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Abstract. We study left-invariant Laplacians on compact connected groups that are
form-comparable perturbations of bi-invariant Laplacians. Our results show that Gaussian
bounds for derivatives of heat kernels enjoyed by certain bi-invariant Laplacians hold for
their form-comparable perturbations. We further show that the parabolic operators asso-
ciated with such left-invariant Laplacians, in particular, with the bi-invariant Laplacians,
are hypoelliptic in various senses.

1. Introduction. Let (G, ν) be a compact connected metrizable group
where ν is the normalized Haar measure. The main interest of the results
developed here is for infinite-dimensional groups G, such as infinite products
of compact Lie groups. Symmetric Gaussian convolution semigroups of mea-
sures on G exhibit a rich variety of behaviors [1, 2, 3]. In [4], Bendikov and
Saloff-Coste showed that (1) when they exist, continuous density functions
of symmetric central Gaussian convolution semigroups (µt)t>0 of measures
on G admit spatial derivatives of all orders in certain directions, and (2) the
derivatives satisfy certain Gaussian upper bounds if the density function sat-
isfies limt→0 t log µt(e) = 0 (referred to as the (CK∗) condition). The same
authors studied various function spaces on G with norms involving different
combinations of derivatives, and examined hypoellipticity properties related
to the generators of such Gaussian semigroups. See [6, 7]. In these works,
the semigroup being central, or equivalently, its generator being bi-invariant,
plays an essential role.

In the present paper we consider symmetric (noncentral) convolution
semigroups on G (referred to as perturbed semigroups) that are comparable
to symmetric central Gaussian semigroups in the sense that their associated
Dirichlet forms are comparable.
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More precisely, any generator −∆ of a symmetric central Gaussian semi-
group (µ∆t )t>0 on G is a bi-invariant operator of the form −∆ =

∑∞
i=1X

2
i ,

where {Xi}i forms a basis of left-invariant vector fields in some proper sense
(i.e. a projective basis). In such a projective basis, the generator −L of any
symmetric Gaussian semigroup (µLt )t>0 is of the form −L =

∑
i,j aijXiXj

(see [10, 11]). This operator L is only left-invariant in general. If further the
following relation holds between the Dirichlet forms associated with ∆,L:

cE∆ ≤ EL ≤ CE∆,

for some c, C > 0, we call L a form-comparable perturbation of ∆. In this
paper we only consider those L that are form-comparable perturbations of
bi-invariant Laplacians ∆.

We show that when the semigroup µ∆t admits a continuous density func-
tion, denoted again by µ∆t , so does the semigroup µLt , and the density func-
tions µ∆t and µLt both belong to certain smooth function spaces associated
with ∆ and L (Theorem 4.1). We then show that when µ∆t further satisfies
the (CK∗) condition, (1) both density functions and their derivatives satisfy
certain Gaussian estimates, and (2) both ∂t +∆ and ∂t +L are hypoelliptic
in various senses (Proposition 4.2 and Theorem 3.5). As in [7], our proof for
the hypoellipticity properties follows the general heat kernel/semigroup ap-
proach by Kusuoka and Stroock [16], with some additional ideas to overcome
the difficulties brought by dropping the bi-invariance assumption. Note that
in the bi-invariant operator case, the hypoellipticity of ∂t + ∆ is new even
though the hypoellipticity of ∆ has been studied in [7, 9]. For a thorough
discussion of hypoellipticity in this context, see [9].

We organize this paper as follows. In Section 2 we briefly introduce the
setting and fix notations. In Section 3 we present the main theorem on
hypoellipticity, Theorem 3.5, and give an example. Sections 4 and 5 are
devoted to the proof of the hypoellipticity theorem, where other theorems
regarding heat kernels are presented first and they constitute an important
part of the proof. Some details are postponed to the Appendix.

2. Setting and notation. This section contains a minimal introduction
to the setting of our study. For more details, see [3, 5, 8] and the references
therein. Write N := {0, 1, . . .}.

2.1. Basic structures. In this entire paper, let G be a compact con-
nected metrizable group with identity element e. The group G can be viewed
as the projective limit of a sequence of Lie groups [14, 15],

G = lim←−
α∈ℵ

Gα.
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Here the index set ℵ is finite or countable; Gα = G/Kα where {Kα} is a
decreasing sequence of compact normal subgroups with

⋂
α∈ℵKα = {e}; for

α ≤ β, the map πα,β : Gα → Gβ is the projection map. Denote the projection
map G→ Gα = G/Kα by πα.

The Bruhat test function space B(G) is defined as

B(G) := {f : G→ R : f = ϕ ◦ πα for some α ∈ ℵ, ϕ ∈ C∞(Gα)}.
Here C∞(Gα) denotes the set of all smooth functions on Gα; B(G) is in-
dependent of the choice of {Kα}α∈ℵ [12, 7]. The Bruhat test functions are
generalizations of cylindric functions on the infinite torus T∞ (i.e. smooth
functions that depend on only finitely many coordinates). Let B′(G) be the
dual space of B(G) with the strong dual topology; elements of B′(G) are
called Bruhat distributions. In Section 2.4 we introduce more smooth func-
tion spaces on G and their dual spaces as distribution spaces.

Lastly, we recall the following definitions of convolutions.

• The convolution of any two Borel measures µ1, µ2 on G, µ1 ∗ µ2, is the
measure defined by

µ1 ∗ µ2(f) =
�

G×G

f(xy) dµ1(x) dµ2(y), ∀f ∈ C(G).

• The convolution of any two functions f, g ∈ C(G) is the function given by

f ∗ g(x) =
�

G

f(xy−1)g(y) dν(y) =
�

G

f(y)g(y−1x) dν(y).

• The convolution of a function f ∈ C(G) and a Borel measure µ is defined
as

µ ∗ f(x) =
�

G

f(y−1x) dµ(y), f ∗ µ(x) =
�

G

f(xy−1) dµ(y).

• The convolution of a function f ∈ B(G) and a distribution U ∈ B′(G) is
defined by

(f ∗ U)(ϕ) = U(f̌ ∗ ϕ), (U ∗ f)(ϕ) = U(ϕ ∗ f̌), ∀ϕ ∈ B(G).

2.2. Gaussian semigroups and generators. Recall that a family
(µt)t>0 of probability measures on G is called a symmetric Gaussian convo-
lution semigroup, if it satisfies the following properties:

(i) (semigroup property) µt ∗ µs = µt+s for any t, s > 0;
(ii) (weakly continuous) µt → δe weakly as t→ 0;
(iii) (Gaussian) t−1µt(V

c) → 0 as t → 0 for any neighborhood V of the
identity e ∈ G;

(iv) (symmetric) µ̌t = µt for any t > 0; here µ̌t is defined by µ̌t(V ) =
µt(V

−1) for any Borel subset V ⊂ G.
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For t > 0, set

Htf(x) := f ∗ µ̌t(x) =
�

G

f(xy) dµt(y), ∀f ∈ C(G),

and then extend it to L2(G). This formula defines a semigroup of self-adjoint
operators on L2(G). Let −L be the (L2-)infinitesimal generator of (Ht)t>0,

−Lf := lim
t→0

Htf − f
t

,

with domain D(L) equal to the space of functions in L2(G) for which this
limit exists in L2(G).

2.3. Projective bases and sub-Laplacians. The Lie algebra of G
(denoted by g) is defined to be the projective limit of the Lie algebras of Gα

(denoted by gα), with projection maps dπα,β for α, β ∈ ℵ, α ≤ β. A family
{Xi}i∈I of elements of g is called a projective basis of g, if for each α ∈ ℵ,
there is a finite subset Iα ⊂ I such that dπα(Xi) = 0 for all i /∈ Iα, and
{dπα(Xi)}i∈Iα is a basis of the Lie algebra gα. The Lie algebra g admits
many projective bases [11, 15]. For future use, let

R(I) := {ξ = (ξi)i∈I : all but finitely many entries are zero}.
For a fixed projective basis X = {Xi}i∈I , to any infinite real symmetric

nonnegative coefficient matrix A = (aij)I×I , we associate the second-order
left-invariant differential operator (acting on B(G))

LA := −
∑
i,j∈I

aijXiXj .(2.1)

Here A being real symmetric nonnegative means that aij = aji are real
numbers, and

∑
aijξiξj ≥ 0 for all ξ = (ξi)i∈I ∈ R(I). We refer to these

differential operators as sub-Laplacians. The matrix A can be degenerate.
When A is positive definite, we call LA a Laplacian.

There is a one-to-one correspondence between symmetric Guassian con-
volution semigroups (µt)t>0 and infinite real symmetric nonnegative matri-
ces A [7, 10]. This correspondence is given by the fact that the infinitesimal
generator of (µt)t>0 (and of the corresponding semigroup (Ht)t>0) is of the
form −LA for some matrix A. More precisely, this generator, computed on
Bruhat test functions, has the form

lim
t→0

Htf − f
t

= −LAf =
∑
i,j∈I

aijXiXjf.

Conversely, given a sub-Laplacian L, there is a semigroup that we denote
by (HL

t )t>0, whose generator agrees with −L in the above sense. The sym-
metric Gaussian semigroup corresponding to (HL

t )t>0 is denoted by (µLt )t>0.
The semigroup (HL

t )t>0 is Markov and commutes with left translations. See
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e.g. [7] for more details. Let (EL,FL) denote the Dirichlet form associated
with (HL

t )t>0 with domain FL.

2.4. Smooth function spaces and distribution spaces. Let I ⊂ R
be an open interval. Corresponding to B(G) defined in the first subsection,
define the Bruhat test function space on I ×G, B(I ×G), as

B(I ×G) :=
{f : I ×G→ R : f = ϕ ◦ π̃α for some α ∈ ℵ, ϕ ∈ C∞

c (I ×Gα)}.
Here π̃α : I × G → I × Gα, (t, x) 7→ (t, πα(x)), is the projection map, and
C∞
c (I×Gα) is the set of smooth functions on I×Gα with compact support.

In the following we review some norms and seminorms and consider the
function spaces as completions of B(G) with respect to these (semi)norms.
See [6] for detailed discussions of these function spaces. Along the way we
define the corresponding spaces on I × G; they serve as generalizations of
the classical test function space D(Rn) to spaces of test functions in I ×G.

Remark 2.1. We only define the “smooth” function spaces in the sense
that the completions are with respect to (semi)norms of all orders. Spaces as
completions with respect to (semi)norms of orders up to some k ∈ N can be
correspondingly defined, and denoted accordingly with the “∞” superscripts
replaced by k.

Spaces C∞X (G) and C∞X (I×G). Given any projective basis {Xi}i∈I and
multi-index l = (l1, . . . , lk) ∈ Ik where k ∈ N, for any f ∈ B(G), denote

X lf(x) = Xl1 · · ·Xlkf(x) =: Dk
xf(Xl1 , · · · , Xlk).

For k = 0, this is taken as f itself. Let C∞X (G) be the completion of B(G)
with respect to the seminorms{

∥X lf∥L∞(G) = sup
G
|X lf | : l ∈ Ik, k ∈ N

}
.

Correspondingly, for any open interval J ⋐ I, let C∞0,X(J × G) be the
completion of B(J ×G) with respect to the seminorms{

∥∂mt X lf∥L∞(J×G) = sup
J×G
|∂mt X lf | : l ∈ Ik, m, k ∈ N

}
.

Here the subscript “0” refers to the vanishing of the function and all its
derivatives on the boundary ∂J . To clarify notations, if f = ϕ ◦ π̃α is as in
the definition of B(J ×G), then

∂mt Xl1 · · ·Xlkf(t, x) = (∂mt dπα(Xl1) · · · dπα(Xlk)ϕ)(t, πα(x)).

The spaces are equipped with the topology defined by the seminorms
above. Note that for any two open intervals I1 ⋐ I2, functions in C∞0,X(I1×G)
can be naturally extended by 0 to I2×G, thus C∞0,X(I1×G) ⊂ C∞0,X(I2×G).
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Finally, define C∞X (I ×G) as the inductive limit of {C∞0,X(J ×G)}J⋐I .

Spaces S∞X (G) and S∞X (I × G). For any k ∈ N, f ∈ B(G), define a
function |Dkf |X : G→ [0,+∞] by

|Dkf |X(x) = |Dk
xf |X

:=
(∑
l∈Ik

|Dk
xf(Xl1 , . . . , Xlk)|

2
)1/2

=
(∑
l∈Ik

|X lf(x)|2
)1/2

.

When k = 1, |D1
xf |2X =

∑
i∈I |Xif(x)|2 is the square of the gradient of f ,

often denoted by Γ (f, f) in the literature (see e.g. [6]). Let S∞X (G) be the
completion of B(G) with respect to the norms {Sk

X}k∈N defined as

Sk
X(f) := sup

0≤m≤k

∥∥|Dmf |X
∥∥
L∞(G)

= sup
0≤m≤k

sup
x∈G
|Dm

x f |X .

Remark 2.2. It is shown in [6] that for any two projective bases {Xi}i∈I
and {Zi}i∈I such that

∑
X2

i =
∑
Z2
i , for all x ∈ G and k ∈ N, |Dk

xf |X =
|Dk

xf |Z and Sk
X(f) = Sk

Z(f). In other words, the space S∞X (G) depends on
the projective basis {Xi}i∈I through its associated sum of squares operator

L = −
∑
i∈I

X2
i .

As {Xi}i∈I is taken as a projective basis, L is what we called a Laplacian ear-
lier. Below, we write Sk

L(f) = Sk
X(f), |Dk

xf |L = |Dk
xf |X , S∞L (G) = S∞X (G).

For any projective basis X = {Xi}i∈I and L = −
∑
X2

i , for any open
interval J ⋐ I, the space S∞0,X(J × G) = S∞0,L(J × G) is defined as the
completion of B(J ×G) with respect to the (semi)norms{
Sk,p
L (J ×G, f) := sup

0≤a≤p
sup
t∈J

Sk
L(∂

a
t f) = sup

0≤a≤p
0≤m≤k

sup
(t,x)∈J×G

|Dm
x (∂at f)|L

}
k,p∈N

.

Here writing J × G in Sk,p
L (J × G, f) is to clarify the set on which the

supremum is taken. The space S∞L (I × G) is defined as the inductive limit
of the spaces {S∞0,L(J ×G)}J⋐I .

Spaces T ∞
L (G) and T ∞

L (I ×G). It is not known if S∞L (G) is contained
in the C(G)-domain of L [6, p. 178]. There, to address this problem, the
authors introduced the space T ∞

L (G) which we now recall.
Fix any projective basis X = {Xi}i∈I and let L = −

∑
i∈I X

2
i . For any

k ∈ N and λ = (λ0, λ1, . . . , λk) ∈ Nk+1, and any f ∈ B(G), let

|Dk,λ
x f |X = |Dk,λ

x f |L :=
(∑
l∈Ik

|Lλ0Xl1L
λ1Xl2L

λ2 · · ·XlkL
λkf(x)|2

)1/2
.

The subscripts can be written as X or L because the quantity depends
only on the sum of squares associated with the projective basis X; see also
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Remark 2.2. Now we take the supremum over k and λ to build a norm. We
first introduce the following two abbreviations.

• For any l ∈ Ik and λ ∈ Nk+1, set

P l,λ
L f := Lλ0Xl1L

λ1Xl2L
λ2 · · ·XlkL

λkf.

For any bi-invariant Laplacian ∆, P l,λ
∆ f = Xl1Xl2 · · ·Xlk∆

λ0+···+λkf .
• For any k,m ∈ N, let Λ(k,m) denote the set of all possible (k + 1)-tuples

of integers that sum up to m, i.e.,

Λ(k,m) :=
{
λ = (λ0, λ1, . . . , λk) : λi ∈ N,

k∑
i=0

λi = m
}
.

Using these notations, for any N ∈ N, define

MN
X (f) =MN

L (f) :=

sup
x∈G

sup
k,m∈N

k+2m≤N

sup
λ∈Λ(k,m)

|Dk,λ
x f |L = sup

x∈G
sup

k,m∈N
k+2m≤N

sup
λ∈Λ(k,m)

(∑
l∈Ik

|P l,λ
L f(x)|2

)1/2
.

Define T ∞
L (G) as the completion of B(G) with respect to the norms

{MN
L }N∈N. For any open interval J ⋐ I, define T ∞

0,L(J×G) as the completion
of B(J ×G) with respect to the set of (semi)norms{
MN,p

L (J ×G, f) := sup
0≤a≤p

sup
t∈J

MN
L (∂at f)

= sup
a,k,m∈N
0≤a≤p

k+2m≤N

sup
(t,x)∈J×G

sup
λ∈Λ(k,m)

(∑
l∈Ik

|P l,λ
L ∂at f(t, x)|2

)1/2}
,

where N, p ∈ N. As before, the space T ∞
L (I ×G) is defined as the inductive

limit of {T ∞
0,L(J ×G)}J⋐I .

Distribution spaces T ′
L(G) and T ′

L(I ×G). Let T ′
L(G) and T ′

L(I ×G)
be the dual spaces of T ∞

L (G) and T ∞
L (I × G), respectively, equipped with

the strong dual topology. Recall that it means that for any U ∈ T ′
L(I × G)

and any precompact open subset J ⋐ I, there exist some C(J) > 0 and
N(J), p(J) ∈ N (written as N, p below) such that for any f ∈ T ∞

0,L(J ×G),

|U(f)| ≤ C(J)MN,p
L (f).

Remark 2.3. In this paper, we deal with distributional solutions U of
the heat equation (∂t+L)U = F . Because C∞X and S∞L may not be contained
in the domain of L, to make sense of LU we do not consider their dual spaces.
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To summarize, the above spaces on I ×G satisfy

B(I ×G) ⊂ T ∞
L (I ×G) ⊂ S∞L (I ×G)

⊂ C∞X (I ×G) ⊂ T ′
L(I ×G) ⊂ B′L(I ×G);

the same inclusions hold for the corresponding spaces on G.
By the previously recalled definitions of convolutions, the convolution of

any two functions f, g ∈ C(R × G) (at least one with compact support) is
the function given by

f ∗ g(s, x) =
�

R

�

G

f(t, z)g(s− t, z−1x) dt dν(z).(2.2)

Notation. To emphasize the difference between convolutions on G and
on I × G, in the rest of the paper we write ⋆ instead of ∗ for convolutions
involving both time and space. For example, we write f ⋆ g for (2.2).

We also use the following convolution. Let f be any function with the
property that f, f̌ ∈ T ∞

L (R×G), where f̌(s, x) = f(−s, x−1). Let U be any
distribution in T ′

L(I × G) with compact support in I × G. We may define
their convolutions as

(f ⋆ U)(ϕ) = U(f̌ ⋆ ϕ), (U ⋆ f)(ϕ) = U(ϕ ⋆ f̌), ∀ϕ ∈ T ∞
L (I ×G).

These convolutions are well-defined, because (1) both f̌ ⋆ ϕ and ϕ ⋆ f̌ belong
to TL(R×G); (2) as U has compact support in I×G, there is some function
η ∈ TL(I ×G) with compact support such that U = ηU .

2.5. Bi-invariant Laplacians and their perturbations. By defini-
tion, a symmetric Gaussian semigroup (µt)t>0 is called central if for all t > 0,
µt(a

−1Ba) = µt(B) for any Borel set B ⊂ G and any a ∈ G. Central semi-
groups commute with any other factor in convolutions. Their generators
are bi-invariant Laplacians. In this paper we use the symbol ∆ to denote a
bi-invariant Laplacian, and L for a general left-invariant sub-Laplacian that
may or may not be bi-invariant. As a bi-invariant operator, ∆ satisfies

∆Zf = Z∆f

for any left-invariant vector field Z ∈ g and any smooth function f ∈ B(G).
Let L,P be two sub-Laplacians. We say that L,P are form-comparable

perturbations of each other if their corresponding Dirichlet forms (EL,FL)
and (EP ,FP ) are comparable. That is, there exist c, C > 0 such that for any
f ∈ B(G),

cEP (f, f) ≤ EL(f, f) ≤ CEP (f, f).(2.3)

Note that (2.3) implies that FL = FP . In the present paper we study pertur-
bations of bi-invariant Laplacians; these perturbations have to be Laplacians
themselves.
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Given a bi-invariant Laplacian ∆ and a left-invariant Laplacian L, we
can mix them up to define the function/distribution spaces T ∞

∆,L(I × G),
T ′
∆,L(I ×G) as follows. Suppose ∆ = −

∑
i∈I X

2
i . The space T ∞

∆,L(I ×G) is
the inductive limit of {T ∞

0,∆,L(J×G)}J⋐I , where T ∞
0,∆,L(J×G) for each open

interval J ⋐ I is defined as the completion of B(J ×G) with respect to the
(semi)norms

(2.4) MN,p
∆,L(J ×G, f) :=

sup
0≤a≤p

2b+k+2m≤N
(t,x)∈J×G

sup
λ∈Λ(k,m)

λ=(λ0,...,λk)

(∑
l∈Ik

|Lλ0Xl1L
λ1 · · ·XlkL

λk∆b∂at f(t, x)|2
)1/2

.

T ′
∆,L(I ×G) is the strong topological dual of T ∞

∆,L(I ×G).

Remark 2.4. Suppose L = −
∑

i∈I Y
2
i for another projective basis

{Yi}i∈I . In the Appendix, we show that the norms defined using {Yi}i∈I
instead of {Xi}i∈I or using both {Xi}i∈I and {Yi}i∈I are equivalent to the
norms (2.4).

2.6. Properties of the spaces. We record here some properties of the
above function spaces that are particularly useful in the present paper. See [6]
for more details. The first three items hold for function spaces associated with
general left-invariant sub-Laplacians L = −

∑
Y 2
i .

(i) All the function spaces on G introduced above (B(G), CkY (G), SkL(G),
T k
L (G), k ∈ N ∪ {∞}) are algebras for pointwise multiplication. See

[6, Sections 2, 3]. Based on this fact it is straightforward to check that
the corresponding function spaces on I × G are algebras for pointwise
multiplication as well.

(ii) Let S(G) be any of the function spaces B(G), CkY (G), SkL(G), and
T k
L (G). For any Borel measure µ, for any function f ∈ S(G), we have
µ ∗ f ∈ S(G), and the map (convolution with µ on the left)

µ∗ : S(G)→ S(G), f 7→ µ ∗ f,
is continuous. Let ∥ · ∥ denote any norm involved in the definitions of
these spaces. Then ∥µ ∗ f∥ ≤ |µ| ∥f∥ where |µ| is the total mass of µ.
The same statement holds for µ ⋆ : S(I×G)→ S(I×G), if the measure
µ is on I ×G.

(iii) For any sequence ϕn ∈ L1(G) with ϕn → δe weakly as n → ∞, for
any f ∈ S(G) as in the previous item, the sequence fn := ϕn ∗ f
converges to f in S(G). The same statement holds for any sequence
ϕn ∈ L1((0, 1)×G) with ϕn → δ(0,e) weakly and any f ∈ S(I ×G).

When S = B(G) or B(I × G), conclusions of (ii) and (iii) hold too for
convolutions on the right. When the space S is any of the other three types,
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however, due to the fact that the differential operators are left-invariant (they
act on the rightmost function in a convolution), the order of the convolutions
in (ii) and (iii) is crucial. For instance, even if the approximation of identity
{ϕn}n∈N in (iii) consists of very nice functions that are in B(G) or B(R×G),
for an arbitrary function f in T k

L (G) or T k,p
L (I ×G) it is not clear in general

if f ∗ ϕn converges to f in the T -space. On the other hand, using a trick
mentioned in [6, 7] regarding the use of certain right-invariant vector fields,
one can make some statements for convolutions on the right. We list a few
relevant results here. As above, the results are true for spaces of each finite
order and on G or I×G. For simplicity we only write the superscript ∞ and
do not specify the underlying space.

(iv) For a bi-invariant Laplacian (denoted by ∆), conclusions of (ii) and (iii)
hold for convolutions on the right when S = S∞∆ or T ∞

∆ .
(v) For a left-invariant Laplacian L that is form-comparable to a bi-invar-

iant Laplacian ∆, by Lemma 6.1 in the Appendix, S∞L = S∞∆ . Hence
(ii) and (iii) hold for convolutions on the right when S = S∞L .

Finally, we record a result for C-type spaces. For any left-invariant vector
field Z, let Z̆ be the right-invariant vector field on G such that Z̆(e) = Z(e).
For any projective basis Y = {Yi}i∈I of left-invariant vector fields, in [7] the
authors considered a right-invariant version of the CkY space (k ∈ N), denoted
by RCkY , which is analogously defined as the completion of the Bruhat space
with respect to the seminorms ∥Y̆ lf∥∞. A special case is when Y is a so-called
special projective basis, which roughly speaking requires that each Yi is a
finite linear combination of {Y̆j}j∈I : Yi =

∑
j∈J(i) aij Y̆j , where each aij is in

B(G) and J(i) is a finite index set, and vice versa for each Y̆i. When Y is a
special projective basis, CkY = RCkY . For a bi-invariant Laplacian, ∆, there
exists a special projective basis X = {Xi}i∈I such that ∆ = −

∑
X2

i . See
[7, Section 4.2]. Hence the next item follows.

(vi) For a bi-invariant Laplacian, ∆, and any special projective basis, X =
{Xi}i∈I , such that ∆ = −

∑
X2

i , (ii) and (iii) hold for convolutions on
the right when S = C∞X = RC∞X .

3. Statement of the main results. As preparations for the main re-
sults, we first review some definitions mentioned in the Introduction.

Definition 3.1 (Property (CK∗)). Let (µt)t>0 be a symmetric Gaussian
convolution semigroup. We say that (µt)t>0 satisfies Property (CK∗) if for
any t > 0, µt admits a continuous density µt(·) with respect to the Haar
measure ν, and the density function satisfies

lim
t→0+

t log µt(e) = 0.(3.1)
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Remark 3.2. Let ∆ be a bi-invariant Laplacian satisfying Property
(CK∗). Let L be a left-invariant Laplacian that is form-comparable to ∆.
Then there are some β, γ > 0 such that Eβ∆ ≤ EL ≤ Eγ∆. Denote the two
operators’ associated (symmetric) semigroups as µ∆t , µLt , respectively. Then
µLt = µL−β∆

t ∗ µβ∆t , indicating that µLt admits a continuous density because
µβ∆t does. Moreover, because µLt is symmetric and ∥µLt ∥L∞(G) = µLt (e),

µLt (e) = µL−β∆
t ∗ µβ∆t (e) ≤ µβ∆t (e).

Hence µLt also satisfies (CK∗).

Definition 3.3 (Hypoellipticity). LetL be a left-invariant sub-Laplacian
on G and I ⊂ R be an open interval. Let A be a space of distributions in
time and space. Let S be a space of continuous functions on I × G. The
associated parabolic operator ∂t +L is said to be A-S-hypoelliptic if for any
U ∈ A and F ∈ B′(I ×G) such that

(∂t + L)U = F in B′(I ×G),

and for any open subset J ×Ω ⊂ I ×G such that

∀φ ∈ Bc(J ×Ω), φF ∈ S,

U satisfies

∀φ ∈ Bc(J ×Ω), φU ∈ S.

Here Bc(J ×Ω) consists of functions in B(I ×G) with compact support
in J ×Ω. For example, A can be T ′

∆,L(I ×G), and S can be C(I ×G).

Remark 3.4. Observe that for any N, p ∈ N ∪ {∞}, functions in
SN,p
L (I × G) have compact supports in I × G, whereas functions in
Cp(I → SNL (G)) need not. Nevertheless, by definition, being T ′

L(I × G)-
SN,p
L (I ×G)-hypoelliptic is equivalent to being T ′

L(I ×G)-Cp(I → SNL (G))-
hypoelliptic. The same is true for C- and T -type spaces.

The main results of this paper regarding hypoellipticity are summarized
in the following theorem.

Theorem 3.5. Let (G, ν) be a compact connected metrizable group with
normalized Haar measure ν, let I ⊂ R be an open interval. Let (µ∆t )t>0 be
a symmetric central Gaussian convolution semigroup on G with generator
−∆ and write ∆ = −

∑
X2

i for some special projective basis X = {Xi}i∈I .
Suppose (µ∆t )t>0 satisfies Property (CK∗). Let L be any form-comparable
perturbation of ∆ in the sense of (2.3). Then the parabolic operator ∂t+L is
T ′
∆,L-S-hypoelliptic. Here S can be T N,p

∆ , SN,p
L = SN,p

∆ , CN,p
X , where N, p ∈

N ∪ {∞}; all spaces are on I ×G.
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Remark 3.6. Together with Remark 3.4, Theorem 3.5 implies that L is
T ′
∆,L(I × G)-C(I × G)-hypoelliptic, and more generally, L is T ′

∆,L(I × G)-
Cp(I → CNX (G))-hypoelliptic for N, p ∈ N ∪ {∞}.

Remark 3.7. Note that in Theorem 3.5, the only T -type space we con-
sider in hypoellipticity is the T∆ space; our proof does not cover the TL and
T∆,L cases.

Recall that given ∆ = −
∑
X2

i , all other sub-Laplacians on G are of the
form LA = −

∑
aijXiXj for some matrix A = (aij)i,j∈I . The next example

provides a simple well-known condition on the matrix A such that LA is a
form-comparable perturbation of ∆ in the sense of (2.3).

Example 3.8. For any number 0 < ϵ < 1, we say that a matrix A =
(aij)i,j∈I is ϵ-diagonally dominant if for any i ∈ I,

ϵ|aii| >
∑
j ̸=i

|aij |.

Let (G, ν) be a compact connected group and ∆ = −
∑

i∈I X
2
i be a bi-

invariant Laplacian on G as before. Let LA := −
∑

i,j∈I aijXiXj be a Lapla-
cian on G where A = (aij)i,j∈I is an ϵ-diagonally dominant matrix for some
0 < ϵ < 1. Then LA is a form-comparable perturbation of ∆. Theorem 3.5
applies if (µ∆t )t>0 satisfies Property (CK∗).

4. Proof of Theorem 3.5: properties of the perturbed heat ker-
nel. In this section we prove that certain regularity properties of the heat
kernel are preserved by form-comparable perturbations of bi-invariant Lapla-
cians. These results are useful in the proof of Theorem 3.5 and are interesting
in themselves. For simplicity we write T∆,L for T ∞

∆,L.

Theorem 4.1. Let G be a compact connected metrizable group. Let
(µ∆t )t>0 be a symmetric central Gaussian semigroup on G with genera-
tor −∆. Assume that (µ∆t )t>0 admits a continuous density function, denoted
again by µ∆t . Then for any left-invariant Laplacian L that is form-comparable
to ∆, the corresponding semigroup (µLt )t>0 admits a continuous density func-
tion (denoted again by µLt ), and the density functions µ∆t and µLt both belong
to C∞((0,∞)→ T∆,L(G)).

Note that by Theorem 4.1, for any bump function b(t), say in C∞
c ((0, 1)),

the product functions b(t)µ∆t and b(t)µLt belong to T∆,L((0, 1)×G).
Proof of Theorem 4.1. We first show that µ∆t ∈ C∞((0,∞)→ T∆,L(G)).

For convenience, we sometimes write the density function µ∆t (x) as µ∆(t, x).
Let {Xi}i∈I , {Yi}i∈I be two projective bases such that ∆ = −

∑
X2

i , L =
−
∑
Y 2
i . By [4], µ∆t ∈ C∞((0,∞)→ T∆(G)). Because the seminorms of T∆,L

can be given using either {Xi}i∈I or {Yi}i∈I (see Remark 2.4), for simplicity
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of notations we use {Yi}i∈I here, and because ∂tµ∆t = −∆µ∆t in C(G), to
show that µ∆t ∈ C∞((0,∞) → T∆,L(G)), it suffices to show that for any
N, p ∈ N and any t > 0,

MN
L (∂pt µ

∆
t ) = sup

k,m∈N
k+2m≤N

sup
x∈G

sup
λ∈Λ(k,m)

(∑
l∈Ik

|P l,λ
L ∂pt µ

∆
t (x)|2

)1/2
<∞.

We now compute P l,λ
L µ∆t (x) = Lλ0Yl1L

λ1 · · ·YlkLλkµ∆t (x). First, let ϵ :=
1

2k+1 . For any fixed α with 0 < α < ϵC−1 = 1
(2k+1)C (C as in EL ≤ CE∆),

we have Eϵ∆−αL ≥ δE∆ for some small δ > 0. Thus as ∆ commutes with L,
µ∆t can be decomposed as

µ∆t = µ
(1−ϵ)∆
t ∗ µϵ∆−αL

t ∗ µαLt .

Because µ∆t commutes with any function in convolution,

YlkL
λkµ∆t = Ylk(µ

(1−ϵ)∆
t ∗ µϵ∆−αL

t ∗ LλkµαLt )

= Ylk(µ
(1−2ϵ)∆
t ∗ µϵ∆−αL

t ∗ LλkµαLt ∗ µϵ∆t )

= µ
(1−2ϵ)∆
t ∗ µϵ∆−αL

t ∗ LλkµαLt ∗ Ylkµ
ϵ∆
t .

So

P l,λ
L µ∆t (x) = Lλ0Yl1L

λ1 · · ·YlkL
λkµ∆t (x)

= Lλ0Yl1L
λ1 · · ·Ylk−1

Lλk−1(µ
(1−2ϵ)∆
t ∗ µϵ∆−αL

t ∗ LλkµαLt ∗ Ylkµ
ϵ∆
t )(x)

= µϵ∆−αL
t ∗ LλkµαLt ∗ Ylkµ

ϵ∆
t ∗ (Lλ0Yl1L

λ1 · · ·Ylk−1
Lλk−1µ

(1−2ϵ)∆
t )(x).

Repeating this decomposition process k times, we get
P l,λ
L µ∆t (x) = (µϵ∆−αL

t ∗ LλkµαLt ∗ Ylkµ
ϵ∆
t ) ∗ · · ·(4.1)

∗ (µϵ∆−αL
t ∗ Lλ1µαLt ∗ Yl1µϵ∆t ) ∗ µϵ∆−αL

t ∗ Lλ0µαLt (x).

To estimate (∑
l∈Ik

|P l,λ
L µ∆t (x)|2

)1/2
= ∥(P ·,λ

L µ∆t (x))·∥l2 ,

i.e., the l2 norm of the Ik-indexed vector (P ·,λ
L µ∆t (x))·, we use the following

bound: for any l2 vector functions u(x) = (ui(x))i, v(x) = (vj(x))j , where
ui, vj ∈ C(G) for each i, j,

∥u ∗ v(x)∥l2 ≤ (∥u∥l2 ∗ ∥v∥l2)(x).(4.2)
To see this, we apply the Minkowski inequality twice:

∥u ∗ v(x)∥2l2 =
∑
i

(∑
j

|ui ∗ vj(x)|2
)

=
∑
i

∥ui ∗ v(x)∥2l2 ≤
∑
i

(|ui| ∗ ∥v∥l2(x))2 ≤ (∥u∥l2 ∗ ∥v∥l2(x))2.
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Repeatedly applying (4.2), we get

(4.3) ∥(P ·,λ
L µ∆t (x))·∥l2
≤ µϵ∆−αL

t ∗ |LλkµαLt | ∗ ∥(Ylkµ
ϵ∆
t )lk∥l2 ∗ · · · ∗ µ

ϵ∆−αL
t ∗ |Lλ1µαLt |

∗ ∥(Yl1µϵ∆t )l1∥l2 ∗ µ
ϵ∆−αL
t ∗ |Lλ0µαLt |(x),

where each component is a continuous function on (0,∞)×G. The same is
true if we replace µϵ∆−αL

t , µαLt , µϵ∆t in (4.3) by any of their time derivatives.
Hence MN

L (∂pt µ
∆
t ) = MN

L (G, ∂pt µ
∆
t ) < ∞ for any N, p ∈ N and any t > 0,

and µ∆t belongs to C∞((0,∞)→ T∆,L(G)).
Finally, by decomposing the semigroup (µLt )t>0 into convolutions simi-

larly to the above we find that (µLt )t>0 admits a continuous density func-
tion which further belongs to C∞((0,∞)→ T∆,L(G)). For example, for any
k, n ∈ N, similar to (4.1), we can fix some 0 < β < c/2 (c as in cE∆ ≤ EL)
and decompose as follows:

(4.4) Lλ0Yl1L
λ1 · · ·YlkL

λk∆nµLt

= Lλ0Yl1L
λ1 · · ·Ylk(∆

nµβ∆t ∗ µ
1
2
L−β∆

t ∗ Lλkµ
1
2
L

t )

= ∆nµ
1
2
β∆

t ∗ µ
1
2
L−β∆

t ∗ Lλkµ
1
2
L

t ∗ Lλ0Yl1L
λ1 · · ·Ylk−1

Lλk−1µ
1
2
β∆

t .

The last term is then in the form of (4.1). We can thus bound the terms
(
∑

l∈Ik |P l,λ
L ∆n∂pt µ

L
t (x)|2)1/2 as was done for µ∆t .

Next we show that µLt satisfies similar off-diagonal Gaussian estimates
to those for µ∆t ; the latter are obtained in [4].

Proposition 4.2. Let G be a compact connected metrizable group. Let
(µ∆t )t>0 be a symmetric central Gaussian semigroup on G with generator −∆.
Suppose (µ∆t )t>0 satisfies Property (CK∗). Let L be any form-comparable
perturbation of ∆. Then for any compact set K ⊂ G with e /∈ K, and any
T > 0, N ∈ N, σ ≥ 0, A,α > 0,

sup
0<t<T

eAML(αt)

tσ
MN

∆,L(K, µ
L
t ) < +∞.(4.5)

Here ML(t) := log µLt (e).

Proof. As in (4.4), (4.3) of the previous theorem, the terms(∑
l∈Ik

|P l,λ
L ∆nµLt (x)|2

)1/2
= ∥(P ·,λ

L ∆nµLt (x))·∥l2

are bounded above by convolutions of terms of the form |∆nµ∆t |, |D1
x∆

nµ∆t |L
(equivalent to |D1

x∆
nµ∆t |∆), |L|λ|µLt (x)|, and µθL−ϵ∆

t (x), where θ, ϵ ∈ R are
such that EθL−ϵ∆ is comparable with E∆. The terms µ∆t , µLt , µθL−ϵ∆

t satisfy
the following estimates.
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(i) By [4, Section 4.2], for any compact set K ⊂ G with e /∈ K, and any
T > 0, N ∈ N, σ ≥ 0, A,α > 0,

sup
0<t<T

eAM∆(αt)

tσ
MN

∆ (K, µ∆t ) < +∞,(4.6)

where M∆(t) := log µ∆t (e).
(ii) For the term µLt , by Remark 3.2, µLt satisfies Property (CK∗) and

µLt (e) ≤ µ
β∆
t (e) for some β > 0. Then

ML(t) = log µLt (e) ≤ log µβ∆t (e) = o(1/t).

By [2, Section 3] (see also [4, Theorem 4.8]), for any ψ ∈ B(G) with
|D1

xψ|L ≤ 1, |Lψ| ≤ 1,

µLt (x) ≤ exp

{
ML(t)−

cL(ψ(x)− ψ(e))2

t

}
for some cL > 0. It follows that for any compact set K with e /∈ K,

lim
t→0

sup
x∈K

µLt (x) = 0.

Further, by [13, Theorem 4], for any a ∈ N,

lim
t→0

sup
x∈K
|∂at µLt (x)| = lim

t→0
sup
x∈K
|LaµLt (x)| = 0.(4.7)

(iii) Applying the same arguments to µθL−ϵ∆
t as to µLt (because EθL−ϵ∆ is

comparable to E∆) gives

lim
t→0

sup
x∈K
|µθL−ϵ∆

t (x)| = 0.(4.8)

As discussed above, each t−σeAML(αt)(
∑

l∈Ik |P l,λ
L ∆nµLt (x)|2)1/2 is bounded

above by a convolution of terms all of which satisfy the off-diagonal bound
as described in Lemma 4.3 below (see (4.6)–(4.8)). The desired bound (4.5)
thus follows from Lemma 4.3.

Lemma 4.3. If two families of functions (ut)t>0 and (vt)t>0 on G both
satisfy the following off-diagonal bound: for any compact set K with e /∈ K,

lim
t→0

sup
x∈K

ut(x) = lim
t→0

sup
x∈K

vt(x) = 0,

then ut ∗ vt also satisfies this off-diagonal bound.

Proof. Let V1 be an open neighborhood of e with V 1 ∩K = ∅. For any
x ∈ K, let Ux be a small open neighborhood of x that is away from V1. Let
x(U c

x)
−1= {xy−1 | y ∈U c

x}; then x(U c
x)

−1 is away from e, i.e. x(U c
x)

−1⊂ (Ue)
c

for some open neighborhood Ue of e. Let Vx ⋐ Ux be a smaller open neigh-
borhood of x. We may pick Ue such that for any x̃ ∈ Vx, x̃(U c

x)
−1 ⊂ (Ue)

c.
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For any such x̃ (i.e., x̃ ∈ Vx),

(4.9) ut ∗ vt(x̃) =
�

G

ut(x̃y
−1)vt(y) dν(y)

=
�

y∈(Ux)c

ut(x̃y
−1)vt(y) dν(y) +

�

y∈Ux

ut(x̃y
−1)vt(y) dν(y)

≤ sup
a∈(Ue)c

|ut(a)| · ∥vt∥∞ · ν(G) + ∥ut∥∞ · sup
y∈Ux

|vt(y)| · ν(G).

Because K is compact, using some finite collection {Vxn}1≤n≤N0 to cover K,
with each xn ∈ K and Vxn chosen in the above way, the estimate (4.9) then
implies that

lim
t→0

sup
x∈K
|ut ∗ vt(x)| = 0.

Remark 4.4. As a consequence, for any 0 < a < b <∞, any A,α, T > 0,
σ ≥ 0, N, p ∈ N, and any compact set K with e /∈ K,

sup
0<τ<T

exp {AML(ατ)}
τσ

MN,p
∆,L((aτ, bτ)×K, µ

L) <∞.

5. Proof of Theorem 3.5: hypoellipticity. We now use results in the
previous section to prove hypoellipticity properties of the parabolic operator
∂t+L. By definition of T ′

∆,L-S-hypoellipticity, for any U ∈ T ′
∆,L(I ×G) and

F ∈ B′(I×G) such that (∂t+L)U = F , for any open subset I ′×Ω′ ⊂ I×G
such that ψF ∈ S for any ψ ∈ Bc(I ′ × Ω′), we need to show that ψU ∈ S
for any ψ ∈ Bc(I ′ ×Ω′).

Recall that in Theorem 3.5, S can be T N,p
∆ , SN,p

L , CN,p
X , where all spaces

are on I × G, and X = {Xi}i∈I is any special projective basis such that
∆ = −

∑
X2

i . We prove the theorem for the case

S = T ∞
∆ (I ×G) =: T∆(I ×G);

the proofs for the other cases are very similar.
Fix any ψ ∈ Bc(I ′ × Ω′). To show that ψU ∈ T∆(I × G), we construct

an approximation sequence in T∆(I ×G). Let I0 ×Ω0, I1 ×Ω1, I2 ×Ω2 be
open sets such that

suppψ ⊂ I0 ×Ω0 ⋐ I1 ×Ω1 ⋐ I2 ×Ω2 ⋐ I ′ ×Ω′.

Pick some η ∈ B(I × G) with η ≡ 1 on I1 × Ω1 and supp η ⊂ I2 × Ω2. Fix
some bump function ρ ∈ C∞

c ((1, 2)) that satisfies ρ ≥ 0 and
	
R ρ(t) dt = 1.

For any τ > 0, let ρτ (t) := (1/τ)ρ(t/τ). Then ρτ is supported in (τ, 2τ). Let
c0 be a positive number to be determined in Lemma 5.1. For any (α, τ) ∈



PERTURBATION RESULTS FOR LEFT-INVARIANT LAPLACIANS 121

[0, 1]× [0, c0] \ {(0, 0)}, define

Ũα,τ :=


(ραµ

∆) ⋆ (ηU) ⋆ (ρτµ
L) when (α, τ) ∈ (0, 1]× (0, c0],

Ũ0,τ = (ηU) ⋆ (ρτµ
L) when τ > 0, α = 0,

Ũα,0 = (ραµ
∆) ⋆ (ηU) when α > 0, τ = 0.

Recall that we use ⋆ to emphasize that the convolution is in time and space
(see (2.2)). The two-parameter sequence {ψŨα,τ}α,τ is our approximation
sequence. The following lemma shows that ψŨα,τ ∈ T∆(I×G) for all (α, τ) ∈
[0, 1]× [0, c0] \ {(0, 0)}.

Lemma 5.1. For any W ∈ T ′
∆,L(I × G) with compact support in I × G,

there exists some 0 < c0 < 1 such that for any fixed 0 < τ ≤ c0,
Wτ :=W ⋆ (ρτµ

L) ∈ T∆(I ×G).
Proof. First note that ρτµL ∈ T∆((0, 2) × G). The convolution Wτ can

be interpreted as a continuous function

Wτ (s, x) =W ((t, y) 7→ ρτ (s− t)µLs−t(x
−1y))

=W ((t, y) 7→ ρτ (s− t)µLs−t(y
−1x)).

So the function (shift of the time by τ/2 for µL)

wτ : R×G→ R, (s, x) 7→W ((t, y) 7→ ρτ (s− t)µLs−t−τ/2(y
−1x)),

is continuous. In fact, wτ ∈ C∞
c (R→ C(G)). As µLs−t = µLs−t−τ/2 ∗ µ

L
τ/2,

Wτ (s, x) =W
(
(t, y) 7→ ρτ (s− t)

�

G

µLs−t−τ/2(y
−1xz−1)µLτ/2(z) dν(z)

)
=

�

G

W ((t, y) 7→ ρτ (s− t)µLs−t−τ/2(y
−1xz−1))µLτ/2(z) dν(z)

= (wτ (s, ·) ∗ µLτ/2)(x).

Because µLτ/2 ∈ T∆(G), the convolution Wτ is in T∆(R×G). When τ > 0 is
small enough, Wτ ∈ T∆(I ×G).

Remark 5.2. The same proof shows that W ⋆ (ραµ
∆) = (ραµ

∆) ⋆ W ∈
T∆(R×G). The above method further shows that W⋆(ραµ

L) and W⋆(ραµ
∆)

belong to T∆,L(R×G), but this fact is not needed in the proof below.

Remark 5.3. It is not clear if W ⋆ ρτµ
L converges to W in T ′

∆,L(I ×G)
(which is convergence in a very weak sense), because for any ϕ ∈ T∆,L(I×G),

(W ⋆ ρτµ
L)(ϕ) =W (ϕ ⋆ (ρ̌τ µ̌

L)),

and it is not clear if ϕ⋆(ρ̌τ µ̌L) converges to ϕ in T∆,L(I×G). See Section 2.6.
For this reason, we use the two-parameter approximation sequence {ψŨα,τ}
to approximate ψηU = ψU .
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We now take the following steps to prove the convergence of the approx-
imation sequence {ψŨα,τ}α,τ .

Step 1. For any fixed τ ∈ (0, c0], think of ψŨα,τ as a T∆(I ×G)-valued
function in α. Then

ψŨα,τ ∈ C([0, 1]→ T∆(I ×G)).

To prove this, it suffices to check that Ũα,τ is continuous at α = 0. This is
true because ραµ∆ ⋆ ((ηU) ⋆ ρτµ

L)→ (ηU) ⋆ ρτµ
L as α→ 0 in T∆(I ×G).

Step 2. As τ → 0, the sequence {ψŨα,τ}τ>0 converges uniformly to
some function Gα in C([0, 1]→ T∆(I ×G)), because for any N, p ∈ N,

sup
0≤α≤1

sup
0<τ≤c0

MN,p
∆ (I0 ×Ω0, ∂τ Ũα,τ ) ≤ sup

0<τ≤c0

MN,p
∆ (I0 ×Ω0, ∂τ Ũ0,τ ) <∞.

We prove this fact in Proposition 5.4 below.

Step 3. For 0 < α ≤ 1, Gα = ψŨα,0, because (ραµ
∆ ⋆ (ηU)) ⋆ ρτµ

L →
ραµ

∆ ⋆ (ηU) in C(I ×G) as τ → 0.

Step 4. Because µ∆t commutes with any function in convolution, we
have Ũα,0 → ηU in T ′

∆,L(I × G) as α → 0. Hence G0 = ψηU = ψU , and
ψU ∈ T∆(I ×G).

To complete the proof of Theorem 3.5, it remains to verify Step 2, which
we address in the next proposition.

Proposition 5.4. Under the hypotheses of Theorem 3.5, using the no-
tations introduced at the beginning of this section,

sup
0<τ≤c0

MN,p
∆ (I0 ×Ω0, ∂τ Ũ0,τ ) <∞.

Proof. For short we write Ũτ for Ũ0,τ . By computation, ∂τρτ (s)=−∂sρ̄τ (s)
where ρ̄τ (s) := (s/τ2)ρ(s/τ), and

∂τ (Ũτ (s, x)) = U((t, y) 7→ −η(t, y)∂sρ̄τ (s− t)µLs−t(x
−1y))

= U(−η∂s(ρ̄τ (s− ·)Lx−1µLs−·)) + U(ηρ̄τ (s− ·)∂sLx−1µLs−·).

Here L represents left-translation, i.e., for any x ∈ G and any function f ,
Lxf(y) = f(xy). In the first term, rewrite the function inside U as

−η(t, y)∂s(ρ̄τ (s− t)Lx−1µLs−t(y))

= ∂t(η(t, y)ρ̄τ (s− t)Lx−1µLs−t(y))− ∂tη(t, y) · ρ̄τ (s− t)Lx−1µLs−t(y).

For the second term, use ∂sLx−1µLs−t(y)=−Lx−1LµLs−t(y)=−LLx−1µLs−t(y).
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We get

∂τ (Ũτ (s, x))

= −((∂t + L)U)(ηρ̄τ (s− ·)Lx−1µLs−·)

− U(∂1η · ρ̄τ (s− ·)Lx−1µLs−·) + (ηLU − L(ηU))(ρ̄τ (s− ·)Lx−1µLs−·)

:= Iτ (s, x) + IIτ (s, x) + IIIτ (s, x).

Here ∂1η(t, y) := ∂tη(t, y), the partial derivative of η with respect to the first
variable. We estimate each part separately.

Estimate of Iτ . For

Iτ (s, x) = −((∂t + L)U)(ηρ̄τ (s− ·)Lx−1µLs−·) = −(ηF ) ⋆ (ρ̄τµL)(s, x),

to use the condition that ηF ∈ T∆(I ×G) with support in I2×Ω2, we use a
trick mentioned in [6, 7] which works as follows. Because ∆ is bi-invariant,
∆ = −

∑
X2

i = −
∑
X̆2

i . In [6] it is shown that (see Lemma 4.1 and the
proof of Lemma 5.2 there)

MN
∆ (f) = sup

x∈G
sup

k,m∈N
k+2m≤N

(∑
l∈Ik

|Xl1 · · ·Xlk∆
mf(x)|2

)1/2

= sup
x∈G

sup
k,m∈N

k+2m≤N

(∑
l∈Ik

|X̆l1 · · · X̆lk∆
mf(x)|2

)1/2
.

The same is true for the MN,p
∆ norms. Hence for any 0 < τ ≤ c0, using the

“right-invariant” expression of MN,p
∆ , we get

MN,p
∆ (Iτ ) ≤MN,p

∆ (ηF ) ⋆ ρ̄τµ
L ≤ 2MN,p

∆ (ηF ).

Estimate of IIτ . To estimate MN,p
∆ (I0 × Ω0, IIτ ), as in the proof of

Lemma 5.1, let

uτ (s, ω) := U
(
(t, y) 7→ ∂tη(t, y)ρ̄τ (s− t)µLs−t−τ/2(y

−1ω)
)
.(5.1)

Then

IIτ (s, x) = −uτ (s, ·) ∗ µLτ/2(x).

Note that s ∈ I0, whereas for the function ∂tη(t, y)ρ̄τ (s − t) to be nonzero,
we need t ∈ Ic1 and τ < s− t < 2τ . So

MN,p
∆ (I0 ×Ω0, IIτ ) = 0 for 0 < τ < τ0,
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where τ0 := min {d(I0, Ic1)/2, c0}. For τ0 ≤ τ ≤ c0, as uτ ∈ C∞
c (R→ C(G)),

by Minkowski’s inequality,

MN,p
∆ (I0 ×Ω0, IIτ )

≤ sup
0≤a≤p

k+2m≤N

sup
λ∈Λ(k,m)

sup
(s,x)∈I×G

{
|∂asuτ | ∗

(∑
l∈Ik

|P l,λ
∆ µLτ/2|

2
)1/2

(x)
}
.

Because U ∈ T ′
∆,L(I × G), there exist some C > 0 and N ′, p′ ∈ N that

depend on N, p, U, supp η, ρ, such that for any 0 ≤ a ≤ p,

∥∂asuτ∥L∞(I×G) ≤ C
1

τp′
MN ′,p′

∆,L (η)MN ′,p′

∆,L ((τ/2, 3τ/2)×G, µL).

Here the term τ−p′ is from taking derivatives of ρ̄τ . Hence

sup
0<τ≤c0

MN,p
∆ (I0 ×Ω0, IIτ ) = sup

τ0≤τ≤c0

MN,p
∆ (I0 ×Ω0, IIτ )

≤ Cν(G)

τp
′

0

MN ′,p′

∆,L (η)MN ′,p′

∆,L

((
τ0
2
,
3c0
2

)
×G, µL

)
sup

τ0≤τ≤c0

MN
∆ (µLτ/2) <∞.

Estimate of IIIτ . For the last part IIIτ , let Ṽ := ηLU − L(ηU). Then Ṽ
is supported away from I1 ×Ω1, and

IIIτ (s, x) = Ṽ (Φρ̄τ (s− ·)Lx−1µLs−·)

for some hollow-shaped function Φ ∈ B(I × G). More precisely, for some
J1 ×Θ1 and J2 ×Θ2 satisfying

I0 ×Ω0 ⋐ J1 ×Θ1 ⋐ J2 ×Θ2 ⋐ I1 ×Ω1,

Φ satisfies

suppΦ ⊂ I ′ ×Ω′ \ J1 ×Θ1, Φ ≡ 1 on I2 ×Ω2 \ J2 ×Θ2.

As in the decomposition of IIτ , IIIτ can be written as the convolution

IIIτ (s, x) = ((ΦṼ ) ⋆ ρ̄τL−τ/2µ
L)(s, ·) ∗ µLτ/2(x),

where

((ΦṼ ) ⋆ ρ̄τL−τ/2µ
L)(s, w) = Ṽ ((t, y) 7→ Φ(t, y)ρ̄τ (s− t)µLs−t−τ/2(y

−1w)).

So by Minkowski’s inequality,

MN,p
∆ (I0 ×Ω0, IIIτ )

≤ sup
(s,x)∈I0×Ω0

λ∈Λ(k,m)
a,k,m

{
|∂as ((ΦṼ ) ⋆ ρ̄τL−τ/2µ

L)(s, ·)| ∗
(∑
l∈Ik

|P l,λ
∆ µLτ/2|

2
)1/2

(x)
}
,

where the supremum is over {(a, k,m) : 0 ≤ a ≤ p, k + 2m ≤ N}. Let Θ0

be an open set satisfying Ω0 ⋐ Θ0 ⋐ Θ1. We split the convolution into two
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parts,

|∂as ((ΦṼ ) ⋆ ρ̄τL−τ/2µ
L)(s, ·)| ∗

(∑
l∈Ik

|P l,λ
∆ µLτ/2|

2
)1/2

(x)

=
�

Θ0

|∂as ((ΦṼ ) ⋆ ρ̄τL−τ/2µ
L)(s, y)|

(∑
l∈Ik

|(P l,λ
∆ µLτ/2)(y

−1x)|2
)1/2

dν(y)

+
�

Θc
0

|∂as ((ΦṼ ) ⋆ ρ̄τL−τ/2µ
L)(s, y)|

(∑
l∈Ik

|(P l,λ
∆ µLτ/2)(y

−1x)|2
)1/2

dν(y).

The first integral is bounded above by

ν(G) ∥(ΦṼ ) ⋆ ρ̄τL−τ/2µ
L∥Cp(I0→L∞(Θ0))M

N
∆ (µLτ/2)

≤ ν(G) C1

τp1
MN1,p1

∆,L ((τ/2, 3τ/2)× (Θc
1)

−1Θ0, µ
L)MN

∆ (µLτ/2)

for some C1 > 0 and N1, p1 ∈ N that depend on N, p, ρ, Φ, and the distribu-
tion Ṽ (in other words, on U). Here for any 0 < τ < 1,

MN
∆ (µLτ/2) ≤ C

′
1

eAM(ατ)

τN

for some constants C ′
1, α,A > 0, M(s) := log µLs (e). See the proof of Propo-

sition 4.2, or [4, Theorem 4.8] and [13, Theorem 3].
The second integral is bounded above by

ν(G)∥(ΦṼ ) ⋆ ρ̄τL−τ/2µ
L∥Cp(I0→L∞(G))M

N
∆ ((Θc

0)
−1Ω0, µ

L
τ/2)

≤ ν(G) C1

τp1
MN1,p1

∆,L ((τ/2, 3τ/2)×G, µL)MN
∆ ((Θc

0)
−1Ω0, µ

L
τ/2).

Because (Θc
1)

−1Θ0 and (Θc
0)

−1Ω0 do not contain e, applying the off-
diagonal Gaussian estimate of µLt with τ/2 ≤ t ≤ 3τ/2 in Proposition 4.2
(see Remark 4.4) then shows that

sup
0<τ≤c0

MN,p
∆ (I0 ×Ω0, IIIτ ) <∞.

Combining the estimates for Iτ , IIτ , IIIτ , we conclude that

sup
0<τ≤c0

MN,p
∆ (I0 ×Ω0, ∂τ Ũτ ) <∞.

6. Appendix. In this appendix we prove some equivalence relations
between function space (semi)norms. The following lemma justifies the use
of only {Xi}i∈I in the definition of the MN

∆,L norms in (2.4).

Lemma 6.1. Let G be a compact connected metrizable group as before.
Let L1, L2 be two form-comparable left-invariant sub-Laplacians on G. Let
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{Xi}i∈I , {Yi}i∈I be two projective bases such that

L1 = −
∑
i∈I

X2
i , L2 = −

∑
i∈I

Y 2
i .

Then for any k, p ∈ N, the (semi)norms Sk,p
L1

and Sk,p
L2

are comparable.

Proof. Under the projective basis {Xi}i∈I , L2 = −
∑

i,j∈I aijXiXj for
some real symmetric nonnegative coefficient matrix A = (aij)i,j∈I . Because
L1 and L2 are form-comparable, we have cEL1 ≤ EL2 ≤ CEL1 for some
c, C > 0, which is equivalent to the condition

c
∑

ξ2i ≤
∑

aijξiξj ≤ C
∑

ξ2i(6.1)

for any ξ = (ξi)i∈I ∈ R(I).
Because {Xi}i∈I is a projective basis, there exists a matrix (T i

j )i,j∈I such
that Yj =

∑
i∈I T

i
jXi. Define a map T : R(I) → R(I) as

T (ξ) = T ((ξi)i∈I) = (ηj)j∈I , where ηj =
∑
i∈I

T i
j ξi.

Then L = −
∑
aijXiXj = −

∑
Y 2
j implies that∑

i,j∈I
aijξiξj =

∑
j∈I

(∑
i∈I

T i
j ξi

)2
= ∥T (ξ)∥2l2 ,(6.2)

and (6.1) is thus equivalent to

c ≤ ∥T∥l2→l2 ≤ C.(6.3)

To show the equivalence of the two (semi)norms Sk,p
L1

and Sk,p
L2

on I×G it
suffices to show the equivalence of Sk

L1
and Sk

L2
on G. The proof is essentially

a change of variable for the k-linear form

(Xi1 , . . . , Xik) 7→ Dk
xf(Xi1 , . . . , Xik) = Xi1 · · ·Xikf(x).

More precisely, for any f ∈ B(G) and any 1 ≤ r ≤ k,( ∑
j1,...,jk

|Yj1 · · ·Yjkf(x)|
2
)1/2

=
( ∑
j1,...,jr−1,jr+1,...,jk

∑
jr

∣∣∣Yj1 · · ·(∑
i

T i
jrXi

)
· · ·Yjkf(x)

∣∣∣2)1/2

=
( ∑
j1,...,jr−1,jr+1,...,jk

∑
jr

∣∣∣∑
i

T i
jr Yj1 · · · (Xi · · ·Yjkf(x))

∣∣∣2)1/2

=
( ∑
j1,...,jr−1,jr+1,...,jk

∥T ((Yj1 · · ·Yjr−1XiYjr+1 · · ·Yjkf(x))i∈I)∥
2
l2

)1/2
.
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In the last line, (Yj1 · · ·Yjr−1XiYjr+1 · · ·Yjkf(x))i∈I denotes the vector in-
dexed by i with entries Yj1 · · ·Yjr−1XiYjr+1 · · ·Yjkf(x) (the other indices
j1, . . . , jr−1, jr+1, . . . , jk are fixed). Hence by (6.3),( ∑

j1,...,jk

|Yj1Yj2 · · ·Yjkf(x)|
2
)1/2

≤ C
( ∑
j1,...,jr−1,jr+1,...,jk

∥(Yj1 · · ·Xi · · ·Yjkf(x))i∥
2
l2

)1/2
.

Repeating this step gives( ∑
j1,...,jk

|Yj1 · · ·Yjkf(x)|
2
)1/2

≤ Ck
( ∑
i1,...,ik

|Xi1 · · ·Xikf(x)|
2
)1/2

.

Similarly we have

ck
( ∑
i1,...,ik

|Xi1 · · ·Xikf(x)|
2
)1/2

≤
( ∑
j1,...,jk

|Yj1 · · ·Yjkf(x)|
2
)1/2

.

So the normsSk
L1

andSk
L2

, and with time derivatives added in, the (semi)norms
Sk,p
L1

and Sk,p
L2

, are equivalent respectively.
When L1 = ∆ is bi-invariant and L2 = L is some left-invariant form-

comparable perturbation of ∆, by repeating the proof of the above lemma
with ∆ and L inserted in the differential operator chain, we conclude that
the norms defined by taking supremum of any of the following are equivalent:
(i) (

∑
|Lλ0Xl1L

λ1Xl2L
λ2 · · ·XlkL

λk∆bf |2)1/2;
(ii) (

∑
|Lλ0Yl1L

λ1Yl2L
λ2 · · ·YlkLλk∆bf |2)1/2;

(iii) (
∑
|Lλ0Xl1Yl′1L

λ1Xl2Yl′2L
λ2 · · ·XlkYl′kL

λk∆bf |2)1/2.
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