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Abstract
We analyze the harvesting and stocking of a population that is affected by random and
seasonal environmental fluctuations. Themain novelty comes from having three layers
of environmental fluctuations. The first layer is due to the environment switching at
random times between different environmental states. This is similar to having sudden
environmental changes or catastrophes. The second layer is due to seasonal variation,
where there is a significant change in the dynamics between seasons. Finally, the third
layer is due to the constant presence of environmental stochasticity—between the
seasonal or random regime switches, the species is affected by fluctuations which can
be modelled by white noise. This framework is more realistic because it can capture
both significant random and deterministic environmental shifts as well as small and
frequent fluctuations in abiotic factors. Our framework also allows for the price or
cost of harvesting to change deterministically and stochastically, something that is
more realistic from an economic point of view. The combined effects of seasonal
and random fluctuations make it impossible to find the optimal harvesting-stocking
strategy analytically. We get around this roadblock by developing rigorous numerical
approximations and proving that they converge to the optimal harvesting-stocking
strategy.We apply our methods to multiple population models and explore how prices,
or costs, and environmental fluctuations influence the optimal harvesting-stocking
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strategy. We show that in many situations the optimal way of harvesting and stocking
is not of threshold type.

Keywords Harvesting · Stochastic environment · Density-dependent price ·
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1 Introduction

A fundamental problem in conservation ecology is finding the optimal strategy for
harvesting a species. This problem is important because excessive harvesting can drive
species extinct while under-harvesting ensures the loss of valuable resources. If one
assumes that the dynamics and harvesting happen in continuous time, there has been
significant progress in finding the optimal harvesting strategies which maximize the
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total discounted or asymptotic harvest yield—see the work by Abakuks and Prajneshu
(1981), Lungu and Øksendal (1997), Alvarez and Shepp (1998), Hening et al. (2019a),
Alvarez and Hening (2020), Cohen et al. (2022). These studies have shown that in a
very general setting the optimal strategy is of threshold or bang-bang type: there exists
a threshold w > 0 such that whenever the population is under the threshold there is
no harvesting while when the population is above the threshold one harvests at the
maximal (possibly infinite) rate. In this paper we look at whether this result is true in
more general and realistic models.

The mathematical framework we will use is the one of stochastic differential equa-
tions with switching (SSDE). A SSDE has a discrete component that keeps track of
the environment, and which changes at random times. In a fixed environmental state
the system is modelled by a stochastic differential equation. This way one can capture
the more realistic behaviour of two types of environmental fluctuations:

• major environmental shifts (daily or seasonal changes, catastrophes),
• abiotic fluctuations within each environment.

We focus on the most natural setting, when the switching rates are constant. In this
case, the process spends an exponentially distributed time in each environmental state
and then switches to a different state. Environmental switches have been shown to fun-
damentally alter the fate of ecological communities by reversing competitive exclusion
into coexistence or having other unexpected results (Hening and Strickler 2019; Hen-
ing and Nguyen 2020; Benaïm and Lobry 2016; Bourquin 2021; Hening et al. 2021).
We explore how switching impacts the harvesting and stocking of a species.

Even though the general properties for SSDE have been studied thoroughly (Yin
and Zhu 2009; Zhu and Yin 2009; Nguyen et al. 2017), there are few results regarding
the persistence or harvesting of ecological systems modelled by SSDE (Song et al.
2011; Tran and Yin 2015, 2017; Bao and Shao 2016; Song and Zhu 2016; Hening and
Li 2020). We fill this gap by providing an analysis complemented by an in depth look
at some specific illuminating examples. In particular, we look at the logistic equation
which has been used extensively in fisheries and other harvesting settings (Clark 2010;
Alvarez and Shepp 1998).

The SSDE framework is generalized even further by including deterministic sea-
sonal variation, which will make the various coefficients depend explicitly on time
in a periodic fashion. There are few studies which look at the interaction of harvest-
ing and seasonal variability. Some focus on very specific models or look only at the
purely deterministic setting (Cromer 1988; Fan and Wang 1998; Brauer and Sànchez
2003; Xu et al. 2005; Braverman and Mamdani 2008; Bohner and Streipert 2016).
The current paper provides important generalizations to these previous results as we
can analyze a very wide range of models.

In addition to modelling the ecological dynamics, one also has to have a robust
way of modelling the economics. The price of the harvested species can depend on the
population size, the state of the environment and also explicitly on time.Our framework
also includes a realistic cost that is incurred through stocking or harvesting. This cost
is due to fees associated with harvesting-stocking policies, state constraints, certain
taxes, or incentives that the manager must follow or can receive.
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The price and cost functions depend on time both directly, and indirectly through the
population state and the environment switching state. Economically, the indirect time
dependence is important since it captures the growth-delayed-return trade-off, which
is a typical feature of harvesting models. The direct time dependence adds another
important layer of realism, since it can accommodate exogenous price changes. These
can come from varying commodity prices (external supply and demand shocks), and
varying costs of inputs of production.

The harvested quantity can indirectly change the price in the market by affecting
the total supply. Because our price and cost functions depend directly on the harvested
quantities, we can accommodate for this endogenous effect on the total supply. The
numerical methods can simulate the price changes with a suitable choice of price and
cost functions. Because the market side is not modeled explicitly, this can only be
done ad hoc, for each particular application. A discussion of the importance of market
variables in fisheriesmanagement can be found in Sylvia (1994), Pooley (1987), Asche
et al. (2015).

The main novelties of our work are the following:

(1) We formulate the harvesting-stocking problem for a species that is influenced by
three types of environmental fluctuations: the first due to major regime shifts, the
second due to constant abiotic changes, and the third due to seasonality.

(2) The price for harvesting or stocking is realistic and depends on the population size
as well as the state of the environment. Furthermore, stocking and harvesting incur
a cost as well.

(3) Wedevelop rigorous numerical approximation schemes based on theMarkov chain
approximation method.

(4) We discover interesting new phenomena by analyzing in depth some important
examples.

The rest of the paper is organized as follows. In Sect. 2 we describe our model
and the main results. In Sect. 3 we discuss several extensions of the proposed model.
Particular examples are explored using the newly developed numerical schemes in
Sect. 4. The discussion of our results is in Sect. 5. Finally, all the technical proofs
appear in the appendices.

2 Model and results

Assumewe have a probability space (�,F ,P) satisfying the usual conditions. Denote
by X(t) the size of the population at time t ≥ 0. For a natural population, without
harvesting or stocking, the dynamics is given by

dX(t) = b
(
X(t), α(t)

)
dt + σ

(
X(t), α(t)

)
dw(t), (2.1)

where w(·) is a standard Brownian motion, α(t) is an irreducible continuous-time
Markov chain taking values in M = {1, . . . ,m0}, and b, σ : R+ × M → R are
smooth enough functions. Furthermore, we assume that the Brownian motion w(·)
and the Markov chain α(·) are independent and denote by qi j the transition rates of
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α(t). This means that

P{α(t + �) = j | α(t) = i, X(s), α(s), s ≤ t} = qi j� + o(�), if i �= j .
P{α(t + �) = i | α(t) = i, X(s), α(s), s ≤ t} = 1 + qii� + o(�),

(2.2)

where qii := −∑
j �=i qi j . As usual, we assume that b(0, α) = σ(0, α) = 0 since if

the population goes extinct, it should not be able to get resurrected without external
intervention (like a repopulation/stocking event). If X(t0) = 0 for some t0 ≥ 0, then
X(t) = 0 for any t ≥ t0. Thus, X(t) ∈ R+ for any t ≥ 0.

Biological interpretation: If at time t the state of the environment is α(t) = k the
dynamics is governed by the SDE

dX(t) = b
(
X(t), k

)
dt + σ

(
X(t), k

)
dw(t)

with nonlinear drift termμ(x, k) anddiffusion termσ(x, k). However, the environment
can switch to a different state j with the transition rate qkj . In the small time � the
probability of transition to state j is approximately qkj�.

Note that since the transition matrix Q = (qi j )m0×m0 is independent of the pop-
ulation of the species, the jump times of α(t) will be exponentially distributed and
independent of the process X .

Let U (t) be the harvesting-stocking rate of the population. This means that in the
small time-interval (t, t+�t) one harvestsU (t)�t ifU (t) > 0 and one stocksU (t)�t
if U (t) < 0.

The dynamics of the population X(t) that includes harvesting and stocking becomes

X(t) = x +
t∫

0

(
b(X(s), α(s)) −U (s)

)
ds +

t∫

0

σ
(
X(s), α(s)

)
dw(s). (2.3)

In order to have a well defined system we also need to impose some initial conditions:

X(0) = x ∈ R+, α(0) = α ∈ M. (2.4)

Note that max{U (t), 0} and max{−U (t), 0} are the magnitudes of the harvesting and
the stocking rate, respectively. We suppose thatU (t) takes values in a compact subset
U ⊂ R and 0 ∈ U . This means that the maximal harvesting and stocking rates are
bounded and that one can always choose to not interfere with the population, that is,
pick U (t) = 0 at certain times t ≥ 0.

LetAx,α denote the collection of all admissible controls with initial value (x, α) ∈
R+×M. The collectionAx,α of admissible controls is defined to contain the elements
U (·) such that

• U (t) is F(t)-adapted,
• U (t) ∈ U for any t ≥ 0,
• X(t) ≥ 0 for any t ≥ 0.

123



41 Page 6 of 42 A. Hening et al.

Let P : R+ ×M → [0,∞) be the price of the species per unit. The price depends
on the population size and the environmental state. The accumulated income can be
written as

∫ ∞

0
e−δs P

(
X(s), α(s)

) ·U (s)ds,

where δ > 0 is the time discount rate. In addition, we also suppose that the harvesting-
stocking is costly, something that is described by the cost functionC : R+×M×U →
[0,∞). Thus, for a control strategyU (·) ∈ Ax,α , we define the performance function
as

J
(
x, α,U (·)) := Ex,α

∫ ∞

0
e−δs

[
P(X(s), α(s)) ·U (s) − C

(
X(s), α(s),U (s)

)]
ds,

(2.5)
whereEx,α denotes the expectationwith respect to the probability lawwhen the process
(X(t), α(t)) starts with initial condition (x, α). The goal is to maximize J (x, α,U (·))
and find an optimal strategy U∗(·) such that

J
(
x, α,U∗(·)) = V (x, α) := sup

U (·)∈Ax,α

J
(
x, α,U (·)). (2.6)

For notational simplicity, we collect the price function P(·) and the cost function C(·)
into the price-cost function p : R+ × M × U → R given by

p(x, α, u) = P(x, α) · u − C
(
x, α, u

)
.

As a result, the performance function can be written as

J (x, α,U (·)) = Ex,α

∫ ∞

0
e−δs p

(
X(s), α(s),U (s)

)
ds. (2.7)

The following standing assumptions are made throughout the paper.

Assumption 2.1 (a) The functions b(·, α) and σ(·, α) are locally Lipschitz continuous
for each α ∈ M. Moreover, for any initial condition (x, α) ∈ R+ × M, the
uncontrolled system (2.1) has a unique global solution.

(b) The function p(·, α, ·) is bounded and continuous for each α ∈ M.

Remark 2.2 We recall that in recent papers by Hening et al. (2019b), Hening and Tran
(2020) the authors assume that the stocking price is higher than the harvesting price.
In the current paper, however, the stocking and harvesting have the same price which
is a function of the current population size and the environmental regime. We take
into account the control cost by introducing the price-cost function p(·). As a result
our setting is more general than those considered by Hening et al. (2019b), Hening
and Tran (2020). The cost function C(·) allows us to take into account taxes, state
constraints, and incentives for sustainability that arise in practical settings. We will
discuss several extensions and related formulations in Sect. 3. In the first extension,
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we look at the setting where harvesting in a short time dt looks like U (t)X(t)dt , and
U (t) lives in a compact set including 0—note that the harvesting rate in time can be
unbounded in this setting. In the second extension,we look at the settingwhere the price
is time-dependent, uncertain and its evolution is described by a stochastic differential
equation. In the third extension, we consider the combined effects of random and
seasonal (periodic) environmental fluctuations.

A common approach in treating stochastic control problems is to characterize the value
function as a viscosity solution of a Hamilton-Jacobi-Bellman equation. Formally, the
associated equation of the underlying problem is given by

max
u∈U

[
V ′(x, α)

(
b(x, α) − u

) + 1

2
σ 2(x, α)V ′′(x, α)

+
m0∑

k=1
qαkV (x, k) + p(x, α, u) − δV (x, α)

]
= 0,

(2.8)

for (x, α) ∈ R+ ×M. One can try to adopt this approach by following the techniques
used by Zhu (2011). However, as pointed out by Zhu (2011), under regime switching
the associated Hamilton-Jacobi-Bellman equation is complicated and a closed-form
solution is virtually impossible to obtain. Therefore, in order to treat the underlying
formulation and extensions in Sect. 3, we will approximate the original problem by a
sequence of discrete-time optimal control problems of approximating Markov chains.

Remark 2.3 Although our work is motivated by the presence of aMarkovian switching
environment, the numerical schemeswe developed can also be used to solve harvesting
problems for diffusion models without switching. In particular, one can simply take
M = {1} and put q11 = 0.

2.1 Numerical scheme

We provide a numerical approach to gain information about the value function and the
optimal harvesting-stocking strategy. Using the Markov chain approximation method
developed by Kushner (1990) and Kushner and Dupuis (1992), we construct a con-
trolled Markov chain in discrete time that approximates the controlled stochastic
processes. As pointed out by Kushner and Dupuis (1992) a probabilistic approach
using the Markov chain approximation method for controlled diffusions has some
important advantages. First, the Markov chain approximation method allows one to
use physical insights derived from the dynamics of the controlled diffusion in obtaining
a suitable approximation scheme. Second, the Markov chain approximation method
does not require significant regularity of the controlled processes (2.3) nor does it rely
on the uniqueness properties of the associated HJB equation (2.8).

Let h > 0 be a discretization parameter. Define Sh := {kh : k ∈ Z≥0} and
let {(Xh

n , α
h
n ) : n ∈ Z≥0} be a discrete-time controlled Markov chain with state

space Sh ×M. At each discrete-time step n, the magnitude of the harvesting-stocking
component Uh

n must be specified. Let Uh = {Uh
n } be a sequence of controls. We

denote by qh ((x, k), (y, l)|u) the transition probability from state (x, k) to another
state (y, l) under the control u. Denote Fh

n = σ {Xh
m, αh

m,Uh
m,m ≤ n}.
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The sequence Uh is said to be admissible if it satisfies the following conditions:

(a) Uh
n is σ {Xh

0 , . . . , X
h
n , α

h
0 , . . . , αh

n ,Uh
0 , . . . ,Uh

n−1}−adapted andUh
n ∈ U for each

n;
(b) For any (x, k) ∈ Sh × M, we have

P

{(
Xh
n+1, α

h
n+1

)
= (x, k)|Fh

n

}
= P

{(
Xh
n+1, α

h
n+1

)
= (x, k)|Xh

n , α
h
n ,Uh

n

}

= qh
(
(Xh

n , α
h
n ), (x, k)|Uh

n

)
;

(c) Xh
n ∈ Sh for all n ∈ Z≥0.

The class of all admissible control sequencesUh for initial state (x, α)will be denoted
by Ah

x,α .
For each (x, α, u) ∈ Sh × M × U , we define a family of interpolation intervals

�th(x, α, u). The values of �th(x, α, u) will be specified later. Then we define

th0 = 0, �thm = �th(Xh
m, αh

m,Uh
m), thn =

n−1∑

m=0

�thm .

For (x, α) ∈ Sh×M andUh ∈ Ah
x,α , the performance function and the value function

for the controlled Markov chain is defined as

Jh(x, α,Uh) = E

∞∑

m=0

e−δthm p(Xh
m, αh

m,Uh
m)�thm, V h(x, α)

= sup
Uh∈Ah

x,α

Jh(x, α,Uh). (2.9)

The corresponding dynamic programming equation for the discrete approximation
is given by

V h(x, α)

= max
u∈U

[
e−δ�th(x,α,u)

∑

(y,β)∈Sh×M
V h(y, β)qh

(
(x, α), (y, β)|u)

+ p(x, α, u)�th(x, α, u)

]
.

We will construct the transition probabilities and interpolation intervals such that
theMarkov chain

{
(Xh

n , α
h
n )
}
approximates the process {(X(·), α(·)}well, in the sense

that they are locally consistent. Then the similarity between (2.7) and (2.9) suggests
that the values V h(x, α) and V (x, α) will be close for small h, and this will turn out
to be the case. Solving the optimal harvesting problem for the chain

{
(Xh

n , α
h
n )
}
, we

obtain an approximating optimal value and an approximating optimal strategy for the
continuous-time process

(
X(·), α(·)). The main convergence result is given below.
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Theorem 2.4 Suppose Assumptions 2.1 holds. Then for any (x, α) ∈ R+ × M,
V h(x, α) → V (x, α) as h → 0. Thus, for sufficiently small h, a near-optimal
harvesting-stocking strategy of the controlled Markov chain {(Xh

n , α
h
n )} is also a near-

optimal harvesting-stocking policy of
(
X(·), α(·)).

Remark 2.5 From a control theoretic point of view, an admissible control U (·) ∈
Ax,α is called ε-optimal with respect to (x, α) if J (x, α,U (·)) ≥ V (x, α) − ε. A
family of admissible controls Uε(·) ∈ Ax,α parameterized by ε > 0 is called near-
optimal with respect to (x, α) if J (x, α,Uε(·)) ≥ V (x, α) − ψ(ε) for sufficiently
small ε, where ψ(·) is a function of ε satisfying ψ(ε) → 0 as ε → 0. The ε-optimal
controls and near-optimal controls for the chain {(Xh

n , α
h
n )} can be defined similarly.

By virtue of Theorem 2.4 (see also Theorem C.5), as h approaches 0, a near-optimal
harvesting-stocking strategy of the controlled Markov chain {(Xh

n , α
h
n )} will provide

a near-optimal harvesting-strategy for
(
X(·), α(·)). As a result, the original problem

can be reduced to solving for a near-optimal harvesting-stocking policy of the Markov
chain {(Xh

n , α
h
n )}.

3 Extensions

3.1 Variable effort harvesting-stocking strategies

In this subsection, we analyze an extension of our framework for which the harvesting-
stocking rates are not forced to be bounded as in (2.3)—see Alvarez and Shepp (1998,
Section 3) and work by Kharroubi et al. (2019). This allows us to take into account not
only the impact of the harvesting-stocking effort, but also the abundance of the species
itself. It is natural to assume that the harvesting or stocking rate is proportional to the
population size (Hening et al. 2019a). These types of harvesting strategies, where a
constant fraction of the population is harvested, are called constant effort harvesting
strategies and are widely used in modeling fisheries. We suppose that U is a compact
subset of R and that 0 ∈ U . Our harvesting-stocking strategy will be such that in
the small time dt we harvest or stock the amount U (t)X(t) dt where U (t) ∈ U . We
call these strategies variable effort harvesting-stocking strategies. The dynamics that
includes stocking and harvesting is given by

X(t) = x +
t∫

0

(
b(X(s), α(s)) −U (s)X(s)

)
ds

+
t∫

0

σ
(
X(s), α(s)

)
dw(s), α(0) = α ∈ M. (3.1)

LetAx,α denote the collection of all admissible controls with initial value (x, α) ∈
R+ × M, where a strategy U (·) will be in Ax,α if U (t) is F(t)-adapted, U (t) ∈ U
for any t ≥ 0, and X(t) ≥ 0 for any t ≥ 0. The corresponding performance function
and value function are given by
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p(x, α, u) = P(x, α) · x · u − C
(
x, α, u

)
,

J (x, α,U (·)) : = Ex,α

∫ ∞

0
e−δs p

(
X(s), α(s),U (s)

)
ds,

V (x, α) = sup
U (·)∈Ax,α

J
(
x, α,U (·)).

Compared with the stocking-harvesting model (2.3), in this setting, one can harvest
with higher rates when X(t) is large, while we can only stock at lower rates when
X(t) is small. It is also clear that the stocking rate when X(t) = 0 isU (t)X(t) = 0 so
that V (0, α) = 0 for any α ∈ M. This implies that one cannot restock a species once
it is extinct.

3.1.1 Constructing the approximation scheme

We use the same method as in the preceding section to construct a discrete-time con-
trolled Markov chain {(Xh

n , α
h
n ) : n ∈ Z≥0} with state space Sh × M = {kh : k ∈

Z≥0} × M. At each step n, we need to specify a control Uh
n ∈ U . We need to define

transition probabilities qh((x, k), (y, l)|u) and interpolation intervals �th(x, α, u) so
that the controlled Markov chain {(Xh

n , α
h
n )} is locally consistent with respect to the

controlled diffusion (3.1). For (x, α, u) ∈ Sh ×M×U and the family of the interpo-
lation intervals �th(x, α, u), we define

th0 = 0, �thm = �th(Xh
m, αh

m,Uh
m), thn =

n−1∑

m=0

�thm .

For (x, α) ∈ Sh × M, the class Ah
x,α of all admissible control sequences Uh for

initial state (x, α) can be defined as before. Then the performance function for the
controlled Markov chain is defined as

J
h
(x, α,Uh) = E

∞∑

m=0

e−δthm p(Xh
m, αh

m,Uh
m)�thm .

The value function of the controlled Markov chain is

V
h
(x, α) = sup

Uh∈Ah
x,α

J
h
(x, α,Uh).

The convergence result given in Theorem 2.4 is also valid in this case, if V
h
(x, α) and

V (x, α) are substituted for V h(x, α) and V (x, α), respectively.

3.2 Uncertain price functions

Since the harvesting-stocking problem we investigate is on an infinite time horizon,
it is natural to look at prices that can change in time. In this section we consider
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a more realistic scenario with time dependent price functions (Alvarez and Koskela
2007; Kharroubi et al. 2019). Working with the population model given by (2.3), we
suppose that the per-unit price-cost function is p0(x, α, u) + 
(t) for (t, x, α, u) ∈
R
2+ ×M×U , where p0(·) is a deterministic function and 
(·) satisfies the following

stochastic differential equation

d
(t) = b0
(

(t), α(t)

)
dt + σ0

(

(t), α(t)

)
dw0(t), 
(0) = φ ∈ R+. (3.2)

We assume that w0(·) is a standard Brownian motion in R which is independent of
the Brownian motion w(·) that drives the dynamics of the species. We also sup-
pose that b0(·, α) and σ0(·, α) are locally Lipschitz continuous function for each
α ∈ M and are such that (3.2) has a unique solution 
(·), with 
(t) ≥ 0, t ≥ 0
and sup

t≥0
E|
(t)| < ∞. We note that the price depends on the current population size,

the environmental regime, time (through (3.2)), and is also influenced by randomness.
Note that if σ0(x, α) ≡ 0, 
(·) is simply time dependent and no longer uncertain. In
this setting the performance and the value functions are given by

Ĵ (x, α,U (·)) : = Ex,α

∫ ∞

0
e−δs(p0(X(s), α(s),U (s)) + 
(s)

)
U (s)ds,

V̂ (x, α) = sup
U (·)∈Ax,α

Ĵ
(
x, α,U (·)). (3.3)

3.2.1 Constructing the approximation scheme.

In order to treat the uncertain price function given by (3.2), we combine
(
X(·), α(·))

and 
(·) into one controlled process
(

(·), X(·), α(·)) with initial condition

(
(0), x, α) = (φ, x, α). The set of admissible strategiesAx,α is defined as in Sect. 2
and does not depend on
(0). With the price function above, the performance function
becomes

Ĵ
(
φ, x, α,U (·)) := Eφ,x,α

∫ ∞

0
e−δs(p0(X(s), α(s),U (s)) + 
(s)

)
U (s)ds,

where Eφ,x,α denotes the expectation with respect to the probability law when the
process (
(t), X(t), α(t)) starts with initial condition (φ, x, α) and the value function
is

V̂ (φ, x, α) = sup
U (·)∈Ax,α

Ĵ
(
φ, x, α,U (·)).

To approximate the controlled process
(

(·), X(·), α(·)), we construct a discrete-

time controlled Markov chain
{
(
h

n, X
h
n , α

h
n ) : n ∈ Z≥0

}
with state space Ŝh × M,

where

Ŝh :=
{
(k1h, k2h)′ ∈ R

2 : ki ∈ Z≥0

}
.
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Note that we add {
h
n} to approximate the evolution of the price component 
(·).

Therefore, the computations are more involved than those in the preceding settings.
At each step n, we need to specify a control Uh

n ∈ U . We need to define transition
probabilities qh

(
(φ, x, k), (ψ, y, l)|u) and interpolation intervals �th(φ, x, k, u) so

that the controlled Markov chain
{
(
h

n, X
h
n , α

h
n )
}
is locally consistent with respect to

the controlled diffusion (2.3) and (3.2).
For (φ, x, α) ∈ Ŝh ×M, the classAh

x,α of all admissible control sequencesUh for
initial state (φ, x, α) can be defined as before. Then the performance function for the
controlled Markov chain is defined as

Ĵ h(φ, x, α,Uh) = Eφ,x,α

∞∑

m=0

e−δthm
(
p0(X

h
m, αh

m,Uh
m) + 
h

n

)
Uh
m�thm .

The value function of the controlled Markov chain is

V̂ h(φ, x, α) = sup
Uh∈Ax,α

Ĵ h(φ, x, α,Uh).

As a natural analogue to Theorem 2.4 we get the following convergence result.

Theorem 3.1 SupposeAssumption 2.1 holds, b0(·, α) andσ0(·, α) are locally Lipschitz
continuous function for any fixed α ∈ M, and that (3.2) has a unique solution 
(·)
for which 
(t) ≥ 0 and supt≥0 E|
(t)| < ∞. Then for any (x, α) ∈ R+ × M and
φ = 
(0) one has

V̂ h(φ, x, α) → V̂ (φ, x, α)

as h → 0. Furthermore, for sufficiently small h, a near-optimal harvesting-stocking
strategy of the controlled Markov chain

{
(
h

n, X
h
n , α

h
n )
}
is also a near-optimal

harvesting-stocking policy of
(

(·), X(·), α(·)).

3.3 The combined effects of seasonality andMarkovian switching

In this section, we focus on another extension of (2.3) in which the population model
is periodic. This is very natural if one considers that seasonal effects are periodic and
strongly influence the dynamics of species.

There have been multiple papers treating periodic environments in ecology (Cush-
ing 1977, 1980; Henson and Cushing 1997; Rinaldi et al. 1993). Some of these have
shown how periodic forcing can create interesting new phenomena. In White and
Hastings (2020) the authors present a synthesis on the important role of seasonality
in ecology. They explain how our knowledge on seasonal dynamics is limited both
empirically and theoretically. Few studies have looked at the joint effects of periodic
and random fluctuations. The current section is a first step in the direction of finding
the optimal harvesting-stocking strategies when both random and seasonal effects are
taken into account.
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If we include seasonality the dynamics is given by

X(t) = x +
t∫

0

(
b(s, X(s), α(s)) −U (s)

)
ds +

t∫

0

σ
(
s, X(s), α(s)

)
dw(s), (3.4)

where b(·, x, α), σ(·, x, α) are periodic with period T > 0. We also suppose that
the price-cost function p(t, x, α, u) is periodic with period T for each (x, α, u). The
performance function becomes

J̃ (x, α,U (·)) := Ex,α

∫ ∞

0
e−δs p

(
s, X(s), α(s),U (s)

)
ds, (3.5)

and the value function is defined in the standard way. Since the functions b(·), σ(·),
and p(·) are time-dependent and the time horizon of the control problem is infinite, the
approach we used for the previous formulations no longer works. In order to treat this
case, we introduce a deterministic function �(·) to capture the time and convert it into
the interval [0, T ). Thus, we will study the total expected discounted value starting
from any time γ ∈ [0, T ). Specifically, we consider a generalization of (3.4)–(3.5)
given by

X(t) = x +
t∫

γ

(
b(�(s), X(s), α(s)) −U (s)

)
ds +

t∫

γ

σ (�(s), X(s), α(s))dw(s),

�(t) = t − mT , where m ∈ Z≥0 such that t ∈ [mT ,mT + T ).

(3.6)
We consider the combined process

(
�(·), X(·), α(·)). The performance function

and the value function are given by

J̃ (γ, x, α,U (·)) : = Eγ,x,α

∫ ∞

γ

e−δs p
(
�(s), X(s), α(s),U (s)

)
ds,

Ṽ (γ, x, α) = sup
U (·)∈Aγ,x,α

J̃
(
γ, x, α,U (·)),

(3.7)

whereEγ,x,α denotes the expectation with respect to the probability law of the process(
�(t), X(t), α(t)

)
having initial conditions

(
�(γ ), X(γ ), α(γ )

) = (γ, x, α).

3.3.1 Constructing the approximation scheme

In this case, we need to use two positive parameters h1 and h2, where T is a multi-
ple of h1. Let h = (h1, h2). We construct a discrete-time controlled Markov chain{
(�h

n , Xh
n , α

h
n ) : n ∈ Z≥0

}
with state space S̃h × M, where

S̃h :=
{
(γ, x) = (k1h1, k2h2)

′ ∈ R
2 : ki ∈ Z≥0, k1 ≤ T /h1

}
.
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Note that we add {�h
n } to approximate the time�(·). At each step n, we need to specify

a control Uh
n ∈ U . We need to define transition probabilities qh

(
(γ, x, k), (λ, y, l)|u)

and interpolation intervals �t(γ, x, k, u) so that the controlled Markov chain{
(�h

n , Xh
n , α

h
n )
}
is locally consistent with respect to the controlled diffusion (3.6).

For (γ, x, α) ∈ S̃h × M, the class Ah
γ,x,α of all admissible control sequences Uh

for initial state (γ, x, α) can be defined as before. Then the performance function for
the controlled Markov chain is defined as

J̃ h(γ, x, α,Uh) = E

∞∑

m=0

e−δthm p(�h
n , Xh

m, αh
m,Uh

m)�thm .

The value function of the controlled Markov chain is

Ṽ h(γ, x, α) = sup
Uh∈Aγ,x,α

J̃ h(γ, x, α,Uh).

It should be noted from the periodicity of the problem that for any (γ, x, α) ∈ [0, T )×
R+ × M one has

Ṽ (γ, x, α) = e−δT Ṽ (γ + T , x, α), Ṽ h(γ, x, α) = e−δT Ṽ h(γ + T , x, α).

This property will allow us to work with the compact time interval [0, T ] instead of
the entire infinite horizon [0,∞). The convergence result is given below.

Theorem 3.2 Suppose the following assumptions hold:

(1) The functions b(·, ·, α) and σ(·, ·, α) are locally Lipschitz continuous for each
α ∈ M.

(2) For any initial condition (γ, x, α) ∈ [0, T ) × R+ × M, the uncontrolled system
(3.4) has a unique global solution.

(3) The price p(·, ·, α, ·) is bounded and continuous for all α ∈ M.
(4) For each (x, α) ∈ R+ × M and u ∈ U , the functions b(·, x, α), σ(·, x, α),

p(·, x, α, u) are periodic with period T > 0.

Then for any (γ, x, α) ∈ [0, T ) × R+ × M, we have

Ṽ h(γ, x, α) → Ṽ (γ, x, α)

as h → 0. Furthermore, for sufficiently small h, a near-optimal harvesting-stocking
strategy of the controlled Markov chain

{
(�h

n , Xh
n , α

h
n )
}
is also a near-optimal

harvesting-stocking policy of
(
�(·), X(·), α(·)).

4 Numerical examples

We explore some numerical examples, using various models and assumptions.
Throughout this section,we suppose the timediscount rate is δ = 0.02. Let B ∈ (0,∞)
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be an upper bound introduced for computational purposes. If not specified, we will
take B = 4 in our examples. We assume that the environment only switches between
two states, so M = {1, 2}. We exhibit various price-cost formulations to explore for
features, and possibly new phenomena, in the various considered models.

4.1 Introducing switching in a Verhulst-Pearl system

A model that is extensively used in biology is the Verhulst-Pearl one. The dynamics
that includes switching is given by

dX(t) = X(t)
(
μ(α(t)) − κ(α(t))X(t)

)
dt + σ

(
α(t)

)
X(t)dw(t).

Here μ(α) is the growth rate in environment α, κ(α) is the intraspecific competition
rate in environment α, and σ 2(α) is the variance of the per-capita environmental
fluctuations. Suppose there are m0 environmental states in environment α(·). One can
fix an environment α and look at the dynamics of the population in that environment

dXα(t) = Xα(t)
(
μ(α) − κ(α)Xα(t)

)
dt + σ(α)Xα(t)dw(t).

The stochastic growth rate of the species (Chesson and Ellner 1989; Chesson 2000;
Schreiber et al. 2011; Hening and Nguyen 2018) in environment α is given by

r(α) = μ(α) − σ 2(α)

2
.

Following Evans et al. (2015), this stochastic growth rate completely determines the
long term behavior of the population in each fixed environment. If r(α) > 0 we get the
convergence to a unique stationary distribution on (0,∞). If r(α) < 0 the population
goes extinct in environment α and with probability 1 we have

lim
t→∞

ln Xα(t)

t
= r(α) < 0.

If r(α) = 0, by Evans et al. (2015) the population process is null recurrent in envi-
ronment α. This means the population does not go extinct but also does not converge
to a stationary distribution; it keeps fluctuating between large and small values. Let
(ν1, . . . , νm0) be the stationary distribution of the Markov chain α(t). If

r =
m0∑

k=1

νk

(
μ(k) − σ 2(k)

2

)
> 0,

we get by Hening and Li (2020) that the population converges, if there is switching,
to a stationary distribution.
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We consider a Verhulst population model with μ(α) = 4− α, κ(α) = 2, σ (α) =
1, (x, α) ∈ R+ × {1, 2}. As a result the stochastic growth rate in environment α is

r(α) = (4 − α) − 1

2
,

which implies r(1) > 0 and r(2) > 0, so if the environment would be fixed to either
of the α values, the species would converge to a unique stationary distribution on
R+. Suppose that the generator Q of the Markov chain α(·) is given by q11 = −0.1,
q12 = 0.1, q21 = 0.1, q22 = −0.1. This implies that the stationary distribution of
α(t) is (ν1, ν2) = (0.5, 0.5). Henceforth, let the set of controls be U = {u : u =
k/500, k ∈ Z,−1000 ≤ k ≤ 1500} where unspecified.

In a first experiment,we compare thismodel to a baselinemodel,whereμ(α) = 2.5,
which is in between the two values for the switching environments. To isolate the
effect of switching, in our first example we keep the price and cost functions simple:
P(x, α) = 1 and C(x, α, u) = 0.

We have presented the formulation theoretically in Sect. 2, and we describe a
detailed procedure in Sect. 2.1 and “Appendix A”. In the following numerical for-
mulations, we will apply similar procedures, described in the same sections. For an
admissible strategy U (·) we have

J
(
x, α,U (·)) = E

∫ ∞

0
e−δs p

(
X(s), α(s),U (s)

)
ds.

Based on the algorithm constructed above and in the Appendixes, we carry out the
computation by using the methods in Kushner and Dupuis (1992). We take the initial
control U0(x, α) ≡ 0 and set the initial values V h

0 (x, α) ≡ 0. We outline how to find
the sequence of values of V h

n (·) as follows. At each level x = h, 2h, . . . , B, α ∈ M,
and control u ∈ U , we compute

V h
n+1(x, α | u) = e−δ�th(x,α,u)

∑

(y,β)∈Sh×M
V h
n (y, β)qh

(
(x, α), (y, β)|u)

∫
+p(x, α, u)�th(x, α, u).

Working with the compact set state space [0, B], we use reflection if x = B; that is,
V h
n (B + h, β) = V h

n (B, β) for any β ∈ M. Then we choose the control Uh
n+1(x, α)

and record an improved value V h
n+1(x, α) by

Uh
n+1(x, α) = argmaxu∈UV h

n+1(x, α | u), V h
n+1(x, α) = V h

n+1(x, α |Uh
n+1(x, α)).

The iterations stop as soon as the increment V h
n+1(·) − V h

n (·) reaches some tolerance
level. We set the error tolerance to be 10−8.

The numerical result is shown in Fig. 1. The value function in the left panel is
increasing in both the switching and the baseline models, as expected. Moreover, it
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Fig. 1 Value function (left) and optimal harvesting-stocking rate (right) for amodel with switching affecting
μ(α) = 4 − α, compared with a baseline model with no switching and μ(α) = 2.5

is concave, which implies that the marginal value of one small unit of population
decreases. This is expected because population growth becomes less favourable as the
population size increases—a result of intra-species competition.

Because the transition probability rates were chosen to be small, the value function
of the baseline model is in-between the value functions for the two α states of the
switching model. When the transition probability rates increase, that will not always
be the case, because the value function in one state is determined, in part, by the value
function in the other state.

Another expected result is that the optimal harvesting rate in the second panel of
Fig. 1 is bang-bang—it switches between extremes at a certain population threshold.
This should be the case, because the cost of harvesting-stocking is 0, and therefore
independent of the value. This was shown theoretically for a model without switching
in Hening et al. (2019a). In the second panel, we also see that the optimal stocking-
harvesting transition happens at a lower population level in the growth-unfavorable
state α = 2, when compared with the intermediate growth baseline and the growth-
favorable state α = 1. Intuitively, lower growth prospects imply optimal extraction
should start at a lower population level.

Numerical experiments where σ(α) and κ(α) are also allowed to depend on α show
results with similar features, so we omit them for brevity.

4.2 Analysis of the effect of the control cost

We expect to find all or nothing harvesting-stocking when the cost is not convex in the
rate, even when there is environmental switching. Using the same set-up as above, but
nowwith a convex cost functionC(x, α, u) = u2/2, we find that the optimal control is
not bang-bang anymore (Fig. 2). Further numerical experiments (Figs. 9, 10, Appendix
D) support the following conjecture, which says that, with cost functions that are not
convex, the optimal strategies are bang-bang, with thresholds that may depend on the
states α.
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Fig. 2 Value function (left) and optimal harvesting-stocking rate (right) for amodel with switching affecting
μ(α) = 4 − α, and convex cost C(x, α, u) = u2/2, compared with a baseline model with no switching,
μ(α) = 2.5, and the same cost function

Conjecture 4.1 Suppose we have one species that evolves according to (2.3) and sup-
pose Assumption 2.1 holds, the price P only varies with the environment, the cost does
not depend on the population size, C(x, α, u) = C(α, u) and the cost is not convex
in the harvesting rate u. Furthermore, assume that in the absence of harvesting the
species persists, i.e.,

λ(μ0) =
m0∑

k=1

νk

(
μ(k) − σ 2(k)

2

)
> 0.

One can construct the optimal harvesting strategyU∗ as follows. There exists a thresh-
old 0 ≤ u∗(k) ≤ ∞ for the population such that, if X(0−) = x , then

U∗(t) =
{
inf U , if t > 0, α(t) = k, X(t) < u∗(k),
sup U , if t > 0, α(t) = k, X(t) ≥ u∗(k).

(4.1)

From the right panel of Fig. 2, we note that the growth favorable state, α = 1, is
more conducive to expensive harvesting and stocking, which is intuitive and expected.
The value functions are again concave and increasing in population, as expected. This
will be common across all numerical examples considered. Henceforth we may omit
the value function from figures.

4.3 Large and small transition rates with switching

In the left panel of Fig. 2, the apparent overlap between the value function of the
baseline model and the switching model in the state α = 1 is coincidental. Numerical
experiments show that increasing the switching probability rates pulls the value func-
tion graphs for α = 1, 2 toward each other. If the switching rates were very small,
the green baseline value function would be sandwiched between the red and blue
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Fig. 3 The left and right panels show the same value function graph, but on different vertical scales. The
model is discussed in Sects. 4.2, 4.3. The green solid curves in both panels corresponds to a model without
switching and μ = 2.5, or to a model with μ = 4 − α and infinitely large switching rates. The blue
long-dashed curves in the left panel show models with no switching and μ = 3, μ = 2 respectively, or
equivalently a model with μ = 4 − α and infinitely slow switching rates. The red dashed curves in the
left panel are for a model with μ = 4 − α and q12 = q21 = 0.01. The black dotted curves in both
panels correspond to the same model, but q12 = q21 = 0.1. The teal dot-dashed curves in the right panel
correspond to q12 = q21 = 1, and the orange dashed curves in the right panel to q12 = q21 = 10

value functions. As the switching rates become large, the value functions of the two
switching states will overlap in the limit.1 Figure 3 shows this process for the same
specification as above, when q12 = q21 ∈ {0, 0.01, 0.1, 1, 10,∞}. The following
remark confirms the numerical experiments that suggest convergence.

Remark 4.2 If we divide the switching rates by ε and let ε ↓ 0 we have a slow-fast
dynamics where the switching happens on a much shorter time scale. One can show
that the dynamics without harvesting (2.1) will converge (Hening and Li 2020) to

d ξ̄ (t) = b̄(ξ̄ (t))dt + σ̄ (ξ(t))dw(t), (4.2)

where

b̄(x) =
m0∑

k=1

b(k)νk . (4.3)

and

σ̄ =
√√√√

m0∑

k=1

σ 2(k)νk . (4.4)

1 The value function in a switching state is influenced by the value function in the other state, since there
is a probability of transition.
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Here (ν1, . . . , νm0) is the stationary distribution of the Markov chain α(t). We conjec-
ture that the optimal stocking-harvesting strategies U ε,∗ of the system (2.3) converge
as ε ↓ 0 to the optimal harvesting-stocking strategy Ū∗ of the system

X̄(t) = x +
t∫

0

(
b̄(X̄(s), α(s)) − Ū (s)

)
ds +

t∫

0

σ(X̄(s), α(s))dw(s). (4.5)

Further numerical experiments, which we omit, show that if the switching rates are
such that they favour one state over the other in the stationary distribution, the value
function of a simplified system with only the favoured state will be closer to the value
function with switching, than the value function of a simplified system with only the
unfavoured state. That is because the environment is mostly in the favored state, and
its conditions are therefore more relevant to the valuation.

4.4 Switching in the cost and price functions

We have shown how the dependence of the cost function on the harvesting rate deter-
mineswhether harvesting is bang-bang. It turns out that non-trivial price functionsmay
also smooth out the optimal harvesting rate. We have looked at three typical functional
forms for a per-unit price-cost function p(x, α, u) = p0(u), two of which can capture
monopolistic competition, i.e., imperfect competition. The first is a simple constant
price function, p0(u) = p, p > 0, which is appropriate when the market influence
of the extraction operation is low. The second has a piecewise linear decreasing form
given by

p0(u) =

⎧
⎪⎨

⎪⎩

p, κ1 − κ2u ≥ p,

(κ1 − κ2u), 0 < κ1 − κ2u < p,

0, else.

(4.6)

The third has a constant price elasticity of demand form, and is given by

p0(u) =
{
p, κ1|κ2 + u|1/ε ≥ p,

κ1|κ2 + u|1/ε, 0 ≤ κ1|κ2 + u|1/ε < p.
(4.7)

The functions represent instantaneous market demand, and obey common sense
assumptions. In particular, the price decreases as the supplied quantity increases,
and the price is always positive. Both forms are typical choices in modeling market
behavior. The economic model implied by the price dependence is the following: the
instantaneous harvested rate u is a quantity placed in a common market, where the
total supplied by all sources is what determines the instantaneous common final price
u, and hence the returns.

The constants κ1, κ2 are positive. They capture, among other things, the contri-
bution to total harvested quantities from different sources. In the third formulation,
ε is negative and represents the price elasticity. The constant p is added to account
for unbounded negative flow rates (e.g., unrealistically large stocking events) in the
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Fig. 4 The left and right panels show the optimal harvesting functions for the model in Sect. 4.2, for two
price functions, p(u) = 1− u/4 on the left, and p(u) = (1+ u/3)−1 on the right. There is no dependency
on α here, and μ = 2.5. The other parameters are as before

economic demand model. Large negative values of u could make the overall market
supply negative—something evidently not possible—so we ignore such events for
practical applications. That is, we want to keep prices below p in our examples.

Figure 4 shows, as an example, the harvesting strategy corresponding to two price
functions, also known as demand functions, based on the functional forms discussed.
The left panel corresponds to linear demand, p(u) = 1 − u/4, and the right panel
to p(u) = (1 + u/3)−1. The second form is for a good with unit elasticity.2 The
constants were chosen so that price will not be negative in the harvesting range, but
are otherwise arbitrary. Different choices of slopes and elasticity values lead to similar
qualitative conclusions—with no cost, when up(u) is concave, we have a harvesting
strategy that is continuous in the population level.

4.5 Interlude with intuition and conjecture

In the previous examples, the interpretation of the control value was “population units
extracted per unit of time." Based on marginal cost-benefit analysis and intuition,
we suspect that a consequence of such a cost formulation, together with others that
ensure that the value functions is increasing and concave, is that the optimal harvesting
strategies are monotonically increasing in the population level (see also Figs. 1, 2 and
4).

Our intuition is as follows: Let’s take for granted that the value function is increasing
and concave in the population variable. Consider the cost-benefit of seeding an extra
unit of population, or harvesting one less. If the population increases, the sale value
of one future unit of population is the same, but future growth is less favourable at
higher population levels, because of intra-species competition. Taking into account
both, we can say that we have a decreasing marginal benefit of having an extra unit of
population, as population increases.We can also see it in the concave shape of the value
function. Its rate of increase per unit of population decreases as population increases.
Moreover, with constant effort harvesting strategies—that is, cost dependent on the

2 The (price) elasticity of a demand function is a measure of the responsiveness of the quantity demanded
to price changes, measured in an unit free manner, defined as ε = du

dp · p
u , and widely used in economics.

ε = −1 is defined as “unit elasticity."
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absolute value of stocking or harvesting—marginal cost per unit does not depend on
the population level. The difference betweenmarginal benefit andmarginal cost is also
monotonic decreasing, which means the net marginal benefit of one unit of population
is decreasing in the population. This implies that marginally increasing the population
level would make stocking less favourable or harvesting more favourable, so we have
a monotonic increasing harvesting strategy.

We have not found a way to restrict our general model to provide a clear conjec-
ture statement, mainly because our model only allows for finite rates of harvesting
and stocking—which we consider more realistic. However, there are many suggestive
results in the literature that are supportive of our thinking, if we relax this assumption
and allow possibly infinite stocking-harvesting rates. Song et al. (2011) show in Theo-
rem 4.4 that the value function is continuous for a model similar to our baseline model,
with switching. Alvarez and Shepp (1998), Alvarez (2000), working with a Verhulst-
Pearl model and a general diffusion model respectively, with no switching, constant
price-cost p, and a possibly infinite rate of harvesting, show that the value function is
continuous and increasing. Hening et al. (2019b), working with a multi-dimensional
population system with harvesting and stocking, no switching, state-dependent price-
cost p, and a possibly infinite rate of harvesting, show in Proposition 2.5 that the value
function is increasing andLipschitz continuous. It can be easily shown that Proposition
2.5 from Hening et al. (2019b) can be generalised to a model with switching.

4.6 Variable effort harvesting examples

Monotonic strategies are evidently simpler to interpret, to implement, and to
parametrize. But we want to know what happens to a model if control is borne dif-
ferently. What if the cost depends on the intensity of extraction, rather than on the
extracted quantity itself? Numerical experiments, e.g., the one in Fig. 5, show that the
optimal harvesting strategy may not be monotonic in such cases; for example when
the cost of control applies to the fractional harvesting or seeding time rate. That is
because the cost incurred through harvesting or seeding per unit of population, per
unit of time, can now decrease as the population increases—even with an increasing
cost function! With a possibly decreasing marginal cost of extraction, we may have a
non-monotonic net marginal benefit.

This makes the v-shape in the right panel possible. If the population stock is very
low, while growth is favourable, the cost per unit seeded is not favourable at all. As
the population grows, seeding costs per unit go down, so the optimal strategy reflects
that. After further increases, costs stay low, but growth prospects diminish as well.
Hence optimal control slowly shifts from seeding to extraction. The adaptation of our
general model for such a type of control was described in Sect. 4.6. The discussion of
the numerical method is detailed in “Appendix A.2”.

4.7 Stochastic pricing examples

A realistic model of population management may want to take into account that the
value of the resource varies over time. We have already considered price dependence
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Fig. 5 The left and right panels show the value function and optimal harvesting rate for amodelwith variable
effort harvesting, and switching that affects the population growth rate. μ(α) = 2− α/2, κ(α) = 1/2, and
the cost function is u2. The other parameters are as in Sect. 4.1. For simplicity, we show only the value
function and the harvesting strategy for α = 1. The other state has similar values and controls

on gross quantity extracted. But price can also change over time because of exter-
nal factors. For example, usually economists model the price of a commodity as a
stochastic variable (Osborne 1959; Miltersen 2003). If this variability is large enough,
wewould like to understandwhat effects it has on our optimal populationmanagement
strategy. The following is not the standard model of price stochasticity used in finance,
but it is convenient for our set-up.

Consider the price-cost function

p(t, x, α, u) = (p0(α, u) + 
(t)) u − C(t, x, α, u), (x, α) ∈ R+ × M, t ∈ R
+,

where p0(·) = 1, and C(t, x, α, u) = u2/2. If we ignore random perturbations, the
evolution of 
(·) is given by

d
(t) = 
(t)
(
0.4 − 
(t)

)
dt, 
(0) ∈ [0, 0.4).

It can be seen that 
(t) ∈ (0, 0.4) for any t ≥ 0 and 
(t) → 0.4 as t → ∞. Now we
suppose that the evolution of 
(t) is subject to a white noise w0(·) and is given by

d
(t) = 
(t)
(
0.4 − 
(t)

)
dt + 0.5
(t)

(
0.4 − 
(t)

)
dw0(t).

We also have 
(t) ∈ [0, 0.4) with probability one.
The harvesting policies for the two regimes share the same shape, so Fig. 6 shows

the harvesting rate as a function of population size x and the observation of the price

(·), for one of the regimes, α = 1, for brevity. The value function has the usual
properties, and we omit its graph. It is increasing and concave in population for all
price cross-sections in the range. Moreover, fixing the population variable, we see that
higher prices are more conducive to both harvesting and seeding, as expected.

4.8 Seasonal and periodic variability

Finally, in this subsection, we consider applications of our method to models with
periodic parameters. Here, periodicity can be thought of as representing seasonal
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Fig. 6 Harvesting rate in regime α = 1, 3D plot on the left, contour plot on the right. Stochastic price given
by p0(α, u) + 
(t), cost by C(u) = u2/2, and the other parameters as in the baseline model. Discussion
in Sect. 4.7

Fig. 7 Harvesting rate in regime α = 1, 3D plot on the left, contour plot on the right. This corresponds
to an adapted Verhulst model, with drift affected by a sine wave, b(t, x, a) = x(4 − α − sin(2π t) − 2x),
σ(t, x, α) = x , constant pricing and quadratic cost, C(u) = u2/2. Discussion in Sect. 4.8

changes in the environment. In this example, we consider a simple adaptation of the
Verhulst model, where growth is additively affected by a sine wave. There is little
justification for this functional form, except to point out that our sine wave would
be one of the two likely lowest order terms in the Fourier expansion of any periodic
dependency we may conceive.

Suppose b(t, x, α) = x (4 − α + sin(2π t) − 2x), σ(t, x, α) = x , P(t, x, α, u) =
1, and C(t, x, α, u) = u2/2, where (t, x, α, u) ∈ R

2+ × {1, 2} × U . To help with
numerical estimation, we reduce the population range, the control range and the sam-
pling density. Now U = {u : u = k/20, k ∈ Z,−20 ≤ k ≤ 40}. The time step h1
is T /4000. The other parameters are as before. Note that b(·, x, α), σ(·, x, α), and
p(·, x, α, u) are periodic with period T = 1.

Figure 7 shows the estimation results for the harvesting rate as a function of popula-
tion size x and the time t . As we can see the periodicity of the growth rate is apparent in
the graphs. It is interesting that the maximal and minimal effects on the harvesting rate
do not match the maximum and minimum of the sine wave at t = 1/4 and t = 3/4.
Not only is the effect of harvesting out of phase with the sine wave, the effects on
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Fig. 8 Harvesting rate in regime α = 1, 3D plot on the left, contour plot on the right. The parameters
correspond to the baseline Verhulst model, b(t, x, a) = x(4 − α − 2x), σ(t, x, α) = x , price is constant,
and the quadratic cost is affected by a sine wave, C(t, u) = (1 + sin(2π t))u2/2. h1 = T /16000, and
U ∈ [−1, −1]. Discussion in Sect. 4.8

harvesting and stocking seem to be out of phase with each other. At this point, we
are not sure if this observation is an artefact of the limited sampling in the numerical
estimation, or a robust result. We omit the value function and the harvesting regime
for α = 2 for brevity.

Seasonality can affect other parameters as well. In the following example, we have
seasonality affecting costs, but not the growth of the population. Figure 8 shows what
are intuitive results. Harvesting when the cost is high is low, and vice-versa. Again,
we omit the value function and the harvesting regime for α = 2 for brevity.

5 Discussion

The objective of this paper was to develop a theoretically sound grounding for numer-
ical methods, that would allow us to analyze realistic, complex, stochastic population
models. Furthermore, we wanted to use these methods to explore the effects of adding
features or extensions to classic models like Verhulst-Pearl, Gompertz and Nisbet.
Among the extensions of interest that we explored are Markovian environmental
switching, periodicity, and non-trivial harvesting and stocking cost and price depen-
dencies. These are very important in any realistic model of population management.

We showed that the optimal harvesting and stocking strategy is not always of bang-
bang, or threshold, type – for some other results which showcase that bang-bang
strategies are not always optimal see the work by Hening (2021) and Hening et al.
(2019a). The crucial factor seems to be whether the dependence of the cost function
is convex in the harvested time rate or not. A similar observation applies to price
dependency. Regarding environmental switching, we determined that, in the limit of
switching rates favouring one state versus another, the value function and harvesting
rate converge as expected to the ones of the favoured state. Moreover, in the limit of
fast switching, the value function and harvesting rate converge to the one representing
an “average environment," as is expected from the slow-fast dynamics analysis of
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stochastic systems without harvesting (Yin and Zhu 2009; Hening and Li 2020; Du
et al. 2021).

In general, we have monotonicity of the value function in the population size,
but also of the harvesting rate. The harvesting rate is increasing in the population
size, which is intuitively expected, as a higher population should be more suitable
for harvesting, everything else being equal. However, this observation breaks down
when the cost of harvesting depends on the proportion harvested from the available
population per unit of time, as in the so-called variable effort strategies.

Seasonal variation in themodel parameters also has implications that are expected or
intuitive. The maximum harvesting or stocking values correspond to times of maximal
fertility.3 In the slow interval of the season, both harvesting and stocking are reduced.

Allowing the harvesting strategy to depend on a stochastic price variable leads to a
variable strategy where harvesting is favoured by high prices, and stocking is favoured
by low prices, as expected.

Overall, we think that proper numerical techniques are essential to test model valid-
ity by numerical experiments, especially when the complexity of the model does not
favour finding explicit solutions. Moreover, such numerical methods are good at find-
ing points of interest in parameter space, and for formulating conjectures.

In future work we intend to generalize our results to multispecies ecosystems (Tran
and Yin 2017; Hening et al. 2019b; Hening and Tran 2020) and explore the setting of
asymptotic harvesting (Hening et al. 2019a; Cohen et al. 2022).

Acknowledgements A. Hening is supported by the NSF through the grant DMS 2147903. K. Q. Tran is
supported by the National Research Foundation of Korea Grant funded by the Korea Government (MIST)
NRF-2021R1F1A1062361.

Appendix A: Transition probabilities

A.1. The formulation from Sect. 2

We first look at the details we need for the setting from Sect. 2. With the notation
defined in Sect. 2.1, let (x, α, u) ∈ Sh × M × U and denote by E

h,u
x,α,n , Covh,u

x,α,n the
conditional expectation and covariance given by

{Xh
m, αh

m,Uh
m,m ≤ n, Xh

n = x, αh
n = α,Uh

n = u},

respectively. Define �Xh
n = Xh

n+1 − Xh
n . Our objective in this subsection is to

define transition probabilities qh((x, k), (y, l)|u) so that the controlled Markov chain
{(Xh

n , α
h
n )} is locally consistent with respect to the controlled diffusion (2.3). By this

we mean that the following conditions hold:

3 Observe that we have not considered models with a distinction between young and old. All individuals
are the same at all points in time, and have the same harvested value.
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E
h,u
x,k,n�Xh

n = (b(x, k) − u)�th(x, k, u) + o(�th(x, k, u)),

Varh,u
x,k,n�Xh

n = σ 2(x, k, u)�th(x, k, u) + o(�th(x, k, u)),

P
h,u
x,k,n(α

h
n+1 = l) = qkl�th(x, k, u) + o(�th(x, k, u)) for l �= k,

P
h,u
x,k,n(α

h
n+1 = k) = 1 + qkk�th(x, k, u) + o(�th(x, k, u)),

sup
n, ω

|�Xh
n | → 0 as h → 0.

(A.1)

Using the procedure developed by Kushner (1990), for (x, α) ∈ Sh × M and u ∈ U ,
we define

Qh(x, k, u) = σ 2(x, k) + h|b(x, k) − u| − h2qkk + h,

qh ((x, k), (x + h, k)|u) = σ 2(x, k)/2 + (
b(x, k) − u

)+
h

Qh(x, k, u)
,

qh ((x, k), (x − h, k)|u) = σ 2(x, k)/2 + (b(x, k) − u)− h

Qh(x, k, u)
,

qh ((x, k), (x, l)|u) = h2qkl
Qh(x, k, u)

for k �= l,

qh ((x, k), (x, k)|u) = h

Qh(x, k, u)
, �th(x, k, u) = h2

Qh(x, k, u)
,

(A.2)

where for a real number r , r+ = max{r , 0}, r− = −min{0, r}. Set qh ((x, k), (y, l)|u)

= 0 for all unlisted values of (y, l) ∈ Sh × M. Note that supx,k,u �th(x, k, u) → 0
as h → 0. Using the above transition probabilities, we can check that the locally
consistent conditions of {(Xh

n , α
h
n )} are satisfied.

Lemma A.1 TheMarkov chain {(Xh
n , α

h
n )}with transition probabilities {qh(·)} defined

in (A.2) satisfies the local consistence in (A.1).

A.2. Variable effort harvesting-stocking strategies

For (x, α, u) ∈ Sh × M × U , let Eh,u
x,α,n , Covh,u

x,α,n denote the conditional expectation
and covariance given by

{Xh
m, αh

m,Uh
m,m ≤ n, Xh

n = x, αh
n = α,Uh

n = u},
respectively. Define �Xh

n = Xh
n+1 − Xh

n . In order to approximate the process
(X(·), α(·)) given in (3.1), the controlled Markov chain {(Xh

n , α
h
n )} must be locally

consistent with respect to (X(·), α(·)) in the sense that the following conditions hold

E
h,u
x,k,n�Xh

n = (b(x, k) − ux)�th(x, k, u) + o(�th(x, k, u)),

Varh,u
x,k,n�Xh

n = σ 2(x, k, u)�th(x, k, u) + o(�th(x, k, u)),

P
h,u
x,k,n(α

h
n+1 = l) = qkl�th(x, k, u) + o(�th(x, k, u)) for l �= k,

P
h,u
x,k,n(α

h
n+1 = k) = 1 + qkk�th(x, k, u) + o(�th(x, k, u)), (A.3)

sup
n, ω

|�Xh
n | → 0 as h → 0.

123



41 Page 28 of 42 A. Hening et al.

To this end, we define the transition probabilities qh((x, k), (y, l)|u) as follows. For
(x, k) ∈ Sh × M and u ∈ U , let

Qh(x, k, u) = σ 2(x, k) + h|b(x, k) − ux | − h2qkk + h,

qh ((x, k), (x + h, k)|u) = σ 2(x, k)/2 + (
b(x, k) − ux)+h

Qh(x, k, u)
,

qh ((x, k), (x − h, k)|u) = σ 2(x, k)/2 + (b(x, k) − ux)− h

Qh(x, k, u)
,

qh ((x, k), (x, l)|u) = h2qkl
Qh(x, k, u)

for k �= l,

qh ((x, k), (x, k)|u) = h

Qh(x, k, u)
, �th(x, k, u) = h2

Qh(x, k, u)
.

(A.4)

Set qh ((x, k), (y, l)|u) = 0 for all unlisted values of (y, l) ∈ Sh × M.

A.3. Uncertain price functions

Let (φ, x, α, u) ∈ Ŝh × M × U and denote by E
h,u
φ,x,α,n , Cov

h,u
φ,x,α,n the conditional

expectation and covariance given by

{
h
m, Xh

m, αh
m,Uh

m,m ≤ n,
h
n = φ, Xh

n = x, αh
n = α,Uh

n = u},

respectively. Define �Xh
n = Xh

n+1 − Xh
n and �
h

n = 
h
n+1 − 
h

n . In order to
approximate (
(·), X(·), α(·)) given by (2.3)-and-(3.2), the controlled Markov chain
{(
h

n, X
h
n , α

h
n )} must be locally consistent with respect to (
(·), X(·), α(·)) in the

sense that the following conditions hold:

E
h,u
φ,x,k,n�Xh

n = (b(x, k) − u)�th(φ, x, k, u) + o(�th(φ, x, k, u)),

Varh,u
φ,x,k,n�Xh

n = σ 2(x, k, u)�th(φ, x, k, u) + o(�th(φ, x, k, u)),

E
h,u
φ,x,k,n�
h

n = b0(x, k)�th(φ, x, k, u) + o(�th(φ, x, k, u)),

Varh,u
φ,x,k,n�
h

n = σ 2
0 (x, k)�th(φ, x, k, u) + o(�th(φ, x, k, u)),

P
h,u
φ,x,k,n(α

h
n+1 = l) = qkl�th(φ, x, k, u) + o(�th(φ, x, k, u)) for l �= k,

P
h,u
φ,x,k,n(α

h
n+1 = k) = 1 + qkk�th(φ, x, k, u) + o(�th(φ, x, k, u)),

sup
n, ω

(|�Xh
n | + |�
h

n |
) → 0 as h → 0.

(A.5)

To this end, we define the transition probabilities qh((φ, x, k), (ψ, y, l)|u) as follows.
For (φ, x, k) ∈ Ŝh × M and u ∈ U , let
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Qh(φ, x, k, u) = σ 2(x, k) + h|b(x, k) − u| + σ 2
0 (x, k) + h|b0(x, k)| − h2qkk + h,

qh ((φ, x, k), (φ, x + h, k)|u) = σ 2(x, k)/2 + (
b(x, k) − u

)+
h

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ, x − h, k)|u) = σ 2(x, k)/2 + (b(x, k) − u)− h

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ, x, l)|u) = h2qkl
Qh(φ, x, k, u)

for k �= l,

qh ((φ, x, k), (φ, x, k)|u) = h

Qh(φ, x, k, u)
, �th(φ, x, k, u) = h2

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ + h, x, k)|u) = σ 2
0 (x, k)/2 + hb+

0 (x, k)

Qh(φ, x, k, u)
,

qh ((φ, x, k), (φ − h, x, k)|u) = σ 2
0 (x, k)/2 + hb−

0 (x, k)

Qh(φ, x, k, u)
.

(A.6)
Set qh ((φ, x, k), (ψ, y, l)|u) = 0 for all unlisted values of (ψ, y, l) ∈ Ŝh × M.

A.4. The combined effects of seasonality andMarkovian switching

Recall that S̃h := {(γ, x) = (k1h1, k2h2)′ ∈ R
2 : ki ∈ Z≥0, k1 ≤ T /h1}. Let

(γ, x, α, u) ∈ S̃h ×M×U and denote by Eh,u
γ,x,α,n , Covh,u

γ,x,α,n the conditional expec-
tation and covariance given by

{�h
m, Xh

m, αh
m,Uh

m,m ≤ n, �h
n = γ, Xh

n = x, αh
n = α,Uh

n = u},

respectively. Define �Xh
n = Xh

n+1 − Xh
n and ��h

n = �h
n+1 − �h

n . In order to approx-
imate (�(·), X(·), α(·)) given by (3.4), the controlled Markov chain {(�h

n , Xh
n , α

h
n )}

must be locally consistent with respect to (�(·), X(·), α(·)) in the sense that the fol-
lowing conditions hold:

E
h,u
γ,x,k,n�Xh

n = (b(γ, x, k) − u)�th(γ, x, k, u) + o(�th(γ, x, k, u)),

Varh,u
γ,x,k,n�Xh

n = σ 2(γ, x, k, u)�th(γ, x, k, u) + o(�th(γ, x, k, u)),

��h
n = �th(γ, x, k, u), if γ + �th(φ, x, k, u) < T ,

��h
n = γ + �th(γ, x, k, u) − T if γ + �th(γ, x, k, u) ≥ T ,

P
h,u
γ,x,k,n(α

h
n+1 = l) = qkl�th(γ, x, k, u) + o(�th(γ, x, k, u)) for l �= k,

P
h,u
γ,x,k,n(α

h
n+1 = k) = 1 + qkk�th(γ, x, k, u) + o(�th(γ, x, k, u)),

sup
n, ω

(|�Xh
n | + ��h

n

) → 0 as h → 0.

(A.7)

To this end, we define the transition probabilities qh((γ, x, k), (λ, y, l)|u) as follows.
Let (γ, x, k) ∈ S̃h ×M and u ∈ U . If γ + h1 = T , γ + h1 in the following definition
is understood as 0. Let
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�th(γ, x, k, u) = h1,

qh ((γ, x, k), (γ + h1, x + h2, k)|u) =
(
σ 2(γ, x, k)/2 + (

b(γ, x, k) − u
)+

h2
)
h1

h22
,

qh ((γ, x, k), (γ + h1, x − h2, k)|u) =
(
σ 2(γ, x, k)/2 + (

b(γ, x, k) − u
)−

h2
)
h1

h22
,

qh
(
(γ, x, k), (γ + h1, x, l)|u

) = h1qkl , for l �= k,
qh

(
(γ, x, k), (γ + h1, x, k)|u

) = 1 − qh
(
(γ, x, k), (γ + h1, x + h2, k)|u

)

−qh
(
(γ, x, k), (γ + h1, x − h2, k)|u

) −
∑

l �=k

qh
(
(γ, x, k), (γ + h1, x, l)|u

)
.

(A.8)
Set qh ((γ, x, k), (λ, y, l)|u) = 0 for all unlisted values of (λ, y, l) ∈ S̃h × M.

Appendix B: Continuous–time interpolation

We will present the convergence analysis for the formulation in Sect. 2. The other
formulas can be handled in a similar way. Our procedure and methods are sim-
ilar to those in Kushner (1990), Kushner and Dupuis (1992), Song et al. (2006).
The convergence result is based on a continuous-time interpolation of the controlled
Markov chain, which will be constructed to be piecewise constant on the time inter-
val [thn , thn+1), n ≥ 0. To this end, we define nh(t) = max{n : thn ≤ t}, t ≥ 0. The
piecewise constant interpolation of {(Xh

n , α
h
n ,Uh

n )}, denoted by (Xh(t), αh(t),Uh(t)
)

is naturally defined as

Xh(t) = Xh
nh(t), αh(t) = αh

nh(t), Uh(t) = Uh
nh(t), t ≥ 0. (B.1)

Define Fh(t) = σ {Xh(s), αh(s),Uh(s) : s ≤ t} = Fh
nh(t)

. Also define

Mh(0) = 0, Mh(t) =
nh(t)−1∑

m=0

(�Xh
m − E

h
m�Xm) for t ≥ 0.

It is obvious that

Xh(t) = x +
nh(t)−1∑

m=0

E
h
m�Xh

m + Mh(t). (B.2)

Recall that �thm = h2/Qh(Xh
m, αh

m,Uh
m). It follows that

nh(t)−1∑

m=0

E
h
m�Xh

m =
nh(t)−1∑

m=0

[
b(Xh

m, αh
m) +Uh

m

]
�thm

=
∫ t

0

[
b(Xh(s), αh(s)) +Uh(s)

]
ds
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−
∫ t

th
nh (t)

[
b(Xh(s), αh(s)) +Uh(s)

]
ds

=
∫ t

0

[
b(Xh(s), αh(s)) +Uh(s)

]
ds + εh1 (t), (B.3)

with {εh1 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh1 (t)| = 0 for any 0 < T0 < ∞.

For simplicity, we suppose that inf
(x,k)

1/|σ(x, k)| > 0 [if this is not the case, we can

use the trick from Kushner and Dupuis (1992, pp. 288–289)]. Define wh(·) by

wh(t) =
nh(t)−1∑

m=0

[
1/σ(Xh

m, αh
m)

]
(�Xh

m − E
h
m�Xh

m). (B.4)

Then we can write

Mh(t) =
∫ t

0
σ(Xh(s), αh(s))dwh(s) + εh2 (t), (B.5)

with {εh2 (·)} being an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh2 (t)| = 0 for any 0 < T0 < ∞.

Using (B.3) and (B.5), we can write (B.2) as

Xh(t) = x+
∫ t

0

[
b(Xh(s), αh(s)) +Uh(s)

]
ds+

∫ t

0
σ(Xh(s), αh(s))dwh(s)+εh(t),

(B.6)
where εh(·) is an Fh(t)-adapted process satisfying

lim
h→0

sup
t∈[0,T0]

E|εh(t)| = 0 for any 0 < T0 < ∞.

The performance function from (2.9) can be rewritten as

Jh(x, α,Uh(·)) = E

∫ ∞

0
e−δs p

(
Xh(s), αh(s),Uh(s)

)
ds. (B.7)

Appendix C: Convergence

The convergence of the algorithms is established via theweak convergencemethod. To
proceed, let D[0,∞) denote the space of functions that are right continuous and have
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left-hand limits endowed with the Skorokhod topology. All the weak analysis will be
on this space or its k-fold products Dk[0,∞) for appropriate k. We follow Kushner
and Dupuis (1992, Section 4.6) in order to introduce relaxed control representations,
which we need in order to prove the weak convergence.

Definition C.1 Let B(U × [0,∞)) be the σ -algebra of Borel subsets of U × [0,∞).
An admissible relaxed control, which we will call a relaxed control,m(·) is a measure
on B(U × [0,∞)) such that

m(U × [0, t]) = t for all t ≥ 0.

Given a relaxed control m(·), there is a probability measure mt (·) defined on the σ -
algebra B(U) such that m(dudt) = mt (du)dt . Let R(U × [0,∞)) denote the set of
all relaxed controls on U × [0,∞).

With the given probability space, we say thatm(·) is an admissible relaxed (stochas-
tic) control if (i) for each fixed t ≥ 0, m(t, ·) is a random variable taking values in
R(U × [0,∞)), and for each fixed ω, m(·, ω) is a deterministic relaxed control; (ii)
the function defined by m(A × [0, t]) is F(t)-adapted for any A ∈ B(U). As a result,
with probability one, there is a measure mt (·, ω) on the Borel σ -algebra B(U) such
that m(dcdt) = mt (dc)dt .

Remark C.2 For a sequence of controls Uh = {Uh
n : n ∈ Z≥0}, we define a sequence

of relaxed control equivalence as follows. First, we set mh
t (du) = δUh(t)(du) for

t ≥ 0, where δUh(t)(·) is the probability measure concentrated at Uh(t). Then mh(·)
is defined by mh(dudt) = mt (du)dt ; that is,

mh(B × [0, t]) =
∫ t

0

( ∫

B
δUh(s)(du)

)
ds, B ∈ B(U) and t ≥ 0.

Recall thatR(U ×[0,∞)) is the space of all relaxed controls on U ×[0,∞). Then
R(U × [0,∞)) can be metrized using the Prokhorov metric in the usual way as in
Kushner and Dupuis (1992, pp. 263–264). With the Prokhorov metric,R(U ×[0,∞))

is a compact space. It follows that any sequence of relaxed controls has a convergent
subsequence. Moreover, a sequence (ηn)n∈N with ηn ∈ R(U × [0,∞)) converges to
η ∈ R(U × [0,∞)) if and only if for any continuous functions with compact support
�(·) on U × [0,∞) one has

∫

U×[0,∞)

�(u, s)ηn(du, ds) →
∫

U×[0,∞)

�(u, s)η(du, ds)

as n → ∞. Note that for a sequence of ordinary controls Uh = {Uh
n : n ∈ Z≥0}, the

associated relaxed control mh(dcdt) belongs to R(U × [0,∞)). Note also that the
limits of the “relaxed control representations” of the ordinary controls might not be
ordinary controls, but only relaxed controls.
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With the notion of relaxed control given above, we can write (B.6) and (B.7) as

Xh(t) = x +
∫ t

0

[
b(Xh(s), αh(s)) +U (s)

]
mh

s (du)ds

+
∫ t

0
σ(Xh(s), αh(s))dwh(s) + εh(t), (C.1)

Jh(x, α,mh(·)) = E

∫ ∞

0
e−δs p

(
Xh(s), αh(s), u

)
mh

s (du)ds. (C.2)

The value function defined in (2.6) can be rewritten as

V (x, α) = sup{J (x, α,m(·)) : m(·) is an admissible relaxed control},

where

J (x, α,m(·)) := Ex,α

∫ ∞

0
e−δs p

(
X(s), α(s), u

)
ms(du)ds.

Lemma C.3 The process {αh(·)} converges weakly to α(·), which is a Markov chain
with generator Q = (qkl).

Proof The proof is similar to that of Yin et al. (2003, Theorem 3.1) and is therefore
omitted.

Theorem C.4 Suppose Assumption 2.1 holds. Let the chain {(Xh
n , α

h
n )} be constructed

using the transition probabilities defined in (A.2),
(
Xh(·), αh(·), wh(·)) be the

continuous-time interpolation defined in (B.1) and (B.4), {Uh
n } be an admissible

strategy and mh(·) be the relaxed control representation of {Uh
n }. Then the follow-

ing assertions hold.

(a) The family of processes Hh(·) = (
Xh(·), αh(·),mh(·), wh(·)) is tight. As a result,

it has aweakly convergent subsequencewith limit H(·) = (
X(·), α(·),m(·), w(·)).

(b) Let F(t) be the σ -algebra generated by
{
H(s) : s ≤ t

}
. Then w(·) is a standard

F(t) adapted Brownian motion, m(·) is an admissible control, and

X(t) = x+
∫ t

0
[b(X(s), α(s)) + u]ms(du)ds+

∫ t

0
σ(X(s), α(s))dw(s), t ≥ 0.

(C.3)

Proof (a) We use the tightness criteria in Kushner (1984, p. 47). Specifically, a suffi-
cient condition for tightness of a sequence of processes ζ h(·) with paths in Dk[0,∞)

is that for any T0, ρ ∈ (0,∞),

E
h
t

∣∣ζ h(t + s) − ζ h(t)
∣∣2 ≤ E

h
t γ (h, ρ) for all s ∈ [0, ρ], t ≤ T0,

lim
ρ→0

lim sup
h→0

Eγ (h, ρ) = 0.
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The tightness of {αh(·)} is obvious by the preceding lemma. The process {mh(·)}
is tight since its range space is compact. It is standard to show the tightness of
{wh(·)} and {Xh(·)}—see Song et al. (2006) for details. As a result, a subsequence
of Hh(·) = (

Xh(·), αh(·),mh(·), wh(·)) converges weakly to the limit H(·) =(
X(·), α(·),m(·), w(·)).
(b) For the rest of the proof, we assume the probability space is chosen as required

by Skorokhod representation. Thus, with a slight abuse of notation, we assume that
Hh(·) converges to the limit H(·) with probability one via Skorokhod representation.

To characterize w(·), let k̃, j̃ be arbitrary positive integers. Pick t > 0, ρ > 0
and {tk : k ≤ k̃} such that tk ≤ t ≤ t + ρ for each k. Let φ j (·) be real-valued
continuous functions that are compactly supported on U × [0,∞) for any j ≤ j̃ .
Define (φ j ,m)t := ∫ t

0

∫
U φ j (u, s)m(duds).

Let �(·) be a real-valued and continuous function of its arguments with compact
support. By the definition of wh(·) in (B.4), wh(·) is an Fh(t)-martingale. Thus, we
have

E�
(
Xh(tk), α

h(tk), w
h(tk), (φ j ,m

h)tk , j ≤ j̃, k ≤ k̃
)[

wh(t + ρ) − wh(t)
] = 0,

(C.4)
and

E�
(
Xh(tk), α

h(tk), w
h(tk), (φ j ,m

h)tk ,

j ≤ j̃, k ≤ k̃
)[(

wh(t + ρ)
)2 − (

wh(t)
)2 − ρ − εh(ρ)

] = 0. (C.5)

By using the Skorokhod representation and the dominated convergence theorem, let-
ting h → 0 in (C.4), we obtain

E�
(
X(tk), α(tk), w(tk), (φ j ,m)tk , j ≤ j̃, k ≤ k̃

)[
w(t + ρ) − w(t)

] = 0. (C.6)

Since w(·) has continuous paths with probability one, (C.6) implies that w(·) is a
continuous F(·)-martingale. Moreover, (C.5) gives us that

E�
(
X(tk), α(tk), w(tk), (φ j ,m)tk , j ≤ j̃, k ≤ k̃

)[(
w(t + ρ)

)2 − (
w(t)

)2 − ρ
] = 0.
(C.7)

Thus, the quadratic variation of w(t) is t , which implies that w(·) is a standard F(t)
adapted Brownian motion.

By the convergence with probability one via Skorokhod representation, we have

E

∣∣∣∣

∫ t

0

∫

U

[
b(Xh(s), αh(s)) + u

]
mh

s (du)ds

−
∫ t

0

∫

U
[b(X(s), α(s)) + u]mh

s (du)ds

∣∣∣∣ → 0

uniformly in t as h → 0.
Also, by theweak convergence of {mh(·)}, for any bounded and continuous function

φ(·) with compact support, (φ,mh)∞ → (φ,m)∞; see also Remark C.2. The weak
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convergence and the Skorokhod representation imply that

∫ t

0

∫

U
[
b(X(s), α(s)) + u

]
mh

s (du)ds −
∫ t

0

∫

U
[
b(X(s), α(s)) + u

]
ms(du)ds → 0

uniformly in t on any bounded interval with probability one.
For each positive constant ρ and process ν(·), define the piecewise constant process

νρ(·) by νρ(t) = ν(kρ) for t ∈ [kρ, kρ + ρ), k ∈ Z≥0. Then, by the tightness of
(Xh(·), αh(·)), (C.1) can be rewritten as

Xh(t) = x +
∫ t

0

∫

U
[
b(Xh(s), αh(s)) + u

]
mh

s (du)ds

+
∫ t

0
σ(Xh,ρ(s), αh,ρ(s))dwh(s) + εh,ρ(t),

where lim
ρ→0

lim sup
h→0

E|εh,ρ(t)| = 0. Noting that the processes Xh,ρ(·) and αh,ρ(·) take
constant values on the intervals [nρ, nρ + ρ), we have

∫ t

0
σ(Xh,ρ(s), αh,ρ(s))dwh(s) →

∫ t

0
σ(Xρ(s), αρ(s))dw(s) as h → 0.

The integrals above are well defined with probability one since they can be written as
finite sums. Combining the last results, we have

X(t) = x +
∫ t

0

∫

U
[
b(X(s), α(s)) + u

]
ms(du)ds

+
∫ t

0
σ(Xρ(s), αρ(t))dw(s) + ερ(t),

where lim
ρ→0

E |ερ(t)| = 0. Taking the limit as ρ → 0 finishes the proof.

Theorem C.5 Suppose Assumption 2.1 holds. Let V h(x, α) and V (x, α) be the value
functions defined in (2.6) and (2.9). Then V h(x, α) → V (x, α) as h → 0.

Proof Theproof ismotivated by that ofTheorem7 inSong et al. (2006). LetUh(·)be an
admissible strategy for the chain {(Xh

n , α
h
n )} and mh(·) be the corresponding relaxed

control representation. Without loss of generality (passing to an additional subse-
quence if needed), we assume that

(
Xh(·), αh(·), wh(·),mh(·)) converges weakly to(

X(·), α(·), w(·),m(·)). We show that as h → 0 we have

Jh(x, α,Uh(·)) → J (x, α,m(·)). (C.8)

From (C.2) one has

Jh(x, α,Uh(·))= E

∫ ∞

0
e−δs p

(
Xh(s), αh(s), u

)
mh

s (du)ds. (C.9)
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By the weak convergence and the Skorokhod representation, as h → 0,

Jh(x, α,Uh(·)) → E

∫ ∞

0
e−δs p

(
X(s), α(s), u)

)
ms(du)ds.

This yields that Jh(x, α,Uh(·)) → J (x, α,m(·)) as h → 0.
Next, we prove that

lim sup
h→0

V h(x, α) ≤ V (x, α). (C.10)

For any small positive constant ε, let Ũ h(·) be an ε-optimal harvesting strategy for the
chain {(Xh

n , α
h
n )}; that is,

V h(x, α) = sup
Uh(·)

Jh(x, α,Uh(·)) ≤ Jh(x, α, Ũ h(·)) + ε.

Choose a subsequence {̃h} of {h} such that

lim sup
h→0

V h(x, α) = lim
h̃→0

V h̃(x, α) ≤ lim sup
h̃→0

J h̃(x, α, Ũ h̃(·)) + ε. (C.11)

Let m̃h̃(·) be the relaxed control representation of Ũ h̃(·). Without loss of gen-
erality (passing to an additional subsequence if needed), we may assume that(
Xh̃(·), αh̃(·), wh̃(·),mh̃(·)) converges weakly to

(
X(·), α(·), w(·),m(·)). It follows

from our claim in the beginning of the proof that

lim
h̃→0

J h̃(x, α, Ũ h̃(·)) = lim
h̃→0

J h̃(x, α, m̃h̃(·)) = J (x, α,m(·)) ≤ V (x, α), (C.12)

where J (x, α,m(·)) ≤ V (x, α) by the definition of V (x, α). Since ε is arbitrarily
small, (C.10) follows from (C.11) and (C.12).

To prove the reverse inequality lim inf
h

V h(x, α) ≥ V (x, α), for any small positive

constant ε, we choose a particular ε-optimal strategym(·) for (2.3)–(2.4) such that the
approximation can be applied to the chain {(Xh

n , αh
n )} and the associated cost compared

with V h(x, α). By the chattering lemma [see for instance Kushner (1990, Theorem
3.1)], for any given ε > 0, there is a constant λ > 0 and an ordinary control U

ε
(·) for

(2.3)–(2.4) with the following properties:

(a) U
ε
(·) takes only finitely many values (denoted by Uε the set of all such values);

(b) U
ε
(·) is constant on the intervals [kλ, kλ + λ) for k ∈ Z≥0;

(c) with mε(·) denoting the relaxed control representation of U
ε
(·), we have that

(X
ε
(·), αε(·), wε(·),mε(·)) converges weakly to (X(·), α(·), w(·),m(·)) as ε →

0;
(d) J (x, α,mε(·)) ≥ V (x, α) − ε.

For ε > 0 and the corresponding λ in the chattering lemma, consider an optimal
control problem for (2.3) subject to (2.4), but where the controls are constants over
the interval [kλ, kλ + λ) for k ∈ Z≥0 and take values in Uε (the set of control values
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of U
ε
(·)). This corresponds to controlling the discrete-time Markov process that is

obtained by sampling X(·) and α(·) at times kλ for k ∈ Z≥0. Let Û ε(·) denote the ε-
optimal control, m̂ε(·) denote the relaxed control representation, and let X̂ε(·) denote
the associated state process. Since m̂ε(·) is ε-optimal in the chosen class of controls,
we have

J (x, α, m̂ε(·)) ≥ J (x, α,mε(·)) − ε ≥ V (x, α) − 2ε.

We next approximate Û ε(·) by a suitable function of w(·) and α(·). Using the same
method as in Song et al. (2006), we can approximate Û ε(·) by the ordinary control
U ε,θ (·) with the corresponding relaxed control mε,θ (·) and the state process Xε,θ (·)
such that

mε,θ (·) → m̂ε(·)

as θ → 0 and

J (x, α,mε,θ (·)) ≥ J (x, α, m̂ε(·)) − ε ≥ V (x, α) − 3ε.

Then a sequence of ordinary controls {Uh
n} for the chain {(Xh(·), αh(·))} can be

constructed with the relaxed control representation {mh
n} such that as h → 0, the

(Xh(·), αh(·),mh(·), wh(·)) convergesweakly to (Xε,θ (·), α(·),mε,θ (·), w(·)). By the
optimality of V h(x, α) and the weak convergence above, we have as h → 0,

V h(x, α) ≥ J (x, α,mh(·)) → J (x, α,mε,θ (·)).

It follows that V h(x, α) ≥ V (x, α) − 4ε for sufficiently small h. Since any subse-
quence of Hh(·) has a subsequence that converges weakly and ε is arbitrary, we have
lim inf

h
V h(x, α) ≥ V (x, α). The conclusion follows. �

Appendix D: Numerical experiments

D.1. Varying the cost dependency

We want to see what effect different specifications of the cost function have on the
shape of the optimal harvesting rate, and in particular whether it is bang-bang. We
suspect that the convexity of the cost function leads to bang-bang (all or nothing)
optimal harvesting. In Fig. 9, we have as an example a cost functions of the form
C(u) = √|u|). The rest of the parameters are kept the same as in Sect. 4.1. This
example has concave costs, but there is a point of convexity at 0. Experiments with
other partly concave cost functions show a similar pattern. Piecewise linear costs like
C(u) = |u|, or C(u) = ln(1 + |u|), lead to optimal controls that are step functions.
However, when we use a purely concave cost function, like C(u) = ln(1+ u/3), seen
in Fig. 10, we again obtain bang-bang optimal control. Further experiments confirm
the observation.
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Fig. 9 Value function (left) and optimal harvesting-stocking rate (right) for amodel with switching affecting
μ(α) = 4 − α, and a cost function C(u) = √|u|. Other parameters described in Sect. 4.1

Fig. 10 Value function (left) and optimal harvesting-stocking rate (right) for a model with switching affect-
ing μ(α) = 4 − α, and a cost function C(u) = ln(1 + u/3). Other parameters described in Sect. 4.1

D.2. The Gompertz model of population growth

In this example, the dynamics of the population size without harvesting is given by a
Gompertz model (Winsor 1932; Zeide 1993) of the form

dX(t) = [
b(X(t), α(t)) −U (t)X(t)

]
dt + σ(X(t), α(t))dw(t),

where

b(x, α) = (4 − α)x ln
2

x
, σ (x, α) = x,

U = {u : u = k/500, k ∈ Z,−1000 ≤ k ≤ 1500}, (x, α) ∈ R+ × {1, 2}.

The generator Q of the Markov chain α(·) is given by

q11 = −0.1, q12 = 0.1, q21 = 0.1, q22 = −0.1.

Figure 11 shows the value function and the optimal stocking-harvesting rate as a
function of population size X(t) and the environmental stateα. In theGompertzmodel,
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Fig. 11 Value function (left) andoptimal harvesting-stocking rate (right) for aGompertzmodelwith absolute
harvesting, with switching affectin b(x, α) = (4 − α)x ln 2

x , constant price P(·) = 1, and a cost function

C(·) = u2/2. Other parameters described in Sect. 4.1

the deterministic rate of growth near extinction goes to∞, unlike in the logistic model
where it is linear. Comparing these results with the ones in Fig. 2, we can also see
that low population values in the Gompertz model are much less unfavorable, both in
terms of future value and in terms of the benefit of extraction.

D.3. The Nisbet–Gurneymodel of population growth

In this model, the evolution of the population size without harvesting is given by a
switched Nisbet–Gurney model; thus,

dX(t) = [
b(X(t), α(t)) −U (t)

]
dt + σ(X(t), α(t))dw(t),

where

b(x, α) = (4 − α)xe−x − x, σ (x, α) = x,

U = {u : u = k/500, k ∈ Z,−1000 ≤ k ≤ 1500}, (x, α) ∈ R+ × {1, 2}.

The generator Q of the Markov chain α(·) is given by

q11 = −0.1, q12 = 0.1, q21 = 0.1, q22 = −0.1.

Figure 12 shows a numerical estimation of this model. The value function has the
usual features, being increasing and concave. The harvesting rate is monotonic, which
is not a surprise considering the cost choice and our discussion in Sect. 4.6. Again, the
control in state α = 1 shows higher harvesting and seeding, which is consistent with
this state being more favourable for growth.
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Fig. 12 Value function (left) and optimal harvesting-stocking rate (right) for a Nisbet–Gurney model with
absolute harvesting, with switching affecting the growth rate b(x, α) = (4 − α)xe−x − x , constant price
P(·) = 1, and a cost function C(·) = u2/2. Other parameters described in Sect. 4.1
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