < 27. So

MAYP(Iy x 20, II,) =0 for 0 < 7 < 70,
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where 79 := min {d(1y, I{)/2, co}. For 19 <7 < ¢p, as u, € C°(R — C(Q)),
by Minkowski’s inequality,

MAYP(Iy x 2, II,))
PLALE, 12
< sup sup sup {|8 Ur| * <Z| 17 o] ) (a:)}

0<a<p XeA(k,m) (s,x)elxG
k+2m<N lezt

Because U € T) (I x G), there exist some C' > 0 and N',p’ € N that
depend on N, p, U, supp 7, p, such that for any 0 < a < p,

|05 ur || oo (1xc) < C

N N/7 /
MY P (MY P ((r/2, 37/2) x G, pb).
Here the term 7 is from taking derivatives of p,. Hence

sup MAP(Io x 20, II,) = sup MAYP(Io x £, II,)
0<7<co To<7<Co
CV(G) N’ p' N [ (To 3co
p My (m)My i 55 ) X6 ph) sup MX (k) <
0

T0<7<co

Estimate of IIL.. For the last part III,, let V := nLU — L(nU). Then V
is supported away from I; x 21, and

HI(s,x) = V(Ppr(s — ) Lyprp” )

for some hollow-shaped function @ € B(I x G). More precisely, for some
J1 X O1 and Jy x Oy satisfying

IOXQO@J1><91@J2><@2@11><(21,
@ satisfies
supp@ CI' x '\ Jy x ©1, ®=1only x 25\ Jo X Os.
As in the decomposition of II., IIl. can be written as the convolution
I (s, ) = (V) % 51 £ jott) (5, ) % (@),
where
((QS‘N/) * ﬁT'CfT/Z/'LL)(S? w) = V((t, y) = @)(tu y)ﬁT(S - t),llél_t_q_/2(y71w)).
So by Minkowski’s inequality,

MAYP(Iy x 0, III,)

1/2
< sup {’8’1 (@V)*PTK—T/ZM (Z ’PZA £/2 ) ( )}’
(s,x)elox 20 leTk
AeA(k,m)
a,k,m

where the supremum is over {(a,k,m):0 < a < p, k+2m < N}. Let Oy
be an open set satisfying 29 € ©g € @;. We split the convolution into two
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parts,
0@V 5 e popt (5. ) (3 1P L of?) @)
leTk
a e = plA L 142\ 2
= [ 102(@V) % prL o) (5. 9) | (D0 1P )y 2) ) ()
6o leTk
~ 1/2
+ §10@V) x il ot (5, )| (S0 NP L) 0) ) ().
Ch leTk

The first integral is bounded above by

v(G) [[(BV) % ﬁTﬁ—T/wL||Cp(10—>Lw(@o))MAV(M£/2)
Ci N -

o Ma R (7/2,37/2) x (64) 100, )M (1))

for some C7 > 0 and Ny, p; € N that depend on N, p, p, P, and the distribu-

tion V' (in other words, on U). Here for any 0 < 7 < 1,

N, L /eAM(OéT)
MA (IU’T/Q) S Cl 7_N

for some constants C}, o, A > 0, M (s) := log ¥ (e). See the proof of Propo-
sition 4.2, or [4, Theorem 4.8] and [13, Theorem 3|.
The second integral is bounded above by

<v(G)

V(@ BV) % prLr oIl ev 1y 1o () MA ((66) ™" 20, ik 5)
Cq

TPh1

< V(@)= MY ((7/2, 37/2) x G, p) MY ((05) ™ 20, pLy).

Because (0§)7160y and (©§5)~12 do not contain e, applying the off-
diagonal Gaussian estimate of uf with 7/2 < ¢ < 37/2 in Proposition 4.2
(see Remark 4.4) then shows that

sup MYP(Iy x 29, 1I,) < o0
0<7<co

Combining the estimates for I, II, III, we conclude that

sup M]AV’p(IO X Qg,@TﬁT) <00, m
0<7<co

6. Appendix. In this appendix we prove some equivalence relations
between function space (semi)norms. The following lemma justifies the use
of only {X;}icz in the definition of the MXL norms in (2.4).

LEMMA 6.1. Let G be a compact connected metrizable group as before.
Let L1, Lo be two form-comparable left-invariant sub-Laplacians on G. Let
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{Xi}iez, {Yi}iez be two projective bases such that
Y LY
i€l i€T
Then for any k,p € N, the (semi)norms Sﬁp and Sﬁ;p are comparable.
Proof. Under the projective basis {X;}iez, Lo = _Zijel a;j X;X; for
some real symmetric nonnegative coeflicient matrix A = (a;;); jez. Because

Ly and L9 are form-comparable, we have ¢, < &, < C&p, for some
¢, C > 0, which is equivalent to the condition

(6.1) ) G <D ai&g<Cy &

for any & = (&)icz € RE). .

Because { X, };c7 is a projective basis, there exists a matrix (T;)i,jeI such
that Y; = >, 7 TleZ Define a map T : R®) — R@) as

T(&) = T((&)icz) = (ny)jez, where n;=> Tj&.
i€l
Then L = — Y a;;X;X; = — Y, Y implies that
(6.2) > e =Y (X Te) = IT©
1,j€L JEL €T

and (6.1) is thus equivalent to
(6.3) ¢ < Tl < C.

To show the equivalence of the two (semi)norms Si’lp and Sf’f on I xG it

suffices to show the equivalence of S fl and S §2 on G. The proof is essentially
a change of variable for the k-linear form

(Xiy oo Xiy) = DEF(Xay, o, X)) = Xy - X f (@),
More precisely, for any f € B(G) and any 1 <r < k,

(2w vis@p) "

J1seensdr—1sJr+15e-050k  Jr

(T IEnveeeevse))”

Jlseeesdr—10r4150Jk  Jr i

/
(X I Y XY V@D )

J1reeosdr—10r+15:0k

1/2
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In the last line, (Yj, ---Yj;, _, X;Y} ., --- Y}, f(x))ier denotes the vector in-
dexed by 4 with entries Yj, ---Y; _, X;Yj . Y}, f(z) (the other indices
JlyevsJr—1, Jr+1s-- -, Jk are fixed). Hence by (6.3),

(3 Wave- is@P)”

JiseeasJk

1/2
o Y 0 X Y f@ilR)
Ty Jr—1Jr4 15050k
Repeating this step gives
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Similarly we have
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So thenorms S 21 and S¥ ,» and with time derivatives added in, the (semi)norms
Si’lp and SE’QP, are equivalent respectively. =

When L; = A is bi-invariant and Ly = L is some left-invariant form-
comparable perturbation of A, by repeating the proof of the above lemma
with A and L inserted in the differential operator chain, we conclude that
the norms defined by taking supremum of any of the following are equivalent:

i) 2 |L>‘0X11L)‘1X12L>\2 .. .XlkLAkAbfP)l/Z;
(i) (> |L>\oyllL>\1ylzL)\z e szL)"“Abf|2)1/2;
(i) (3 [L20Xy, Yy LM X3, Yy LA -+ X, Yy LM AP £[2)1/2)
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