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Abstract. In this paper, we study the long-term dynamics of two prey species and one preda-
tor species. In the deterministic setting, if we assume the interactions are of Lotka—Volterra type
(competition or predation), the long-term behavior of this system is well known. However, nature
is usually not deterministic. All ecosystems experience some type of random environmental fluctua-
tions. We incorporate these into a natural framework as follows. Suppose the environment has two
possible states. In each of the two environmental states the dynamics is governed by a system of
Lotka—Volterra ODEs. The randomness comes from spending an exponential amount of time in each
environmental state and then switching to the other one. We show how this random switching can
create very interesting phenomena. In some cases the randomness can facilitate the coexistence of
the three species even though coexistence is impossible in each of the two environmental states. In
other cases, even though there is coexistence in each of the two environmental states, switching can
lead to the loss of one or more species. We look into how predators and environmental fluctuations
can mediate coexistence among competing species.
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1. Introduction. An important question in ecology is the relationship between
complexity and stability. In particular, ecologists have been interested in whether
predators can help facilitate coexistence or whether they are always detrimental to
species diversity. Since the important work by Paine (1966) it has been clear that
predators play a fundamental role in species diversity. There are experimental studies
which show that the removal of predators can lead to the extinctions of various species.
Other studies have shown the opposite effect, namely, that introducing a predator
does not help mediate coexistence or that the addition of the predator leads to fewer
species coexisting. In this paper we are interested in exploring these phenomena
in the setting of Lotka—Volterra (LV) dynamics. The dynamics of two competing
species is well known in this setting; it can lead to coexistence, where both species
persist; to competitive exclusion, where one species is dominant and drives the other
one extinct; or to bistability, where, depending on the initial conditions, one species
persists and one goes extinct. There have been numerous studies which looked at how
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the introduction of a predator changes the long-term outcome of two competitors;
see work by Hutson and Vickers (1983), Takeuchi and Adachi (1983), and Schreiber
(1997).

Every natural system experiences unpredictable environmental fluctuations. In
the ecological setting, these environmental fluctuations will change the way species
grow, die, and interact with each other. It is therefore key to include environmental
fluctuations in the mathematical framework when trying to determine species rich-
ness. Sometimes the deterministic dynamics can predict certain species going extinct.
However, if one adds the effects of a random environment extinction might be re-
versed into coexistence. In other cases deterministic systems that coexist become
extinct once one takes into account the random environmental fluctuations. One way
of introducing the environmental fluctuations has been by modeling the populations
as discrete or continuous time Markov processes and analyzing the long-term behavior
of these processes (Chesson, 1982; Chesson and Ellner, 1989; Chesson, 2000; Evans
et al., 2013; Evans, Hening, and Schreiber, 2015; Lande, Engen, and Saether, 2003;
Schreiber and Lloyd-Smith, 2009; Schreiber, Benaim, and Atchadé, 2011; Benalm
and Schreiber, 2009; Benaim, Hofbauer, and Sandholm, 2008; Benaim, 2018; Hening,
Nguyen, and Chesson, 2021).

There are many ways in which one can model the environmental fluctuations that
affect an ecological system. One way is by going from ordinary differential equations
(ODEs) to stochastic differential equations (SDEs). This amounts to saying that the
various birth, death, and interaction rates in an ecosystem are not constant but fluc-
tuate around their average values according to some white noise. There is now a well-
established general theory of coexistence and extinction for these systems (Schreiber,
Benaim, and Atchadé, 2011; Hening and Nguyen, 2018; Hening, Nguyen, and Ches-
son, 2021). However, this way of modeling environmental fluctuations can sometimes
seem artificial in an ecological setting. In certain ecosystems, it makes more sense to
assume that, when the environment changes, the dynamics also changes significantly.
In a deterministic setting this can be modeled by periodic vector fields which can be
interpreted to mimic seasonal fluctuations. In the random setting, these types of fluc-
tations are captured by piecewise deterministic Markov processes (PDMPs); see the
work by Davis (1984) for an introduction to these stochastic processes. In a PDMP,
the environment switches between a fixed finite number of states to each of which we
associate an ODE. In each state the dynamics is given by the flow of its associated
ODE. After a random time, the environment switches to a different state, and the
dynamics is governed by the ODE from that state.

Recently there have been some important results for two-species ecosystems that
showcased how the switching behavior of PDMPs can create novel ecological phenom-
ena. The first set of results is for a two-species competitive LV model. In Benaim
and Lobry (2016) and Hening and Nguyen (2020) the authors show that the random
switching between two environments that are both favorable to the same species, e.g.,
the favored species is dominant and persists and the unfavored species goes extinct,
can lead to the extinction of this favored species and the persistence of the unfavored
species, to the coexistence of the two competing species or to bistability. This is
extremely interesting as it relates to the competitive exclusion principle (Volterra,
1928; Hardin, 1960; Levin, 1970), a fundamental principle of ecology, which says in
its simplest form that, when multiple species compete with each other for the same
resource, one competitor will win and drive all the others to extinction. Neverthe-
less, it has been observed in nature that multiple species can coexist despite limited
resources. Hutchinson (1961) gave a possible explanation by arguing that variations
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of the environment can keep species away from the deterministic equilibria that are
forecasted by the competitive exclusion principle. The PDMP example from Benaim
and Lobry (2016) and Hening and Nguyen (2020) shows how the switching can save
species from extinction, even though, in each fixed environment, the same species is
dominant. The second result looks at the classical predator-prey LV model. In Hening
and Strickler (2019) the authors study a system that switches randomly between two
deterministic classical VL predator-prey systems. Even though for each deterministic
predator-prey system the predator and the prey densities form closed periodic orbits,
it is shown in Hening and Strickler (2019) that the switching makes the system leave
any compact set. Moreover, in the switched system, the predator and prey densities
oscillate between 0 and oo. These two sets of results show that random switching can
radically change the dynamics of the system and create new, possibly unexpected,
long-term results.

For three-species LV systems, the classification of the dynamics is incomplete
in the deterministic setting. In the setting of SDE an almost complete classification
appears in Hening, Nguyen, and Shreiber (2021). Not much is known for the dynamics
of three-species systems in the PDMP setting. We hope that this paper will provide
valuable results both phenomenologically, by showcasing some counterintuitive results,
and mathematically, by developing new tools for the analysis of the ergodic properties
of PDMPs.

The deterministic dynamics are given by

L) = Xa Wl — X1 (0) — b Xa(t) — e Xs (1),
(L1) L2 1) = X0 — (1) ~ o X (1) — 2 X (1),
dXs

W(t) = X3(t)[€1X1(t) + €2X2(t> — d]

Here X (t), X2(t) are the densities of the two prey species at time ¢ > 0, while
X5(t) is the density of the generalist predator at time ¢ > 0. For simplicity we
assume that the per capita growth rates of both prey species are equal and given by
r > 0 and that the per capita intraspecies competitions are both equal to 1. The per
capita interspecies competition rate of species j on species i is given by b; > 0, where
i,j € {1,2}. The predator dies, when there is no prey, at the per capita rate d > 0;
the predation rates on species 1 and 2 are given by ci,co > 0; and the quantities
e1, ez > 0 measure how efficient the predator is at using up the predated species. We
will sometimes write (1.1) in the more compact form

dX;
dt

(1.2) () = Xi(t) Fi(X(1)),i = 1,2,3,

where X := (X1, X2, X3), f1(X) := r — 21 — biza — 123, fo(X) = 7 — 29 — bazy —
cas, f3(X) = e1x1 + eaxs — d. In the absence of the predator (X35 = 0) if we have

(1.3) by <1,by <1,

then the coexistence of (X7, Xs) is impossible (except for a stable manifold of di-
mension 1); one species will go extinct (Takeuchi and Adachi, 1983; Schreiber, 1997).
However, if one assumes additionally that
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err > d,
eor > d,
d d
(14) r—b2—<r—)62>0,
€1 €1 C1
d
r——b; — (r—d>cl>0,
() €9 C2

then the three species will coexist (Takeuchi and Adachi, 1983; Schreiber, 1997). This
shows that it is possible for the predator to mediate coexistence in this setting.

We next explain how the switching is introduced. We assume there are two
environmental states S := {1,2}. We note that our theoretical analysis works for any
finite number of environmental states. The environmental state at time ¢t > 0 will be
given by &(t) € S. We suppose that the coefficients ¢y, ¢a, €1, €2, which capture the
interaction between the predator and the two prey species, are different in the two
environmental states. As a result we will have coefficients ¢;(j), c2(j), e1(4), e2(j) if
the environment is in state j.

The dynamics becomes

dX;

(1.5) =

() = Xi(1) fu(X(2),£(1)), i = 1, 2,3,

where fi(x,j) :=r—x1 —bixa —c1(j)zs, f2(X,J) = 7 — 22 —box1 — c2(j)w3, f3(x,j) =
e1(j)x1 + ea(j)xa — d. We assume that £(t) is an irreducible continuous time Markov
chain that switches from state 1 to 2 at rate ¢i2 and from state 2 to 1 at rate go1:

(1.6) P{E(t+ A) = jlE(t) =i, 8(s),s <t} = qi; A+ o(A) if i # j.

In this setting, the process spends an exponential random time, whose rate can
be determined as a function of ¢q2, ¢21, in one environment, after which it switches to
the other environment, spends an exponential time there, then switches, and so on.
Since £(t) is an irreducible Markov chain, it will have a unique invariant distribution
on S given by

= (7Tl>7T2) _ ( 421 qi12 ) .

Q12+ @21 q12 + g

1.1. Mathematical setup. It is well known that a process (X(¢),£(¢)) satis-
fying (1.5) and (1.6) is a Markov process with generator acting on functions G :
Ri XS Ri that are continuously differentiable in x for each k € S as

5 oG
(1.7) LG(x,k) =) wifi(x, k) (k) + > auG(x,1).
i=1 B

les

We use the norm ||x|| = Zle |z;| in R3. For a,b € R, let a A b := min{a, b} and
a Vb :=max{a,b}. Similarly we let /\g’:1 w; 1= min; u; and \/g’:1 w; 1= max; U;.

The quantity Py x(A) will denote the probability of event A if (X(0),£(0)) =
(x,k). Call p an invariant measure for the process X if pu(-,-) is a measure such that
for any k € S one has that (-, k) is a Borel measure on R} and that, if one starts
the process with initial conditions distributed according to w(-,-), then for any time
t > 0 the distribution of (X(t),£(t)) is given by u(-,-).
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Let Conv.M denote the set of invariant measures of (X(t),£(t)) whose support is
contained in 6]1%‘3_ X §. The set of extreme points of Conv.M, denoted by M, is the
set of ergodic invariant measures with support on the boundary 6R3_ x S.

We next define what we mean by persistence in our setting.

DEFINITION 1. The process X is strongly stochastically persistent if it has a
unique invariant probability measure ™ on Ri’o x S and

(1.8) lim ||Px(t,x,k,-) —7*()[lrv =0, x e R3°, k € S,
t—o00
where ||+, -||Tv is the total variation norm and Px(t,%,k,-) is the transition probability

of (X(t),&(t))-
If 4 € ConvM is an invariant measure and X spends a lot of time close to its

support, supp (u), then it will get attracted or repelled in the ith direction according
to the Lyapunov exponent, or invasion rate,

(1.9) Z fl (x, k)p(dx, k).

keS

lnX ) _ lnX (0) fO fi (X(S) £(s))ds .

The intuition comes from noting that
proximated well by A;(p) if ¢ is large and X stays close to the support of p.

PDMPs can be quite degenerate, and proving that there exist unique invariant
probability measures in certain subspaces is far from trivial; see Benaim (2018).

is ap-

2. Well-posedness and solutions on the boundary. In this section, we prove
some preliminary results which will be useful later on.

THEOREM 1. For any (Xo, jo) € Ri x S there exists a unique solution (Xy,&)t>o0

o (1.5) with initial value (X(0),£(0)) = (x0,jo). There ezists a compact set K C RY.

such that every nonnegative solution of (1.5) eventually enters K and then remains

there forever. Moreover, if X(0) = x¢ € Ri’o, then with probability one X(t) € Ri_’o
for all t > 0.

Proof. Because the coefficients of (1.5) are locally Lipschitz for each initial value,
there exists uniquely a local solution to (1.5) (up to a possible explosion time). If
the initial value is positive, it is clear that the solution will remain positive up to the
explosion time because we can write

X, (t) = efo r=Xa(8)=b1Xa(s)—er(6) Xa(s)ds
(2.1) Xo(t) = efo (r=Xa(9)=baXa(s)=e2(8:) Xa(s)ds
X3(t) = elo(@1(E)Xa(s)Fex(6:)Xa(s) ~d)ds

On the other hand, it is clear that any solution with nonnegative initial value
cannot blow up in a finite time. Since

dXi
R CERAGIES AO))

it is clear that if X;(0) > 0, then X (¢) is finite for any ¢. Moreover, eventually, we
have X;(t) <r. The same conclusion holds true for Xs(t).
Note that

dXs

= (8) = Xa(t)[e1 (&) Xa (t) + e2(&) X2(t) — d].
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Since we already have shown that X (¢), X2(t) are bounded, it is clear from the
above that X3(t) is finite for all ¢.
Finally, take £ > 0 be sufficiently small such that for all : € S we have
Cl(i) — €1 (Z)gz O,
Cz(i) - 62(1)5‘\2 0.
From (1.5), we have for W, := X (¢) + Xo(t) + €X3(t) that

dWy
dt

<r(X1(t) + Xa(t) — X1(8)? — Xo(t)? — dEX;3(t)
< (r 4+ de) (X1 (t) + Xao(1)) — (X1(t)? + Xo(t)?) — dEW,
< R — d&W,

for some R > 0. From this equation, it is easy to show that, eventually, we have
W, < d%, and if Wy < d%, then W, < d%,t > 0. As a result

_ R
{(m,xz,xg) €RY :aq +a +Ex3 < d,?}

is an attractive invariant set for (1.5). O
The next assumption is enforced throughout the paper.

Assumption 2.1. The following conditions hold:

(1) by <1,by < 1.

(2) rszS ei(j)wj > d,’L =1,2.

(3) ci(i)ex(d) — cr(j)er(i) # O for some i,j € S.

(4) ca(i)ea(j) — ca(j)ea(i) # 0 for some 4, j € S.

Let 1 = 8(p0,0) X ™ and pg = d(q,r0) X ™, Where dx is the Dirac measure with
mass at x. It is noted that (r,0,0) and (0,7,0) are equilibria on the axes Oz; and
Oz, respectively. Assumption 2.1(2) implies that

€1
€2

As(ui) =Y ei(j)my —d > 0;i =1,2.
j€s

Then in view of Benaim (2018) or Du and Dang (2014), there exist an invariant
measure [i13 on Rf’o x S, where Rf”o = {z1 > 0,23 > 0,22 = 0} (species X, is
extinct in this subspace), and an invariant measure po3 on ]Rig’o X S, where Rig’o =
{z2 > 0,25 > 0,21 = 0} (species X; is extinct in this subspace).

On Rf’o x 8, because by < 1,by < 1, the point (z_,y_) := (q(iglbbg), q(iglbli)) will
be a saddle equilibrium for the deterministic system

%(t) = X1(t)[r — X1(t) — b1 Xa ()],
(2.2) dX,
W(ﬂ = Xo(t)[r — Xa(t) — b2 X1 (1)].

Since the coefficients r, by, by are not influenced by the random switching, the
process X is fully degenerate and deterministic on Rf’o. As a result, if we let &
be the Dirac measure at (z_,y_), then

T_,y—

(23) H12 = 6z,,y, X
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is the unique invariant probability measure of the process (X, ) from (1.5) on Rf"’ X

S.

THEOREM 2. There exist unique invariant measures (113 and fiaz On Rf’o and
Rig’o, respectively.

Proof. Consider the system
(2.4) (dX1(t),dX3(t) " = Fe, (X1(t), Xa(t))dt

on Rﬁ_’o, where Fj(z1,23) = [z1(r — x1 — c1(j)z3), z3(e1(j)z1 — d)]", 7 =1,2. The
dynamics of (2.4) switches between two ODEs:

(2.5) (dX1(t),dX5(t)) " = Fi(X1(t), X3(t))dt
and
(2.6) (dX1(t),dX3(t)) " = Fa(X1(t), X3(t))dt.

Let ¢} (w1,23), ¢?(21, x3) be the solutions to (2.5) and (2.6) with initial condition
(21, z3), respectively.
We define

Y (xy, 23) = {(bf: o---o¢fll(a:1,m3) mEZi, 1 >0keS: 1= 1,...,n}
and for the invariant set K C ]Ri’o let

LK) = () 7+ &)

xeX

be the possibly empty, compact subset which is accessible for the process (X(t),&(t))
from any point in K.

To complete the proof, we need to show that (Xi(t), X3(t),&:), which satisfies
(2.4), has a unique invariant probability measure on R +’° x 8. To that end, we will
check the strong bracket condition, a concept introduced in Benalm et al. (2015).
To be precise, we will show the existence of a point (z},2%) € T'(R%°) at which
Go = c[Fy, F3] and G = [Go, F1] will span R2. Here c is a to-be-specified constant,
and [, -] is the Lie bracket of two vector fields.

Because r ) s e1(j)m; > d, there is at least one j such that re; (j) > d. Without
loss of generality, we can assume that req(1) > d. It is well known that, if re; (1) > d,
(29,2%) = (816(11)7 51%1) (r — elc(ll))) is the globally asymptotically stable equilibrium
of the classical VL system (2.5) on Ri’o. Thus, (z9,235) € I‘(Ri_’o). Moreover, under
the condition (3) of Assumption 2.1, (29, 2%) cannot be an equilibrium of (2.6). As
a result {¢?((2%,2%)),0 < t < to} C I'(R*°). Thus, there exists ty > 0 such that
Hyy o= {97((2%,23)),0 < t < to} is an one-dimensional curve on R3°. It is easy to
check that any open segment of any line {az1 + bxrs + ¢ = 0,4 + b? > 0} cannot be
the solution to (2.6). Thus, we have a claim (C1) that, for a, b, ¢ such that a® +b% > 0
and 0 < t1 < t2 < tg, we can find t3 € (¢1,12) such that ¢§3 (29, x%) does not lie on
ary + brs = c.

First, consider the case ¢1(1) = ¢1(2). Then

Fy(21,23) — Fy(x1,23) = [0, (e1(1) — e1(2))(z123)]
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b
(ex(1) —e1(2))

and computing the Lie bracket [Gy, F1] we have

Go(z1,23) := [Fi(21,23) — Fa(z1,23)] = [0, m125] ",

Gi(x1,23) := [Go, F](z1,23) = [—c1(1)2Tas, fs(21,23)]

for some function f3(x1,x3). It is clear that G and G span R? for any (1, 23) € Ri’o.

Now, we consider the case c¢1(1) — ¢1(2) # 0. With p = %2(22), we make

the following transformation: X (¢) := X;(¢) and Y (¢t) = pX;(¢) + X3(¢). Then (2.4)
becomes

(2.7) {@x@),ay )T = Fe,(X(0), Y (1)),

where

Fy(z,y) = [w(r —z—c1(j)(y —px));pr(r —x —e1(§)(y — px))
F-p)@@e-a)] =12

Let

1

e ey @) - By = laly = pa). 0]

éO(xa y) =
As a result,

61(1‘, y) ::[607 ﬁl]('rv y)
= |Fal.y), oy — po) (p(r + d) + 2pa(—1 + per (1) = ex (1) + yler (1)

—pa(1))]

for some function fg(m, y). The couple of vector fields éo, Gh span R? for any (z,y) €
{z > 0,y — px > 0} outside the set {p(r + d) + 2px(—1+ pc1(1) —e1(1)) + y(e1(1) —
pci(1)) = 0}. This set is empty if e;(1) — pei1(1) = —1 + pei(1) — er(1) = 0, while it
is a line otherwise. Let Hy, be the image of Hy, through the linear map (x1,z3) —
(z,y) = (z1,pr1 + x3). Because of the linear transformation, any open segment of
any line in {(z,y) € R* : > 0,y — px > 0} cannot be the solution to (2.7) due
to claim (C1). As a result, we can find t3 > 0 such that ¢7, (z*,y*) does not lie on
p(r 4+ d) + 2px(—1 + pei(1) — e (1)) + y(er(1) — per(1)) = 0 (if it is a line), where
@7 (x,y) is the solution with initial value (x,y) to (2.7) with & replaced by 2 and
x* = 2%, y* = px{ +25. Thus, qbfs (z*,y*) satisfies the strong bracket condition for the
vector fields Fy, Fy. Equivalently, o7, (a5,28) € F(Ri’o) satisfies the strong bracket
condition for the vector fields Fi, F.

Now, in view of Benaim et al. (2015, Theorems 4.4 and 4.6), the probability mea-
sure Py, 2,50y [(X1(t), X3(t),&:) € - x {jo}] is absolutely continuous with respect to
Lebesgue measure on Rf”o, and there exists a unique invariant probability measure
(413 on Ri_’o x §. In addition there are constants ¢ > 1 and a > 0 such that for any
t>0,x € Ry, j € S we have [Py, o, ) [(X1(2), X3(t),&) € ] — ps|lrv < ce
that is, the convergence is exponential. 0
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Now we present some auxiliary lemmas needed to obtain the main results.

LEMMA 2.1.
/ Z f067) & 2o ) v(dx,j) = 0,v € {p, p2, pas, a3}
Ry JjES L1+ T2

Remark 1. Note that even though — is undefined on the set Ey := {(x1, 2, z3)
cR3 121 + 22 = 0} this does not matter smce none of the measures {1, p2, fi13, fio3 }
put any mass on the set Ej.

Proof. To prove the lemma, one can use a contradiction argument similar to
Hening and Nguyen (2018, Lemmas 3.3 and 5.1). d

For each v € M, denote by I, the subset of {1,2,3} such that supp (v) =
{(z1,22,23) €RY 10y =0if i ¢ I}

LEMMA 2.2. For any ergodic measure v € M we have that \;(v) is well defined
and finite. Furthermore,

/\Z(V) =0,i € I,.
Proof. The proof is the same as the proof of Hening and Nguyen (2018, Lemma
5.1). 0

Define the normalized occupation measures I}/ by

(2.8) 129 (dy, i) = % /O Po {X(s) € dy, (s) = i} ds

and the random normalized occupation measures by

- ] 1 rt
(2.9) i (dy, i) == ;/O Lix(s)edy.£(s)=i} d5-

LEMMA 2.3. Suppose the following:

The sequences {(Xy, jr)} rez, C K xS, (Tk)rez, C Ry are such that T, > 1
for all k € Z, and limg_,oc Ty, = 00
The sequence (H;’;’jk)keh converges weakly to an invariant probability mea-
sure .

Then for any function h(x,i) : K xS — R that is upper semicontinuous (in x for

each fixed i), one has
(2.10) lem / Zh (x,7) Hx’“’“ dx, j) / Zh (x, j)m(dx, 7).
o RS +j€$

Proof. Since K is a compact set, (2.10) can be obtained directly from the Port-
manteau theorem. The details are left to the readers. O

3. Persistence. For v € M remember that the invasion rate of species i with
respect to v € M is defined by

Z fl (x, J)v(dx, j).

JES
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We assume that
(3.1) A2(p13) > 0 and Aq(uas) > 0,
where pi13, piog are in Theorem 2. Using (2.3) we have
_r(l=0b1) _ r(l—by)

)‘3(:LL12) = Z(el(j)x— + 62(])3/— - d)’]rj = €1 1 — b1b2 +eé2 1_ b1b2 —d
jES

Since ei;r > d;esr > d and 11:1:;2 + 117_1711)?72 > 1 (which can be easily checked using
b1 < 1,bs < 1), we have

(32) )\3(#12) > 0.

By the minimax principle, (3.1) and (3.2) are equivalent to the existence of
D1, P2, p3 > 0 satisfying
3
(3.3) Zpi)‘i(”) > 0,v € {p1, i, p113, 123, 12}

i=1

Let po be sufficiently large (compared to pi,pe,ps) such that

3
(3.4) pomin{A; (8% x ), Aa(8* x m)} + > pidi(6* x 7) > 0.
i=1
Define
3
2p* := min {po min{A; (6" x 7), A2(6" x 7)} + Zpi)\i((s* X ),
(3.5) =l

3
> pidi(v),v € {M1,H2,M13,M237M12}} > 0.
i=1

Let IC be the attractive compact set mentioned in Theorem 1 and K° = Ri’o nK.
Define @ : {R3 \ {(z1,22,23) € R} |z + 22 = 0}} x S — R by

(I)(Xm?) = _plfl(x7j) _p2f2(x7j) _p3f3(xaj)
- mfi(xg) + 22 fa(x, )
Po
T1 + X2

Let O : R x &+ R be the function

~

(3.6) O(x,7) = —prfi(x,7) — p2fo(x,5) — p3fa(x,])
_pomin{fl(xvj)va(ij)}'

Define  : R3 x S+ R by
B, ) = (x,])l x1 +x2 =0,
O(x,7) if x1 + 2 # 0.
It is readily seen that

z1f1(x) + 22 f2(%)
xr1 + T2

(3.7) > min { f1(x), f2(x)} .
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In view of (3.7), for each j € S, &)(x,j) is an upper semicontinuous function.

LEMMA 3.1. Suppose that (3.1) holds. Let p and p* be as in (3.5). There exists
a T > 0 such that for any x € 8]1%1 NK,j €S one has

1 T
(3.8) 7 [ BesdX. e <
0
As a corollary, there is a 6 > 0 such that
e 3
(3.9) [ Bt < -3
T Jo ’ 4

for any (x,j) € K° x S satisfying dist(x,0R3) < 5.

Proof. We argue by contradiction to obtain (3.8). Suppose that the conclusion of
this lemma is not true. Then, we can find (xg, ji) € OR3. x S, ||xi|| < M and T}, > 0,
limy_, oo T = 0o such that

1 [T
Tx Jo

(3.10) Ex, 5, ®(X(1), £(t))dt > —p" , k € Z.

Remember that the normalized occupation measures are defined by

I (dy, i) = % /0 P i{X(s) € dy, &(s) = i} ds.

It follows from Hening and Nguyen (2018, Lemma 4.1) that (H%’:’jk)kem is tight.
As a result (H’}: J *)kez, has a convergent subsquence in the weak*-topology. With-
out loss of generality, we can suppose that (H’}’; ) ez, is a convergent sequence in
the weak*-topology. It can be shown (see Lemma 4.1 from Hening and Nguyen, 2018
or Theorem 9.9 from Ethier and Kurtz, 2009) that its limit is an invariant probability
measure p of (X, &). Since (xy, /) € OR3 x S, the support of p lies in OR3 x S. As
a consequence of Lemma 2.3

.1 T ~ = ,
lim 7/0 ]Exk,jkq)(X(t),g(t))dtS/Ra > D(x, f)uldx, ).

+ jES

Using Lemmas 2.1 and 2.2 together with (3.5) we get that
Ty -
lim —/ Ex, j, 2(X(t),&(t))dt < —2p*.
0
This contradicts (3.10), which means (3.8) is proved.

_ With ® defined in (3.6), we have ®(x, j) > ®(x, j) for 1 + 22 # 0 and B(x, j) =
d(x,7) if 1 + x2 = 0. As a result of (3.5)

©(0) = ®(0) = — > (pi£i(0)) — pomin {1(0), f2(0)} < —2p".
Thus

T o~
(3.11) / E0.0.00),, B (X(1), £(1))dt

Nl =

1 [T ~
_ T/ E(0.0.00),B(X(8), £(1))dt < —p*. (0,0, 25) € K.
0
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Due to the Feller property of (X(t),£(t)) on R3 x & and the continuity of ® on
R%, there is an £ > 0 such that

1 T 3 -
T/ B s BOX(0), 6(0))dt < " i i+ 12 < B (x,5) €K X S.
0
Together with ®(x, j) < @(x,j),xl + x5 # 0, this implies

1 T
(3.12) T/ B, ®(X(), £(1))dt < —Zp*, (x,§) € K° x 8,1 + 25 < &
0
If 1 + 22 # 0, then

Py { DX (1), 6(1) = (X (), £(1),1 = 0} =
Using the Feller property of (X(t)) on {(z1,22,23) € R3 |21 + 22 # 0}, (3.8), and
the continuity of ®(-,?) = ®(-,t) on {(x1, 22, 23) € R3 1 |r1 4+ 22 # 0} one can see that
there exists 0 € (0,€) for which
3 .
(3.13) 1 / B (X(1), ()t < 207,
(x,7) € K° x S, x1 + o > &, dist(x, IR ) < 4.
Combining (3.12) and (3.13) yields (3.9). |
LEMMA 3.2. Let Y be a random variable and 6y > 0 be a constant, and suppose
Eexp(6pY) + Eexp(—6yY) < K.

Then the log-Laplace transform ¢(0) = InEexp(0Y) is twice differentiable on
[0, %) and

72

4
0<ﬁ(9)<K oc o,
d92 = 25 72 ’

for some Ko > 0 depending only on K;.
Proof. See Lemma 3.5 in Hening and Nguyen (2018). O
Let p = (po, - .., ps) satisfy (3.5), and consider the function
1
(x1 + zg)Po Hle b '

(3.14) V(x) = Vp(x) =

PROPOSITION 3.1. Let V be defined by (3.14) with p and p* satisfying (3.5) and
T > 0 satisfying the assumptions of Lemma 3.1. There are 6 € (0,1), Ky > 0 such
that, for x € K°,j € N,

(3.15) By ; VO (X(T)) < exp(—0.50p*T)V(x) + Kp.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/23 to 47.219.194.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RANDOM SWITCHING IN AN ECOSYSTEM 359

Proof. We have
T
(3.16) nV(X(T)) =In V(X(O))+/O D(X(t),£&())dt.

Since ® is bounded on I x S, we can easily have that

V(X(T))

(3.17) exp{—HT} < )

<exp{HT},x €K,
for some nonrandom constant H. Because of (3.17) and the fact that fOT D(X(t),&(t))

dt = ln(vg((g))) (due to (3.16)), the assumptions of Lemma 3.2 hold for the random

variable fOT ®(X(t),&(t))dt. Therefore, there is K > 0 such that

27 _
(3.18) 0< dﬁ%(@) < K, forall 6 €0,1),

(x,§) € R}’ x S, |)x|| < M, T € [T*,n*T"],

where

Ox.jr(6) = InEx j exp <9/0 ¢(X(t)7§(t))dt> :

An application of Lemma 3.1 and (3.16) yields

dbsjr r 3,
(3.19) AL 0) = By [ 9K, 60) < T

for all (x,j) € K° satisfying dist(x, ORY) < 8. By a Taylor expansion around 6 = 0,
for x € K°, dist(x,0R"}) < 0, and 6 € [0,1) and using (3.18)—(3.19) we have

d&x,j,T 1 d2¢;x,j,T

3 -
/ AV ] 2
(000 + S — 2= (0)(0 = 0) < =" T0 + 02K,

J)x,j,T(e) = (ygx,j,T(O) +

If we choose any 0 € (0, 1) satisfying 0 < ’Z:;* , we obtain that

2
~ 1
(3.20) dx,5,7(0) < —ip*TG for all (x,j) € R x S, ||x|| < M, dist(x, 9R"})
<6,T € [T*,n*T"],
which leads to

Ex; V°(X(T))

(3.21) 760

= exp by j7(0) < exp(—0.5p*T9).

In view of (3.17), we have for (x,j) € K° x S satisfying dist(x, OR} ) > 6 that

(3.22)  E,,;VY(X(T)) < exp(§TH) sup {V(x)} = Ky < 0.
x€K,dist(x,0R% ) >0

The proof can be finished by combining (3.21) and (3.22). ad

THEOREM 3. Suppose

Ao(p13) = /13 ) Z(T — boxy — co()xs)pas(dey, dzs, j) > 0
Ry jes
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and

A1(pes) = /23 i Z(T —biza — c1(j)x3) pos(das, dxs, j) > 0,
RY™ jes

where pi3 is the (unique) invariant measure on Rf”o x S and pog is the (unique)
invariant measure on Ri‘g’o x S. Then for each € > 0, there exists 6 > 0 such that for
all (x,7) € R x S

liminf Py j{X;(t) > 6,i=1,2,3} > 1 —«.

t—o00

Moreover, let ®(x) be the solution to i) = Xi(t) f:(X(t),5),% = 1,2,3, for

jeS and

IR = N {¢§:o...oq>f;(x);nez+,tlzo,kl65:1:1,...,n}.

xeRiO

If the strong bracket condition is satisfied for some x* € F(Rio), then it follows
from Benaim et al. (2015, Theorem 4.6) that the system is strongly stochastically
persistent.

Proof. In Proposition 3.1, we have constructed a Lyapunov function V satisfying
(3.15). Tt follows from (3.15) that

B, ;VO(X(2T)) < K2V + Ky(1 4 k), := exp(—0.50p*2T).

Continuing this process, we have

1
i VOX(T)) < K"V + Kp(Lthit oo w71 <AV 4 o

E

This inequality and (3.17) show that

eHT

limsup B, V(X (1)) < Ky :=

t—o0 1—&

As a result, because limg, pzynzs—0 V(X) = 00, for each € > 0, there exists 6 > 0
such that for all (x,j) € R>° x S

litminf]P’x,j{Xi(t) >0,i=1,2,3} >1—e. a0
—00

4. Extinction. PDMPs can be quite degenerate, and one has to do some addi-
tional work in order to see which parts of the state space are visited by the process.

THEOREM 4. We have the following extinction results:

(1) If Ma(u13) < O, then for any compact set K13 C R3° and for any € > 0,
there exists 6 > 0 such that for all (z1,23) € K13,0 < 2 < § we have
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In X5 (¢t
sz{hm n72() :)\Q(Mlg) <0} >1—c.
’ t—o00 t

(2) If M\i(p23) < 0, then for any compact set Koz C R*° and for any ¢ > 0,
there exists 0 > 0 such that for all (z2,x3) € Ka3,0 < 1 < § we have

. In X4 (%)
Py ; {tliglo ; A1(pes) < 0} >1—c.

(3) If Ma(p13) < 0, A1 (p23) > 0 and RE>° is accessible from any x € R>°, that
is, R®>°NT(K) # 0, then

In X5 (¢t
Py { lim D72<) = Aa(p13) < 0} =1.
’ t— o0 t

(4) If Mi(pa3) < 0,Aa(p13) > 0 and R3>° is accessible from any x € RY°, then

In X (¢
Px,i {thm n tl( ) = )\1(#23) < 0} =1.

— 00

(5) If Ai(paz) < 0,A2(p13) < 0 and R>° and Ris’o are accessible from any

x € R‘i’o, then

In X4 (¢ In X5 (¢
P {tlim 2 tl( ) = A1 (p23) < 0} + Py {tlim n t2( ) = A2(p13) < 0} =1

— 00

Proof. We assume A3(p113) < 0 and prove part (1) first. Let p;, ps, p3 > 0 such
that

(4.1) PiAr(p) — PaAz(p) + PsAs(p) > 0, for any pu € {67 x m, p1, pu13}
Define
2
V(x) = —2—.
Tl

As in the proof of Lemma 3.1, we can show that, for any x € R'3* and ||x| < M,
we have

T
%/0 Ex,; (_ﬁlfl(x(t)ag(t)) —ﬁ3f3(X(t)7§(t)) +§2f2(X(t),€(t))) dt < -5 <0

for some p > 0, T > 0. Next, we can show as in Proposition 3.1 that

(4.2) Ex;V(X(T)) <&V (x) for all x € R}® 12y < 6, x| < M
for some % € (0,1),6 > 0. Note that if V(x) < Ups := %, then 2o < § given that

|x|| < M. Pick 6 € (%, 1), and define

¢i=inf{k>0:V(X(KT)) >0 ).

From (4.2), we have

(13) P (V(X(T)) > <) < PeaV XD
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In particular, we have

Prj{n=1} < ——V(x).
’UM9

Similarly, using the Markov property of (X(t),&(¢)) and (4.3), we have

P {1 = 2} = By [ Lo P e (0 = 2}]
o
<E [1{n>1} — V(X(T))
’UMH
-
< ——V(x)
o0

Continuing this way, we can show that

V o _k
,J{n<oo}_ZP7J{ Zq

=10

=N
<\
|

S
|
=

This easily implies that if V(x) is sufficiently small, then
’ k—o0

On the other hand, since X(t) lives in a compact space and the coefficients of
(1.5) are locally Lipschitz, there exists K > 0 such that Xs(t) < KX3(kT) for any
k>1,te (KT, (k+1)T). As a result,

P, { lim Xo(t) = 0} 1«
t—o0

Finally, to obtain the exact convergence rate, we use the fact that any weak limit
of the random occupation measure II; := %fot 11(x(s),¢(s))e-1ds must be almost surely
an invariant measure of (X(t),£(t)). If Xa(t) converges to 0, then the weak limit must
be an invariant measure on R}? x 8. Suppose, with a positive probability, there exists
a random sequence {t;} such that the limit of ﬁtk is of the form a; 6™ X m+as 1 +azpi13
with a; > 0 or as > 0; then we show this leads to a contradiction as follows. We have
from the weak convergence that

In X (¢
lim nil(k) lim Al(Htk) = )\1(0,16 X T+ asgp1 + 113[113) = al)\l((s X 7T)

k—o0 tr k—o0

because A1 (1) = 0, A1 (13) = 0. Since A1 (6™ x7) > 0, we must have a; = 0; otherwise
limg_, o0 In X1 (¢;) = 0o, which contradicts the fact that the solution is bounded.
Once we prove that a; = 0, we have

. InXs(t
lim ﬂ lim Ag(Htk) = )\3(@2/1,1 + (lglu,lg) = ag)\g(ul)

k—o0 tr k—o0

since Az(p13) = 0. The fact that X3(t) is bounded implies that as = 0 as well.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/01/23 to 47.219.194.215 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

RANDOM SWITCHING IN AN ECOSYSTEM 363

As a result, we proved that the only weak limit of ﬁt, if Xo(t) converges to 0 is
113. Because of this uniqueness, we have

lim ln X2 (t)

t—o00

= tli>Holo /\Q(ﬁt) = Aa(p13)

for almost all trajectories satisfying lim; ., X2(t) = 0.

Combining this conclusion and (4.4) completes our proof for part (1). Part (2) is
similar.

For parts (3), (4), and (5), we combine the result from part (1), the accessibility
of the boundary, and Benaim et al. (2015, Lemma 3.1) to obtain that

Pxo.0) (tlggo dist(X(t), OR}) = 0) > 0.

This implies that there is no invariant measure on R‘i’o x S. As a result, any
weak limit of ﬁt() = % fot 1{(X(s),6(s))e-}ds is an invariant measure on the boundary
8]1%‘10 x §. This can be used in conjunction with a standard contradiction argu-
ment (Hening and Nguyen, 2018, Lemma 5.8) to obtain the claims in parts (3), (4),

and (5). d

5. Examples. In this section, we showcase our theoretical results in two specific
illuminating examples. For the deterministic system, without switching, correspond-
ing to fixing £(t) = j € S,t > 0, if b1,bs < 1, coexistence for the prey ecosystem
(X1, X5) is impossible in the absence of the predator. However, if e (j)r > d and

e2(j)r > d and
S L A, d c2(4)
X2(013,7) = el(j)b2 ( 61(j)) c1(g) 70

| ~_T_L A, d c1(j)
A1 (623, 5) = ez(j)bl ( ez(j)) Cz(j)>07

where 3513, j) is the point mass at the unique equilibrium of (X7, X3) in environment
jon R f”o, then the three-species ecosystem (X7, X, X3) exhibits coexistence.

We will study how the random switching can change the long-term behavior of
such ecosystems.

Ezxample 5.1. Consider the parameters

r=1, d=0.1,

by = 0.55, by = 0.95,

c1(1) = 0.15, ¢1(2) = 0.4,
(1) = 0.178,  ¢3(2) = 0.45,
e1(1) = 0.6, e1(2) = 0.85,
e2(1) =0.45, e2(2) =0.15

Then
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A2(d13,1) =~ —0.0667,
A2(d13,2) =~ —0.05,
)\2((523, 1) ~ 0185,
A2(023,2) ~ 0.3111,
and
r—dphy— (r— <L) 2 ~0.0022,
€1 €1 C1
r—%blf T,% %z0.1742,

where we set § = (g(1) 4+ ¢g(2))/2 for g = ¢1,c2,e1,e2. When the switching between
the two environments is fast with equal rates 1 — 2 and 2 — 1, standard averaging

arguments show that Ay (u13) & 7—Zby—(r—£) 2 and Ay (ue3) = r— b1 —(r—£) 2.

As a result, the equilibrium point on the boundary Rf”o is asymptotically stable
for both deterministic systems corresponding to state 1 and state 2. This shows that
in the deterministic systems prey 2 goes extinct. However, with switching we have
A2(p13) > 0 and Aj(u23) > 0. By Theorem 3 the three species coexist and converge
to the unique invariant measure 7* on Ri’o (see Figure 1).

Ezample 5.2. Consider the parameters

r=1, d=0.1,
by = 0.9, by = 0.5,
(1) =015, ¢1(2) =04,
(1) = 0.28, ¢x(2) =04,
e1(1) =0.15, €1(2) = 0.85,
ea(1) = 0.15, e5(2) = 0.4.
Then
)\1(513, 1) ~ 0.1333,
/\1(513, 2) ~ 00667,
A1 (623, 1) ~ 0.6643,
)\1((523, 2) ~0 0333,

and

r—Lby — (r—L)2 ~ —0.1114,
e1 €1’ ¢c1
r— b — (r—£)3 ~0.2483.

This shows that the equilibrium point in the interior Ri’o is asymptotically stable
for both deterministic systems corresponding to state 1 and state 2. The three species
coexist in both environments if there is no randomness. However, when the switching
is fast, one has Aa(u13) ~ r— %bg—(’f’— %)% < 0and Aj(uos) ~r— %bl —(r—%)%

0. Using Theorem 4 we see that, in the random system, prey 1 and the predator
persist, while prey 2 can go extinct with a large probability when it starts at a small

initial density (see Figures 1 and 2).
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———state 1
state 2

=== average
switched

08 — == state 1
state 2
===+ average 0.6
switched

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.1 0.2 0.3 04 0.5 0.6 0.7
Prey 1 Prey 1

Fic. 1. Tragectories in prey 1—prey 2 phase space. All simulations in a given panel have the
same initial conditions. Small circles denote the fized points for the various vector fields. Left
panel: (Ezxample 5.1) In each fized environmental state prey 2 goes extinct. Switching makes all
three species coexist. Right panel: (Example 5.2) In each fized environmental state the three species
coexist. Prey 2 goes extinct in the switched system.

Predator
o
&
Predator

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 03 0.4 0.5 0.6 0.7
Prey 1 Prey 1

(a) State 1 (b) State 2

F1G. 2. (Ezample 5.2) The joint density of X1 = Prey 1 and X3 = Predator in state 1 and state
2 was simulated 100 times on the time interval [0,10000] for a solution (X1,X2,X3) with initial
values (2/3,2/3,3/2). The occupation measure for the switched system converges exponentially fast

. . . 1
to the absolutely continuous invariant measure on R+3’O.
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