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RANDOM SWITCHING IN AN ECOSYSTEM WITH TWO PREY
AND ONE PREDATOR\ast 
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Abstract. In this paper, we study the long-term dynamics of two prey species and one preda-
tor species. In the deterministic setting, if we assume the interactions are of Lotka--Volterra type
(competition or predation), the long-term behavior of this system is well known. However, nature
is usually not deterministic. All ecosystems experience some type of random environmental fluctua-
tions. We incorporate these into a natural framework as follows. Suppose the environment has two
possible states. In each of the two environmental states the dynamics is governed by a system of
Lotka--Volterra ODEs. The randomness comes from spending an exponential amount of time in each
environmental state and then switching to the other one. We show how this random switching can
create very interesting phenomena. In some cases the randomness can facilitate the coexistence of
the three species even though coexistence is impossible in each of the two environmental states. In
other cases, even though there is coexistence in each of the two environmental states, switching can
lead to the loss of one or more species. We look into how predators and environmental fluctuations
can mediate coexistence among competing species.

Key words. population dynamics, predator-prey, fluctuating environment, stochasticity, coex-
istence, extinction
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1. Introduction. An important question in ecology is the relationship between
complexity and stability. In particular, ecologists have been interested in whether
predators can help facilitate coexistence or whether they are always detrimental to
species diversity. Since the important work by Paine (1966) it has been clear that
predators play a fundamental role in species diversity. There are experimental studies
which show that the removal of predators can lead to the extinctions of various species.
Other studies have shown the opposite effect, namely, that introducing a predator
does not help mediate coexistence or that the addition of the predator leads to fewer
species coexisting. In this paper we are interested in exploring these phenomena
in the setting of Lotka--Volterra (LV) dynamics. The dynamics of two competing
species is well known in this setting; it can lead to coexistence, where both species
persist; to competitive exclusion, where one species is dominant and drives the other
one extinct; or to bistability, where, depending on the initial conditions, one species
persists and one goes extinct. There have been numerous studies which looked at how
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348 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

the introduction of a predator changes the long-term outcome of two competitors;
see work by Hutson and Vickers (1983), Takeuchi and Adachi (1983), and Schreiber
(1997).

Every natural system experiences unpredictable environmental fluctuations. In
the ecological setting, these environmental fluctuations will change the way species
grow, die, and interact with each other. It is therefore key to include environmental
fluctuations in the mathematical framework when trying to determine species rich-
ness. Sometimes the deterministic dynamics can predict certain species going extinct.
However, if one adds the effects of a random environment extinction might be re-
versed into coexistence. In other cases deterministic systems that coexist become
extinct once one takes into account the random environmental fluctuations. One way
of introducing the environmental fluctuations has been by modeling the populations
as discrete or continuous time Markov processes and analyzing the long-term behavior
of these processes (Chesson, 1982; Chesson and Ellner, 1989; Chesson, 2000; Evans
et al., 2013; Evans, Hening, and Schreiber, 2015; Lande, Engen, and Saether, 2003;
Schreiber and Lloyd-Smith, 2009; Schreiber, Bena\"{\i}m, and Atchad\'e, 2011; Bena\"{\i}m
and Schreiber, 2009; Bena\"{\i}m, Hofbauer, and Sandholm, 2008; Bena\"{\i}m, 2018; Hening,
Nguyen, and Chesson, 2021).

There are many ways in which one can model the environmental fluctuations that
affect an ecological system. One way is by going from ordinary differential equations
(ODEs) to stochastic differential equations (SDEs). This amounts to saying that the
various birth, death, and interaction rates in an ecosystem are not constant but fluc-
tuate around their average values according to some white noise. There is now a well-
established general theory of coexistence and extinction for these systems (Schreiber,
Bena\"{\i}m, and Atchad\'e, 2011; Hening and Nguyen, 2018; Hening, Nguyen, and Ches-
son, 2021). However, this way of modeling environmental fluctuations can sometimes
seem artificial in an ecological setting. In certain ecosystems, it makes more sense to
assume that, when the environment changes, the dynamics also changes significantly.
In a deterministic setting this can be modeled by periodic vector fields which can be
interpreted to mimic seasonal fluctuations. In the random setting, these types of fluc-
tations are captured by piecewise deterministic Markov processes (PDMPs); see the
work by Davis (1984) for an introduction to these stochastic processes. In a PDMP,
the environment switches between a fixed finite number of states to each of which we
associate an ODE. In each state the dynamics is given by the flow of its associated
ODE. After a random time, the environment switches to a different state, and the
dynamics is governed by the ODE from that state.

Recently there have been some important results for two-species ecosystems that
showcased how the switching behavior of PDMPs can create novel ecological phenom-
ena. The first set of results is for a two-species competitive LV model. In Bena\"{\i}m
and Lobry (2016) and Hening and Nguyen (2020) the authors show that the random
switching between two environments that are both favorable to the same species, e.g.,
the favored species is dominant and persists and the unfavored species goes extinct,
can lead to the extinction of this favored species and the persistence of the unfavored
species, to the coexistence of the two competing species or to bistability. This is
extremely interesting as it relates to the competitive exclusion principle (Volterra,
1928; Hardin, 1960; Levin, 1970), a fundamental principle of ecology, which says in
its simplest form that, when multiple species compete with each other for the same
resource, one competitor will win and drive all the others to extinction. Neverthe-
less, it has been observed in nature that multiple species can coexist despite limited
resources. Hutchinson (1961) gave a possible explanation by arguing that variations
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RANDOM SWITCHING IN AN ECOSYSTEM 349

of the environment can keep species away from the deterministic equilibria that are
forecasted by the competitive exclusion principle. The PDMP example from Bena\"{\i}m
and Lobry (2016) and Hening and Nguyen (2020) shows how the switching can save
species from extinction, even though, in each fixed environment, the same species is
dominant. The second result looks at the classical predator-prey LV model. In Hening
and Strickler (2019) the authors study a system that switches randomly between two
deterministic classical VL predator-prey systems. Even though for each deterministic
predator-prey system the predator and the prey densities form closed periodic orbits,
it is shown in Hening and Strickler (2019) that the switching makes the system leave
any compact set. Moreover, in the switched system, the predator and prey densities
oscillate between 0 and \infty . These two sets of results show that random switching can
radically change the dynamics of the system and create new, possibly unexpected,
long-term results.

For three-species LV systems, the classification of the dynamics is incomplete
in the deterministic setting. In the setting of SDE an almost complete classification
appears in Hening, Nguyen, and Shreiber (2021). Not much is known for the dynamics
of three-species systems in the PDMP setting. We hope that this paper will provide
valuable results both phenomenologically, by showcasing some counterintuitive results,
and mathematically, by developing new tools for the analysis of the ergodic properties
of PDMPs.

The deterministic dynamics are given by

dX1

dt
(t) = X1(t)[r  - X1(t) - b1X2(t) - c1X3(t)],

dX2

dt
(t) = X2(t)[r  - X2(t) - b2X1(t) - c2X3(t)],

dX3

dt
(t) = X3(t)[e1X1(t) + e2X2(t) - d].

(1.1)

Here X1(t), X2(t) are the densities of the two prey species at time t \geq 0, while
X3(t) is the density of the generalist predator at time t \geq 0. For simplicity we
assume that the per capita growth rates of both prey species are equal and given by
r > 0 and that the per capita intraspecies competitions are both equal to 1. The per
capita interspecies competition rate of species j on species i is given by bi > 0, where
i, j \in \{ 1, 2\} . The predator dies, when there is no prey, at the per capita rate d > 0;
the predation rates on species 1 and 2 are given by c1, c2 > 0; and the quantities
e1, e2 > 0 measure how efficient the predator is at using up the predated species. We
will sometimes write (1.1) in the more compact form

dXi

dt
(t) = Xi(t)fi(X(t)), i = 1, 2, 3,(1.2)

where X := (X1, X2, X3), f1(x) := r  - x1  - b1x2  - c1x3, f2(x) = r  - x2  - b2x1  - 
c2x3, f3(x) = e1x1 + e2x2  - d. In the absence of the predator (X3 = 0) if we have

b1 < 1, b2 < 1,(1.3)

then the coexistence of (X1, X2) is impossible (except for a stable manifold of di-
mension 1); one species will go extinct (Takeuchi and Adachi, 1983; Schreiber, 1997).
However, if one assumes additionally that
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350 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

e1r > d,

e2r > d,

r  - d

e1
b2  - 

\biggl( 
r  - d

e1

\biggr) 
c2
c1

> 0,

r  - d

e2
b1  - 

\biggl( 
r  - d

e2

\biggr) 
c1
c2

> 0,

(1.4)

then the three species will coexist (Takeuchi and Adachi, 1983; Schreiber, 1997). This
shows that it is possible for the predator to mediate coexistence in this setting.

We next explain how the switching is introduced. We assume there are two
environmental states \scrS := \{ 1, 2\} . We note that our theoretical analysis works for any
finite number of environmental states. The environmental state at time t \geq 0 will be
given by \xi (t) \in \scrS . We suppose that the coefficients c1, c2, e1, e2, which capture the
interaction between the predator and the two prey species, are different in the two
environmental states. As a result we will have coefficients c1(j), c2(j), e1(j), e2(j) if
the environment is in state j.

The dynamics becomes

dXi

dt
(t) = Xi(t)fi(X(t), \xi (t)), i = 1, 2, 3,(1.5)

where f1(x, j) := r - x1 - b1x2 - c1(j)x3, f2(x, j) = r - x2 - b2x1 - c2(j)x3, f3(x, j) =
e1(j)x1 + e2(j)x2  - d. We assume that \xi (t) is an irreducible continuous time Markov
chain that switches from state 1 to 2 at rate q12 and from state 2 to 1 at rate q21:

P\{ \xi (t+\Delta ) = j| \xi (t) = i, \xi (s), s \leq t\} = qij\Delta + o(\Delta ) if i \not = j.(1.6)

In this setting, the process spends an exponential random time, whose rate can
be determined as a function of q12, q21, in one environment, after which it switches to
the other environment, spends an exponential time there, then switches, and so on.
Since \xi (t) is an irreducible Markov chain, it will have a unique invariant distribution
on \scrS given by

\pi = (\pi 1, \pi 2) =

\biggl( 
q21

q12 + q21
,

q12
q12 + q21

\biggr) 
.

1.1. Mathematical setup. It is well known that a process (X(t), \xi (t)) satis-
fying (1.5) and (1.6) is a Markov process with generator acting on functions G :
R3

+ \times \scrS \mapsto \rightarrow R3
+ that are continuously differentiable in x for each k \in \scrS as

\scrL G(x, k) =
3\sum 

i=1

xifi(x, k)
\partial G

\partial xi
(x, k) +

\sum 
l\in \scrS 

qklG(x, l).(1.7)

We use the norm \| x\| =
\sum 3

i=1 | xi| in R3. For a, b \in R, let a \wedge b := min\{ a, b\} and

a \vee b := max\{ a, b\} . Similarly we let
\bigwedge 3

i=1 ui := mini ui and
\bigvee 3

i=1 ui := maxi ui.
The quantity Px,k(A) will denote the probability of event A if (X(0), \xi (0)) =

(x, k). Call \mu an invariant measure for the process X if \mu (\cdot , \cdot ) is a measure such that
for any k \in \scrS one has that \mu (\cdot , k) is a Borel measure on R3

+ and that, if one starts
the process with initial conditions distributed according to \mu (\cdot , \cdot ), then for any time
t \geq 0 the distribution of (X(t), \xi (t)) is given by \mu (\cdot , \cdot ).
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RANDOM SWITCHING IN AN ECOSYSTEM 351

Let Conv\scrM denote the set of invariant measures of (X(t), \xi (t)) whose support is
contained in \partial R3

+ \times \scrS . The set of extreme points of Conv\scrM , denoted by \scrM , is the
set of ergodic invariant measures with support on the boundary \partial R3

+ \times \scrS .
We next define what we mean by persistence in our setting.

Definition 1. The process X is strongly stochastically persistent if it has a
unique invariant probability measure \pi \ast on R3,\circ 

+ \times \scrS and

lim
t\rightarrow \infty 

\| PX(t,x, k, \cdot ) - \pi \ast (\cdot )\| TV = 0, x \in R3,\circ 
+ , k \in \scrS ,(1.8)

where \| \cdot , \cdot \| TV is the total variation norm and PX(t,x, k, \cdot ) is the transition probability
of (X(t), \xi (t)).

If \mu \in Conv\scrM is an invariant measure and X spends a lot of time close to its
support, supp (\mu ), then it will get attracted or repelled in the ith direction according
to the Lyapunov exponent , or invasion rate,

\lambda i(\mu ) =
\sum 
k\in \scrS 

\int 
\partial R3

+

fi(x, k)\mu (dx, k).(1.9)

The intuition comes from noting that lnXi(t)
t = lnXi(0)

t +
\int t
0
fi(X(s),\xi (s)) ds

t is ap-
proximated well by \lambda i(\mu ) if t is large and X stays close to the support of \mu .

PDMPs can be quite degenerate, and proving that there exist unique invariant
probability measures in certain subspaces is far from trivial; see Bena\"{\i}m (2018).

2. Well-posedness and solutions on the boundary. In this section, we prove
some preliminary results which will be useful later on.

Theorem 1. For any (x0, j0) \in R3
+\times \scrS there exists a unique solution (Xt, \xi t)t\geq 0

to (1.5) with initial value (X(0), \xi (0)) = (x0, j0). There exists a compact set \scrK \subset R3
+

such that every nonnegative solution of (1.5) eventually enters \scrK and then remains
there forever. Moreover, if X(0) = x0 \in R3,\circ 

+ , then with probability one X(t) \in R3,\circ 
+

for all t \geq 0.

Proof. Because the coefficients of (1.5) are locally Lipschitz for each initial value,
there exists uniquely a local solution to (1.5) (up to a possible explosion time). If
the initial value is positive, it is clear that the solution will remain positive up to the
explosion time because we can write

X1(t) = e
\int t
0
(r - X1(s) - b1X2(s) - c1(\xi s)X3(s))ds,

X2(t) = e
\int t
0
(r - X2(s) - b2X1(s) - c2(\xi s)X3(s))ds,

X3(t) = e
\int t
0
(e1(\xi s)X1(s)+e2(\xi s)X2(s) - d)ds.

(2.1)

On the other hand, it is clear that any solution with nonnegative initial value
cannot blow up in a finite time. Since

dX1

dt
(t) \leq X1(t)(r  - X1(s)),

it is clear that if X1(0) \geq 0, then X1(t) is finite for any t. Moreover, eventually, we
have X1(t) \leq r. The same conclusion holds true for X2(t).

Note that

dX3

dt
(t) = X3(t)[e1(\xi t)X1(t) + e2(\xi t)X2(t) - d].
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352 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

Since we already have shown that X1(t), X2(t) are bounded, it is clear from the
above that X3(t) is finite for all t.

Finally, take \widehat \varepsilon > 0 be sufficiently small such that for all i \in \scrS we have

c1(i) - e1(i)\widehat \varepsilon \geq 0,

c2(i) - e2(i)\widehat \varepsilon \geq 0.

From (1.5), we have for Wt := X1(t) +X2(t) + \widehat \varepsilon X3(t) that

dWt

dt
\leq r(X1(t) +X2(t)) - X1(t)

2  - X2(t)
2  - d\widehat \varepsilon X3(t)

\leq (r + d\widehat \varepsilon )(X1(t) +X2(t)) - (X1(t)
2 +X2(t)

2) - d\widehat \varepsilon Wt

\leq \widehat R - d\widehat \varepsilon Wt

for some \widehat R > 0. From this equation, it is easy to show that, eventually, we have

Wt \leq 
\widehat R
d\widehat \varepsilon , and if W0 \leq \widehat R

d\widehat \varepsilon , then Wt \leq 
\widehat R
d\widehat \varepsilon , t \geq 0. As a result\Biggl\{ 

(x1, x2, x3) \in R3
+ : x1 + x2 + \widehat \varepsilon x3 \leq 

\widehat R
d\widehat \varepsilon 
\Biggr\} 

is an attractive invariant set for (1.5).

The next assumption is enforced throughout the paper.

Assumption 2.1. The following conditions hold:

(1) b1 < 1, b2 < 1.
(2) r

\sum 
j\in \scrS ei(j)\pi j > d; i = 1, 2.

(3) c1(i)e1(j) - c1(j)e1(i) \not = 0 for some i, j \in \scrS .
(4) c2(i)e2(j) - c2(j)e2(i) \not = 0 for some i, j \in \scrS .
Let \mu 1 = \bfitdelta (r,0,0) \times \pi and \mu 2 = \bfitdelta (0,r,0) \times \pi , where \bfitdelta x is the Dirac measure with

mass at x. It is noted that (r, 0, 0) and (0, r, 0) are equilibria on the axes Ox1 and
Ox2, respectively. Assumption 2.1(2) implies that

\lambda 3(\mu i) = r
\sum 
j\in \scrS 

ei(j)\pi j  - d > 0; i = 1, 2.

Then in view of Bena\"{\i}m (2018) or Du and Dang (2014), there exist an invariant
measure \mu 13 on R13,\circ 

+ \times \scrS , where R13,\circ 
+ := \{ x1 > 0, x3 > 0, x2 = 0\} (species X2 is

extinct in this subspace), and an invariant measure \mu 23 on R23,\circ 
+ \times \scrS , where R23,\circ 

+ :=
\{ x2 > 0, x3 > 0, x1 = 0\} (species X1 is extinct in this subspace).

On R12,\circ 
+ \times \scrS , because b1 < 1, b2 < 1, the point (x - , y - ) := ( r(1 - b1)

1 - b1b2
, r(1 - b2)

1 - b1b2
) will

be a saddle equilibrium for the deterministic system

dX1

dt
(t) = X1(t)[r  - X1(t) - b1X2(t)],

dX2

dt
(t) = X2(t)[r  - X2(t) - b2X1(t)].

(2.2)

Since the coefficients r, b1, b2 are not influenced by the random switching, the
process X is fully degenerate and deterministic on R12,\circ 

+ . As a result, if we let \bfitdelta x - ,y - 
be the Dirac measure at (x - , y - ), then

\mu 12 := \bfitdelta x - ,y - \times \pi (2.3)
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RANDOM SWITCHING IN AN ECOSYSTEM 353

is the unique invariant probability measure of the process (X, \xi ) from (1.5) on R12,\circ 
+ \times 

\scrS .
Theorem 2. There exist unique invariant measures \mu 13 and \mu 23 on R13,\circ 

+ and

R23,\circ 
+ , respectively.

Proof. Consider the system

(dX1(t), dX3(t))
\top = F\xi t(X1(t), X3(t))dt(2.4)

on R2,\circ 
+ , where Fj(x1, x3) = [x1(r  - x1  - c1(j)x3), x3(e1(j)x1  - d)]\top , j = 1, 2. The

dynamics of (2.4) switches between two ODEs:

(dX1(t), dX3(t))
\top = F1(X1(t), X3(t))dt(2.5)

and

(dX1(t), dX3(t))
\top = F2(X1(t), X3(t))dt.(2.6)

Let \phi 1
t (x1, x3), \phi 

2
t (x1, x3) be the solutions to (2.5) and (2.6) with initial condition

(x1, x3), respectively.
We define

\gamma +(x1, x3) =
\Bigl\{ 
\phi kn
tn \circ \cdot \cdot \cdot \circ \phi k1

t1 (x1, x3) : n \in Z+, tl \geq 0, kl \in \scrS : l = 1, . . . , n
\Bigr\} 

and for the invariant set \scrK \subset R2,\circ 
+ let

\Gamma (\scrK ) =
\bigcap 
x\in \scrK 

\gamma +(x)

be the possibly empty, compact subset which is accessible for the process (X(t), \xi (t))
from any point in \scrK .

To complete the proof, we need to show that (X1(t), X3(t), \xi t), which satisfies
(2.4), has a unique invariant probability measure on R2,\circ 

+ \times \scrS . To that end, we will
check the strong bracket condition, a concept introduced in Bena\"{\i}m et al. (2015).
To be precise, we will show the existence of a point (x\ast 

1, x
\ast 
3) \in \Gamma (R2,\circ 

+ ) at which
G0 = c[F1, F2] and G1 = [G0, F1] will span R2. Here c is a to-be-specified constant,
and [\cdot , \cdot ] is the Lie bracket of two vector fields.

Because r
\sum 

j\in \scrS e1(j)\pi j > d, there is at least one j such that re1(j) > d. Without
loss of generality, we can assume that re1(1) > d. It is well known that, if re1(1) > d,
(x\diamond 

1, x
\diamond 
3) := ( d

e1(1)
, 1
c1(1)

(r  - d
e1(1)

)) is the globally asymptotically stable equilibrium

of the classical VL system (2.5) on R2,\circ 
+ . Thus, (x\diamond 

1, x
\diamond 
3) \in \Gamma (R2,\circ 

+ ). Moreover, under
the condition (3) of Assumption 2.1, (x\diamond 

1, x
\diamond 
3) cannot be an equilibrium of (2.6). As

a result \{ \phi 2
t ((x

\diamond 
1, x

\diamond 
3)), 0 < t < t0\} \subset \Gamma (R2,\circ ). Thus, there exists t0 > 0 such that

Ht0 := \{ \phi 2
t ((x

\diamond 
1, x

\diamond 
3)), 0 < t < t0\} is an one-dimensional curve on R2,\circ 

+ . It is easy to
check that any open segment of any line \{ ax1 + bx3 + c = 0, a2 + b2 > 0\} cannot be
the solution to (2.6). Thus, we have a claim (C1) that, for a, b, c such that a2+ b2 > 0
and 0 < t1 < t2 < t0, we can find t3 \in (t1, t2) such that \phi 2

t3(x
\diamond 
1, x

\diamond 
3) does not lie on

ax1 + bx3 = c.
First, consider the case c1(1) = c1(2). Then

F1(x1, x3) - F2(x1, x3) = [0, (e1(1) - e1(2))(x1x3)]
\top ,
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354 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

G0(x1, x3) :=
1

(e1(1) - e1(2))
[F1(x1, x3) - F2(x1, x3)] = [0, x1x3]

\top ,

and computing the Lie bracket [G0, F1] we have

G1(x1, x3) := [G0, F1](x1, x3) = [ - c1(1)x
2
1x3, f3(x1, x3)]

\top 

for some function f3(x1, x3). It is clear that G0 and G1 span R2 for any (x1, x3) \in R2,\circ 
+ .

Now, we consider the case c1(1)  - c1(2) \not = 0. With p = e1(1) - e1(2)
c1(1) - c1(2)

, we make

the following transformation: X(t) := X1(t) and Y (t) = pX1(t) +X3(t). Then (2.4)
becomes \Bigl\{ 

(dX(t), dY (t))\top = \widetilde F\xi t(X(t), Y (t))dt,(2.7)

where

\widetilde Fj(x, y) =
\Bigl[ 
x
\bigl( 
r  - x - c1(j)(y  - px)

\bigr) 
; px
\bigl( 
r  - x - c1(j)(y  - px)

\bigr) 
+ (y  - px)(e1(j)x - d)

\Bigr] \top 
, j = 1, 2.

Let

\widetilde G0(x, y) :=
1

 - (c1(1) - c1(2))
[ \widetilde F1(x, y) - \widetilde F2(x, y)] = [x(y  - px), 0]\top .

As a result,

\widetilde G1(x, y) :=[ \widetilde G0, \widetilde F1](x, y)

=
\Bigl[ \widetilde f3(x, y), x(y  - px)

\bigl( 
p(r + d) + 2px( - 1 + pc1(1) - e1(1)) + y(e1(1)

 - pc1(1))
\bigr) \Bigr] \top 

for some function \widetilde f3(x, y). The couple of vector fields \widetilde G0, \widetilde G1 span R2 for any (x, y) \in 
\{ x > 0, y  - px > 0\} outside the set \{ p(r + d) + 2px( - 1 + pc1(1) - e1(1)) + y(e1(1) - 
pc1(1)) = 0\} . This set is empty if e1(1)  - pc1(1) =  - 1 + pc1(1)  - e1(1) = 0, while it
is a line otherwise. Let \widetilde Ht0 be the image of Ht0 through the linear map (x1, x3) \rightarrow 
(x, y) = (x1, px1 + x3). Because of the linear transformation, any open segment of
any line in \{ (x, y) \in R2 : x > 0, y  - px > 0\} cannot be the solution to (2.7) due
to claim (C1). As a result, we can find t3 > 0 such that \widetilde \phi 2

t3(x
\ast , y\ast ) does not lie on

p(r + d) + 2px( - 1 + pc1(1)  - e1(1)) + y(e1(1)  - pc1(1)) = 0 (if it is a line), where\widetilde \phi 2
t (x, y) is the solution with initial value (x, y) to (2.7) with \xi t replaced by 2 and

x\ast = x\diamond 
1, y

\ast = px\diamond 
1+x\diamond 

3. Thus,
\widetilde \phi 2
t3(x

\ast , y\ast ) satisfies the strong bracket condition for the

vector fields \widetilde F1, \widetilde F2. Equivalently, \phi 2
t3(x

\diamond 
1, x

\diamond 
3) \in \Gamma (R2,\circ 

+ ) satisfies the strong bracket
condition for the vector fields F1, F2.

Now, in view of Bena\"{\i}m et al. (2015, Theorems 4.4 and 4.6), the probability mea-
sure P(x1,x3,j0)[(X1(t), X3(t), \xi t) \in \cdot \times \{ j0\} ] is absolutely continuous with respect to

Lebesgue measure on R13,\circ 
+ , and there exists a unique invariant probability measure

\mu 13 on R2,\circ 
+ \times \scrS . In addition there are constants c > 1 and \alpha > 0 such that for any

t \geq 0,x \in R13,\circ 
+ , j \in \scrS we have \| P(x1,x3,j)[(X1(t), X3(t), \xi t) \in \cdot ]  - \mu 13\| TV \leq ce - \alpha t;

that is, the convergence is exponential.
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RANDOM SWITCHING IN AN ECOSYSTEM 355

Now we present some auxiliary lemmas needed to obtain the main results.

Lemma 2.1.\int 
R3

+

\sum 
j\in \scrS 

x1f1(x, j) + x2f2(x, j)

x1 + x2
\nu (dx, j) = 0, \nu \in \{ \mu 1, \mu 2, \mu 13, \mu 23\} .

Remark 1. Note that even though 1
x1+x2

is undefined on the set E0 := \{ (x1, x2, x3)

\in R3
+| x1 + x2 = 0\} this does not matter since none of the measures \{ \mu 1, \mu 2, \mu 13, \mu 23\} 

put any mass on the set E0.

Proof. To prove the lemma, one can use a contradiction argument similar to
Hening and Nguyen (2018, Lemmas 3.3 and 5.1).

For each \nu \in \scrM , denote by I\nu the subset of \{ 1, 2, 3\} such that supp (\nu ) =
\{ (x1, x2, x3) \in R3

+ : xi = 0 if i /\in I\nu \} .
Lemma 2.2. For any ergodic measure \nu \in \scrM we have that \lambda i(\nu ) is well defined

and finite. Furthermore,

\lambda i(\nu ) = 0, i \in I\nu .

Proof. The proof is the same as the proof of Hening and Nguyen (2018, Lemma
5.1).

Define the normalized occupation measures \Pi x,j
t by

\Pi x,j
t (dy, i) :=

1

t

\int t

0

Px,j\{ X(s) \in dy, \xi (s) = i\} ds(2.8)

and the random normalized occupation measures by

\widetilde \Pi t(dy, i) :=
1

t

\int t

0

1\{ X(s)\in dy,\xi (s)=i\} ds.(2.9)

Lemma 2.3. Suppose the following:

The sequences \{ (xk, jk)\} k\in Z+ \subset \scrK \times \scrS , (Tk)k\in Z+ \subset R+ are such that Tk > 1
for all k \in Z+ and limk\rightarrow \infty Tk = \infty .
The sequence (\Pi xk,jk

Tk
)k\in Z+

converges weakly to an invariant probability mea-
sure \pi .

Then for any function h(x, i) : \scrK \times \scrS \rightarrow R that is upper semicontinuous (in x for
each fixed i), one has

lim
k\rightarrow \infty 

\int 
R3

+

\sum 
j\in \scrS 

h(x, j)\Pi xk,jk
Tk

(dx, j) \leq 
\int 
R3

+

\sum 
j\in \scrS 

h(x, j)\pi (dx, j).(2.10)

Proof. Since \scrK is a compact set, (2.10) can be obtained directly from the Port-
manteau theorem. The details are left to the readers.

3. Persistence. For \nu \in \scrM remember that the invasion rate of species i with
respect to \nu \in \scrM is defined by

\lambda i(\nu ) =
\sum 
j\in \scrS 

\int 
\partial R3

+

fi(x, j)\nu (dx, j).
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356 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

We assume that

\lambda 2(\mu 13) > 0 and \lambda 1(\mu 23) > 0,(3.1)

where \mu 13, \mu 23 are in Theorem 2. Using (2.3) we have

\lambda 3(\mu 12) =
\sum 
j\in \scrS 

(e1(j)x - + e2(j)y -  - d)\pi j = e1
r(1 - b1)

1 - b1b2
+ e2

r(1 - b2)

1 - b1b2
 - d.

Since e1r > d; e2r > d and 1 - b1
1 - b1b2

+ 1 - b2
1 - b1b2

> 1 (which can be easily checked using
b1 < 1, b2 < 1), we have

\lambda 3(\mu 12) > 0.(3.2)

By the minimax principle, (3.1) and (3.2) are equivalent to the existence of
p1, p2, p3 > 0 satisfying

3\sum 
i=1

pi\lambda i(\nu ) > 0, \nu \in \{ \mu 1, \mu 2, \mu 13, \mu 23, \mu 12\} .(3.3)

Let p0 be sufficiently large (compared to p1, p2, p3) such that

p0 min\{ \lambda 1(\bfitdelta 
\ast \times \pi ), \lambda 2(\bfitdelta 

\ast \times \pi )\} +
3\sum 

i=1

pi\lambda i(\bfitdelta 
\ast \times \pi ) > 0.(3.4)

Define

2\rho \ast := min

\biggl\{ 
p0 min\{ \lambda 1(\bfitdelta 

\ast \times \pi ), \lambda 2(\bfitdelta 
\ast \times \pi )\} +

3\sum 
i=1

pi\lambda i(\bfitdelta 
\ast \times \pi ),

3\sum 
i=1

pi\lambda i(\nu ), \nu \in \{ \mu 1, \mu 2, \mu 13, \mu 23, \mu 12\} 
\biggr\} 

> 0.

(3.5)

Let \scrK be the attractive compact set mentioned in Theorem 1 and \scrK \circ = R3,\circ 
+ \cap \scrK .

Define \Phi : \{ R3
+ \setminus \{ (x1, x2, x3) \in R3

+| x1 + x2 = 0\} \} \times \scrS \mapsto \rightarrow R by

\Phi (x, j) = - p1f1(x, j) - p2f2(x, j) - p3f3(x, j)

 - p0
x1f1(x, j) + x2f2(x, j)

x1 + x2
.

Let \widehat \Phi : R3
+ \times \scrS \mapsto \rightarrow R be the function

\widehat \Phi (x, j) = - p1f1(x, j) - p2f2(x, j) - p3f3(x, j)

 - p0 min \{ f1(x, j), f2(x, j)\} .
(3.6)

Define \widetilde \Phi : R3
+ \times \scrS \mapsto \rightarrow R by

\widetilde \Phi (x, j) = \Biggl\{ \widehat \Phi (x, j) if x1 + x2 = 0,

\Phi (x, j) if x1 + x2 \not = 0.

It is readily seen that

x1f1(x) + x2f2(x)

x1 + x2
\geq min \{ f1(x), f2(x)\} .(3.7)
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RANDOM SWITCHING IN AN ECOSYSTEM 357

In view of (3.7), for each j \in \scrS , \widetilde \Phi (x, j) is an upper semicontinuous function.

Lemma 3.1. Suppose that (3.1) holds. Let p and \rho \ast be as in (3.5). There exists
a T > 0 such that for any x \in \partial R3

+ \cap \scrK , j \in \scrS one has

1

T

\int T

0

Ex,j
\widetilde \Phi (X(t), \xi (t))dt \leq  - \rho \ast .(3.8)

As a corollary, there is a \~\delta > 0 such that

1

T

\int T

0

Ex,j\Phi (X(t), \xi (t))dt \leq  - 3

4
\rho \ast (3.9)

for any (x, j) \in \scrK \circ \times \scrS satisfying dist(x, \partial R3
+) <

\~\delta .

Proof. We argue by contradiction to obtain (3.8). Suppose that the conclusion of
this lemma is not true. Then, we can find (xk, jk) \in \partial R3

+ \times \scrS , \| xk\| \leq M and Tk > 0,
limk\rightarrow \infty Tk = \infty such that

1

Tk

\int Tk

0

Exk,jk
\widetilde \Phi (X(t), \xi (t))dt >  - \rho \ast , k \in Z+.(3.10)

Remember that the normalized occupation measures are defined by

\Pi x,j
t (dy, i) :=

1

t

\int t

0

Px,j\{ X(s) \in dy, \xi (s) = i\} ds.

It follows from Hening and Nguyen (2018, Lemma 4.1) that (\Pi xk,jk
Tk

)k\in Z+
is tight.

As a result (\Pi xk,jk
Tk

)k\in Z+ has a convergent subsequence in the weak\ast -topology. With-

out loss of generality, we can suppose that (\Pi xk,jk
Tk

)k\in Z+ is a convergent sequence in
the weak\ast -topology. It can be shown (see Lemma 4.1 from Hening and Nguyen, 2018
or Theorem 9.9 from Ethier and Kurtz, 2009) that its limit is an invariant probability
measure \mu of (X, \xi ). Since (xk, jk) \in \partial R3

+ \times \scrS , the support of \mu lies in \partial R3
+ \times \scrS . As

a consequence of Lemma 2.3

lim
k\rightarrow \infty 

1

Tk

\int Tk

0

Exk,jk
\widetilde \Phi (X(t), \xi (t))dt \leq 

\int 
R3

+

\sum 
j\in \scrS 

\widetilde \Phi (x, j)\mu (dx, j).
Using Lemmas 2.1 and 2.2 together with (3.5) we get that

lim
k\rightarrow \infty 

1

Tk

\int Tk

0

Exk,jk
\widetilde \Phi (X(t), \xi (t))dt \leq  - 2\rho \ast .

This contradicts (3.10), which means (3.8) is proved.
With \widehat \Phi defined in (3.6), we have \widehat \Phi (x, j) \geq \Phi (x, j) for x1 + x2 \not = 0 and \widehat \Phi (x, j) =\widetilde \Phi (x, j) if x1 + x2 = 0. As a result of (3.5)

\widehat \Phi (0) = \widetilde \Phi (0) =  - 
\sum 

(pifi(0)) - p0 min \{ f1(0), f2(0)\} \leq  - 2\rho \ast .

Thus

1

T

\int T

0

E(0,0,x3),j
\widehat \Phi (X(t), \xi (t))dt(3.11)

=
1

T

\int T

0

E(0,0,x3),j
\widetilde \Phi (X(t), \xi (t))dt \leq  - \rho \ast , (0, 0, x3) \in \scrK .
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358 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

Due to the Feller property of (X(t), \xi (t)) on R3
+ \times \scrS and the continuity of \widehat \Phi on

R3
+, there is an \widehat \varepsilon > 0 such that

1

T

\int T

0

Ex,j
\widehat \Phi (X(t), \xi (t))dt \leq  - 3

4
\rho \ast if x1 + x2 \leq \widehat \varepsilon , (x, j) \in \scrK \times \scrS .

Together with \Phi (x, j) \leq \widehat \Phi (x, j), x1 + x2 \not = 0, this implies

1

T

\int T

0

Ex,j\Phi (X(t), \xi (t))dt \leq  - 3

4
\rho \ast , (x, j) \in \scrK \circ \times \scrS , x1 + x2 \leq \widehat \varepsilon .(3.12)

If x1 + x2 \not = 0, then

Px,j

\Bigl\{ \widetilde \Phi (X(t), \xi (t)) = \Phi (X(t), \xi (t)), t \geq 0
\Bigr\} 
= 1.

Using the Feller property of (X(t)) on \{ (x1, x2, x3) \in R3
+| x1 +x2 \not = 0\} , (3.8), and

the continuity of \Phi (\cdot , t) = \widetilde \Phi (\cdot , t) on \{ (x1, x2, x3) \in R3
+| x1 + x2 \not = 0\} one can see that

there exists \~\delta \in (0, \widehat \varepsilon ) for which
1

T

\int T

0

Ex,j\Phi (X(t), \xi (t))dt \leq  - 3

4
\rho \ast ,(3.13)

(x, j) \in \scrK \circ \times \scrS , x1 + x2 \geq \widehat \varepsilon , dist(x, \partial R3
+) <

\~\delta .

Combining (3.12) and (3.13) yields (3.9).

Lemma 3.2. Let Y be a random variable and \theta 0 > 0 be a constant, and suppose

E exp(\theta 0Y ) + E exp( - \theta 0Y ) \leq K1.

Then the log-Laplace transform \phi (\theta ) = lnE exp(\theta Y ) is twice differentiable on
[0, \theta 0

2 ) and

d\phi 

d\theta 
(0) = EY,

0 \leq d2\phi 

d\theta 2
(\theta ) \leq K2 , \theta \in 

\biggl[ 
0,

\theta 0
2

\biggr) 
,

for some K2 > 0 depending only on K1.

Proof. See Lemma 3.5 in Hening and Nguyen (2018).

Let p = (p0, . . . , p3) satisfy (3.5), and consider the function

V (x) := Vp(x) =
1

(x1 + x2)p0
\prod 3

i=1 x
pi

i

.(3.14)

Proposition 3.1. Let V be defined by (3.14) with p and \rho \ast satisfying (3.5) and
T > 0 satisfying the assumptions of Lemma 3.1. There are \theta \in (0, 1), K\theta > 0 such
that, for x \in \scrK \circ , j \in \scrN ,

Ex,jV
\theta (X(T )) \leq exp( - 0.5\theta \rho \ast T )V \theta (x) +K\theta .(3.15)
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RANDOM SWITCHING IN AN ECOSYSTEM 359

Proof. We have

lnV (X(T )) = lnV (X(0)) +

\int T

0

\Phi (X(t), \xi (t))dt.(3.16)

Since \Phi is bounded on \scrK \times \scrS , we can easily have that

exp\{  - HT\} \leq V (X(T ))

V (x)
\leq exp\{ HT\} ,x \in \scrK ,(3.17)

for some nonrandom constant H. Because of (3.17) and the fact that
\int T

0
\Phi (X(t), \xi (t))

dt = ln(V (X(T ))
V (x) ) (due to (3.16)), the assumptions of Lemma 3.2 hold for the random

variable
\int T

0
\Phi (X(t), \xi (t))dt. Therefore, there is \~K2 \geq 0 such that

0 \leq d2 \~\phi x,j,T

d\theta 2
(\theta ) \leq \~K2 for all \theta \in [0, 1),(3.18)

(x, j) \in R3,\circ 
+ \times \scrS , \| x\| \leq M,T \in [T \ast , n\ast T \ast ],

where

\~\phi x,j,T (\theta ) = lnEx,j exp

\Biggl( 
\theta 

\int T

0

\Phi (X(t), \xi (t))dt

\Biggr) 
.

An application of Lemma 3.1 and (3.16) yields

d\~\phi x,j,T

d\theta 
(0) = Ex,j

\int T

0

\Phi (X(t), \xi (t))dt \leq  - 3

4
\rho \ast T(3.19)

for all (x, j) \in \scrK \circ satisfying dist(x, \partial R3
+) <

\~\delta . By a Taylor expansion around \theta = 0,

for x \in \scrK \circ , dist(x, \partial Rn
+) <

\~\delta , and \theta \in [0, 1) and using (3.18)--(3.19) we have

\~\phi x,j,T (\theta ) = \~\phi x,j,T (0) +
d\~\phi x,j,T

d\theta 
(0)\theta +

1

2

d2 \~\phi x,j,T

d\theta 2
(\theta \prime )(\theta  - \theta \prime )2 \leq  - 3

4
\rho \ast T\theta + \theta 2 \~K2.

If we choose any \theta \in (0, 1) satisfying \theta < \rho \ast T\ast 

4 \~K2
, we obtain that

\~\phi x,j,T (\theta ) \leq  - 1

2
\rho \ast T\theta for all (x, j) \in R3,\circ \times \scrS , \| x\| \leq M, dist(x, \partial Rn

+)(3.20)

< \~\delta , T \in [T \ast , n\ast T \ast ],

which leads to

Ex,jV
\theta (X(T ))

V \theta (x)
= exp \~\phi x,j,T (\theta ) \leq exp( - 0.5\rho \ast T\theta ).(3.21)

In view of (3.17), we have for (x, j) \in \scrK \circ \times \scrS satisfying dist(x, \partial R3
+) \geq \~\delta that

Ex,jV
\theta (X(T )) \leq exp(\theta TH) sup

x\in \scrK ,dist(x,\partial Rn
+)\geq \~\delta 

\{ V (x)\} =: K\theta < \infty .(3.22)

The proof can be finished by combining (3.21) and (3.22).

Theorem 3. Suppose

\lambda 2(\mu 13) =

\int 
R13,\circ 

+

\sum 
j\in \scrS 

(r  - b2x1  - c2(j)x3)\mu 13(dx1, dx3, j) > 0
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and

\lambda 1(\mu 23) =

\int 
R23,\circ 

+

\sum 
j\in \scrS 

(r  - b1x2  - c1(j)x3)\mu 23(dx2, dx3, j) > 0,

where \mu 13 is the (unique) invariant measure on R13,\circ 
+ \times \scrS and \mu 23 is the (unique)

invariant measure on R23,\circ 
+ \times \scrS . Then for each \varepsilon > 0, there exists \delta > 0 such that for

all (x, j) \in R3,\circ 
+ \times \scrS 

lim inf
t\rightarrow \infty 

Px,j\{ Xi(t) \geq \delta , i = 1, 2, 3\} \geq 1 - \varepsilon .

Moreover, let \Phi j
t (x) be the solution to dXi

dt (t) = Xi(t)fi(X(t), j), i = 1, 2, 3, for
j \in \scrS and

\Gamma (R3,\circ 
+ ) =

\bigcap 
x\in R3,\circ 

+

\Bigl\{ 
\phi kn
tn \circ \cdot \cdot \cdot \circ \Phi k1

t1 (x) : n \in Z+, tl \geq 0, kl \in \scrS : l = 1, . . . , n
\Bigr\} 
.

If the strong bracket condition is satisfied for some x\ast \in \Gamma (R3,\circ 
+ ), then it follows

from Bena\"{\i}m et al. ( 2015, Theorem 4.6) that the system is strongly stochastically
persistent.

Proof. In Proposition 3.1, we have constructed a Lyapunov function V satisfying
(3.15). It follows from (3.15) that

Ex,jV
\theta (X(2T )) \leq \kappa 2V \theta x +K\theta (1 + \kappa ), \kappa := exp( - 0.5\theta \rho \ast 2T ).

Continuing this process, we have

Ex,jV
\theta (X(nT )) \leq \kappa nV \theta x +K\theta (1 + \kappa + \cdot \cdot \cdot + \kappa n - 1) \leq \kappa nV \theta x +

1

1 - \kappa 
.

This inequality and (3.17) show that

lim sup
t\rightarrow \infty 

ExV
\theta (X(t)) \leq K0 :=

eHT

1 - \kappa 
.

As a result, because limx1\wedge x2\wedge x3\rightarrow 0 V (x) = \infty , for each \varepsilon > 0, there exists \delta > 0
such that for all (x, j) \in R3,\circ 

+ \times \scrS 

lim inf
t\rightarrow \infty 

Px,j\{ Xi(t) \geq \delta , i = 1, 2, 3\} \geq 1 - \varepsilon .

4. Extinction. PDMPs can be quite degenerate, and one has to do some addi-
tional work in order to see which parts of the state space are visited by the process.

Theorem 4. We have the following extinction results:

(1) If \lambda 2(\mu 13) < 0, then for any compact set \scrK 13 \subset R13,\circ and for any \varepsilon > 0,
there exists \delta > 0 such that for all (x1, x3) \in \scrK 13, 0 < x2 < \delta we have
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RANDOM SWITCHING IN AN ECOSYSTEM 361

Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX2(t)

t
= \lambda 2(\mu 13) < 0

\biggr\} 
\geq 1 - \varepsilon .

(2) If \lambda 1(\mu 23) < 0, then for any compact set \scrK 23 \subset R23,\circ and for any \varepsilon > 0,
there exists \delta > 0 such that for all (x2, x3) \in \scrK 23, 0 < x1 < \delta we have

Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX1(t)

t
= \lambda 1(\mu 23) < 0

\biggr\} 
\geq 1 - \varepsilon .

(3) If \lambda 2(\mu 13) < 0, \lambda 1(\mu 23) > 0 and R13,\circ 
+ is accessible from any x \in R3,\circ 

+ , that

is, R13,\circ 
+ \cap \Gamma (\scrK ) \not = \emptyset , then

Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX2(t)

t
= \lambda 2(\mu 13) < 0

\biggr\} 
= 1.

(4) If \lambda 1(\mu 23) < 0, \lambda 2(\mu 13) > 0 and R23,\circ 
+ is accessible from any x \in R3,\circ 

+ , then

Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX1(t)

t
= \lambda 1(\mu 23) < 0

\biggr\} 
= 1.

(5) If \lambda 1(\mu 23) < 0, \lambda 2(\mu 13) < 0 and R13,\circ and R23,\circ 
+ are accessible from any

x \in R3,\circ 
+ , then

Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX1(t)

t
= \lambda 1(\mu 23) < 0

\biggr\} 
+ Px,i

\biggl\{ 
lim
t\rightarrow \infty 

lnX2(t)

t
= \lambda 2(\mu 13) < 0

\biggr\} 
= 1.

Proof. We assume \lambda 2(\mu 13) < 0 and prove part (1) first. Let p1, p2, p3 > 0 such
that

p1\lambda 1(\mu ) - p2\lambda 2(\mu ) + p3\lambda 3(\mu ) > 0, for any \mu \in \{ \bfitdelta \ast \times \pi , \mu 1, \mu 13\} .(4.1)

Define

V (x) =
x
p2
2

x
p1
1 x

p2
3

.

As in the proof of Lemma 3.1, we can show that, for any x \in R13,+ and \| x\| \leq M ,
we have

1

T

\int T

0

Ex,j ( - p1f1(X(t), \xi (t)) - p3f3(X(t), \xi (t)) + p2f2(X(t), \xi (t))) dt <  - \rho < 0

for some \rho > 0, T > 0. Next, we can show as in Proposition 3.1 that

Ex,jV (X(T )) \leq \kappa V (x) for all x \in R3,\circ 
+ : x2 < \delta , \| x\| \leq M(4.2)

for some \kappa \in (0, 1), \delta > 0. Note that if V (x) < vM := \delta 
p2

Mp1+p2
, then x2 < \delta given that

\| x\| \leq M . Pick \theta \in (\kappa , 1), and define

\varsigma := inf\{ k \geq 0 : V (X(kT )) > vM\theta 
k - 1\} .

From (4.2), we have

Px,j\{ V (X(T )) > \varsigma \} \leq Ex,jV (X(T ))

\varsigma 
\leq \kappa 

\varsigma 
V (x).(4.3)
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In particular, we have

Px,j\{ \eta = 1\} \leq \kappa 

vM\theta 
V (x).

Similarly, using the Markov property of (X(t), \xi (t)) and (4.3), we have

Px,j\{ \eta = 2\} = Ex,j

\Bigl[ 
1\{ \eta >1\} PX(T ),\xi (T )\{ \eta = 2\} 

\Bigr] 
\leq Ex,j

\Biggl[ 
1\{ \eta >1\} 

\kappa 

vM\theta 
2V (X(T ))

\Biggr] 

\leq \kappa 2

vM\theta 
2V (x).

Continuing this way, we can show that

Px,j\{ \eta < \infty \} =
\infty \sum 
k=1

Px,j\{ \eta = k\} \leq V (x)

vM

\infty \sum 
k=1

\kappa k

\theta 
k
\leq V (x)

vM

\theta 

\theta  - \kappa 
.

This easily implies that if V (x) is sufficiently small, then

Px,i

\biggl\{ 
lim
k\rightarrow \infty 

X2(kT ) = 0

\biggr\} 
> 1 - \varepsilon .(4.4)

On the other hand, since X(t) lives in a compact space and the coefficients of
(1.5) are locally Lipschitz, there exists K > 0 such that X2(t) \leq KX2(kT ) for any
k \geq 1, t \in (kT , (k + 1)T ). As a result,

Px,i

\Bigl\{ 
lim
t\rightarrow \infty 

X2(t) = 0
\Bigr\} 
> 1 - \varepsilon .

Finally, to obtain the exact convergence rate, we use the fact that any weak limit
of the random occupation measure \widetilde \Pi t :=

1
t

\int t

0
1\{ (X(s),\xi (s))\in \cdot \} ds must be almost surely

an invariant measure of (X(t), \xi (t)). If X2(t) converges to 0, then the weak limit must
be an invariant measure on R13

+ \times \scrS . Suppose, with a positive probability, there exists

a random sequence \{ tk\} such that the limit of \widetilde \Pi tk is of the form a1\bfitdelta 
\ast \times \pi +a2\mu 1+a3\mu 13

with a1 > 0 or a2 > 0; then we show this leads to a contradiction as follows. We have
from the weak convergence that

lim
k\rightarrow \infty 

lnX1(tk)

tk
= lim

k\rightarrow \infty 
\lambda 1(\widetilde \Pi tk) = \lambda 1(a1\bfitdelta 

\ast \times \pi + a2\mu 1 + a3\mu 13) = a1\lambda 1(\bfitdelta 
\ast \times \pi )

because \lambda 1(\mu 1) = 0, \lambda 1(\mu 13) = 0. Since \lambda 1(\bfitdelta 
\ast \times \pi ) > 0, we must have a1 = 0; otherwise

limk\rightarrow \infty lnX1(tk) = \infty , which contradicts the fact that the solution is bounded.
Once we prove that a1 = 0, we have

lim
k\rightarrow \infty 

lnX3(tk)

tk
= lim

k\rightarrow \infty 
\lambda 3(\widetilde \Pi tk) = \lambda 3(a2\mu 1 + a3\mu 13) = a2\lambda 3(\mu 1)

since \lambda 3(\mu 13) = 0. The fact that X3(t) is bounded implies that a2 = 0 as well.
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RANDOM SWITCHING IN AN ECOSYSTEM 363

As a result, we proved that the only weak limit of \widetilde \Pi t, if X2(t) converges to 0 is
\mu 13. Because of this uniqueness, we have

lim
t\rightarrow \infty 

lnX2(t)

t
= lim

t\rightarrow \infty 
\lambda 2(\widetilde \Pi t) = \lambda 2(\mu 13)

for almost all trajectories satisfying limt\rightarrow \infty X2(t) = 0.
Combining this conclusion and (4.4) completes our proof for part (1). Part (2) is

similar.
For parts (3), (4), and (5), we combine the result from part (1), the accessibility

of the boundary, and Bena\"{\i}m et al. (2015, Lemma 3.1) to obtain that

P(x0,i)

\Bigl( 
lim
t\rightarrow \infty 

dist(X(t), \partial R3
+) = 0

\Bigr) 
> 0.

This implies that there is no invariant measure on R3,\circ 
+ \times \scrS . As a result, any

weak limit of \widetilde \Pi t(\cdot ) := 1
t

\int t

0
1\{ (X(s),\xi (s))\in \cdot \} ds is an invariant measure on the boundary

\partial R3,\circ 
+ \times \scrS . This can be used in conjunction with a standard contradiction argu-

ment (Hening and Nguyen, 2018, Lemma 5.8) to obtain the claims in parts (3), (4),
and (5).

5. Examples. In this section, we showcase our theoretical results in two specific
illuminating examples. For the deterministic system, without switching, correspond-
ing to fixing \xi (t) = j \in \scrS , t \geq 0, if b1, b2 < 1, coexistence for the prey ecosystem
(X1, X2) is impossible in the absence of the predator. However, if e1(j)r > d and
e2(j)r > d and

\lambda 2(\delta 13, j) = r  - d

e1(j)
b2  - 

\biggl( 
r  - d

e1(j)

\biggr) 
c2(j)

c1(j)
> 0,

\lambda 1(\delta 23, j) = r  - d

e2(j)
b1  - 

\biggl( 
r  - d

e2(j)

\biggr) 
c1(j)

c2(j)
> 0,

where (\delta 13, j) is the point mass at the unique equilibrium of (X1, X3) in environment
j on R13,\circ 

+ , then the three-species ecosystem (X1, X2, X3) exhibits coexistence.
We will study how the random switching can change the long-term behavior of

such ecosystems.

Example 5.1. Consider the parameters\left\{                   

r = 1, d = 0.1,

b1 = 0.55, b2 = 0.95,

c1(1) = 0.15, c1(2) = 0.4,

c2(1) = 0.178, c2(2) = 0.45,

e1(1) = 0.6, e1(2) = 0.85,

e2(1) = 0.45, e2(2) = 0.15.

Then
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364 A. HENING, D. H. NGUYEN, N. NGUYEN, AND H. WATTS

\left\{         
\lambda 2(\delta 13, 1) \approx  - 0.0667,

\lambda 2(\delta 13, 2) \approx  - 0.05,

\lambda 2(\delta 23, 1) \approx 0.185,

\lambda 2(\delta 23, 2) \approx 0.3111,

and \left\{   r  - d
e1
b2  - 

\Bigl( 
r  - d

e1

\Bigr) 
c2
c1

\approx 0.0022,

r  - d
e2
b1  - 

\Bigl( 
r  - d

e2

\Bigr) 
c1
c2

\approx 0.1742,

where we set g = (g(1) + g(2))/2 for g = c1, c2, e1, e2. When the switching between
the two environments is fast with equal rates 1 \rightarrow 2 and 2 \rightarrow 1, standard averaging
arguments show that \lambda 2(\mu 13) \approx r - d

e1
b2 - (r - d

e1
) c2c1 and \lambda 1(\mu 23) \approx r - d

e2
b1 - (r - d

e2
) c1c2 .

As a result, the equilibrium point on the boundary R13,\circ 
+ is asymptotically stable

for both deterministic systems corresponding to state 1 and state 2. This shows that
in the deterministic systems prey 2 goes extinct. However, with switching we have
\lambda 2(\mu 13) > 0 and \lambda 1(\mu 23) > 0. By Theorem 3 the three species coexist and converge
to the unique invariant measure \pi \ast on R3,\circ 

+ (see Figure 1).

Example 5.2. Consider the parameters\left\{                   

r = 1, d = 0.1,

b1 = 0.9, b2 = 0.5,

c1(1) = 0.15, c1(2) = 0.4,

c2(1) = 0.28, c2(2) = 0.4,

e1(1) = 0.15, e1(2) = 0.85,

e2(1) = 0.15, e2(2) = 0.4.

Then \left\{         
\lambda 1(\delta 13, 1) \approx 0.1333,

\lambda 1(\delta 13, 2) \approx 0.0667,

\lambda 1(\delta 23, 1) \approx 0.6643,

\lambda 1(\delta 23, 2) \approx 0.0333,

and \Biggl\{ 
r  - d

e1
b2  - (r  - d

e1
) c2c1 \approx  - 0.1114,

r  - d
e2
b1  - (r  - d

e2
) c1c2 \approx 0.2483.

This shows that the equilibrium point in the interior R3,\circ 
+ is asymptotically stable

for both deterministic systems corresponding to state 1 and state 2. The three species
coexist in both environments if there is no randomness. However, when the switching
is fast, one has \lambda 2(\mu 13) \approx r - d

e1
b2 - (r - d

e1
) c2c1 < 0 and \lambda 1(\mu 23) \approx r - d

e2
b1 - (r - d

e2
) c1c2 >

0. Using Theorem 4 we see that, in the random system, prey 1 and the predator
persist, while prey 2 can go extinct with a large probability when it starts at a small
initial density (see Figures 1 and 2).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

1/
23

 to
 4

7.
21

9.
19

4.
21

5 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



RANDOM SWITCHING IN AN ECOSYSTEM 365

Fig. 1. Trajectories in prey 1--prey 2 phase space. All simulations in a given panel have the
same initial conditions. Small circles denote the fixed points for the various vector fields. Left
panel: (Example 5.1) In each fixed environmental state prey 2 goes extinct. Switching makes all
three species coexist. Right panel: (Example 5.2) In each fixed environmental state the three species
coexist. Prey 2 goes extinct in the switched system.

Fig. 2. (Example 5.2) The joint density of X1 = Prey 1 and X3 = Predator in state 1 and state
2 was simulated 100 times on the time interval [0, 10000] for a solution (X1, X2, X3) with initial
values (2/3, 2/3, 3/2). The occupation measure for the switched system converges exponentially fast

to the absolutely continuous invariant measure on R13,\circ 
+ .
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